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A B S T R A C T   

Remote sensing can provide critical information about the health and productivity of coastal wetland ecosystems, 
including extent, phenology, and carbon sequestration potential. Unfortunately, periodic inundation from tides 
dampens the spectral signal and, in turn, causes remote sensing-based models to produce unreliable results, 
altering estimates of ecosystem function and services. We created the Flooding in Landsat Across Tidal Systems 
(FLATS) index to identify flooded pixels in Landsat 8 30-meter data and provide an inundated pixel filtering 
method. Novel applications of FLATS including inundation frequency and pattern detection are also demon
strated. The FLATS index was developed to identify flooding in Spartina alterniflora tidal marshes. We used 
ground truth inundation data from a PhenoCam and Landsat 8 pixels within the PhenoCam field of view on 
Sapelo Island, GA, USA to create the index. The FLATS index incorporates a normalized difference water index 
(NDWI) and a phenology-related variable into a generalized linear model (GLM) that predicted the presence or 
absence of marsh flooding. The FLATS equation for predicting flooding is 1- 1

e-1.6+20.0∗NDWI4,6 +68.6∗Pheno3,4
, and we found 

that a cutoff 0.1 was the optimized value for separating flooded and non-flooded pixel classes. FLATS identified 
flooded pixels with an overall accuracy of 96% and 93% across training data and novel testing data, respectively. 
FLATS correctly identified true flooded pixels with a sensitivity of 97% and 81%, across training and testing data, 
respectively. We established the need to apply FLATS when conducting vegetation time-series analysis in coastal 
marshes in order to reduce the per-pixel reflectance variations attributed to tidal flooding. We found that FLATS 
identified 12.5% of pixels as flooded in Landsat 8 tidal marsh vegetation time-series from 2013 to 2020, after 
traditional quality control and preprocessing steps were conducted, which could then be filtered out or modeled 
separately in order to conduct remotely sensed vegetation assessments. Therefore, in tidal wetlands, we 
recommend incorporating FLATS into Landsat 8 preprocessing prior to vegetation analysis. We also demon
strated innovative applications for the FLATS index, particularly in detecting flooding frequency and flooding 
patterns relevant to the broader biophysical modeling framework, including mapping marsh vulnerability due to 
fluctuation in inundation frequency. The FLATS index represents advancements in the understanding and 
application of inundation indices for coastal marshes.   

1. Introduction 

Remote sensing has been widely used as an effective means to 
expand our understanding of vegetation and ecosystem dynamics in 
landscapes, such as wetlands, that are difficult to monitor on the ground 
using traditional field monitoring techniques (Mishra and Ghosh, 2015). 

Coastal marshes present a distinct challenge because of their periodic 
inundation due to the ebb and flow of tides, which dampens spectral 
reflectance. Thus, there is a need for an accurate flagging mechanism to 
identify flooded pixels (Han and Rundquist, 2003; Kearney et al., 2009; 
Mishra et al., 2015, 2012; O’Connell et al., 2017). For example, inter
mittent variability in the spectral signal caused by tides can have major 
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effects on the interpretation of data or parametrization of biophysical 
models, particularly in the case of vegetation time-series analysis (Cho 
et al., 2008; O’Connell et al., 2017; O’Connell and Alber, 2016). Vege
tation indices that are commonly used to examine changes in vegetation 
over time, such as the Normalized Difference Vegetation Index (NDVI) 
or the Enhanced Vegetation Index (EVI) created for use in terrestrial 
systems and do not account for tidal interference in the spectral signal 
(Cho et al., 2008; Han and Rundquist, 2003; Liu and Huete, 1995; Rouse 
et al., 1974). An index that is designed specifically to flag tidally flooded 
pixels is necessary in order to accurately capture changes in vegetation 
and flooding dynamics in coastal marshes over time. 

Our previous work created the Tidal Marsh Inundation Index (TMII) 
to identify and subsequently remove flooded observations in tidal 
marshes (O’Connell et al., 2017). However, we calibrated the TMII for 
the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS 
has high temporal resolution but has a much coarser spatial resolution 
(250 – 1,000 m) which is less suited to irregular and fragmented vege
tation patches that are often found in coastal marsh landscapes (Belluco 
et al., 2006; O’Connell et al., 2017; Rogers and Kearney, 2004). MODIS, 
managed by the National Aeronautics and Space Administration 
(NASA), provides a complete view of Earth every 1–2 days (Justice et al., 
1998; Running et al., 1994). Coarse pixels typically contain more than 
one landcover type. These mixed pixels alter spectral dynamics so that 
MODIS optimized indices do not necessarily directly translate to sensors 
with finer spatial resolution and more homogeneous pixels (Belluco 
et al., 2006; Mishra et al., 2015; Mishra and Ghosh, 2015; O’Connell 
et al., 2017). Therefore, new flooding detection techniques should be 
developed for use with moderate-high spatial resolution satellite data. 

The ability to utilize higher resolution data, such as that from 
Landsat 8, will allow for a more detailed understanding of tidal marsh 
vegetation dynamics. Landsat 8 is a collaborative mission by NASA and 
the United States Geological Survey (USGS) that provides multispectral 
remote sensing images at a 30-m spatial resolution, which is consider
ably higher than MODIS. Landsat 8 was launched in 2013 and has a 16- 
day temporal resolution (Lulla et al., 2013). In this paper, we present a 
new index called the FLATS (Flooding in Landsat Across Tidal Systems) 
index, which is optimized for the use of these higher spatial resolution 
imagery. This expands the analytical possibilities for more accurate 
vegetation time-series analysis and allows us to detect finer-scale 
changes in flooding patterns that could impact the ecology of a given 
area. 

In this paper, we describe the method used to create the FLATS index 
using Landsat 8 data in order to detect coastal inundation in a Spartina 
alterniflora marsh on Sapelo Island, GA, USA. We also establish best 
practices for applying FLATS for vegetation time-series analysis in 
coastal marshes, including cutoff thresholds. Finally, we provide a 
demonstration of innovative applications for FLATS, particularly in the 
area of detecting flooding frequency and flooding patterns. FLATS 
transforms the future of remote sensing applications in coastal wetlands 
due to the high-resolution inundation flagging it provides. FLATS rep
resents advancements in the understanding and application of inunda
tion indices for current and future coastal marshes. 

Similar to TMII, the FLATS index incorporates a normalized differ
ence water index (NDWI) that differentiates water from other land cover 
types (Ji et al., 2009; O’Connell et al., 2017). FLATS also incorporates an 
index that takes seasonal phenology into consideration, as the relative 
differences between flooding and vegetation differ between the growing 
season when vegetation is green and senescence when vegetation is 
brown. This phenology variable allows us to discern seasonal changes in 
the ratio between water, vegetation, and other land cover types 
(O’Connell et al., 2017). Although the FLATS index utilizes the archi
tecture of TMII, it differs because it uses different band combinations 
that are more suited to finer spatial resolution data that have a higher 
frequency of homogeneous pixels. It, therefore, should have greater 
scalability to other remote sensing platforms such as near-identical 
Landsat 9, and even higher resolution sensors such as Sentinel 2A and 

2B. FLATS can be cross-calibrated with a number of other satellites such 
as Landsat 5 and Sentinel-2 to examine long term trends in flooding 
frequency and intensity in coastal wetlands threatened by sea level rise. 

2. Methods 

2.1. Study site 

We developed the FLATS index from training data that came from 
eighteen Landsat 8 pixels located on Sapelo Island, GA, USA (henceforth 
denoted as “Sapelo Island”) within the Georgia Coastal Ecosystems 
(GCE) Long Term Ecological Research (LTER) site and the Sapelo Island 
National Estuarine Research Reserve (NERR) (Fig. 1A). This salt marsh is 
mainly composed of homogenous covers of Spartina alterniflora in three 
height forms (short, medium, and tall) at varying densities ranging from 
dense to sparse (Hladik et al., 2013). Tidal channels infiltrate the marsh 
platform and are flooded by semi-diurnal tides that often rise more than 
2 m (tidesandcurrents.noaa.gov). An eddy covariance carbon flux tower 
affixed with a PhenoCam (see section 2.2.1 below for more detail) 
maintained by the GCE-LTER is located within the study area marsh 
(31.441◦ N, 81.284◦ W) and measures carbon dioxide fluxes between the 
marsh and the atmosphere (Fig. 1B). The flux tower also provides 
ground truth environmental data, including water level and temperature 
sensors. Upon optimization of FLATS, the index was applied to a 4.39 
km2 area of Sapelo Island (as seen in Fig. 1A) that contains a large 
monoculture of S. alterniflora marsh, the Duplin River, forested upland, 
and hammock areas. 

2.2. Analytical approach 

To develop the FLATS index, we utilized techniques similar to 
O’Connell et al. (2017) which are outlined in Fig. 2. First, we acquired 
ground truth flooding data within the focal area (Fig. 2, step 1a). Next, 
we obtained Landsat 8 data via Google Earth Engine (GEE), which was 
post-processed to filter out pixels with cloud shadow and/or cloud cover 
(Fig. 2, step 1b). To develop FLATS, we tested numerous band combi
nations in order to identify those combinations which relate best to 
flooding status (Fig. 2, step 1c). Once appropriate band groupings were 
selected, the FLATS index was created, and an optimum cutoff value was 
identified (Fig. 2, step 1d). The adjusted cutoff value was utilized when 
applying the index to new pixels within the study area (Fig. 2, step 2a). 
Depending on the desired application, either vegetation analysis or 
flooding frequency analysis, a different series of steps is recommended 
(Fig. 2, step 2b). If vegetation analysis is the intended application, pixels 
flagged by FLATS as containing values above the flooding classifier 
cutoff are identified as flooded and should be removed (Fig. 2, step 
2bV.1). You then are left with only vegetated pixels and can proceed 
with your desired vegetation time-series analysis (Fig. 2, step 2bV.2). If 
flood frequency is the objective of your analysis, then you should keep 
all available data (Fig. 2, step 2bF.1) and plot the FLATS flooding clas
sified data by pixel through time to examine trends in flooding fre
quency (Fig. 2, step 2bF.2). 

2.2.1. Ground truth tidal inundation data 
First, accurate tidal inundation data were obtained for the focal area 

in order to ground truth the FLATS index. Data was acquired from a 
PhenoCam (StarDot NetCam SC 5MP IR, StarDot Technologies, Buena 
Park, CA, USA) which is located on the GCE-LTER flux tower on Sapelo 
Island and is identified as the “GCESapelo” site within the PhenoCam 
Network (phenocam.unh.edu). The PhenoCam is a digital camera which 
has been programmed to automatically take oblique angle photos of the 
marsh surface every 30 min during daylight hours (Fig. 1C). This fre
quency of image collection allows for flooding and drainage patterns to 
be observed across the marsh platform during a range of tidal sequences. 
In order to discern flooding on the marsh platform, the PhenoCam field 
of view (black outline; Fig. 1B) was approximated based on the height 
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and angle of the PhenoCam as well as field surveys and natural reference 
points (i.e., the creek, upland area, etc.). Landsat 8 pixel outlines and a 
habitat map were superimposed within the PhenoCam field of view 
(Fig. 1B) in order to assist in image assessment (Hladik et al., 2013). The 
PhenoCam images were then visually examined to detect flooding in 
coincident Landsat 8 passovers between September 2013 and December 
2020, when the PhenoCam was operational. Pixels were identified as 
“flooded” when water was present (i.e., when marsh vegetation was 
observed to be either partially or fully inundated). 

Environmental data were also available from various sensors asso
ciated with the GCE-LTER flux tower to assist in validating tidal flood
ing, including two pressure transducers (Campbell Scientific 
Instruments Model CS455, Logan, UT, USA) which measured water 
levels within a creek adjacent to the flux tower as well as on the marsh 
platform surface north of the flux tower. These water level data, 
collected in 5-minute increments, were aggregated to match the Phe
noCam data by averaging over the preceding half-hour of data. The 

PhenoCam images and water level data were filtered to between 15:00 
and 16:30 Coordinated Universal Time (UTC) in order to match with 
Landsat acquisition times. This water level data served as a second form 
of ground truth data and was used in conjunction with the PhenoCam 
images to indicate the presence of flooding. The combined PhenoCam 
and water level data were pivotal in the development of FLATS because 
tidal flooding can be spatially variable through time with respect to 
wind patterns and tidal creek migrations, and is not always straight
forward to estimate (O’Connell et al., 2017; Wu et al., 2021). Together, 
these datasets provided on the ground information of tidal marsh 
flooding that we coordinated with remote sensing data and knowledge 
of the field site (including elevation and phenological characteristics) to 
conservatively estimate individual pixel flooding status. 

2.2.2. Obtain and process Landsat 8 data 
Remote sensing data was obtained in the form of band information 

from the Landsat 8 satellite from March 2013 through December 2020 

Fig. 1. Location of the study site on Sapelo Island, GA, USA (A) with the PhenoCam field of view (black polygon) overlaid on Landsat pixels (identified by numbers; 
pixels within the white boundary were used in model training, testing, and validation) and marsh species height forms (colors) (from Hladik et al., 2013) (B), and 
examples of dry and flooded PhenoCam images with the short/medium S. alterniflora boundary indicated by the black line (C). 

Fig. 2. Simplistic overview of the workflow used to create and apply FLATS.  
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for the entire study area (Fig. 1A). Multispectral Level-1 Landsat 8 sur
face reflectance data were acquired from GEE. The data were subset into 
a focal area dataset that contained only the 34 pixels found within the 
PhenoCam field of view (Fig. 1B). These pixels were categorized based 
on proximity to the flux tower resulting in near (1–3), mid (4–9), far 
(10–18), and very far (>18) pixels, with the very far pixels being 
excluded from index creation. During model development, the decision 
was made to exclude the pixels located furthest away from the Pheno
Cam (pixels 19–34; Fig. 1B) due to the oblique angle of the camera’s 
field of view. These excluded pixels were located greater than 150 m 
away from the PhenoCam, which prevented a clear view and distorted 
any visual indications of flooding status. 

Landsat 8 has an overpass time of approximately 16:00 UTC at this 
site. Prior to acquisition, the Landsat 8 data were atmospherically cor
rected using the Land Surface Reflectance Code (LaSRC) algorithm 
(USGS, 2020). The quality assessment (QA) band, inherent in the Level-1 
Landsat Surface Reflectance products, flags pixels using the C Function 
of Mask (CFMASK) algorithm that contains conditions that often have 
adverse effects on image processing, such as clouds (Foga et al., 2017). 
Post-processing of the Landsat 8 data included multiplying band data by 
a scale factor as recommended by the USGS and filtering to remove 
clouds and cloud shadows, as well as “no data present” pixels, as indi
cated by the pixel QA band. We also extracted water status from the QA 
band, though this is known to be inaccurate for shallow inundation such 
as tidal flooding. Multispectral outliers, e.g., wavelengths > 0.4 µm, 
were eliminated from the data pool as well as < 0 which were likely 
scene edges. 

We established that using environmental data (e.g., water level data 
from the pressure transducer) in conjunction with the PhenoCam images 
provided a credible source for flooding information on the marsh sur
face. We obtained 295 observations per pixel within the focal area (i.e., 
PhenoCam’s field of view) after excluding “very far” pixels (pixels 19–34 
in Fig. 1B) between March 28th 2013, and December 27th 2020. After 
post-processing this Landsat 8 data by filtering out poor quality pixels as 
indicated by the QA band (those with cloud cover, cloud shadow, and 
filled), an average of 148 occurrences per pixel remained (2,663 pixels 
total), indicating that approximately 50% of the available data had to be 
filtered out from the 7-year multispectral surface reflectance dataset. 

2.2.3. Create training, testing, and validation sets and identify predictors of 
flooding through band combinations 

Prior to model fitting, the focal area dataset was divided into three 
separate datasets. The first dataset was considered training data and 
accounted for a random 70% of the data between March 2013 and 
December 2017. The second dataset consisted of testing data and con
tained the remaining 30% of the data between March 2013 and 
December 2017. The independent validation dataset consisted of two 
full years of data (January 2018 through December 2020). The testing, 
training, and validation data included 18 pixels per Landsat scene over 
66 scenes and 7 years, utilizing 984 data points in total after filtering for 
clouds and quality. The model was trained on the training set, and then 
verified against the novel testing and validation sets, which were not 
used in model training. Each of these datasets contained a binary “wet” 
variable (true/false) from the Landsat QA band that indicated the 
presence of water (true) or not (false). This wet variable was used to 
compare against our final FLATS index to help evaluate its efficacy. A 
second binary variable called “flooded” was created based on the ground 
truthed flood status (e.g., the visual interpretation of the PhenoCam 
images and water level data) (0 = no flooding observed, 1 = flooded, NA 
= flood status was not clear). A spectral plot was created to examine 
temporal determinants of spectral reflectance, in order to help identify 
band predictors for our model (Fig. 3). For this, the mean and standard 
deviation of each spectral band were plotted based on flooding status 
(dry or flooded) and by season (growing: mid-March to September, 
dormant: October to mid-March). 

2.2.4. Create FLATS index and optimize cutoff value 
A binomial Generalized Linear Model (GLM) was used to create 

FLATS, initially through the utilization of the training dataset, where 
Landsat 8 bands were used as the predictors of the response variable 
(binary ground truthed flood status). Many binomial GLMs relating band 
combinations to flood status were explored prior to the selection of the 
final FLATS model (Appendix A). In order to determine which band 
combinations to use in our FLATS index, we referenced the spectral plot 
(Fig. 3) as well as tested a variety of established indices such as the 
NDVI, the Green Normalized Difference Vegetation Index (GNDVI), EVI, 
the Soil-Adjusted Vegetation Index (SAVI), variations of the Normalized 
Difference Water Index (NDWI) including the modified NDWI (mNDWI), 
Wide Dynamic Range Vegetation Index (WDRVI), and various versions 
of phenology indices (see Appendix A for full list of indices) (Gitelson, 
2004; Gitelson and Merzlyak, 1998; Huete, 1988; McFeeters, 1996; 
O’Connell et al., 2017; Xu, 2006). We also compared bands most directly 
translatable from the original TMII equation to ensure FLATS was an 
improvement. 

Seasonal differences played an important role in the variation of the 
spectral signal for the original TMII and continue to affect the FLATS 
model. A phenology index was employed in order to account for these 
naturally occurring seasonal changes. After consulting the spectral plot 
and trying many band combinations, the best option as indicated by our 
model fit criteria (see next paragraph below) was a phenology index 
developed from two bands in the visible spectrum (band 3 – Green & 
band 4 – Red) (see results). 

In order to select the best model to predict flooding, we used the 
following model fit criteria: model explained deviance (ED), flood ac
curacy as identified by contingency table output, and classification 
Receiver Operating Characteristic (ROC) curves (Hanley and McNeil, 
1982). ED is used to describe the strength of the relationship between a 
model and actual data where ED is equal to the null deviance – residual 
deviance / null deviance multiplied by 100 (Zuur, 2009). ED has also 
been described as a pseudo coefficient of determination (R2) (Zuur, 
2009). The contingency table was the second form of model assessment 
and contains accuracy, sensitivity, and specificity values. Accuracy is 
defined as the number of correctly classified flood status pixels divided 
by the total number of pixels multiplied by 100. Sensitivity indicates the 
percentage of correctly identified flooded pixels (true positives), while 
specificity indicates the percentage of correctly identified non-flooded 
pixels (true negatives). The third and final model assessment utilized a 
ROC curve and sought to identify the maximized Area Under the Curve 
(AUC) by using the R package “pROC” (Robin et al., 2011). The ROC 
curve helps the user compare true positives (sensitivity) to false posi
tives, aiding in the distinction between whether a model is poorly 

Fig. 3. Mean spectral reflectance for the growing season (mid-March through 
September) and the dormant season (October through mid-March) with one 
standard deviation. 
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optimized or lacks the power to explain the data (Hanley and McNeil, 
1982; O’Connell et al., 2017). Flooded and dry pixels were distinguished 
based on an optimized cutoff boundary which was selected so that the 
model’s specificity (ability to correctly identify flooding) was maxi
mized (>90) while maintaining a balance with accuracy and specificity. 
Any FLATS value below the determined cutoff value is considered dry 
while any FLATS value above that of the cutoff is considered flooded. 

Following the confirmation of model performance, the model equa
tion was then simplified to a spectral reflectance index equation by 
rounding the intercept and coefficient values to the nearest tenths place. 
A logit transformation was also applied to the model in order to convert 
the model back into the predictor units. This created the final FLATS 
equation. The final FLATS equation was then reapplied to both the 
training and testing datasets to ensure that the same cutoff value could 
be applied and render the same result as the more complex model in 
both cases. The model was also verified against the novel validation data 
that was withheld during model development. 

2.3. Application of FLATS 

Next, we applied the index to the entire study area (Fig. 1A) in order 
to examine its proficiency at detecting flooded pixels at a larger scale. 
We also explored the various applications of FLATS, including time- 
series analysis of marsh vegetation biophysical characteristics and 
flooding dynamics. 

2.3.1. Apply FLATS to new pixels within the study site 
The model was initially applied to a small subset of pixels found 

within the PhenoCam field of view (in order to have coincident ground 
truth data to verify model accuracy) but was later applied to an 
expanded area at the study site (Sapelo Island, GA; Fig. 1A) for appli
cation exploration. This study area covers over 4,800 pixels (approxi
mately 4.39 square kilometers) and contains many different land cover 
types, including open water (the Duplin River), upland vegetation (pine 
trees, etc.), mudflat areas, and the three different height forms of 
S. alterniflora, which were mapped by Hladik et al. (2013). Prior to the 
application of the index to the entire study site, we used the Hladik et al. 
(2013) habitat map to first remove non-marsh cover types from our 
analysis. The FLATS index was then applied to marshes that spanned the 
study area from 2013 to 2020. 

2.3.2. Selection of application type 
The ability to identify flooded pixels allows the FLATS index to be 

used in a variety of different applications related to tidal marsh systems. 
We have established two workflows showing the applicability of FLATS 
for tidal marsh vegetation analysis and identifying flooding frequency 
and patterns through time. 

2.3.2.1. Vegetation biophysical analysis application. Producing a reliable 
vegetation analysis of coastal wetlands involves flagging tidally inun
dated pixels as an initial step in preprocessing (O’Connell et al., 2017). 
Prior to FLATS, there were no quick approaches to accurately flag tidal 
flooding in Landsat 8 data. To show the utility of FLATS in a vegetation 
analysis, we used NDVI, one of the most widely used vegetation indices. 
An assessment was conducted on both the focal area and the entire study 
area to determine how many pixels were removed by each filter type. 
Our goal was to showcase enhancements FLATS provides over non- 
filtered data and other water filtering methods such as the Landsat QA 
band. For simplicity we used a single pixel (pixel 12; Fig. 1B) from 
within the PhenoCam’s field of view to illustrate the utility of FLATS 
through the comparison of three NDVI time-series. This analysis 
compared the raw, unfiltered NDVI values, the Landsat QA band filtered 
NDVI values, and the FLATS filtered NDVI values for one pixel through 
time (2013–2020). We used ground truth data to highlight flooded and 
dry observations in each NDVI time-series and fitted a smoothed spline 

to each of the NDVI time-series to visualize the phenological signal 
produced by individual filter types. We also calculated the monthly 
mean NDVI value of all marsh vegetation pixels within the study area 
and then compared the NDVI time-series based on filter type (i.e., 
unfiltered, Landsat QA band filtered, and FLATS filtered). 

2.3.2.2. Flooding analysis application. Mapping the frequency of flood
ing is an alternative way to utilize FLATS. Unlike the vegetation time- 
series, analysis of flooding does not involve removing the flooded 
pixels indicated by the FLATS index. Instead, one uses the FLATS in
formation to visualize patterns in flooding and highlight relationships 
between verified flooding frequency and more commonly available 
variables such as water levels from local tide gauges. To demonstrate 
this, we analyzed tidal flooding frequency derived from FLATS to 
discern changing patterns through time. This flooding frequency anal
ysis was conducted by normalizing the percent of the time a pixel was 
flooded, as determined by the FLATS index, by the number of times that 
pixel occurred through the time-series. The per-pixel normalization of 
flooding emphasizes marsh areas that flood more frequently as 
compared to other areas within the marsh that have stayed dryer over 
the 7 years of this study. We then conducted sub-analysis examining 
yearly flooding frequency normalized per-pixel on a subset of 9 pixels 
containing short and medium form S. alterniflora located north of the 
flux tower outside of the PhenoCam’s field of view. This location was 
chosen due to its lack of migrating creeks, which are known to influence 
flooding patterns, and its interior marsh structure, i.e., higher elevation 
with medium and short form plants. The analysis serves as a snapshot 
into how flooding patterns can change yearly and potentially result in 
ponding with future sea level rise in an area not directly impacted by 
creek migration or low elevations. We also conducted an analysis of the 
flood frequency trends on a monthly basis for the entire study area. For 
this analysis, the flooding frequency was normalized per pixel for each 
month throughout the study period, where the monthly flooding fre
quency was determined by subsetting all dates falling within the spec
ified month (i.e., all pixels dated January 1st - January 31st within the 
2013–2020 dataset). 

We also feature two ways to explore relationships between flooding 
and other variables: water level above the marsh surface through time as 
a proxy for sea level rise and monthly Mean Higher High Water (MHHW) 
as a function of mean monthly flood proportion. The water level and 
MHHW data were obtained from the National Oceanic and Atmospheric 
Administration’s (NOAA) Fort Pulaski, GA station (ID: 8670870) that 
was established in 1935. The water level was adjusted to reflect the local 
elevation via a spectrally corrected light detection and ranging (LiDAR) 
derived digital elevation model (DEM) at our site on Sapelo Island, GA 
(vertical datum: NAVD 88) (Hladik et al., 2013; Hladik and Alber, 
2012). We extracted elevation data for each marsh pixel within our 
study area from Hladik et al. (2013)’s DEM and then subtracted the 
observed water level (relative to NAVD88) at Fort Pulaski that matched 
closest to the Landsat 8 scene acquisition time. The Fort Pulaski water 
level data is available in 6-minute intervals with times that closely 
match Landsat 8 acquisition (15:54 and 16:00 UTC). The average water 
level above the surface of the marsh was calculated for each date (scene) 
and was examined over time. To better understand how a variable such 
as MHHW can relate to flooding at our study site, we plotted the 
normalized mean flood proportion for each Landsat 8 scene (what pro
portion of the entire study area was flooded on a given date) then 
averaged the flood proportion per month. We then plotted these mean 
monthly flood proportions (derived from FLATS) against the monthly 
mean MHHW values at Fort Pulaski between 2013 and 2020. We did not 
alter MHHW levels to reflect marsh elevations. 
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3. Results 

3.1. Identify predictors of flooding through band combinations 

The Landsat 8 spectral plot was created using training reflectance 
data (2013–2017) and demonstrated clear distinctions between seasons 
as well as inundation status across portions of the electromagnetic 
spectrum (Fig. 3). The mean reflectance was greater in the growing 
season than in the dormant season. This difference was most prevalent in 
the visible and near infrared (NIR) portion of the spectrum for dry ob
servations. The flooded observations in each season depressed the mean 
reflectance when compared to their dry counterpart, particularly in the 
NIR and shortwave infrared portion (SWIR) of the spectrum (band 5 – 
865 nm and band 6 – 1,608.5 nm). The spectral plot indicated that the 
normalized difference between a visible band (e.g., band 3 – 561.5 nm or 
band 4 – 654.5 nm) and a NIR or SWIR band (bands 5 or 6, respectively) 
could help discern pixel inundation status as these had the greatest 
change in reflectance between flooded and dry observations. The plot 
also emphasized the need to include a variable that accounts for 
phenology since there is an overlap between dry dormant season ob
servations and flooded growing season observations in the visible 
portion of the spectrum. 

3.2. Create FLATS model and optimize cutoff value 

Although many band combinations were tried, ultimately, we 
selected the grouping of an NDWI-type index with a phenology index to 
create the final FLATS model due to the presence of bands previously 
identified as important in Fig. 3 and the model’s high ED (see Appendix 
A for full list of indices). The NDWI selected for the FLATS model con
sisted of band 4 (the red band centered at 654.5 nm) and band 6 (a SWIR 
band centered around 1608.5 nm), where the equation is:  

NDWI4,6 = (band 4 – band 6) / (band 4 + band 6)                                (1) 

The selected phenology index is the normalized difference of band 3 
(the green band centered at 561.5 nm) and band 4, expressed as:  

Pheno3,4 = (band 3 – band 4) / (band 3 + band 4)                                (2) 

The binomial GLM model selected for best classifying the flood status 
of tidal marsh pixels in Landsat 8 data was:  

Flood Status = -1.57 + 19.97*NDWI4,6 + 68.55*Pheno3,4                     (3) 

This model explained 82% of the difference between the ground 
truth flooding data and the model’s predictions in the training dataset 
(Table 1). This model (Eq. 3) was then transformed into the units of the 
predictors to create the final FLATS equation: 

FLATS = 1-
1

e-1.6+20.0∗NDWI4,6+68.6∗Pheno3,4
(4) 

The FLATS equation (Eq. 4) outperformed NDWI4,6 (ED – 73%) 
alone, which emphasizes the need for incorporation of a phenology 

variable. The FLATS model also significantly outperformed a model (ED 
– 52%) which used the TMII equation while substituting for similar 
Landsat 8 bands (bands 3 and 6 for flooding, bands 5 and 6 for 
phenology) (O’Connell et al., 2017). The optimized cutoff value for 
FLATS was determined to be 0.1. Once the FLATS index was applied 
with the optimized cutoff value to the training dataset, the sensitivity of 
the model on the training data was 97%, while the specificity and ac
curacy were both 96% (Table 1). The AUC for the training data was 0.96 
(Table 1). 

We also used contingency table parameters to examine the testing 
and validation data for model efficacy. The sensitivity ranged from 81% 
to 86%, while specificity was 97% for both datasets (Table 1). The 
overall accuracy remained high, fluctuating between 93% and 95% 
(Table 1). 

3.3. Vegetation biophysical analysis application 

The FLATS index was applied to a focal dataset containing pixels 
within the PhenoCam’s field of view (pixels 1–18) from 2013 to 2020, 
which originally consisted of 5,310 observations (full dataset). After 
filtering for clouds, cloud shadow, fill, and water using the Landsat QA 
band as well as filtering out scene edges, 2,663 observations remained. 
Finally, after applying and filtering with FLATS index using the opti
mized cutoff value, 1,970 dry observations were left, indicating a 63% 
reduction in data from the full dataset. A similar pattern in pixel 
reduction was detected in the study area (Fig. 1A), where there were 
originally 902,405 marsh pixels between 2013 and 2020. After Landsat 
QA filtering, 456,061 pixels remained, representing a 49.5% reduction 
in pixels. Filtering with FLATS further reduced the number of dry pixels 
remaining to 346,170, an additional 12.5% reduction bringing the total 
percentage of data removed from the analysis to 62%. 

Examples to showcase the benefits of filtering data with FLATS vs 
other filtering methods can be seen in Fig. 4. Fig. 4A shows the raw NDVI 
phenological signal plotted for one pixel through time with ground 
truthed flooded pixels highlighted in teal. Fig. 4B is the pixel’s NDVI 
values plotted after the Landsat QA band filtering was applied, still 
leaving 6 flooded pixels in the time series. Finally, Fig. 4C has no flooded 
pixels remaining after FLATS was applied to the dataset. Fig. 4D is a 
comparison of the smoothed splines of the 3 pixel filtering methods 
showcased in Fig. 4A-C where the raw NDVI phenological signal (black 
dotted line) was depressed compared to either of the filtered signals 
(orange Landsat QA and teal FLATS), particularly in 2015, 2016, and 
2020 when substantial flooding occurred in the pixel. The Landsat QA- 
filtered and FLATS-filtered phenological signals had similar curves at the 
single pixel level, although the Landsat QA-filtered data still retained 
some pixels with minor flooding, which caused a dampening of signal 
when minor flooding events occurred as compared to the FLATS filtered 
signal. When results such as these are extrapolated over an entire study 
area (~3,000 or more pixels per date) significant dampening of the 
spectral signal will occur. The last panel in Fig. 4 (E) shows the smoothed 
splines of the three filter types that have been fitted to the monthly mean 

Table 1 
Goodness of fit measures for the Flooding in Landsat Across Tidal Systems (FLATS), compared with the Landsat 8 Quality Assessment (QA) band. ED is explained 
deviance and AUC is Area Under the Curve. Sensitivity and specificity are the accuracy of classifying flooded and dry observations, respectively; accuracy is overall 
classification accuracy; N is total sample size. Flooded ID’d is the number of true flooded instances that were flagged and flooded missed is the number of true flooded 
observations that were missed (classified as dry rather than flooded).  

Data ED AUC Sensitivity Specificity Accuracy N Flooded ID’d Flooded Missed 

FLATS 
Training 82 0.96 97 96 96 526 59 2 
Testing - - 81 97 93 164 30 7 
Validation - - 86 97 95 294 50 8 
Landsat QA 
Training - - 74 100 97 526 45 16 
Testing - - 62 100 91 164 23 14 
Validation - - 76 100 95 294 44 14  
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NDVI values for the entire study area through time (NDVI values were 
averaged per scene, if multiple scenes occurred in a single month those 
were also averaged to produce one NDVI value per month throughout 
the time series). Any scene that was determined to be 50% or more 
flooded using the Landsat QA and/or FLATS filters was removed from 
the analysis. Although the mean monthly NDVI splines (Fig. 4E) showed 
a similar overall pattern to single pixel splines (Fig. 4D), the major 

difference can be seen in the raw NDVI’s diminished signal (particularly 
the dragging effect a flooded pixel has at the end of 2020) while the 
FLATS filtered values performed as expected. 

3.4. Flooding analysis application 

The majority (57%) of the pixels were flooded less than 20% of the 
time between 2013 and 2020, while a small percentage (9%) were 
flooded more than 50% of the time (Fig. 5A). These frequently flooded 
pixels were examined and were determined to be major creeks that cut 
through the marsh platform. The pixels that were flooded greater than 
20% of the time but less than 50% are considered at higher risk for 
prolonged flooding and accounted for 34% of the area on the marsh 
surface. When a subset of 9 pixels containing short and medium form 
S. alterniflora located north of the flux tower were considered, the 
average flooding frequency of those pixels ranged from 10.35% (2014) 
to 27.78% (2020) and showed a positive trend when plotted through 
time. Flooding frequency was also considered on a monthly basis. The 
driest months were March, April, and December, with 31%, 42%, and 
37% of marsh pixels being flooded, respectively (Fig. 5B). September, 
October, and November showed the most site-wide flooding, where an 
average of 99%, 93%, and 99% of marsh pixels experienced flooding in 
those months across all years (Fig. 5B). Flood maps were also created for 
each scene (with 3,000 or more pixels; i.e. mostly complete scenes 
without major cloud cover) to visually demonstrate FLATS’ usefulness 
over using the Landsat QA band filtering method on a site wide basis but 
were not included here as they only represent brief snapshots in time 
and do not showcase the larger applications of FLATS over a time series. 
A subset of these maps can be found in the supplement (Fig. S1 A-C). 

We also used Fort Pulaski water level data, which is relative to the 
North American Vertical Datum of 1988 (NAVD88), to study the depth 
of flooding through time relative to the LIDAR-derived DEM of the 
Sapelo Island marsh surface (Hladik et al., 2013). Fig. 6A shows the 
mean water level above the marsh surface averaged by scene from 2013 
to 2020. There is a significant positive trend with a rise in the average 
water level over the 7-year study period (Fig. 6A). The FLATS flood 
frequency application can also be used to investigate relationships be
tween flood proportion and other easily accessible variables. In our case, 
we used mean flood proportion by scene to explain MHHW values also 
obtained from Fort Pulaski (Fig. 6B). The relationship produced an R2 of 
0.305 and had a significantly positive relationship (p < 0.0001) while 
not showing distinct clustering by year. With every millimeter increase 
in the MHHW level we expect 0.125% more of the study area to be 
flooded. Our positive relationship mirrors the long-term increasing 
trend in sea level rise of 3.44 mm/year seen at the NOAA Fort Pulaski, 
GA station. 

4. Discussion 

This paper describes the creation of the Flooding in Landsat Across 
Tidal Systems (FLATS) model, which detects intermittent flooding 
within coastal marshes using Landsat 8 data. FLATS detected flooding 
within a S. alterniflora tidal marsh on Sapelo Island, GA, with an accu
racy ranging between 93 and 96%. These high accuracies, along with 
high sensitivity values (81–97%), suggest that our model is effective at 
identifying flooded pixels. Once an optimized cutoff value was estab
lished, we then used FLATS to flag flooded pixels for removal to improve 
vegetation time-series analysis and to examine patterns of flood 
frequency. 

4.1. Developing and optimizing FLATS 

FLATS is an index based on spectral reflectance modeling used to 
predict binary flood status. FLATS was ground truthed through the use 
of marsh images provided by the PhenoCam and water level data from a 
pressure transducer located on the marsh surface. Water level data, 

Fig. 4. FLATS vegetation biophysical application with the distribution of 
flooded pixels (blue dots) in the long-term phenology using NDVI values to 
compare flooding filtering capabilities of raw, unfiltered NDVI values (A), 
Landsat QA band filtered values (B), and FLATS filtered values (C) for a single 
pixel. The comparison between the long-term wetland phenology of a single 
pixel (D) and the mean monthly NDVI values for the study area (E). 
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while important in determining flood status, could not be solely relied 
upon to capture inundation levels over large areas of the marsh platform 
due to other factors that influence the movement and depth of water, 
such as wind speed and direction, vegetation type, density, and struc
ture, as well as drainage patterns, and disturbance (e.g., crab burrows) 
(Hladik et al., 2013; Hughes et al., 2009; Nyman et al., 2009; Valentine 
and Mariotti, 2019). The flooding index was intended to accentuate two 
drastically different bands; a band that provides the greatest separation 
between the flooded and dry spectra (i.e., band 6) and a band that shares 
many of the same spectral characteristics (i.e., band 4). In addition to 
flood status, a phenology variable was deemed important when identi
fying model predictors, as emphasized by the spectral plot (Fig. 3). The 
inclusion of a phenology variable assists in distinguishing the slight 
differences in the visible spectral properties between the dormant season 
dry observations and the growing season flooded observations which, 
otherwise, would be difficult to discern. FLATS detects flooding in tidal 
marshes without the need for external water level data and is based on a 
combination of spectral bands that indicate the presence of inundation 

while accounting for seasonal variations in the vegetation. 
We found that the normalized difference between Landsat 8 bands 4 

and 6 as well as the addition of a phenology variable composed of the 
normalized difference between bands 3 and 4 constituted the best model 
for detecting flooding while accounting for seasonal variation (i.e., the 
FLATS model). We advocate for the use of the FLATS model instead of 
adjusting bands in the TMII because not only are there combinations of 
bands that more accurately detect intermittent tidal flooding (band 4 
and band 6) but also because, unlike TMII, the use of a rolling mean 
function on a phenology variable is not optimal for Landsat 8 data due to 
its low temporal resolution (i.e., approximately 1 image every 8 days 
with combined revisit time frequency) as opposed to the MODIS revisit 
time (once per day). The NDWI index was chosen because it appropri
ately distinguished between flooded and non-flooded pixels, while the 
phenology index accurately captured the seasonal trends of the marsh 
vegetation. The selected NDWI band combination was similar to both 
McFeeters (1996), who used the green and near-infrared (NIR) bands to 
develop an index aimed at separating open water from vegetation and 

Fig. 5. Flooding frequency application using FLATS. The monthly composite time-sies map for the past 7 years showcases the flooding spatial distribution and 
frequency on the Sapelo Island marshes (A). The pattern matches well with seasonal tidal fluctuation already known for this region. Fall in the northern hemisphere 
produces a perigean spring tide also known as a “King Tide” and the resulting tidal signal is clear in the monthly FLATS timeseries (B). 

Fig. 6. Mean water level (NAVD 88) above the marsh surface in the study area through time shows a positive, increasing trend (A) while the FLATS predicted mean 
monthly flood proportion across the study area as a function of mean monthly MHHW also shows a significant, positive relationship without yearly clustering (B). 
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soil in terrestrial environments, and Xu (2006), who modified McFee
ters’ index to include a SWIR band for build-up land areas instead of the 
NIR. Like O’Connell et al. (2017)’s NDWI, FLATS’ chosen NDWI4,6 
consisted of a visible band and a shortwave infrared band because these 
wavelengths had the greatest separation between wet and dry plots. 

Other attempts have been made to create and use indices to detect 
flooding in tidal marshes using satellite imagery, but none have suc
cessfully created a stand-alone index for moderate resolution Landsat 8 
prior to FLATS. While TMII was created to utilize MODIS imagery which 
shares some bands centered at similar wavelengths with Landsat 8 (e.g., 
Landsat 8 band 5 with a center at 865 nm and MODIS band 2 with a 
center at 858.5 nm), there is not an equivalent for every band (O’Connell 
et al., 2017). Other studies such as Campbell and Wang (2020) have 
utilized the technique of selecting Landsat 8 equivalent bands to be used 
in the MODIS based TMII model in order to eliminate flooded pixels 
from their Landsat-based analysis. We, however, found that the simple 
substitution of Landsat 8 bands creates a poorly explained model (ED – 
52%) when compared to our FLATS model (ED – 82%). The trans
ferability of TMII from MODIS to Landsat 8 is likely inhibited by factors 
such as the sensors’ field of view, signal-to-noise ratio, and, subse
quently, its spatial resolution. As the field of view increases the pro
portions of vegetation to water change, which alters the spectral 
reflectance, and, ultimately, changes the model’s performance. The type 
of scanning conducted by each satellite (whisk-broom for MODIS and 
push-broom for Landsat 8) alters the amount of time each pixel is 
observed (Ren et al., 2014; Wolfe et al., 2002). The push-broom scanner 
on Landsat 8′s Operational Land Imager (OLI) sensor leads to a higher 
signal-to-noise ratio than that of MODIS’ whisk-broom scanner (Huete 
et al., 1994; Morfitt et al., 2015). The average signal-to-noise ratio of the 
bands used in TMII is 194.5 as compared to FLATS’ 256.25, indicating 
that lower noise is inherent in Landsat 8 data (Morfitt et al., 2015; Xiong 
et al., 2008). FLATS outperforms TMII when using moderate resolution 
imagery, suggesting that these indices have spatial resolution cutoffs in 
addition to limitations brought about by the satellites they were initially 
created under. 

Evaluation of the FLATS model involved the examination of good
ness of fit measures (Table 1). The model did well in training, testing, 
and validation datasets, particularly when compared to data that were 
only Landsat QA-filtered. The sensitivity of the Landsat QA mask was 
less responsive to flooding than that of the FLATS model. One indication 
that the FLATS model performed best was the number of pixels correctly 
identified as flooded which was higher for FLATS (ranging 30–59) than 
for flooding identified from Landsat QA information (ranging 23–45). 
The FLATS optimized cutoff value of 0.1 was selected due to its high 
sensitivity while maintaining a balance with accuracy and specificity. 

4.2. Applications of FLATS 

A traditional application of FLATS involves filtering out flooded 
pixels from a vegetation time-series for future analysis. We used NDVI to 
compare the relative difference between unfiltered, Landsat QA-filtered, 
and FLATS-filtered Landsat 8 data through time (Fig. 4). This analysis 
emphasizes the impact various types of filtering can have on the data 
used when conducting remote sensing vegetation biophysical analysis. 
We do not claim that NDVI is the ideal index for marsh vegetation 
analysis, but instead denote it as a widely used and easily recognizable 
index, particularly for comparative analysis. Failure to filter out inun
dated pixels, as seen in Fig. 4A, leads to a distorted phenological signal 
demonstrated clearly by the flooded pixel present at the end of 2020 but 
also by those in 2015 and 2016. Accurately flagging flooded pixels is key 
to generating an accurate satellite-based vegetation time-series for 
subsequent analysis as partially flooded pixels dampen the spectral 
signature of vegetation. Filtering with FLATS provides a phenological 
curve at a magnitude expected in an S. alterniflora marsh. The smoothed 
spline of the Landsat QA filtered data generally mimics that of the FLATS 
filtered data for the single-pixel, but with dampened peak magnitude 

(Fig. 4D). When comparing the splines of the single-pixel analysis 
(Fig. 4D) with that of the mean of all pixels per scene per month 
(Fig. 4E), we can see more variation between each of the filter types at a 
greater magnitude. This variation can be explained in part by the larger 
overall area represented in Fig. 4E (~4 km2) than that in Fig. 4D (~900 
m2). These two scales also experience different ranges in elevation, 
which can lead to variations in the intensity of the NDVI values due to 
the changes in vegetation type and structure (e.g., tall form vs. short 
form S. alterniflora). Overall, Fig. 4D and Fig. 4E indicate that flood 
filtering via FLATS arrives at the most accurate representation of the 
vegetation’s signal, and the three filtering types perform comparably 
across scales, i.e., FLATS is the best filtering method at the landscape 
scale and the pixel scale, suggesting FLATS provides an ideal flood 
filtering method prior to vegetation biophysical analysis such as pre
dictive modeling of biomass and gross primary production (GPP). 

Mapping the frequency of flooding is another potential application 
for FLATS. Though FLATS does not capture every flood event due to the 
intermittent observations of Landsat 8, a sufficiently long time series of 
the kind we show here results in a random tidal sampling frequency 
which sufficiently accounts for sample variations and provides mean
ingful patterns of flooding frequency on an inter-annual scale (see 
Fig. S2 in the supplement). With this application in mind, we distin
guished creeks by their noticeably linear features and high frequency of 
flooding. We consider the correct classification of these linear features 
(creeks, streams, etc.) as water in the flood frequency maps (Fig. 5) to be 
further validation that our model readily identifies flooded instances. 
These creek areas on the marsh surface flooded greater than 50% of the 
time during the 7-year study period. Creeks often appear as mixed pixels 
in Landsat imagery due to their relatively smaller size and the density of 
tall form S. alterniflora that usually borders them. The majority of the 
pixels found on the marsh platform are only flooded 20% of the time or 
less. The remaining pixels (whose flooding frequency ranges between 
20% and 40%) are not located in established creeks but yet are still 
impacted by relatively high rates of flooding, potentially leaving these 
areas more vulnerable to the impacts of sea level rise (Vitousek et al., 
2017). An advantage of FLATS is that it can highlight the cumulative 
frequency of flooding, which helps distinguish areas vulnerable to 
ponding when areas traversed heavily by streams are excluded. Wetland 
fragmentation via migrating creeks and ponding presents a major 
challenge to continued marsh resilience (Duran Vinent et al., 2021; 
Mariotti, 2016). FLATS can assist in the vital effort to monitor the size 
and distribution of ponding. This water connectivity and distribution 
monitoring are important for decerning the severity of marsh fragmen
tation and establishing patterns to help determine if marsh recovery or 
drowning will occur (Day et al., 2011; Duran Vinent et al., 2021). The 
average water level relative to the marsh surface appears to be 
increasing over time which could, when coupled with the flood fre
quency data, indicate potential sea level rise related complications for 
any marsh (Fig. 6A). 

Although our model does not produce water level data, MHHW helps 
predict the mean flood proportion derived from FLATS (Fig. 6B). This 
analysis approach is particularly useful if a high-resolution digital 
elevation model is not available, as it was in our study, because the mean 
flooding proportion obtained through the use of FLATS can be used as a 
proxy to estimate MHHW levels. MHHW can also be used as a low signal 
covariant for mean flood proportion in other types of statistical models 
(e.g., machine learning). However, flooding as estimated from FLATS 
itself would be better in such models, as it can provide direct observa
tions of spatially explicit flooding impacts. 

As a tidal flooding indicator, FLATS is a useful tool for a variety of 
applications and disciplines. In addition to those discussed here (vege
tation biophysical time-series analysis and flood frequency detection), 
FLATS could also be used by restoration scientists, ecologists, site 
planners, and others for a variety of coastal flooding applications. This 
index could also be used to examine the long-term effects of disturbances 
such as wrack on flooding in tidal wetlands. The next steps include 
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applying FLATS to both Landsat 8 and upcoming Landsat 9 to build a 
denser time-series and re-parametrizing FLATS to other satellites, 
including higher resolution Sentinel-2 as well as those with long-term 
datasets such as Landsat 5. One of the limitations is that we developed 
FLATS using data from one site and one marsh species due to the lack of 
established coastal wetland PhenoCam data in other marshes. However, 
there is great potential for this index to be scalable at other locations 
because of its vegetation index centric formulation, including those with 
varying flood regimes, and where other tidal marsh species are domi
nant (e.g., Juncus roemerianus or S. patens), emphasizing another direc
tion in need of empirical exploration. Our method is easily reproducible 
for researchers with access to repeat photography in other marsh envi
ronments. Future improvements to this index could include model for
mation via machine learning and the addition of other biophysical 
parameters, which could both enhance the scalability and applicability 
of FLATS. An implementation of the index on high-resolution Sentinel-2 
data could improve our understanding of ponding and creek migration 
in coastal marshes, while use in Landsat 5 could provide extensive flood 
frequency trend data for analysis over the past 35 years. 

5. Conclusions 

Filtering Landsat 8 data via FLATS can improve remote sensing 
models of coastal marsh vegetation by reducing the presence of spectral 
noise from inundation. These tide-filtered models can show phenolog
ical signals that more accurately match the dynamics at play in these 
indispensable coastal environments. Consequently, researchers should 
be able to generate improved estimates of vegetation features, such as 
habitat characteristics or productivity and carbon storage potential. To 
this end, we recommend the incorporation of FLATS into Landsat 8 
preprocessing routines for tidal systems. FLATS also provides insight 
into shifting inundation patterns, including the migration of creeks and 
ponding on the marsh surface. The presence, frequency, and intensity of 
these flooding configurations can be an indicator of marsh resiliency or 
drowning. FLATS improves our capability to accurately study tidal 
marshes, which will have lasting impacts on our ability to better un
derstand our changing environment. 
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