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ABSTRACT

Remote sensing can provide critical information about the health and productivity of coastal wetland ecosystems,
including extent, phenology, and carbon sequestration potential. Unfortunately, periodic inundation from tides
dampens the spectral signal and, in turn, causes remote sensing-based models to produce unreliable results,
altering estimates of ecosystem function and services. We created the Flooding in Landsat Across Tidal Systems
(FLATS) index to identify flooded pixels in Landsat 8 30-meter data and provide an inundated pixel filtering
method. Novel applications of FLATS including inundation frequency and pattern detection are also demon-
strated. The FLATS index was developed to identify flooding in Spartina alterniflora tidal marshes. We used
ground truth inundation data from a PhenoCam and Landsat 8 pixels within the PhenoCam field of view on
Sapelo Island, GA, USA to create the index. The FLATS index incorporates a normalized difference water index
(NDWI) and a phenology-related variable into a generalized linear model (GLM) that predicted the presence or
absence of marsh flooding. The FLATS equation for predicting flooding is 1- m, and we found

that a cutoff 0.1 was the optimized value for separating flooded and non-flooded pixel classes. FLATS identified
flooded pixels with an overall accuracy of 96% and 93% across training data and novel testing data, respectively.
FLATS correctly identified true flooded pixels with a sensitivity of 97% and 81%, across training and testing data,
respectively. We established the need to apply FLATS when conducting vegetation time-series analysis in coastal
marshes in order to reduce the per-pixel reflectance variations attributed to tidal flooding. We found that FLATS
identified 12.5% of pixels as flooded in Landsat 8 tidal marsh vegetation time-series from 2013 to 2020, after
traditional quality control and preprocessing steps were conducted, which could then be filtered out or modeled
separately in order to conduct remotely sensed vegetation assessments. Therefore, in tidal wetlands, we
recommend incorporating FLATS into Landsat 8 preprocessing prior to vegetation analysis. We also demon-
strated innovative applications for the FLATS index, particularly in detecting flooding frequency and flooding
patterns relevant to the broader biophysical modeling framework, including mapping marsh vulnerability due to
fluctuation in inundation frequency. The FLATS index represents advancements in the understanding and
application of inundation indices for coastal marshes.

1. Introduction

Coastal marshes present a distinct challenge because of their periodic
inundation due to the ebb and flow of tides, which dampens spectral

Remote sensing has been widely used as an effective means to
expand our understanding of vegetation and ecosystem dynamics in
landscapes, such as wetlands, that are difficult to monitor on the ground
using traditional field monitoring techniques (Mishra and Ghosh, 2015).
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reflectance. Thus, there is a need for an accurate flagging mechanism to
identify flooded pixels (Han and Rundquist, 2003; Kearney et al., 2009;
Mishra et al., 2015, 2012; O’Connell et al., 2017). For example, inter-
mittent variability in the spectral signal caused by tides can have major
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effects on the interpretation of data or parametrization of biophysical
models, particularly in the case of vegetation time-series analysis (Cho
et al., 2008; O’Connell et al., 2017; O’Connell and Alber, 2016). Vege-
tation indices that are commonly used to examine changes in vegetation
over time, such as the Normalized Difference Vegetation Index (NDVI)
or the Enhanced Vegetation Index (EVI) created for use in terrestrial
systems and do not account for tidal interference in the spectral signal
(Cho et al., 2008; Han and Rundquist, 2003; Liu and Huete, 1995; Rouse
etal., 1974). An index that is designed specifically to flag tidally flooded
pixels is necessary in order to accurately capture changes in vegetation
and flooding dynamics in coastal marshes over time.

Our previous work created the Tidal Marsh Inundation Index (TMII)
to identify and subsequently remove flooded observations in tidal
marshes (O’Connell et al., 2017). However, we calibrated the TMII for
the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS
has high temporal resolution but has a much coarser spatial resolution
(250 - 1,000 m) which is less suited to irregular and fragmented vege-
tation patches that are often found in coastal marsh landscapes (Belluco
et al., 2006; O’Connell et al., 2017; Rogers and Kearney, 2004). MODIS,
managed by the National Aeronautics and Space Administration
(NASA), provides a complete view of Earth every 1-2 days (Justice et al.,
1998; Running et al., 1994). Coarse pixels typically contain more than
one landcover type. These mixed pixels alter spectral dynamics so that
MODIS optimized indices do not necessarily directly translate to sensors
with finer spatial resolution and more homogeneous pixels (Belluco
et al., 2006; Mishra et al., 2015; Mishra and Ghosh, 2015; O’Connell
et al., 2017). Therefore, new flooding detection techniques should be
developed for use with moderate-high spatial resolution satellite data.

The ability to utilize higher resolution data, such as that from
Landsat 8, will allow for a more detailed understanding of tidal marsh
vegetation dynamics. Landsat 8 is a collaborative mission by NASA and
the United States Geological Survey (USGS) that provides multispectral
remote sensing images at a 30-m spatial resolution, which is consider-
ably higher than MODIS. Landsat 8 was launched in 2013 and has a 16-
day temporal resolution (Lulla et al., 2013). In this paper, we present a
new index called the FLATS (Flooding in Landsat Across Tidal Systems)
index, which is optimized for the use of these higher spatial resolution
imagery. This expands the analytical possibilities for more accurate
vegetation time-series analysis and allows us to detect finer-scale
changes in flooding patterns that could impact the ecology of a given
area.

In this paper, we describe the method used to create the FLATS index
using Landsat 8 data in order to detect coastal inundation in a Spartina
alterniflora marsh on Sapelo Island, GA, USA. We also establish best
practices for applying FLATS for vegetation time-series analysis in
coastal marshes, including cutoff thresholds. Finally, we provide a
demonstration of innovative applications for FLATS, particularly in the
area of detecting flooding frequency and flooding patterns. FLATS
transforms the future of remote sensing applications in coastal wetlands
due to the high-resolution inundation flagging it provides. FLATS rep-
resents advancements in the understanding and application of inunda-
tion indices for current and future coastal marshes.

Similar to TMII, the FLATS index incorporates a normalized differ-
ence water index (NDWI) that differentiates water from other land cover
types (Ji et al., 2009; O’Connell et al., 2017). FLATS also incorporates an
index that takes seasonal phenology into consideration, as the relative
differences between flooding and vegetation differ between the growing
season when vegetation is green and senescence when vegetation is
brown. This phenology variable allows us to discern seasonal changes in
the ratio between water, vegetation, and other land cover types
(O’Connell et al., 2017). Although the FLATS index utilizes the archi-
tecture of TMII, it differs because it uses different band combinations
that are more suited to finer spatial resolution data that have a higher
frequency of homogeneous pixels. It, therefore, should have greater
scalability to other remote sensing platforms such as near-identical
Landsat 9, and even higher resolution sensors such as Sentinel 2A and
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2B. FLATS can be cross-calibrated with a number of other satellites such
as Landsat 5 and Sentinel-2 to examine long term trends in flooding
frequency and intensity in coastal wetlands threatened by sea level rise.

2. Methods
2.1. Study site

We developed the FLATS index from training data that came from
eighteen Landsat 8 pixels located on Sapelo Island, GA, USA (henceforth
denoted as “Sapelo Island”) within the Georgia Coastal Ecosystems
(GCE) Long Term Ecological Research (LTER) site and the Sapelo Island
National Estuarine Research Reserve (NERR) (Fig. 1A). This salt marsh is
mainly composed of homogenous covers of Spartina alterniflora in three
height forms (short, medium, and tall) at varying densities ranging from
dense to sparse (Hladik et al., 2013). Tidal channels infiltrate the marsh
platform and are flooded by semi-diurnal tides that often rise more than
2 m (tidesandcurrents.noaa.gov). An eddy covariance carbon flux tower
affixed with a PhenoCam (see section 2.2.1 below for more detail)
maintained by the GCE-LTER is located within the study area marsh
(31.441° N, 81.284° W) and measures carbon dioxide fluxes between the
marsh and the atmosphere (Fig. 1B). The flux tower also provides
ground truth environmental data, including water level and temperature
sensors. Upon optimization of FLATS, the index was applied to a 4.39
km? area of Sapelo Island (as seen in Fig. 1A) that contains a large
monoculture of S. alterniflora marsh, the Duplin River, forested upland,
and hammock areas.

2.2. Analytical approach

To develop the FLATS index, we utilized techniques similar to
O’Connell et al. (2017) which are outlined in Fig. 2. First, we acquired
ground truth flooding data within the focal area (Fig. 2, step 1a). Next,
we obtained Landsat 8 data via Google Earth Engine (GEE), which was
post-processed to filter out pixels with cloud shadow and/or cloud cover
(Fig. 2, step 1b). To develop FLATS, we tested numerous band combi-
nations in order to identify those combinations which relate best to
flooding status (Fig. 2, step 1c). Once appropriate band groupings were
selected, the FLATS index was created, and an optimum cutoff value was
identified (Fig. 2, step 1d). The adjusted cutoff value was utilized when
applying the index to new pixels within the study area (Fig. 2, step 2a).
Depending on the desired application, either vegetation analysis or
flooding frequency analysis, a different series of steps is recommended
(Fig. 2, step 2b). If vegetation analysis is the intended application, pixels
flagged by FLATS as containing values above the flooding classifier
cutoff are identified as flooded and should be removed (Fig. 2, step
2bV.1). You then are left with only vegetated pixels and can proceed
with your desired vegetation time-series analysis (Fig. 2, step 2bV.2). If
flood frequency is the objective of your analysis, then you should keep
all available data (Fig. 2, step 2bF.1) and plot the FLATS flooding clas-
sified data by pixel through time to examine trends in flooding fre-
quency (Fig. 2, step 2bF.2).

2.2.1. Ground truth tidal inundation data

First, accurate tidal inundation data were obtained for the focal area
in order to ground truth the FLATS index. Data was acquired from a
PhenoCam (StarDot NetCam SC 5MP IR, StarDot Technologies, Buena
Park, CA, USA) which is located on the GCE-LTER flux tower on Sapelo
Island and is identified as the “GCESapelo” site within the PhenoCam
Network (phenocam.unh.edu). The PhenoCam is a digital camera which
has been programmed to automatically take oblique angle photos of the
marsh surface every 30 min during daylight hours (Fig. 1C). This fre-
quency of image collection allows for flooding and drainage patterns to
be observed across the marsh platform during a range of tidal sequences.
In order to discern flooding on the marsh platform, the PhenoCam field
of view (black outline; Fig. 1B) was approximated based on the height
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Fig. 1. Location of the study site on Sapelo Island, GA, USA (A) with the PhenoCam field of view (black polygon) overlaid on Landsat pixels (identified by numbers;
pixels within the white boundary were used in model training, testing, and validation) and marsh species height forms (colors) (from Hladik et al., 2013) (B), and
examples of dry and flooded PhenoCam images with the short/medium S. alterniflora boundary indicated by the black line (C).

— Part 1: Development of FLATS

la. Obtain ground truth data via PhenoCam

1b. Obtain and process Landsat 8 data

lc. Identify predictors of flooding through band combinations
1d. Create FLATS model and the optimize cutoff value

— Part 2: Application of FLATS

2b. Select application type -

2a. Apply FLATS to new pixels in the study area

o Vegetation Analysis Application
2bV.1. Discard all pixels above selected cutoff value
2bV.2. Conduct desired vegetation time-series analysis
« Flooding Analysis Application
2bF.1. Keep all values (flooded and non-flooded)
2bF.2. Plot flooding frequency through desired timeframe

Fig. 2. Simplistic overview of the workflow used to create and apply FLATS.

and angle of the PhenoCam as well as field surveys and natural reference
points (i.e., the creek, upland area, etc.). Landsat 8 pixel outlines and a
habitat map were superimposed within the PhenoCam field of view
(Fig. 1B) in order to assist in image assessment (Hladik et al., 2013). The
PhenoCam images were then visually examined to detect flooding in
coincident Landsat 8 passovers between September 2013 and December
2020, when the PhenoCam was operational. Pixels were identified as
“flooded” when water was present (i.e., when marsh vegetation was
observed to be either partially or fully inundated).

Environmental data were also available from various sensors asso-
ciated with the GCE-LTER flux tower to assist in validating tidal flood-
ing, including two pressure transducers (Campbell Scientific
Instruments Model CS455, Logan, UT, USA) which measured water
levels within a creek adjacent to the flux tower as well as on the marsh
platform surface north of the flux tower. These water level data,
collected in 5-minute increments, were aggregated to match the Phe-
noCam data by averaging over the preceding half-hour of data. The

PhenoCam images and water level data were filtered to between 15:00
and 16:30 Coordinated Universal Time (UTC) in order to match with
Landsat acquisition times. This water level data served as a second form
of ground truth data and was used in conjunction with the PhenoCam
images to indicate the presence of flooding. The combined PhenoCam
and water level data were pivotal in the development of FLATS because
tidal flooding can be spatially variable through time with respect to
wind patterns and tidal creek migrations, and is not always straight-
forward to estimate (O’Connell et al., 2017; Wu et al., 2021). Together,
these datasets provided on the ground information of tidal marsh
flooding that we coordinated with remote sensing data and knowledge
of the field site (including elevation and phenological characteristics) to
conservatively estimate individual pixel flooding status.

2.2.2. Obtain and process Landsat 8 data
Remote sensing data was obtained in the form of band information
from the Landsat 8 satellite from March 2013 through December 2020
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for the entire study area (Fig. 1A). Multispectral Level-1 Landsat 8 sur-
face reflectance data were acquired from GEE. The data were subset into
a focal area dataset that contained only the 34 pixels found within the
PhenoCam field of view (Fig. 1B). These pixels were categorized based
on proximity to the flux tower resulting in near (1-3), mid (4-9), far
(10-18), and very far (>18) pixels, with the very far pixels being
excluded from index creation. During model development, the decision
was made to exclude the pixels located furthest away from the Pheno-
Cam (pixels 19-34; Fig. 1B) due to the oblique angle of the camera’s
field of view. These excluded pixels were located greater than 150 m
away from the PhenoCam, which prevented a clear view and distorted
any visual indications of flooding status.

Landsat 8 has an overpass time of approximately 16:00 UTC at this
site. Prior to acquisition, the Landsat 8 data were atmospherically cor-
rected using the Land Surface Reflectance Code (LaSRC) algorithm
(USGS, 2020). The quality assessment (QA) band, inherent in the Level-1
Landsat Surface Reflectance products, flags pixels using the C Function
of Mask (CFMASK) algorithm that contains conditions that often have
adverse effects on image processing, such as clouds (Foga et al., 2017).
Post-processing of the Landsat 8 data included multiplying band data by
a scale factor as recommended by the USGS and filtering to remove
clouds and cloud shadows, as well as “no data present” pixels, as indi-
cated by the pixel QA band. We also extracted water status from the QA
band, though this is known to be inaccurate for shallow inundation such
as tidal flooding. Multispectral outliers, e.g., wavelengths > 0.4 um,
were eliminated from the data pool as well as < 0 which were likely
scene edges.

We established that using environmental data (e.g., water level data
from the pressure transducer) in conjunction with the PhenoCam images
provided a credible source for flooding information on the marsh sur-
face. We obtained 295 observations per pixel within the focal area (i.e.,
PhenoCam’s field of view) after excluding “very far” pixels (pixels 19-34
in Fig. 1B) between March 28™ 2013, and December 27 2020. After
post-processing this Landsat 8 data by filtering out poor quality pixels as
indicated by the QA band (those with cloud cover, cloud shadow, and
filled), an average of 148 occurrences per pixel remained (2,663 pixels
total), indicating that approximately 50% of the available data had to be
filtered out from the 7-year multispectral surface reflectance dataset.

2.2.3. Create training, testing, and validation sets and identify predictors of
flooding through band combinations

Prior to model fitting, the focal area dataset was divided into three
separate datasets. The first dataset was considered training data and
accounted for a random 70% of the data between March 2013 and
December 2017. The second dataset consisted of testing data and con-
tained the remaining 30% of the data between March 2013 and
December 2017. The independent validation dataset consisted of two
full years of data (January 2018 through December 2020). The testing,
training, and validation data included 18 pixels per Landsat scene over
66 scenes and 7 years, utilizing 984 data points in total after filtering for
clouds and quality. The model was trained on the training set, and then
verified against the novel testing and validation sets, which were not
used in model training. Each of these datasets contained a binary “wet”
variable (true/false) from the Landsat QA band that indicated the
presence of water (true) or not (false). This wet variable was used to
compare against our final FLATS index to help evaluate its efficacy. A
second binary variable called “flooded” was created based on the ground
truthed flood status (e.g., the visual interpretation of the PhenoCam
images and water level data) (0 = no flooding observed, 1 = flooded, NA
= flood status was not clear). A spectral plot was created to examine
temporal determinants of spectral reflectance, in order to help identify
band predictors for our model (Fig. 3). For this, the mean and standard
deviation of each spectral band were plotted based on flooding status
(dry or flooded) and by season (growing: mid-March to September,
dormant: October to mid-March).
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Fig. 3. Mean spectral reflectance for the growing season (mid-March through
September) and the dormant season (October through mid-March) with one
standard deviation.

2.2.4. Create FLATS index and optimize cutoff value

A binomial Generalized Linear Model (GLM) was used to create
FLATS, initially through the utilization of the training dataset, where
Landsat 8 bands were used as the predictors of the response variable
(binary ground truthed flood status). Many binomial GLMs relating band
combinations to flood status were explored prior to the selection of the
final FLATS model (Appendix A). In order to determine which band
combinations to use in our FLATS index, we referenced the spectral plot
(Fig. 3) as well as tested a variety of established indices such as the
NDVI, the Green Normalized Difference Vegetation Index (GNDVI), EVI,
the Soil-Adjusted Vegetation Index (SAVI), variations of the Normalized
Difference Water Index (NDWI) including the modified NDWI (mNDWT),
Wide Dynamic Range Vegetation Index (WDRVI), and various versions
of phenology indices (see Appendix A for full list of indices) (Gitelson,
2004; Gitelson and Merzlyak, 1998; Huete, 1988; McFeeters, 1996;
O’Connell et al., 2017; Xu, 2006). We also compared bands most directly
translatable from the original TMII equation to ensure FLATS was an
improvement.

Seasonal differences played an important role in the variation of the
spectral signal for the original TMII and continue to affect the FLATS
model. A phenology index was employed in order to account for these
naturally occurring seasonal changes. After consulting the spectral plot
and trying many band combinations, the best option as indicated by our
model fit criteria (see next paragraph below) was a phenology index
developed from two bands in the visible spectrum (band 3 — Green &
band 4 — Red) (see results).

In order to select the best model to predict flooding, we used the
following model fit criteria: model explained deviance (ED), flood ac-
curacy as identified by contingency table output, and classification
Receiver Operating Characteristic (ROC) curves (Hanley and McNeil,
1982). ED is used to describe the strength of the relationship between a
model and actual data where ED is equal to the null deviance - residual
deviance / null deviance multiplied by 100 (Zuur, 2009). ED has also
been described as a pseudo coefficient of determination R? (Zuur,
2009). The contingency table was the second form of model assessment
and contains accuracy, sensitivity, and specificity values. Accuracy is
defined as the number of correctly classified flood status pixels divided
by the total number of pixels multiplied by 100. Sensitivity indicates the
percentage of correctly identified flooded pixels (true positives), while
specificity indicates the percentage of correctly identified non-flooded
pixels (true negatives). The third and final model assessment utilized a
ROC curve and sought to identify the maximized Area Under the Curve
(AUC) by using the R package “pROC” (Robin et al., 2011). The ROC
curve helps the user compare true positives (sensitivity) to false posi-
tives, aiding in the distinction between whether a model is poorly
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optimized or lacks the power to explain the data (Hanley and McNeil,
1982; O’Connell et al., 2017). Flooded and dry pixels were distinguished
based on an optimized cutoff boundary which was selected so that the
model’s specificity (ability to correctly identify flooding) was maxi-
mized (>90) while maintaining a balance with accuracy and specificity.
Any FLATS value below the determined cutoff value is considered dry
while any FLATS value above that of the cutoff is considered flooded.

Following the confirmation of model performance, the model equa-
tion was then simplified to a spectral reflectance index equation by
rounding the intercept and coefficient values to the nearest tenths place.
A logit transformation was also applied to the model in order to convert
the model back into the predictor units. This created the final FLATS
equation. The final FLATS equation was then reapplied to both the
training and testing datasets to ensure that the same cutoff value could
be applied and render the same result as the more complex model in
both cases. The model was also verified against the novel validation data
that was withheld during model development.

2.3. Application of FLATS

Next, we applied the index to the entire study area (Fig. 1A) in order
to examine its proficiency at detecting flooded pixels at a larger scale.
We also explored the various applications of FLATS, including time-
series analysis of marsh vegetation biophysical characteristics and
flooding dynamics.

2.3.1. Apply FLATS to new pixels within the study site

The model was initially applied to a small subset of pixels found
within the PhenoCam field of view (in order to have coincident ground
truth data to verify model accuracy) but was later applied to an
expanded area at the study site (Sapelo Island, GA; Fig. 1A) for appli-
cation exploration. This study area covers over 4,800 pixels (approxi-
mately 4.39 square kilometers) and contains many different land cover
types, including open water (the Duplin River), upland vegetation (pine
trees, etc.), mudflat areas, and the three different height forms of
S. alterniflora, which were mapped by Hladik et al. (2013). Prior to the
application of the index to the entire study site, we used the Hladik et al.
(2013) habitat map to first remove non-marsh cover types from our
analysis. The FLATS index was then applied to marshes that spanned the
study area from 2013 to 2020.

2.3.2. Selection of application type

The ability to identify flooded pixels allows the FLATS index to be
used in a variety of different applications related to tidal marsh systems.
We have established two workflows showing the applicability of FLATS
for tidal marsh vegetation analysis and identifying flooding frequency
and patterns through time.

2.3.2.1. Vegetation biophysical analysis application. Producing a reliable
vegetation analysis of coastal wetlands involves flagging tidally inun-
dated pixels as an initial step in preprocessing (O’Connell et al., 2017).
Prior to FLATS, there were no quick approaches to accurately flag tidal
flooding in Landsat 8 data. To show the utility of FLATS in a vegetation
analysis, we used NDVI, one of the most widely used vegetation indices.
An assessment was conducted on both the focal area and the entire study
area to determine how many pixels were removed by each filter type.
Our goal was to showcase enhancements FLATS provides over non-
filtered data and other water filtering methods such as the Landsat QA
band. For simplicity we used a single pixel (pixel 12; Fig. 1B) from
within the PhenoCam’s field of view to illustrate the utility of FLATS
through the comparison of three NDVI time-series. This analysis
compared the raw, unfiltered NDVI values, the Landsat QA band filtered
NDVI values, and the FLATS filtered NDVI values for one pixel through
time (2013-2020). We used ground truth data to highlight flooded and
dry observations in each NDVI time-series and fitted a smoothed spline
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to each of the NDVI time-series to visualize the phenological signal
produced by individual filter types. We also calculated the monthly
mean NDVI value of all marsh vegetation pixels within the study area
and then compared the NDVI time-series based on filter type (i.e.,
unfiltered, Landsat QA band filtered, and FLATS filtered).

2.3.2.2. Flooding analysis application. Mapping the frequency of flood-
ing is an alternative way to utilize FLATS. Unlike the vegetation time-
series, analysis of flooding does not involve removing the flooded
pixels indicated by the FLATS index. Instead, one uses the FLATS in-
formation to visualize patterns in flooding and highlight relationships
between verified flooding frequency and more commonly available
variables such as water levels from local tide gauges. To demonstrate
this, we analyzed tidal flooding frequency derived from FLATS to
discern changing patterns through time. This flooding frequency anal-
ysis was conducted by normalizing the percent of the time a pixel was
flooded, as determined by the FLATS index, by the number of times that
pixel occurred through the time-series. The per-pixel normalization of
flooding emphasizes marsh areas that flood more frequently as
compared to other areas within the marsh that have stayed dryer over
the 7 years of this study. We then conducted sub-analysis examining
yearly flooding frequency normalized per-pixel on a subset of 9 pixels
containing short and medium form S. alternifiora located north of the
flux tower outside of the PhenoCam’s field of view. This location was
chosen due to its lack of migrating creeks, which are known to influence
flooding patterns, and its interior marsh structure, i.e., higher elevation
with medium and short form plants. The analysis serves as a snapshot
into how flooding patterns can change yearly and potentially result in
ponding with future sea level rise in an area not directly impacted by
creek migration or low elevations. We also conducted an analysis of the
flood frequency trends on a monthly basis for the entire study area. For
this analysis, the flooding frequency was normalized per pixel for each
month throughout the study period, where the monthly flooding fre-
quency was determined by subsetting all dates falling within the spec-
ified month (i.e., all pixels dated January 1st - January 31st within the
2013-2020 dataset).

We also feature two ways to explore relationships between flooding
and other variables: water level above the marsh surface through time as
a proxy for sea level rise and monthly Mean Higher High Water (MHHW)
as a function of mean monthly flood proportion. The water level and
MHHW data were obtained from the National Oceanic and Atmospheric
Administration’s (NOAA) Fort Pulaski, GA station (ID: 8670870) that
was established in 1935. The water level was adjusted to reflect the local
elevation via a spectrally corrected light detection and ranging (LiDAR)
derived digital elevation model (DEM) at our site on Sapelo Island, GA
(vertical datum: NAVD 88) (Hladik et al., 2013; Hladik and Alber,
2012). We extracted elevation data for each marsh pixel within our
study area from Hladik et al. (2013)’s DEM and then subtracted the
observed water level (relative to NAVD88) at Fort Pulaski that matched
closest to the Landsat 8 scene acquisition time. The Fort Pulaski water
level data is available in 6-minute intervals with times that closely
match Landsat 8 acquisition (15:54 and 16:00 UTC). The average water
level above the surface of the marsh was calculated for each date (scene)
and was examined over time. To better understand how a variable such
as MHHW can relate to flooding at our study site, we plotted the
normalized mean flood proportion for each Landsat 8 scene (what pro-
portion of the entire study area was flooded on a given date) then
averaged the flood proportion per month. We then plotted these mean
monthly flood proportions (derived from FLATS) against the monthly
mean MHHW values at Fort Pulaski between 2013 and 2020. We did not
alter MHHW levels to reflect marsh elevations.
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3. Results
3.1. Identify predictors of flooding through band combinations

The Landsat 8 spectral plot was created using training reflectance
data (2013-2017) and demonstrated clear distinctions between seasons
as well as inundation status across portions of the electromagnetic
spectrum (Fig. 3). The mean reflectance was greater in the growing
season than in the dormant season. This difference was most prevalent in
the visible and near infrared (NIR) portion of the spectrum for dry ob-
servations. The flooded observations in each season depressed the mean
reflectance when compared to their dry counterpart, particularly in the
NIR and shortwave infrared portion (SWIR) of the spectrum (band 5 -
865 nm and band 6 - 1,608.5 nm). The spectral plot indicated that the
normalized difference between a visible band (e.g., band 3 - 561.5 nm or
band 4 - 654.5 nm) and a NIR or SWIR band (bands 5 or 6, respectively)
could help discern pixel inundation status as these had the greatest
change in reflectance between flooded and dry observations. The plot
also emphasized the need to include a variable that accounts for
phenology since there is an overlap between dry dormant season ob-
servations and flooded growing season observations in the visible
portion of the spectrum.

3.2. Create FLATS model and optimize cutoff value

Although many band combinations were tried, ultimately, we
selected the grouping of an NDWI-type index with a phenology index to
create the final FLATS model due to the presence of bands previously
identified as important in Fig. 3 and the model’s high ED (see Appendix
A for full list of indices). The NDWI selected for the FLATS model con-
sisted of band 4 (the red band centered at 654.5 nm) and band 6 (a SWIR
band centered around 1608.5 nm), where the equation is:

NDWI, ¢ = (band 4 — band 6) / (band 4 + band 6) (@D)]

The selected phenology index is the normalized difference of band 3
(the green band centered at 561.5 nm) and band 4, expressed as:

Phenos 4 = (band 3 — band 4) / (band 3 + band 4) 2)

The binomial GLM model selected for best classifying the flood status
of tidal marsh pixels in Landsat 8 data was:

Flood Status = -1.57 4+ 19.97*NDWI, s + 68.55*Phenos 4 3

This model explained 82% of the difference between the ground
truth flooding data and the model’s predictions in the training dataset
(Table 1). This model (Eq. 3) was then transformed into the units of the
predictors to create the final FLATS equation:

1

=1.6+20.0+NDWI, 6 1 68.6+Phenos 4 “

FLATS = 1-
e

The FLATS equation (Eq. 4) outperformed NDWI4¢ (ED — 73%)
alone, which emphasizes the need for incorporation of a phenology

Table 1
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variable. The FLATS model also significantly outperformed a model (ED
— 52%) which used the TMII equation while substituting for similar
Landsat 8 bands (bands 3 and 6 for flooding, bands 5 and 6 for
phenology) (O’Connell et al., 2017). The optimized cutoff value for
FLATS was determined to be 0.1. Once the FLATS index was applied
with the optimized cutoff value to the training dataset, the sensitivity of
the model on the training data was 97%, while the specificity and ac-
curacy were both 96% (Table 1). The AUC for the training data was 0.96
(Table 1).

We also used contingency table parameters to examine the testing
and validation data for model efficacy. The sensitivity ranged from 81%
to 86%, while specificity was 97% for both datasets (Table 1). The
overall accuracy remained high, fluctuating between 93% and 95%
(Table 1).

3.3. Vegetation biophysical analysis application

The FLATS index was applied to a focal dataset containing pixels
within the PhenoCam’s field of view (pixels 1-18) from 2013 to 2020,
which originally consisted of 5,310 observations (full dataset). After
filtering for clouds, cloud shadow, fill, and water using the Landsat QA
band as well as filtering out scene edges, 2,663 observations remained.
Finally, after applying and filtering with FLATS index using the opti-
mized cutoff value, 1,970 dry observations were left, indicating a 63%
reduction in data from the full dataset. A similar pattern in pixel
reduction was detected in the study area (Fig. 1A), where there were
originally 902,405 marsh pixels between 2013 and 2020. After Landsat
QA filtering, 456,061 pixels remained, representing a 49.5% reduction
in pixels. Filtering with FLATS further reduced the number of dry pixels
remaining to 346,170, an additional 12.5% reduction bringing the total
percentage of data removed from the analysis to 62%.

Examples to showcase the benefits of filtering data with FLATS vs
other filtering methods can be seen in Fig. 4. Fig. 4A shows the raw NDVI
phenological signal plotted for one pixel through time with ground
truthed flooded pixels highlighted in teal. Fig. 4B is the pixel’s NDVI
values plotted after the Landsat QA band filtering was applied, still
leaving 6 flooded pixels in the time series. Finally, Fig. 4C has no flooded
pixels remaining after FLATS was applied to the dataset. Fig. 4D is a
comparison of the smoothed splines of the 3 pixel filtering methods
showcased in Fig. 4A-C where the raw NDVI phenological signal (black
dotted line) was depressed compared to either of the filtered signals
(orange Landsat QA and teal FLATS), particularly in 2015, 2016, and
2020 when substantial flooding occurred in the pixel. The Landsat QA-
filtered and FLATS-filtered phenological signals had similar curves at the
single pixel level, although the Landsat QA-filtered data still retained
some pixels with minor flooding, which caused a dampening of signal
when minor flooding events occurred as compared to the FLATS filtered
signal. When results such as these are extrapolated over an entire study
area (~3,000 or more pixels per date) significant dampening of the
spectral signal will occur. The last panel in Fig. 4 (E) shows the smoothed
splines of the three filter types that have been fitted to the monthly mean

Goodness of fit measures for the Flooding in Landsat Across Tidal Systems (FLATS), compared with the Landsat 8 Quality Assessment (QA) band. ED is explained
deviance and AUC is Area Under the Curve. Sensitivity and specificity are the accuracy of classifying flooded and dry observations, respectively; accuracy is overall
classification accuracy; N is total sample size. Flooded ID’d is the number of true flooded instances that were flagged and flooded missed is the number of true flooded

observations that were missed (classified as dry rather than flooded).

Data ED AUC Sensitivity Specificity Accuracy N Flooded ID’d Flooded Missed
FLATS

Training 82 0.96 97 96 96 526 59 2

Testing - - 81 97 93 164 30 7

Validation - - 86 97 95 294 50 8

Landsat QA

Training - - 74 100 97 526 45 16

Testing - - 62 100 91 164 23 14

Validation - - 76 100 95 294 44 14
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Fig. 4. FLATS vegetation biophysical application with the distribution of
flooded pixels (blue dots) in the long-term phenology using NDVI values to
compare flooding filtering capabilities of raw, unfiltered NDVI values (A),
Landsat QA band filtered values (B), and FLATS filtered values (C) for a single
pixel. The comparison between the long-term wetland phenology of a single
pixel (D) and the mean monthly NDVI values for the study area (E).

NDVI values for the entire study area through time (NDVI values were
averaged per scene, if multiple scenes occurred in a single month those
were also averaged to produce one NDVI value per month throughout
the time series). Any scene that was determined to be 50% or more
flooded using the Landsat QA and/or FLATS filters was removed from
the analysis. Although the mean monthly NDVI splines (Fig. 4E) showed
a similar overall pattern to single pixel splines (Fig. 4D), the major
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difference can be seen in the raw NDVI’s diminished signal (particularly
the dragging effect a flooded pixel has at the end of 2020) while the
FLATS filtered values performed as expected.

3.4. Flooding analysis application

The majority (57%) of the pixels were flooded less than 20% of the
time between 2013 and 2020, while a small percentage (9%) were
flooded more than 50% of the time (Fig. 5A). These frequently flooded
pixels were examined and were determined to be major creeks that cut
through the marsh platform. The pixels that were flooded greater than
20% of the time but less than 50% are considered at higher risk for
prolonged flooding and accounted for 34% of the area on the marsh
surface. When a subset of 9 pixels containing short and medium form
S. alterniflora located north of the flux tower were considered, the
average flooding frequency of those pixels ranged from 10.35% (2014)
to 27.78% (2020) and showed a positive trend when plotted through
time. Flooding frequency was also considered on a monthly basis. The
driest months were March, April, and December, with 31%, 42%, and
37% of marsh pixels being flooded, respectively (Fig. 5B). September,
October, and November showed the most site-wide flooding, where an
average of 99%, 93%, and 99% of marsh pixels experienced flooding in
those months across all years (Fig. 5B). Flood maps were also created for
each scene (with 3,000 or more pixels; i.e. mostly complete scenes
without major cloud cover) to visually demonstrate FLATS’ usefulness
over using the Landsat QA band filtering method on a site wide basis but
were not included here as they only represent brief snapshots in time
and do not showcase the larger applications of FLATS over a time series.
A subset of these maps can be found in the supplement (Fig. S1 A-C).

We also used Fort Pulaski water level data, which is relative to the
North American Vertical Datum of 1988 (NAVD88), to study the depth
of flooding through time relative to the LIDAR-derived DEM of the
Sapelo Island marsh surface (Hladik et al., 2013). Fig. 6A shows the
mean water level above the marsh surface averaged by scene from 2013
to 2020. There is a significant positive trend with a rise in the average
water level over the 7-year study period (Fig. 6A). The FLATS flood
frequency application can also be used to investigate relationships be-
tween flood proportion and other easily accessible variables. In our case,
we used mean flood proportion by scene to explain MHHW values also
obtained from Fort Pulaski (Fig. 6B). The relationship produced an R2 of
0.305 and had a significantly positive relationship (p < 0.0001) while
not showing distinct clustering by year. With every millimeter increase
in the MHHW level we expect 0.125% more of the study area to be
flooded. Our positive relationship mirrors the long-term increasing
trend in sea level rise of 3.44 mm/year seen at the NOAA Fort Pulaski,
GA station.

4. Discussion

This paper describes the creation of the Flooding in Landsat Across
Tidal Systems (FLATS) model, which detects intermittent flooding
within coastal marshes using Landsat 8 data. FLATS detected flooding
within a S. alterniflora tidal marsh on Sapelo Island, GA, with an accu-
racy ranging between 93 and 96%. These high accuracies, along with
high sensitivity values (81-97%), suggest that our model is effective at
identifying flooded pixels. Once an optimized cutoff value was estab-
lished, we then used FLATS to flag flooded pixels for removal to improve
vegetation time-series analysis and to examine patterns of flood
frequency.

4.1. Developing and optimizing FLATS

FLATS is an index based on spectral reflectance modeling used to
predict binary flood status. FLATS was ground truthed through the use
of marsh images provided by the PhenoCam and water level data from a
pressure transducer located on the marsh surface. Water level data,
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Fig. 5. Flooding frequency application using FLATS. The monthly composite time-sies map for the past 7 years showcases the flooding spatial distribution and
frequency on the Sapelo Island marshes (A). The pattern matches well with seasonal tidal fluctuation already known for this region. Fall in the northern hemisphere
produces a perigean spring tide also known as a “King Tide” and the resulting tidal signal is clear in the monthly FLATS timeseries (B).
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while important in determining flood status, could not be solely relied
upon to capture inundation levels over large areas of the marsh platform
due to other factors that influence the movement and depth of water,
such as wind speed and direction, vegetation type, density, and struc-
ture, as well as drainage patterns, and disturbance (e.g., crab burrows)
(Hladik et al., 2013; Hughes et al., 2009; Nyman et al., 2009; Valentine
and Mariotti, 2019). The flooding index was intended to accentuate two
drastically different bands; a band that provides the greatest separation
between the flooded and dry spectra (i.e., band 6) and a band that shares
many of the same spectral characteristics (i.e., band 4). In addition to
flood status, a phenology variable was deemed important when identi-
fying model predictors, as emphasized by the spectral plot (Fig. 3). The
inclusion of a phenology variable assists in distinguishing the slight
differences in the visible spectral properties between the dormant season
dry observations and the growing season flooded observations which,
otherwise, would be difficult to discern. FLATS detects flooding in tidal
marshes without the need for external water level data and is based on a
combination of spectral bands that indicate the presence of inundation

while accounting for seasonal variations in the vegetation.

We found that the normalized difference between Landsat 8 bands 4
and 6 as well as the addition of a phenology variable composed of the
normalized difference between bands 3 and 4 constituted the best model
for detecting flooding while accounting for seasonal variation (i.e., the
FLATS model). We advocate for the use of the FLATS model instead of
adjusting bands in the TMII because not only are there combinations of
bands that more accurately detect intermittent tidal flooding (band 4
and band 6) but also because, unlike TMII, the use of a rolling mean
function on a phenology variable is not optimal for Landsat 8 data due to
its low temporal resolution (i.e., approximately 1 image every 8 days
with combined revisit time frequency) as opposed to the MODIS revisit
time (once per day). The NDWI index was chosen because it appropri-
ately distinguished between flooded and non-flooded pixels, while the
phenology index accurately captured the seasonal trends of the marsh
vegetation. The selected NDWI band combination was similar to both
McFeeters (1996), who used the green and near-infrared (NIR) bands to
develop an index aimed at separating open water from vegetation and
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soil in terrestrial environments, and Xu (2006), who modified McFee-
ters’ index to include a SWIR band for build-up land areas instead of the
NIR. Like O’Connell et al. (2017)’s NDWI, FLATS’ chosen NDWI4¢
consisted of a visible band and a shortwave infrared band because these
wavelengths had the greatest separation between wet and dry plots.

Other attempts have been made to create and use indices to detect
flooding in tidal marshes using satellite imagery, but none have suc-
cessfully created a stand-alone index for moderate resolution Landsat 8
prior to FLATS. While TMII was created to utilize MODIS imagery which
shares some bands centered at similar wavelengths with Landsat 8 (e.g.,
Landsat 8 band 5 with a center at 865 nm and MODIS band 2 with a
center at 858.5 nm), there is not an equivalent for every band (O’ Connell
et al., 2017). Other studies such as Campbell and Wang (2020) have
utilized the technique of selecting Landsat 8 equivalent bands to be used
in the MODIS based TMII model in order to eliminate flooded pixels
from their Landsat-based analysis. We, however, found that the simple
substitution of Landsat 8 bands creates a poorly explained model (ED —
52%) when compared to our FLATS model (ED - 82%). The trans-
ferability of TMII from MODIS to Landsat 8 is likely inhibited by factors
such as the sensors’ field of view, signal-to-noise ratio, and, subse-
quently, its spatial resolution. As the field of view increases the pro-
portions of vegetation to water change, which alters the spectral
reflectance, and, ultimately, changes the model’s performance. The type
of scanning conducted by each satellite (whisk-broom for MODIS and
push-broom for Landsat 8) alters the amount of time each pixel is
observed (Ren et al., 2014; Wolfe et al., 2002). The push-broom scanner
on Landsat 8's Operational Land Imager (OLI) sensor leads to a higher
signal-to-noise ratio than that of MODIS’ whisk-broom scanner (Huete
etal., 1994; Morfitt et al., 2015). The average signal-to-noise ratio of the
bands used in TMII is 194.5 as compared to FLATS’ 256.25, indicating
that lower noise is inherent in Landsat 8 data (Morfitt et al., 2015; Xiong
et al., 2008). FLATS outperforms TMII when using moderate resolution
imagery, suggesting that these indices have spatial resolution cutoffs in
addition to limitations brought about by the satellites they were initially
created under.

Evaluation of the FLATS model involved the examination of good-
ness of fit measures (Table 1). The model did well in training, testing,
and validation datasets, particularly when compared to data that were
only Landsat QA-filtered. The sensitivity of the Landsat QA mask was
less responsive to flooding than that of the FLATS model. One indication
that the FLATS model performed best was the number of pixels correctly
identified as flooded which was higher for FLATS (ranging 30-59) than
for flooding identified from Landsat QA information (ranging 23-45).
The FLATS optimized cutoff value of 0.1 was selected due to its high
sensitivity while maintaining a balance with accuracy and specificity.

4.2. Applications of FLATS

A traditional application of FLATS involves filtering out flooded
pixels from a vegetation time-series for future analysis. We used NDVI to
compare the relative difference between unfiltered, Landsat QA-filtered,
and FLATS-filtered Landsat 8 data through time (Fig. 4). This analysis
emphasizes the impact various types of filtering can have on the data
used when conducting remote sensing vegetation biophysical analysis.
We do not claim that NDVI is the ideal index for marsh vegetation
analysis, but instead denote it as a widely used and easily recognizable
index, particularly for comparative analysis. Failure to filter out inun-
dated pixels, as seen in Fig. 4A, leads to a distorted phenological signal
demonstrated clearly by the flooded pixel present at the end of 2020 but
also by those in 2015 and 2016. Accurately flagging flooded pixels is key
to generating an accurate satellite-based vegetation time-series for
subsequent analysis as partially flooded pixels dampen the spectral
signature of vegetation. Filtering with FLATS provides a phenological
curve at a magnitude expected in an S. alterniflora marsh. The smoothed
spline of the Landsat QA filtered data generally mimics that of the FLATS
filtered data for the single-pixel, but with dampened peak magnitude
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(Fig. 4D). When comparing the splines of the single-pixel analysis
(Fig. 4D) with that of the mean of all pixels per scene per month
(Fig. 4E), we can see more variation between each of the filter types at a
greater magnitude. This variation can be explained in part by the larger
overall area represented in Fig. 4E (~4 km?) than that in Fig. 4D (~900
m?). These two scales also experience different ranges in elevation,
which can lead to variations in the intensity of the NDVI values due to
the changes in vegetation type and structure (e.g., tall form vs. short
form S. alterniflora). Overall, Fig. 4D and Fig. 4E indicate that flood
filtering via FLATS arrives at the most accurate representation of the
vegetation’s signal, and the three filtering types perform comparably
across scales, i.e., FLATS is the best filtering method at the landscape
scale and the pixel scale, suggesting FLATS provides an ideal flood
filtering method prior to vegetation biophysical analysis such as pre-
dictive modeling of biomass and gross primary production (GPP).

Mapping the frequency of flooding is another potential application
for FLATS. Though FLATS does not capture every flood event due to the
intermittent observations of Landsat 8, a sufficiently long time series of
the kind we show here results in a random tidal sampling frequency
which sufficiently accounts for sample variations and provides mean-
ingful patterns of flooding frequency on an inter-annual scale (see
Fig. S2 in the supplement). With this application in mind, we distin-
guished creeks by their noticeably linear features and high frequency of
flooding. We consider the correct classification of these linear features
(creeks, streams, etc.) as water in the flood frequency maps (Fig. 5) to be
further validation that our model readily identifies flooded instances.
These creek areas on the marsh surface flooded greater than 50% of the
time during the 7-year study period. Creeks often appear as mixed pixels
in Landsat imagery due to their relatively smaller size and the density of
tall form S. alterniflora that usually borders them. The majority of the
pixels found on the marsh platform are only flooded 20% of the time or
less. The remaining pixels (whose flooding frequency ranges between
20% and 40%) are not located in established creeks but yet are still
impacted by relatively high rates of flooding, potentially leaving these
areas more vulnerable to the impacts of sea level rise (Vitousek et al.,
2017). An advantage of FLATS is that it can highlight the cumulative
frequency of flooding, which helps distinguish areas vulnerable to
ponding when areas traversed heavily by streams are excluded. Wetland
fragmentation via migrating creeks and ponding presents a major
challenge to continued marsh resilience (Duran Vinent et al., 2021;
Mariotti, 2016). FLATS can assist in the vital effort to monitor the size
and distribution of ponding. This water connectivity and distribution
monitoring are important for decerning the severity of marsh fragmen-
tation and establishing patterns to help determine if marsh recovery or
drowning will occur (Day et al., 2011; Duran Vinent et al., 2021). The
average water level relative to the marsh surface appears to be
increasing over time which could, when coupled with the flood fre-
quency data, indicate potential sea level rise related complications for
any marsh (Fig. 6A).

Although our model does not produce water level data, MHHW helps
predict the mean flood proportion derived from FLATS (Fig. 6B). This
analysis approach is particularly useful if a high-resolution digital
elevation model is not available, as it was in our study, because the mean
flooding proportion obtained through the use of FLATS can be used as a
proxy to estimate MHHW levels. MHHW can also be used as a low signal
covariant for mean flood proportion in other types of statistical models
(e.g., machine learning). However, flooding as estimated from FLATS
itself would be better in such models, as it can provide direct observa-
tions of spatially explicit flooding impacts.

As a tidal flooding indicator, FLATS is a useful tool for a variety of
applications and disciplines. In addition to those discussed here (vege-
tation biophysical time-series analysis and flood frequency detection),
FLATS could also be used by restoration scientists, ecologists, site
planners, and others for a variety of coastal flooding applications. This
index could also be used to examine the long-term effects of disturbances
such as wrack on flooding in tidal wetlands. The next steps include
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applying FLATS to both Landsat 8 and upcoming Landsat 9 to build a
denser time-series and re-parametrizing FLATS to other satellites,
including higher resolution Sentinel-2 as well as those with long-term
datasets such as Landsat 5. One of the limitations is that we developed
FLATS using data from one site and one marsh species due to the lack of
established coastal wetland PhenoCam data in other marshes. However,
there is great potential for this index to be scalable at other locations
because of its vegetation index centric formulation, including those with
varying flood regimes, and where other tidal marsh species are domi-
nant (e.g., Juncus roemerianus or S. patens), emphasizing another direc-
tion in need of empirical exploration. Our method is easily reproducible
for researchers with access to repeat photography in other marsh envi-
ronments. Future improvements to this index could include model for-
mation via machine learning and the addition of other biophysical
parameters, which could both enhance the scalability and applicability
of FLATS. An implementation of the index on high-resolution Sentinel-2
data could improve our understanding of ponding and creek migration
in coastal marshes, while use in Landsat 5 could provide extensive flood
frequency trend data for analysis over the past 35 years.

5. Conclusions

Filtering Landsat 8 data via FLATS can improve remote sensing
models of coastal marsh vegetation by reducing the presence of spectral
noise from inundation. These tide-filtered models can show phenolog-
ical signals that more accurately match the dynamics at play in these
indispensable coastal environments. Consequently, researchers should
be able to generate improved estimates of vegetation features, such as
habitat characteristics or productivity and carbon storage potential. To
this end, we recommend the incorporation of FLATS into Landsat 8
preprocessing routines for tidal systems. FLATS also provides insight
into shifting inundation patterns, including the migration of creeks and
ponding on the marsh surface. The presence, frequency, and intensity of
these flooding configurations can be an indicator of marsh resiliency or
drowning. FLATS improves our capability to accurately study tidal
marshes, which will have lasting impacts on our ability to better un-
derstand our changing environment.
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