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Path planning for small unmanned aerial systems (SUAS) in the presence of poorly understood and dynamic
obstacles is a challenging problem: for example, flight over a spreading wildfire. Evidential information fusion is used
to estimate the current wildfire state and the resulting heat aura at flight level. This approach accounts for ignorance,
which is a result of conflict among sensors operating in a harsh environment and a computational forecasting agent
that uses a fire evolution model of inadequate accuracy. An SUAS is employed to visit locations of high conflict to
provide additional situational awareness. Flight-level heat aura is modeled as a keepout zone with probabilistic
boundaries for SUAS path planning. A novel unsupervised classification algorithm is developed to identify distinct
obstacle boundaries within the estimated heat aura. Path planning is posed as a chance-constrained optimal control
problem, which is transcribed to a nonlinear program via pseudospectral discretization. The results show that this
approach can yield a family of solutions that elicit the risk associated with each mission design, and the appropriate
choice of risk can aid in the generation of “keyhole paths.”
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boundary constraint

path constraint

differentiation matrix

radiative energy per unit area
expectation operator

set of events
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no-wind no-slope propagating heat flux
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Lagrangian

ith Lagrange polynomial
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Ny = number of Legendre-Gauss—Radau collocation
points in mesh interval k
probability

Nth-degree Legendre polynomial
heat required for ignition
incident heat flux, kW - m~2

R = rate of spread of fire, ft/ min
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recombination favorability matrix and its (i, j)th
element, respectively

radius of keepout zone

minimum turn radius of the vehicle

absolute temperature of the flame, K

time and final time, respectively

control approximation

control of Dubin’s vehicle

control

constant speed of Dubin’s vehicle

position of Dubin’s vehicle on the x and y axes,
respectively

x and y positions, respectively, of the center of the
keepout zone

state approximation

state

constant positive parameter for Bernstein method
constant positive parameters for split-Bernstein
method

fuzzy keepout zone boundary parameter

risk parameter

dimensionless effective heating number

risk parameter for Dubin’s vehicle

emissivity

modified risk parameter for Bernstein method
frame of discernment

turn angle

degree of conflict among experts

defect constraint Lagrange multiplier

costate

piecewise exponential function

random variable, random sample

matrix representing state of the environment at
time ¢

discrete state of the environment in the (i, j)th cell at
time ¢

fuel bulk density

time interval transformation
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¢ = configuration factor

D P = wind and slope factors, respectively, affecting the
wildfire spread rate

Q = sample space for an event

Ly = indicator function

%) = empty set

I. Introduction

ILDFIRES are unplanned and unwanted fires, including

lightning-caused fires, unauthorized human-caused fires,
and escaped prescribed fire projects. Although they have some
beneficial impacts on an ecosystem, they often threaten commun-
ities and force the evacuation of thousands of people [1]. Concur-
rently, there is increasing emphasis on the advancement of small
unmanned aerial systems (SUAS) and their applications for recon-
naissance, search, and rescue in emergent wildfires as they are
positioned to replace human agents in such dangerous and/or
repetitive missions [2—4]. For example, Fig. 1 illustrates the con-
ditions during the early to midstages of the fire on Schultz Peak in
Coconino National Forest near Flagstaff, Arizona in 2010. This
scenario presents a set of heterogeneous threats, varying in severity
and the extent to which they are understood and characterized.
Moreover, threats are often transient. Consider an SUAS team
tasked with the objective of providing situational awareness
through the use of onboard thermal and/or visual equipment. This
problem involves transient destinations (namely, locations of low
fire-related information) along with a transient, poorly understood
threat (namely, the heat aura at the flying vehicle’s flight level
emanating from the fire underneath).

A common deterministic approach to path planning is to approxi-
mate these threat regions using simple shapes such as ellipses, which
must be penalized or excluded, depending on their (un)favorability
attributes. If the complexity of the constraints increases further
(for example, due to the presence of dynamic collision risks),
conservative deterministic modeling can cause the solution space
to shrink to a null set. In the face of these challenges, chance
constraints offer a rigorous framework for recognizing that no-fly
zones in a complex environment are ultimately approximations [5—8]
so that there is merit in treating their boundaries as probabilistic
barriers. While implying greater risk than the deterministic approach,
the modified framework provides the decision maker the flexibility of
prescribing mission-appropriate risk such that when the risk is set to
zero, the solution space degenerates to that in the deterministic
formulation [9]. Seen another way, one can generate a family of
solutions parameterized by varying levels of assigned risk, providing
the decision maker the ability to undertake missions with known risk
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Fig.1 Chance-constrained versus deterministic mission planning (GPS
= Global Positioning System; UTM = Universal Transverse Mercator).

versus return awareness. The favorable tradeoff is that undertaking a
reasonable level of risk may open “keyholes” through which cost-
efficient paths can be found; whereas in the deterministic approach,
no such solutions exist.

In this work, we develop a chance-constrained path-planning
platform for recursive SUAS mission design in an evolving wildfire
environment. An evidence-based framework built on the Dempster—
Shafer theory of probable reasoning is used to construct real-time
estimates of belief in wildfire. Information fusion includes a compu-
tational forecasting agent employing Markov chain models of
wildfire evolution, ground-based temperature sensors, and SUAS
mounted visual sensors. Heat emitted by the wildfire at the ground
level is propagated to flight level via the principles of thermal
radiation. A novel unsupervised clustering algorithm based on stat-
istical formalism is developed to identify polygonal keepout regions
within the probabilistic flight-level heat aura, representing a danger-
ous degree of heat flux above the SUAS operational threshold.
Estimation uncertainty is projected onto the obstacle boundaries to
model them as chance constraints with user-prescribed probability
of violation. Path-planning objective functions include locations of
low net information and/or high information conflict in the wildfire
region. The optimal chance-constrained path-planning problem is
transcribed to a nonlinear program (NLP) via pseudospectral discre-
tization. Constrained Delaunay triangulation is performed to achieve
rapid generation of good initial guesses for the optimal trajectory,
which is provided as input to off-the-shelf gradient-based optimiza-
tion software. It is ensured that the planning update frequency
matches the update frequency of the wildfire so that the most current
obstacle information is represented in the trajectory design. Numeri-
cal simulations show that by varying the risk of violation of heat flux
chance constraints, a family of risk-aware trajectories can be gener-
ated, some of which represent keyhole trajectories that save signifi-
cant mission cost. Preliminary results of this work were presented in a
conference article (Ref. [10]).

This paper considers the problem of SUAS path planning in a
wildfire. To appropriately formulate the path-planning problem,
environmental situational awareness is required. Situational aware-
ness is of central importance in a wildfire because the environment is
without a map, uncertain, and dynamic. By necessity, one must
consider the combined problem of environmental estimation and
path planning. Both these problems are addressed in this work. In
terms of methods of solution, there are three:

1) The first method is wildfire estimation: This is done in the
evidential framework of the Dempster—Shafer theory using inputs
from a Markovian computation agent (forecaster) and two types of
sensing agents (temperature and vision).

2) The second method is obstacle estimation: Wildfire estimation
leads to identification of heat-aura obstacles at flight level. This
requires unsupervised clustering of the data obtained from wildfire
estimation (method 1), followed by modeling of the cluster bounda-
ries as chance constraints.

3) The third method is path planning: Using obstacle information
from method 2, a chance-constrained optimal control problem is
formulated and solved in a staged manner to obtain the SUAS
trajectory.

Because the environment is dynamic, the described methods 1-3
are performed recursively (every 2 min in this work) to revise the
SUAS trajectory in order to keep up with the changing environment.
A key contribution of this paper is the integration of the three
individual methodological elements described earlier. There are
contributions in the individual methods as well. The clustering
methodology is new. It represents a novel extension of the well-
known k-means algorithm with the sole motivation of separating
outislands in the obstacle data. The reason is that effective separation
of islandlike clusters leads to maximization of flight space in between
the obstacles. To serve this objective, the output of optimal k£ means is
subjected to a process of targeted splitting. A recombination process
is designed to reduced oversplitting. A second elemental contribution
of this work is the use of a constrained Delaunay triangulation
approach to rapidly generate good initial guesses for the underlying
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nonlinear program. The combined approach is shown to result in
keyhole trajectories that save mission cost.

Further work is required to evaluate the computational complexity
of the coupled environmental estimation and path-planning problem.
In its present form, the platform is not a real-time tool and the greatest
computational burden is encountered at the wildfire estimation step
(method 1 in the preceding list). Improving the efficiency of this step
will help elevate the usefulness of the proposed platform as an online
(real-time) tool.

II. Estimation of a Transient Wildfire Obstacle

A. Markovian Wildfire Forecasting

To monitor and continuously track an evolving wildfire, it is
necessary to adequately predict the probable locations of the fire
front based on the wildfire’s spreading dynamics. This is done
through a wildland fire forecasting algorithm for which the inputs
are the assumed environmental conditions (surface wind velocity,
local topography, types of vegetative fuel, humidity, etc.) and the
output is the normalized frequency that a fire will arrive at a certain
location and time in the environment. The environmental parameters
are employed to approximate the wildfire’s average rate of spread
based on Rothermel’s model [11,12]:

pngig

which computes the spread rate R (in feet per minute) as a ratio of the
heat source (the no-wind/no-slope propagating heat flux / amplified
by the wind and slope factors, ¢,, and ¢,) and the heat sink, which is
the heat required for ignition Q;, multiplied by the bulk density p,,
(i.e., the amount of fuel) and the dimensionless effective heating
number ¢. Although this deterministic model is simple to implement,
many of the required environmental inputs are inherently nondeter-
ministic, such as the surface wind velocities [13], the distribution of
vegetation, and the act of combustion. In this case, the evolving
wildfire can be treated as a stochastic process (see the work of
Boychuk et al. [14]) by representing each location within an ongoing
wildfire environment as a discrete state in an evolving Markov chain.
The time-varying state of the entire wildfire environment is repre-
sented as an m; X m, two-dimensional array where each cell within
the lattice represents a square-shaped geographic region with the
Cartesian coordinate pair (7, j) representing its center. The state of any
cell at coordinate (i, j) and at time step ¢ is described by one of four
discrete values: (i, j) € y, where

x = {Vegetation, Fire, Ash, Noncombustible}

It follows that the state of the entire environment at time ¢ is denoted as

z(1,1) =(1,2)
Ht = . .

”t(ml’ 1) ”t(mlvmz)

where the state of each cell z,(i, j) € II, is assumed to transition into
a succeeding state at time ¢ + 1, 7, (i, j) according to a Markov
process:

Pz (i, )) € 2l (0. ). w2 (i ) - 7 (0. )
= P(r1 (i, )) € 2Im, (0. ) (@)

The probability of a given cell (i, j) transitioning from state x to
state y,

P11 (0, )) = ylm, (i, J) = %)

denoted P(i, j),y, is dependent on its current state, the states of its
adjacent eight cells, and the surrounding environmental attributes.

For notational simplicity, the set of states is replaced with the follow-
ing set of numerical labels:

{Fuel — 1, Fire — 2, Ash — 3, Noncombustible — 4}

To compute the transitional probability from fuel to fire, we use the
minimum and maximum rates of spread at each location provided via
Eq. (1):

R(l’ .]) € [R(lv j)min’ R(lv ])max]

Given a cell assumed to be in a combustible fuel state at time step ¢
[i.e., x,(i,j) = 1] that borders at least one cell in a fire state
[7;(i £ 1,j £ 1) = 2], there is a nonzero (one-step) transition prob-
ability that z,(i, j) = 2 due to the wildfire’s spreading behavior. In
the stochastic models employed by Refs. [14,15], the time 7 for a
cell’s state to transition from the fuel to the fire state can be sampled
from an exponential probability distribution with rate parameter
29(i, j), or  ~Exp(A¥(i, j)). The construction of this rate param-
eter for each cell (i, j) is given as

.. OY) (i, )
/1(’)( L j) = ¢ ’0
" neNZ«,-,m 1 — cos(a(n) — w? (i )N — o/ An)]

3

The value of A (i, j) is dependent on its current state, the states of its
eight adjacent neighboring cells,

N ) ={G+1),G+1j+1),...G-1,j=1)}

and the current wind directions in cell (i, j) and its neighbors. In
Eq. (3), the wind direction within cell (i, j) at time &, wg) (i,)) €
(0, 27], is subtracted from the relative angle a(n) between the center
of cell (i, j) and that of its neighboring cell’s center n € N((i, j)),
which can either amplify or attenuate the probability of fire spread.
The coefficient ¢ is tuned to model time-dependent fire intensity,
and the coefficients 4¢(i, j) and 4,, are empirically determined
minimum and maximum rate parameters based on the fuel type,
slope, and wind speed. In Refs. [14,15], the fuel cell was assumed to
transition if the sampled time 7 fell below some prescribed time-step
threshold AT. The present work differs from these aforementioned
approaches by instead computing the fuel cell’s transitional prob-
ability as the cumulative distribution function of this exponential
distribution; i.e.,

P(i, 1o = 1 —exp(=2" (i, /)AT)

Likewise, the transitional probability that the fuel cell will remain in
the fuel state at time ¢ + 1 is P(i, j);; = exp(=A? (i, j)AT).

To compute the transitional probabilities P(i, j),, and P(i, j),3, we
introduce the mean hitting time tﬁﬂ , defined as the expected number of
time steps required for a Markov chain to reach a set of states A given
that the chain starts from state 7, € A:

0 for 6, € A

B =\ 14 S Pt for Oy ¢ A @
7 ¢A

Assuming that each cell represents a square area of homogeneous
fuel, anewly lighted cell in the fire state can be modeled to consume
all fuel in an expected time of fuel-type-dependent (and hence
cell-dependent) B(i, j) time steps. Thus, by setting 5 = B(i, j),
the preceding relation can be algebraically manipulated to yield
the probability that the fire continues to burn through the next time
step:

B(i.j) -1

P>, j)p = B )
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Hence,

1

P, j)os = 1 =P>, j)op = ——=

(i /)3 (. D2 B, J)
Additional details on derivation of P(i, j);; and P(i, j),, are pro-
vided in the works of Boychuk et al. [14] and Krougly et al. [15].
On the other hand, the probability that a location will continue to
burn P(i, j),, is given via the consumption rate of fuel: see the
previous study by Soderlund et al. [16]. Obtaining practical values for
the parameters A, 4,,, and ¢® can be done by extensively reverse
tuning them to each cell’s minimum and maximum fire spread rates,
R(i, j)min and R(i, j)max> Which are themselves computed from known
fuel and topography models, such as the tables seen in Ref. [17].

By expanding this Markov chain operation across all cells within
I1,, the entire fire disturbance is propagated. Figure 2 displays a
Markovian simulation that attempts to replicate a 2019 fire that
crossed the Rio Grande River in Los Chavez, New Mexico due to a
westerly wind. For this simulation, National Oceanic and Atmos-
pheric Administration (NOAA) wind data and United States Geo-
logical Survey (USGS) vegetation and elevation maps were collated
to provide appropriate environmental inputs. To generate a probabi-
listic representation of the fire based on the assumed environmental
parameters (Fig. 2 shows a single instance of the Markov chain), it is
necessary to simulate many fire propagation instances (for example,
M Monte Carlo simulations) at every time step ¢. For example, the
frequentist probability of fire presence within a location (i, ;) at time ¢
is given as the number of instances f that the cell transitions to fire:

P(”t(lvf) = 2) = hmM—mo(f/M)

As an extension, the vector
[Pz, (i, j) = 1), P(x,(i, j) = 2), P(m,(i, j) = 3)]

is treated as the prior probability distribution for each cell. Note
that P(x,(i, j) = 4) is not included in the probability distribution
because it represents the “infinitely noncombustible type,” e.g., water
locations that make up the river in the central portion of the map.
There is no transition into cell type 4, and there is no transition out of

it. Because these facts are known a priori, there is no reason to include
them in the distribution. This improves the computational efficiency
of fire propagation because one can eliminate a certain number of
locations from possible fire spread in the simulations.

B. Information Fusion via Evidential Reasoning

Although the wildfire representation model described in Sec. IL.A
provides amethod of propagating the locations of the flame front over
time (as seen in Fig. 2), the inherent stochasticity of the dynamics
illuminates the necessity of updating the wildfire’s belief state rep-
resentation based on real-time measurements from sensing agents.
This work considers two sources of wildfire observation: 1) a temper-
ature sensor agent that activates due to an encroaching fire’s radia-
tion, and 2) a thermal vision sensor agent that uses high-resolution
temperature readings in its field of view to identify wildfire presence.
Both sources are imperfect: the temperature sensor can suffer from
reporting false positives, whereas the vision sensor (mounted on the
SUAS) must contend with various constraints that hinder its available
areas to survey. Wildfire belief state estimation is performed by
combining the forecaster’s predicted probability of fire in a given
location (i, j) with the beliefs of either the temperature or vision
sensor, or both if available. This fusion of beliefs is done under the
framework of evidential reasoning through the Dempster—Shafer
theory (DST) of probable reasoning.

The Dempster—Shafer theory is applicable when considering a
question with multiple (but finite) possible explanations. The finite
set of n mutually exclusive and collectively exhaustive hypotheses
that act as adequate answers to this question is defined as the frame
of discernment: © = {0,,0,, ...,0;, ...,0,}, where exactly one
hypothesis 0; is the truth. Within Kolmogorov’s conventional axi-
omatic probability theory, the probability of event ; and its comple-
ment éi have the relation P(6;) = 1 — P(éi). Under DST, however,
the metrics of belief are allocated among members (known as
propositions) of the power set 2, and a degree of belief can be
assigned to a set containing conflicting hypotheses. This is useful in
scenarios where observations indicate sets of events rather than
events themselves.
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Fig.2 Wildfire simulation: currently burning locations (red), ash locations (black), noncombustible Rio Grande River (blue). The remaining brown cells

are grassland fuel.
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It is useful to imagine belief as a finite resource that neither shrinks
nor grows but is instead rationed appropriately to each proposition,
given the available information. The amount of belief assigned to a
particular proposition A is based on the current evidence in support
of A. This numerical belief for proposition A is quantified through the
basic probability number (BPN), denoted m(A). This quantity
is calculated according to the basic probability assignment (BPA)
function m: 2° — [0, 1]:

> m@A)=1 with m(@)=0 6))
ACO

The summation of all basic probability numbers of the subsets of A,
which is a quantity known simply as the belief Bel(A), is constructed as

Bel(4) = ) "m(B) ©6)

BCA

To illustrate an example applicable to the wildfire scenario discussed
thus far, it is possible to assign belief to the following proposition set:

{Veg.,{Veg., Fire}, Fire, {Fire, Ash}, Ash, ®}

where ® = {Veg., Fire, Ash} represents complete ignorance of a
location’s state. The beliefs of multiple experts are fused through
Dempster’s rule of combination [18]. Consider the basic probability
numbers supplied by experts T and F over the power set 2€. The
combined BPN of both experts regarding proposition A is calculated
via Dempster’s rule:

me(A) =K ) my(A)mz(B)) N

AiNB;j=A

where the normalization constant K = (1/1 — k) is computed from
the degree of conflict k € [0, 1] between the BPAs of the two experts
T and F:

k=Y my(A)mg(B)) ®)

AiNB;=@

The resulting belief function given by this combined basic probability
assignment mc(A) is known as the orthogonal sum of the beliefs of
experts T and F and is denoted Belc = Bel & Bely. Furthermore,
the combined beliefs of Ej experts regarding proposition A may be
computed by performing Eq. (7) recursively:

Belg(A) = ((Bely(A) @ Belp(A)) @ Belg, (A)) ...) & Belg, (A)

This work performs information fusion via Dempster’s rule of
combination by fusing the beliefs of three such “experts” at every
time step: 1) the Monte Carlo forecaster, 2) the ground-level temper-
ature sensors, and 3) the airborne vision sensors. The forecaster’s
belief assignment into the fire hypothesis at each location is derived
from the cell’s prior probability distribution (created via Monte Carlo
sampling). Although the forecaster’s beliefs are inherently based on
the fire’s spreading dynamics and environmental conditions, the
temperature and vision sensors’ beliefs are apportioned via their
received measurements. For example, a temperature agent reporting
high-temperature readings for an extended period of time would
resultin a higher belief in either the fire or ash possibilities. Interested
readers should refer to previous work by Soderlund et al. [16] for a
more detailed explanation of how each of these expert basic proba-
bility assignments are constructed. After belief combination is per-
formed as in Eq. (7), across each location, an updated estimate of the
wildfire’s belief state is available for further propagation. Although
this is useful for monitoring the probable locations of the fire perim-
eter, we are additionally interested in the output conflict value. High
conflict values between experts (such as the forecaster and a temper-
ature sensor) may indicate that one agent has inadequate or incorrect
information. An additional observation made by an aerial sensor may
alleviate this discrepancy, although its route to this conflict location

must be feasible. To ensure consistent operation of path following,
sensing, processing, and communication of data, the computing
hardware encased in each SUAS must not encounter prolonged
thermal radiation. Thus, we seek to maintain the health of each SUAS
by calculating paths containing safe levels of radiation that also
intersect locations of interest. The calculation of this (probabilistic)
radiation constraint requires an understanding of the heating effects
of flame surfaces on their surrounding environments, which will be
discussed in the following section.

III. Probabilistic Characterization of the Heat Aura
A. Characterization of Heat Aura as Obstacles

Although convection and radiation are the main methods of heat
loss experienced by the wildfire object, radiation becomes the dom-
inant form of heat transfer for surfaces exceeding 400°C [19]. As the
flame temperatures of a wildland fire can vary between 800 and
1000°C, we are primarily concerned with the effect of the fire’s
radiative heat aura that extends up into the atmosphere and hinders
the maneuverability of the SUAS. Each burning location is treated
as a radiative surface that emanates energy per unit area at a rate
according to the Stefan—Boltzmann law:

— 50T
E = 0T 9)

where T is the absolute temperature of the flame in kelvins, € € [0, 1]
is the emissivity. and o, = 5.67 X 1078 W/(m? - K*) is the Stefan—
Boltzmann constant. Conceptually, this rate of energy loss (referred
to as the heat flux for the remainder of this work)is radiated in all
directions from the flame surface A;. The radiant heat flux that is
incident upon a small element of a secondary surface A, due to the
flame’s flux is given as

q"=E¢p (10)

where ¢, which is known as the configuration factor, is a dimension-
less quantity that describes the geometric relation (e.g., distance and
orientation) between surfaces A; and A,. Within the field of fire
safety, the incident heat flux ¢”’ is often used as the metric to indicate
the level of danger: Wildland firefighters can tolerate a maximum
incident heat flux of 7 kW - m~2 [20], and wood will ignite in a matter
of seconds with a heat flux of 20 kW - m~2 [19]. Importantly, when
multiple radiating surfaces with heat flux E are acting upon the same
distant surface, their configuration factors are additive. Recall that the
environmental state representation I1, defined in Sec. II.A can be
partitioned into the following sets representing the vegetation, fire,
ash, and noncombustible cells at time ¢: {V,, F,, S,;,U,}. Because the
locations of the flame surfaces [i.e., 7,(i, j) = 2] are being tabulated
as members in F; in each Monte Carlo run, the incident flux imping-
ing on a surveillance drone at coordinate (i, j, j) can be modeled as

17|

Q" j k) =E Y ¢uv) (an

(u,v)EF,

where the configuration factor ¢(u, v) between a fire surface with a
width of w and an unmanned aerial vehicle (UAV) with an elevation

of z = ¢k and a lateral translation of a = £/(i — u)> + (j — v)?
relative to a ground-level cell (&, v) is given as

v —2(w/a)? ]
V& —4w/a)

)

(see Ref. [21]) and { is the separation distance (in meters) between
the centers of adjacent cells. Recall that the forecaster outlined in
Sec. II.A outputs the probability that a given cell (7, j) at time ¢ will take

¢(u,v) =%|:1 - (12)

where
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on the fire state. Analogously, the heat aura generated by a wildfire is
characterized as a probabilistic rather than a deterministic object. Note
that the aforementioned heat model is imperfect; and alternative
(potentially more precise) heat-aura constructions are possible, such
as the use of numerical integration mentioned in Ref. [20].

For path-planning purposes, we seek the frequency that a spatio-
temporal location exhibits a heat flux at flight level greater than a
critical value. The top half of Fig. 3 depicts the heat flux (ranging from
0 to 50 kW - m~2) that an aerial drone would encounter over all
locations at flight levels at four separate time stamps. The bottom half
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Fig.3 Top panel at each time label: progression of flight-level (120) heat aura for a single wildfire simulation. Bottom panel at each time label: occurrence
rate of critical heat flux in spatiotemporal locations over 100 Monte Carlo runs.
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of Fig. 3 shows the probability that each location will exhibit a heat
flux over the critical value [¢” (i, j, k) > 5 kW - m~2]. These will form
the basis of the keepout zones discussed in the following sections.

B. Unsupervised Clustering

Clustering of unstructured data is counted among the most difficult
learning problems due to its unsupervised form and the open-ended
nature of the question: How many clusters exist in the data? For
obstacle characterization, it is important to separate obstacles from
each other so that available flight space can be maximized. See the
lower portion of Fig. 4a as an example of when this fails. This is
difficult because it is unknown how many clusters may be present in
the unstructured obstacle data. In this work, the initial data are
assumed to be binary (obstacle absent or present), which are to be
clustered first, followed by assignment of an appropriate probability
distribution to the resulting cluster boundaries. We present a novel
methodology for unsupervised clustering based on statistical formal-
ism, building on the well-known k-means algorithm [22]. Also
known as Lloyd’s algorithm, the k-means algorithm partitions the
data into k clusters identified by their centroids, where the value of k
must be specified at the start. However, as already mentioned, the
value of k is unknown in the present problem. The traditional work-
around is to design an optimization outer loop that aims to maximize
the cluster quality by spanning over a range of arbitrarily selected
values of k (for example, k = 1 to k = 20): we refer to this approach
as the optimal-k means. The cluster quality is roughly defined using
metrics such as “silhouette” of MATLAB®, which measures the
similarity of points to other points in their own cluster in comparison
with points in other clusters: usually in terms of Euclidean distances.
This optimization approach often fails because visual cluster quality
(as ascertained by humans) is often highly sensitive to variations in
the numerical value of such metrics, in the sense that the visually
optimal cluster assignment (including the value of k) often corre-
sponds to a local optimum.

The new method developed in this work achieves optimal unsu-
pervised clustering in a recursive manner. The method begins with

execution of the optimal-k-means algorithm as described earlier in
this paper. Then, each resulting cluster is analyzed in terms of its
statistical properties and flagged for further clustering (splitting or
reclustering). The flagging process begins by computing the statis-
tical mean y; and covariance X; of each cluster, followed by deter-
mination of the maximum Mahalanobis distance of all points within
the cluster with respect to these statistics:

— —u ) N (x —
My = max Gy - )57 oy - ) a3

M

ij

where C; denotes the ith cluster, and M; represents the maximum
Mahalanobis distance among all points in C; with respect to (g;, ;).
C; is flagged for reclustering if M; > M, where M, is a suitable
threshold (chosen to be less than three, e.g., M, = 2.3). This
metric helps determine the statistical appropriateness of assigning
data points to a particular cluster. Figure 4b depicts the maximum
Mahalanobis distance metric M; for each cluster resulting from
optimal-k-means clustering. In this figure, the centroid of each
cluster is identified as a red circle. All clusters flagged for recluster-
ing are passed into the optimal-k-means algorithm again, and the
process repeats until no more clusters flagged for reclustering
remain. A possible criticism of the metric given in Eq. (13) is that
a single outlier member can cause a cluster to be flagged for further
splitting. In the present use case, that is not necessarily a bad thing
because the idea is to separate out as many islands as possible such
that interobstacle space can be maximized for path planning. In a
more general setting, an appropriately high ¢ quantile can be
employed instead of “max” as in Eq. (13). For example, one may
define M, as the ¢ = 0.96 quantile value of the Mahalanobis dis-
tance set {M;}.

At the end of this described splitting process, there will invariably
be more clusters than are needed or warranted. See Fig. 5a. A total of
48 clusters results after 39 iterations of cluster splitting using
M., = 2.3. This is clearly not desirable. Therefore, as the final step,
the set of oversplit clusters is analyzed statistically for recursive
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Fig. 4 Outcome of optimal-k-means clustering.
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Fig. 5 Clustering for obstacle identification using raw data from wildfire forecasting.

recombination. First, a “recombination favorability matrix R is
constructed. The (7, j)th element of this matrix is defined as follows:

R0 = max{ /=) G )= )}
(14)

i.e., the greater of the Mahalanobis distance of g with respect to the
statistics (p;, X;) of C; and (p;, X;) of C;. Here, g is the centroid
(mean) of the combined cluster (C;, C;). In essence, the defined metric
measures the statistical distance of the combined mean with respect to
the individual statistics of the clusters under consideration. The
recombination favorability matrix helps identify pools of clusters
that can be combined together, for example, as follows:

P; = arg;{R(i, j) < Reomp}

This condition identifies all clusters that have proximity to the ith
cluster. The greater the value chosen for R, the more propensity
the algorithm will have for pooling together clusters. A value close to
but less than 3.0 is reasonable and must be picked, depending on the
application. In the example shown in Fig. 5b, R, Was chosen to be
2.8, resulting in a total of six clusters. This result is adequate for path
planning.

Clearly, there are two main tuning parameters in the previously
described unsupervised clustering approach: M., and R.yyp-
For M, the guiding principle is that the higher the chosen value,
the less the algorithm is inclined to split existing clusters. In other
words, a large M, implies that clusters containing points with high
Mahalanobis distances are allowed to exist. On the other hand, a large
value of Ry, makes the algorithm more inclined to pool together
neighboring clusters. More research is required to develop tuning
principles for these parameters and is expected to be application
dependent.

As a final step, the cluster boundaries are examined in relation to the
flight vehicle size. A sensible simplification is to merge boundaries that

are separated by less than the characteristic length of the SUAS.
Assuming the flight vehicle safety zone to be defined as a bubble with
adiameter of 25 m, qualifying cluster boundaries are merged to result
in the final result shown in Fig. 6.
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Fig.6 Merging boundaries that are closer to each other than the vehicle
characteristic length.
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The previously described unsupervised clustering process has
two tuning parameters: M, and R.,np,. The former (M) controls
the splitting process, whereas the latter (R_,,,,) controls the recom-
bination process. The parameter M; [Eq. (13)] captures the maxi-
mum statistical distance among member particles in the cluster C;
from the cluster mean. Note that M, = 3 suggests that in order
for cluster C; to be flagged for splitting, its weakest member must
be at least 36 away from the mean (outside the 0.003 percentile for
one-dimensional data). By choosing M, < 3, the idea is to enforce
a somewhat more stringent (consequently, more conservative)
threshold on clusters to be flagged for splitting. If M, is chosen
too high (greater than three), only a handful of clusters will be
flagged for splitting. Data islands of the kind shown in Fig. 4a would
not be broken up. This is further illustrated in the example shown
in Fig. 7d. On the other hand, if M, is too low (e.g., M.y = 2),
most clusters will be flagged for splitting, resulting in a very large
number of sparse clusters: see Fig. 7a. Experience suggests that a
good balance is achieved when M, is chosen to be around 2.5.
Figure 7 shows the comparative performance of various M,
values.

After splitting is complete, cluster recombination is performed
using the described favorability matrix [Eq. (14)]. The following
steps are involved:

1) For each pair of split clusters, the centroid of the combined
cluster is computed .

2) The Mahalanobis distance of the joint centroid u is evaluated
against the statistics of each cluster in the pair.

3) The maximum of the two statistical distances (i.e., the worst-
case scenario) is entered into the recombination matrix as R(i, j) for
the cluster pair (C;, C;).

As previously mentioned, clusters are included in the recombina-
tion pool if R(7, j) < R.omp- The implication is that even in the worst
case, if the joint centroid is close enough to fall in the tail regions of
the two individual clusters, the two clusters should be put back
together. Note that if R, is too high, clusters that are too far away
may be tagged for recombination; see Fig. 8d. On the other hand,
recombination may be inactive if R, is chosen to be too low; see
Fig. 8a. Experience suggests that a value close to three gives optimal
performance for difficult clustering problems like the horseshoe-
shaped structure shown in these examples. See the effect of Ry
in Fig. 8, where M, is set to 2.3.

IV. Chance-Constrained Path Planning

Depending on how mapping of the spatial domain is handled, path
planning can be divided into two approaches: 1) discrete space
planning, and 2) continuous space planning. Planning in a discrete
space can be further divided into 1) combinatorial planning, and
2) sampling-based planning [23-26]. These methods often use a
deterministic or sampling-based spatial discretization followed by a
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graph search. They are suitable for global optimization but are also
prone to suffering from the curse of dimensionality: especially when
using high-resolution discretization. In the latter approach of con-
tinuous space path planning, a popular method involves the artificial
potential field, which uses the objective function to attract the agent
toward the final goal and repel it away from the obstacles [27-32].
Although it suffers from convergence issues [33], it also does not
provide an explicit framework to capture the performance metric and
agent dynamics.

As shown earlier in Sec. III, uncertainty in the heat aura is
captured well using probability distributions. Along with the pres-
ence of other performance metrics such as min-energy or min-time,
path planning can be formulated using collision avoidance chance
constraints. Although chance constraints in the context of path
planning have been studied previously (e.g., Refs. [9,34-37]), their
past implementations are known to be computationally intensive,
especially when using nonconvex constraints. A more detailed
review can be found in prior work by Aggarwal et al. [38]. This
paper presents a two-stage approach to path planning using the
optimal control framework, which allows explicit definition of
agent dynamics. The first stage employs discrete path-planning
techniques to obtain a globally optimal approximate path, followed
by generation of a kinematically smooth trajectory by solving the
optimal control problem. Note that tools such as Bezier curves can

be employed to smooth the path obtained from the discrete planning
stage; they do not capture agent dynamics. Optimal control formu-
lation, on the other hand, offers an explicit framework for capturing
the dynamics of the agent.

A. Optimal Control Problem: Formulation

We consider the problem of a SUAS flying over a spreading
wildfire. Considering the SUAS flight regulations and consistent
field of view of the aerial imagery, it is assumed for it to fly at a fixed
altitude and at a constant horizontal ground speed. Inspired from
nonholonomic constraints in carlike vehicles, we use the Dubins
vehicle model to represent the kinematic motion of the aerial vehicle
performing a coordinated turn in a horizontal flight. The vehicle size
is typically very small as compared to the no-fly-zone obstacles in
consideration, and the uncertainty in the vehicle’s localization is
considered negligible as compared to that of the obstacles. Hence,
only the obstacles are represented using chance constraints. The
problem of optimal path planning in the presence of obstacles with
uncertain boundaries can now be posed as a minimum time-optimal
control problem subject to the vehicle dynamics and the no-fly-zone
constraints as shown in Eq. (15):

min ¢y (15a)
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subject to dynamic constraints
x(t) = Vcosé(r)
y(t) = Vsin6(r)
o) = u (15b)

path constraints

N /M,
I_/:\l (/\:/1 P(aijx +b;jy > (c,“-_j + Ci_j,/a%j + bfj)) >1 —ei)

(15¢)
terminal conditions
{x(0). y(0)} = {x0. y0}
x(tp). y(tp)y = {xp. ys} (15d)
and boundary conditions
lu| < ( v ) (15e)
"'min
Xmin < X(1) < Xmax
Ymin < Y() < Ymax (15f)

where, V and A are or and and logic operations, respectively; and
ajx + by = c; denotes the jth edge of the ith polygon repre-
senting the no-fly zone or obstacles. Equation (15¢) represents the
bound on the probability of successful obstacle avoidance by staying in
the exterior of the obstacle polygons. The obstacle avoidance condition
is represented by the union of exterior half-planes formed by the M;
edges of the ith polygon. Furthermore, c, ; ; are mean values of the
boundary parameters of the polygon edges. Note that (1 — ¢;) is the
respective lower bound on successful avoidance of obstacle polygon i;
conversely, €. is interpreted as the respective risk threshold for the
violation of obstacle boundaries. Also, ; is the random variable
representing the uncertainty in the boundary parameter. It is important
to emphasize that the chance constraints do not guarantee obstacle
avoidance in a deterministic sense; rather, for a large number of trials,
the optimal path violates the obstacle boundaries for less than the ¢
fraction of the trials. This path planning with obstacle avoidance is
performed before the mission; and we assume that, as a safety measure,
the flying vehicle is equipped with reactive decision-making capabil-
ities to prevent collisions while traversing the path, should the true
obstacle boundary exceed the one corresponding to the prescribed risk.
As abenefit, this approach allows the decision maker to explore shorter
paths while being aware of the risk associated with them.

When using chance constraints in an optimal control problem,
evaluation of the probability function poses the main operational
challenge. However, the chance-constrained formulation for obstacle
avoidance shown in Eq. (15c¢) follows the separable structure of the
form g(x,{) := g(x) — ¢, and thus can be transformed to an equiv-
alent deterministic form using

Plg(x,8) 2 0] = P[{ < g(x)]
as follows:

N /M,
A (1\=/1 a;;x+b;;y>c,;;+ FEL]j(l —¢€;) a%j + b%_i) (16)

i=1
Here, F glj (+) is the inverse Cumulative Distribution Function (CDF)
of the random variables {; ;. Although these equations have forms
similar to deterministic equivalent constraints, they should not be
confused with the conventional obstacle perimeter inflation using
safety margins. The term F glj (+) provides a direct approach to first
capture the statistical variability in the boundary uncertainty using

probability distributions and then tune the safety margin by choosing
an appropriate risk. This constraint formulation now allows us to use

the existing deterministic optimal control problem framework dis-
cussed in the next section.

B. Initial Guess Path Generation

Numerical optimization solvers require an initial guess. In path
planning, there may be more than one solution to avoid the keepout
zones that results in multiple convex solution spaces. When using
gradient-based optimization, it is desirable to provide an initial guess
that lies in the solution space containing the optimal. This not only
results in an optimal solution but also improves the convergence rate
of the numerical optimization, given the appropriate choice of other
solver parameters.

In this work, we employ a triangulation approach inspired from
the field of computer animation. Developed by Kallmann [39] for the
path planning in computer games, Triplanner is a tool for generating
paths in environments defined by constrained edges; i.e., no path can
cross the edge. At the heart of Triplanner, it uses a constrained
Delaunay triangulation (CDT) mesh, which is generated for the input
constrained edges. This CDT mesh is refined to generate a local
clearance triangulation, which stores a local clearance value: a prop-
erty that allows extraction of paths without using the Voronoi graph.
Once the input edges defining the boundaries and obstacles are
supplied along with the start and final locations, Triplanner yields a
path that is contained in a simplex corridor: a channel defined by
adjacent triangles of the refined CDT mesh. This channel consists of
constrained and unconstrained edges in such a way that edges con-
necting the adjacent triangles are always unconstrained. The resulting
domain formed by the channel is free of path constraints such as
obstacles. Although Triplanner is capable of generating the shortest
path with prescribed clearance, it is unable to account for the dynam-
ics of the SUAS. Hence, the path obtained from Triplanner serves as
an initial guess to the optimal control problem, as shown in Eq. (15).

The domain formed by the triangulation channel (an ordered list of P
adjacent triangles) is incompatible with the R? domain of the optimal
control problem defined by Eqs. (15) and (16). Hence, it is reformulated
into a multiphase problem. Each simplex that is traversed is represented
as a single phase p; and each phase is connected through event con-
straints by equating the states, control, and time at each boundary. The
dynamics represented in the Cartesian coordinate frame in Eq. (15b) are
transformed to a barycentric coordinate frame using Eq. (17):

@ = (2 = ¥3)(x = x3) + (33 = x) (v — ¥3)

(2 = ¥3)(x; —x3) + (x3 = x2) (y1 — ¥3)

_ (3 =y (x —x3) + (31 = x3)(y — y3)

2T 52—y = x) + (5 = x) (61— y3)
om=1-a -

o e0,1, i={1,2.3} (17)

Taking the derivative of the Eq. (17), we obtain a new set of dynamic
equations for each simplex phase. The resulting phased optimal control
problem is shown in Eq. (18):

min 7" (18a)
subject to the dynamic constraints
(ygp) - ygp))Vcos o) (1) + (x(f) — PV sin ) (1)
(y<210) _ ygp))(x(lp) _ xgp)) + (xgp) _ x(zp))(ygp) _ ygp))
OGP =y YW eos 8P (1) + (P — xP)YV sin 00 (1)

(ygﬂ) _ y§”))(x§”) _ xé”)) + (xgp) _ xép))(y(lﬂ) _ y;”))

d;ﬂ) (1 = _dgp) _ &g’)

é(/’)(t) — u(rv )

X0 = (ol ., 00 (150)

o (1) =

& (r) =
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path constraints

a’ +af +af) =1 (18c)
event constraints
t(()pﬂ) — t;”)
X+ = x®) vpe{l,P-1} (18d)

terminal conditions

xO, (0D} = {x0. ¥}

{x(tf)(P)’y(tf)(P)} = {xp. ys} (18e)
and boundary conditions
0<al? <1,
0<al <1,
0<a? <1,
<P <z (18f)
il < thinax (18g)

Clearly, the above set of equations [Eq. (18)] is free of obstacle
avoidance constraints because the triangulation domain, which is rep-
resented using

[Py € (1.2,3), p = {1.2..... P}

is embedded in the multiphase dynamics shown in Eq. (18b).

C. Optimal Control Problem: Transcription and Solution

As the final step, the optimal path-planning problem posed in
Eq. (18) is solved using numerical optimal control problem-solving
techniques. This work employs pseudospectral discretization based
on Legendre—Gauss—Radau (LGR) quadrature to develop a multi-
phase nonlinear program. The interested reader is referred to the past
work of Keil et al. on these developments [40]. The transcribed NLP
can now be solved using off-the-shelf NLP solvers, using the initial
guess supplied by the Triplanner Toolbox. We use the software
package GPOPS — I [41], which transcribes the optimal control
problem using an LGR collocation method and invokes the NLP
solver: IPOPT [42].

Algorithm 1:  Recursive path planning

Require: desired risk parameter value €

1: repeat
Update obstacle boundaries using the obstacle model, the final location
(x¢,yy), and the current location (xo, yo)
Solve the chance-constrained path-planning problem to obtain the optimal
path. Send waypoints W = {(x;, y;)|i € {1,2, ..., N}} to the agent.
Track path for period AT.
Observe environment and relay information to obstacle forecasting
model.

2: until (x,y) = (x7,y/)

D. Recurrent Planning

The evolving nature of the wildfire implies that the once the SUAS
member is en route to its destination, the wildfire may evolve and the
assumed obstacle map for path planning will no longer be valid.
However, the rate of spread of wildfire is typically slower than the
speed of the SUAS member, and so the evolution of the heat-aura
obstacle is considered quasi static. To account for the change in the
heat-aura map, a recursive planning (see Algorithm 1) approach is
adopted to the update the path as the wildfire’s areal spread evolves.
As the UAV is heading toward its destination, the obstacle map is
periodically updated and the corresponding the path is recomputed
and uploaded to the SUAS member. In this work, the obstacle
identification and path-planning problems are reformulated and
solved every 2 min. Note that the replanning process goes through
the full cycle, including obstacle identification via clustering and
chance-constraint modeling; and both the discrete and continuous
path-planning steps involve the Triplanner Toolbox and the optimal
control framework, respectively.

V. Results

This section presents the path-planning results for a single SUAS
member tasked to provide fire validation in an evolving wildfire. It is
assumed that the fire spread estimation (and the corresponding heat
aura) is available every 2 min. Therefore, the obstacle classification
via clustering, initial path generation, transcription, and solution of
the transcribed NLP must be completed within this time. The follow-
ing subsections illustrate the single instance of the path planning
followed by demonstration of the same in a recursive approach. With
the experiments in foresight, it assumed that the SUAS is flying at the
maximum allowable flight level of 120 m (~400 ft). It must be
pointed out that the obstacle identification (clustering) and path-
planning steps are not limited to a particular family of heat flux
contour shapes. The results shown in this section focus on the later
stages of the fire evolution illustrated in Fig. 3, namely, # > 60 min.
This is when more difficult heat-aura shapes emerge (horseshoe-like

Cauchy Distribution, med({) =0, v =7
0.05 1
0.04 0.8
0.03 06
5 £
o o
0.02 04
0.01 0.2
0
-100  -50 0 50 100 -100 -50 0 50 100
4 4

Fig. 9 Cauchy distribution with med($) =0,y = 7.
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structures) and there is a detachment of heat-flux contours, creating
the opportunity for keyhole trajectories.

A. Clustering

At each planning step with an interval of 2 min, the probabilistic
heat-aura map is updated using the fire forecaster, the temperature
sensor, and the available imagery captured so far. Clustering is then
performed on this map to generate obstacle polygons for path plan-
ning. Figure 5 shows clustering for nominal keepout locations of heat
auraat 7 = 70 min. To improve the computation performance of the
overall path-planning method, the clustering is performed for nomi-
nal keepout locations. The nominal keepout cell locations in the heat-
aura grid (as mentioned in Secs. IILA and III.A) are extracted,
corresponding to 0.5 probability, i.e.,

P(§"(i, j. k) > 5 kW -m™2) > 0.5

and clustering is performed. Figure 5a shows the recursive splitting
with M, = 2.3 to achieve finer clusters with narrow flyable spaces
between them. Subsequently, the oversplit clusters are recombined
with R, = 2.8 to achieve the optimal number of clusters, as shown
in Fig. 5b. It is important to note that tuning of these parameters is
crucial for shapes with large concavities.

Furthermore, the uncertainty in the boundary of the keepout zones
can be captured using a distribution of the variation in the boundary
from the nominal boundary, and subsequently by using the inverse
CDF to obtain effective boundary inflation. For the illustration
purposes, we assume a a zero-median Cauchy distribution of
C(med({) = 0,y = 7) (see Fig. 9), which represents the heavy tails
in the uncertainty of the wildfire’s heat-aura estimation.

B. Path Planning

For the path planning, the location of greatest conflict between the
computational agent (forecaster) and the ground-based temperature
sensor is considered as the final destination of the SUAS member. To
illustrate the effect of varying risk of violation of heat flux constraints,
solutions with various risk thresholds are generated and shown in
Fig. 10d. Figure 10 illustrates the various stages of the path-planning
method (described in Sec. IV) for navigation around the heat aura ata
fixed time of 7 = 70 min. Figure 10a shows the initial path guess
generated using Triplanner and the corresponding simplex corridor
of adjacent triangles. As mentioned earlier, this simplex corridor is
free of keepout zone constraints. Then, the optimal control problem
for path planning is transcribed to the NLP using GPOPS — II and
solved using the phased approach (with barycentric coordinates); it
results in significantly faster and more stable convergence as com-
pared to a nonphased approach, thereby verifying the need of Tri-
planner for generation of a good initial guess and a phased approach
for “constraint-free” optimization. Figure 10c shows the multiphase
(using different colors) optimal path generated using GPOPS — II.
The path planning was performed for variable levels of risk, and it
was found that increasing the risk beyond ¢ = 0.02to e = 0.03 opens
up akeyhole (in the lower right end of the crescent shape), resulting in
apath thatis 7.74% faster (see Fig. 10d). With energy limitations such
as battery capacities, a small percentage of time savings could make a
big difference in the viability of the mission.

C. Recursive Planning with Evolving Wildfire

Although the rate of spread of the fire is slow with respect to the
SUAS cruise speeds, the long travel times over large distances are
enough for the fire to evolve and obstruct the planned path. At every
planning step of 2 min, using the available information so far, the
fire’s heat aura is forecast to the next 2 min to obtain a new heat-aura
map. By forecasting the SUAS position after 2 min along the path, the
future current position is identified and used to obtain a new path that
avoids the keepout zones. Figure 11 shows the recursive path plan-
ning performed at periodic intervals with evolving heat-aura map and
conflict locations. The start point is assumed to be the initial location
of the mobile ground station for the SUAS operations, whereas the
red circle is the final destination. The computation time for each
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Fig. 11 Illustration of recursive path planning for evolving heat-aura
obstacles.

planning window takes about 25 s on a 3.7 GHz Intel i7-8700 K
processor. For illustrative purposes, four planning windows with time
intervals of 2 min are shown in Fig. 11 to highlight the change in the
path with evolution of the wildfire. In the particular scenario shown in
the figure, it can be seen that replanning was able to exploit the
detachment of the heat aura and plan a keyhole path. The detailed
snapshots of the steps are shown in Fig. 12. We reiterate that the
recursive replanning process goes through the full planning cycle,
including both discrete planning with Triplanner and continuous
planning using the optimal control framework that includes SUAS
dynamics.

VI. Conclusions

This paper presents a risk-aware path path-planning framework for
small unmanned aerial systems operating in a wildfire environment
with uncertainties in estimation of heat-aura obstacle boundaries.
Estimation of the fire’s areal spread is performed using the combi-
nation of a Markov forecasting model and other in-field sensors. To
account for ignorance and potential conflict between sensing and
forecasting agents, an evidential framework of information fusion
was adopted for estimation of the heat aura at flight level. Using
Monte Carlo trials, probabilistic heat flux keepout locations were
identified as locations exceeding a threshold heat flux, which was
classified as unsafe for the SUAS. For path planning, obstacle
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Fig. 12 Stages of recursive path planning.

boundaries were first identified through a novel unsupervised clus-
tering algorithm and then modeled as polygonal chance constraints
with Cauchy uncertainty. The resulting chance-constrained path-
planning problem was formulated for obstacle avoidance with
violation probabilities under a designated risk threshold. The path-
planning problem was solved via a Gauss quadrature collocation
method for multiple risk thresholds to elicit the risk associate with
each path. To account for the evolution of the heat-aura obstacle, a
recursive approach with a 2 min lookahead forecast was adopted. It
was shown that this framework provides an explicit means to capture
the uncertainty of the obstacles and plan the path with desired risk. It
was also seen that with a slight increase in the ability to take risk, it is

possible to explore paths for which the cost benefits exceed the perils
of higher mission risk.

Future studies to understand the effect of long exposure times on
SUASSs along the low heat flux contours are underway. The imple-
mentation of described methodologies for SUASs deployed in con-
trolled forest burns is also under progress. Further work is also
needed to evaluate the computational complexity of the coupled
environmental estimation and path-planning problem presented in
this paper. As previously mentioned, the primary computational
bottleneck appears at the wildfire estimation step. Improving its
computational complexity will help elevate the proposed platform
as an online (real-time) tool.
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