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Path planning for small unmanned aerial systems (SUAS) in the presence of poorly understood and dynamic

obstacles is a challenging problem: for example, flight over a spreadingwildfire. Evidential information fusion is used

to estimate the current wildfire state and the resulting heat aura at flight level. This approach accounts for ignorance,

which is a result of conflict among sensors operating in a harsh environment and a computational forecasting agent

that uses a fire evolution model of inadequate accuracy. An SUAS is employed to visit locations of high conflict to

provide additional situational awareness. Flight-level heat aura is modeled as a keepout zone with probabilistic

boundaries for SUAS path planning. A novel unsupervised classification algorithm is developed to identify distinct

obstacle boundaries within the estimated heat aura. Path planning is posed as a chance-constrained optimal control

problem, which is transcribed to a nonlinear program via pseudospectral discretization. The results show that this

approach can yield a family of solutions that elicit the risk associated with each mission design, and the appropriate

choice of risk can aid in the generation of “keyhole paths.”

Nomenclature

b = boundary constraint
c = path constraint
D = differentiation matrix
E = radiative energy per unit area
E = expectation operator
F = set of events
g = chance constraint
IR = no-wind no-slope propagating heat flux
J = cost function
K = number of mesh intervals
L = Lagrangian
li = ith Lagrange polynomial
M = Mahalanobis distance
M = Mayer cost
m�⋅� = basic probability mass function
Nk = number of Legendre–Gauss–Radau collocation

points in mesh interval k
P = probability
PN = Nth-degree Legendre polynomial
Qig = heat required for ignition

_q00 = incident heat flux, kW ⋅m−2

R = rate of spread of fire, ft∕min

R, R�i; j� = recombination favorability matrix and its (i, j)th
element, respectively

Rc = radius of keepout zone
rmin = minimum turn radius of the vehicle
Tf = absolute temperature of the flame, K

t, tf = time and final time, respectively

U = control approximation
u = control of Dubin’s vehicle
u = control
V = constant speed of Dubin’s vehicle
x, y = position of Dubin’s vehicle on the x and y axes,

respectively
xc, yc = x and y positions, respectively, of the center of the

keepout zone
Y = state approximation
y�t� = state
α = constant positive parameter for Bernstein method
α�, α− = constant positive parameters for split-Bernstein

method
δ = fuzzy keepout zone boundary parameter
ϵ = risk parameter
ε = dimensionless effective heating number
ϵc = risk parameter for Dubin’s vehicle
ϵ̂ = emissivity
ϵ0 = modified risk parameter for Bernstein method
Θ = frame of discernment
θ = turn angle
κ = degree of conflict among experts
Λ = defect constraint Lagrange multiplier
λ = costate
Ξα = piecewise exponential function
ξ = random variable, random sample
Πt = matrix representing state of the environment at

time t
πt�i; j� = discrete state of the environment in the (i, j)th cell at

time t
ρb = fuel bulk density
τ = time interval transformation
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ϕ = configuration factor
ϕw, ϕs = wind and slope factors, respectively, affecting the

wildfire spread rate
Ω = sample space for an event
1�⋅� = indicator function

∅ = empty set

I. Introduction

W ILDFIRES are unplanned and unwanted fires, including
lightning-caused fires, unauthorized human-caused fires,

and escaped prescribed fire projects. Although they have some
beneficial impacts on an ecosystem, they often threaten commun-
ities and force the evacuation of thousands of people [1]. Concur-
rently, there is increasing emphasis on the advancement of small
unmanned aerial systems (SUAS) and their applications for recon-
naissance, search, and rescue in emergent wildfires as they are
positioned to replace human agents in such dangerous and/or
repetitive missions [2–4]. For example, Fig. 1 illustrates the con-
ditions during the early to midstages of the fire on Schultz Peak in
Coconino National Forest near Flagstaff, Arizona in 2010. This
scenario presents a set of heterogeneous threats, varying in severity
and the extent to which they are understood and characterized.
Moreover, threats are often transient. Consider an SUAS team
tasked with the objective of providing situational awareness
through the use of onboard thermal and/or visual equipment. This
problem involves transient destinations (namely, locations of low
fire-related information) along with a transient, poorly understood
threat (namely, the heat aura at the flying vehicle’s flight level
emanating from the fire underneath).
A common deterministic approach to path planning is to approxi-

mate these threat regions using simple shapes such as ellipses, which
must be penalized or excluded, depending on their (un)favorability
attributes. If the complexity of the constraints increases further
(for example, due to the presence of dynamic collision risks),
conservative deterministic modeling can cause the solution space
to shrink to a null set. In the face of these challenges, chance
constraints offer a rigorous framework for recognizing that no-fly
zones in a complex environment are ultimately approximations [5–8]
so that there is merit in treating their boundaries as probabilistic
barriers.While implying greater risk than the deterministic approach,
themodified framework provides the decisionmaker the flexibility of
prescribing mission-appropriate risk such that when the risk is set to
zero, the solution space degenerates to that in the deterministic
formulation [9]. Seen another way, one can generate a family of
solutions parameterized by varying levels of assigned risk, providing
the decision maker the ability to undertake missions with known risk

versus return awareness. The favorable tradeoff is that undertaking a

reasonable level of risk may open “keyholes” through which cost-

efficient paths can be found; whereas in the deterministic approach,

no such solutions exist.
In this work, we develop a chance-constrained path-planning

platform for recursive SUAS mission design in an evolving wildfire

environment. An evidence-based framework built on the Dempster–

Shafer theory of probable reasoning is used to construct real-time

estimates of belief in wildfire. Information fusion includes a compu-

tational forecasting agent employing Markov chain models of

wildfire evolution, ground-based temperature sensors, and SUAS

mounted visual sensors. Heat emitted by the wildfire at the ground

level is propagated to flight level via the principles of thermal

radiation. A novel unsupervised clustering algorithm based on stat-

istical formalism is developed to identify polygonal keepout regions

within the probabilistic flight-level heat aura, representing a danger-

ous degree of heat flux above the SUAS operational threshold.

Estimation uncertainty is projected onto the obstacle boundaries to

model them as chance constraints with user-prescribed probability

of violation. Path-planning objective functions include locations of

low net information and/or high information conflict in the wildfire

region. The optimal chance-constrained path-planning problem is

transcribed to a nonlinear program (NLP) via pseudospectral discre-

tization. Constrained Delaunay triangulation is performed to achieve

rapid generation of good initial guesses for the optimal trajectory,

which is provided as input to off-the-shelf gradient-based optimiza-

tion software. It is ensured that the planning update frequency

matches the update frequency of the wildfire so that the most current

obstacle information is represented in the trajectory design. Numeri-

cal simulations show that by varying the risk of violation of heat flux

chance constraints, a family of risk-aware trajectories can be gener-

ated, some of which represent keyhole trajectories that save signifi-

cantmission cost. Preliminary results of thisworkwere presented in a

conference article (Ref. [10]).
This paper considers the problem of SUAS path planning in a

wildfire. To appropriately formulate the path-planning problem,

environmental situational awareness is required. Situational aware-

ness is of central importance in a wildfire because the environment is

without a map, uncertain, and dynamic. By necessity, one must

consider the combined problem of environmental estimation and

path planning. Both these problems are addressed in this work. In

terms of methods of solution, there are three:
1) The first method is wildfire estimation: This is done in the

evidential framework of the Dempster–Shafer theory using inputs
from a Markovian computation agent (forecaster) and two types of
sensing agents (temperature and vision).
2) The second method is obstacle estimation: Wildfire estimation

leads to identification of heat-aura obstacles at flight level. This
requires unsupervised clustering of the data obtained from wildfire
estimation (method 1), followed by modeling of the cluster bounda-
ries as chance constraints.
3) The third method is path planning: Using obstacle information

from method 2, a chance-constrained optimal control problem is
formulated and solved in a staged manner to obtain the SUAS
trajectory.
Because the environment is dynamic, the described methods 1–3

are performed recursively (every 2 min in this work) to revise the

SUAS trajectory in order to keep up with the changing environment.

A key contribution of this paper is the integration of the three

individual methodological elements described earlier. There are

contributions in the individual methods as well. The clustering

methodology is new. It represents a novel extension of the well-

known k-means algorithm with the sole motivation of separating

out islands in the obstacle data. The reason is that effective separation

of islandlike clusters leads tomaximization of flight space in between

the obstacles. To serve this objective, the output of optimal kmeans is

subjected to a process of targeted splitting. A recombination process

is designed to reduced oversplitting. A second elemental contribution

of this work is the use of a constrained Delaunay triangulation

approach to rapidly generate good initial guesses for the underlying
Fig. 1 Chance-constrained versus deterministic mission planning (GPS
= Global Positioning System; UTM = Universal Transverse Mercator).
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nonlinear program. The combined approach is shown to result in
keyhole trajectories that save mission cost.
Further work is required to evaluate the computational complexity

of the coupled environmental estimation and path-planning problem.
In its present form, the platform is not a real-time tool and the greatest
computational burden is encountered at the wildfire estimation step
(method 1 in the preceding list). Improving the efficiency of this step
will help elevate the usefulness of the proposed platform as an online
(real-time) tool.

II. Estimation of a Transient Wildfire Obstacle

A. Markovian Wildfire Forecasting

To monitor and continuously track an evolving wildfire, it is
necessary to adequately predict the probable locations of the fire
front based on the wildfire’s spreading dynamics. This is done
through a wildland fire forecasting algorithm for which the inputs
are the assumed environmental conditions (surface wind velocity,
local topography, types of vegetative fuel, humidity, etc.) and the
output is the normalized frequency that a fire will arrive at a certain
location and time in the environment. The environmental parameters
are employed to approximate the wildfire’s average rate of spread
based on Rothermel’s model [11,12]:

R � �IR��1� ϕw � ϕs�
ρbεQig

(1)

which computes the spread rateR (in feet per minute) as a ratio of the
heat source (the no-wind/no-slope propagating heat flux IR amplified
by the wind and slope factors, ϕw and ϕs) and the heat sink, which is
the heat required for ignition Qig multiplied by the bulk density ρb
(i.e., the amount of fuel) and the dimensionless effective heating
number ε. Although this deterministic model is simple to implement,
many of the required environmental inputs are inherently nondeter-
ministic, such as the surface wind velocities [13], the distribution of
vegetation, and the act of combustion. In this case, the evolving
wildfire can be treated as a stochastic process (see the work of
Boychuk et al. [14]) by representing each location within an ongoing
wildfire environment as a discrete state in an evolvingMarkov chain.
The time-varying state of the entire wildfire environment is repre-
sented as an m1 ×m2 two-dimensional array where each cell within
the lattice represents a square-shaped geographic region with the
Cartesian coordinate pair (i, j) representing its center. The state of any
cell at coordinate (i, j) and at time step t is described by one of four
discrete values: πt�i; j� ∈ χ, where

χ � fVegetation;Fire;Ash;Noncombustibleg

It follows that the state of the entire environment at time t is denoted as

Πt �

2
64

πt�1; 1� πt�1; 2� : : :

..

. . .
.

πt�m1; 1� πt�m1; m2�

3
75

where the state of each cell πt�i; j� ∈ Πt is assumed to transition into
a succeeding state at time t� 1, πt�1�i; j� according to a Markov
process:

P�πt�1�i; j� ∈ χjπ1�i; j�; π2�i; j�; : : : ; πt�i; j��
� P�πt�1�i; j� ∈ χjπt�i; j�� (2)

The probability of a given cell (i, j) transitioning from state x to
state y,

P�πt�1�i; j� � yjπt�i; j� � x�

denoted P�i; j�xy, is dependent on its current state, the states of its

adjacent eight cells, and the surrounding environmental attributes.

For notational simplicity, the set of states is replaced with the follow-

ing set of numerical labels:

fFuel → 1;Fire → 2;Ash → 3;Noncombustible → 4g

To compute the transitional probability from fuel to fire, we use the

minimum andmaximum rates of spread at each location provided via

Eq. (1):

R�i; j� ∈ �R�i; j�min; R�i; j�max�

Given a cell assumed to be in a combustible fuel state at time step t
[i.e., πt�i; j� � 1] that borders at least one cell in a fire state

[πt�i� 1; j� 1� � 2], there is a nonzero (one-step) transition prob-
ability that πt�i; j� � 2 due to the wildfire’s spreading behavior. In

the stochastic models employed by Refs. [14,15], the time τ for a

cell’s state to transition from the fuel to the fire state can be sampled

from an exponential probability distribution with rate parameter

λ�t��i; j�, or τ ∼ Exp�λ�t��i; j��. The construction of this rate param-

eter for each cell (i, j) is given as

λ�t��i; j� �
X

n∈N��i;j��

c�t�λ0�i; j�
1 − cos�α�n� −w�t�

d �i; j���1 − �λ0∕λm��
(3)

The value of λ�t��i; j� is dependent on its current state, the states of its
eight adjacent neighboring cells,

N��i; j�� � f�i� 1; j�; �i� 1; j� 1�; : : : �i − 1; j − 1�g

and the current wind directions in cell (i, j) and its neighbors. In

Eq. (3), the wind direction within cell (i, j) at time k, w�t�
d �i; j� ∈

�0; 2π�, is subtracted from the relative angle α�n� between the center
of cell (i, j) and that of its neighboring cell’s center n ∈ N��i; j��,
which can either amplify or attenuate the probability of fire spread.

The coefficient c�t� is tuned to model time-dependent fire intensity,

and the coefficients λ0�i; j� and λm are empirically determined

minimum and maximum rate parameters based on the fuel type,

slope, and wind speed. In Refs. [14,15], the fuel cell was assumed to

transition if the sampled time τ fell below some prescribed time-step

threshold ΔT. The present work differs from these aforementioned

approaches by instead computing the fuel cell’s transitional prob-

ability as the cumulative distribution function of this exponential

distribution; i.e.,

P�i; j�12 � 1 − exp�−λ�t��i; j�ΔT�

Likewise, the transitional probability that the fuel cell will remain in

the fuel state at time t� 1 is P�i; j�11 � exp�−λ�t��i; j�ΔT�.
To compute the transitional probabilitiesP�i; j�22 andP�i; j�23, we

introduce themean hitting time tAπ0 , defined as the expected number of

time steps required for aMarkov chain to reach a set of states A given

that the chain starts from state π0 ∈ A:

tAπ0 �

8><
>:
0 for θ0 ∈ A

1� P
πj∈=A

P�i; j�π0πj tAπj for θ0 ∈= A (4)

Assuming that each cell represents a square area of homogeneous

fuel, a newly lighted cell in the fire state can be modeled to consume

all fuel in an expected time of fuel-type-dependent (and hence

cell-dependent) B�i; j� time steps. Thus, by setting t32 � B�i; j�,
the preceding relation can be algebraically manipulated to yield

the probability that the fire continues to burn through the next time

step:

P�i; j�22 �
B�i; j� − 1

B�i; j�
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Hence,

P�i; j�23 � 1 − P�i; j�22 �
1

B�i; j�
Additional details on derivation of P�i; j�11 and P�i; j�12 are pro-
vided in the works of Boychuk et al. [14] and Krougly et al. [15].
On the other hand, the probability that a location will continue to
burn P�i; j�22 is given via the consumption rate of fuel: see the
previous study by Soderlund et al. [16]. Obtaining practical values for

the parameters λ0, λm, and c�k� can be done by extensively reverse
tuning them to each cell’s minimum and maximum fire spread rates,
R�i; j�min andR�i; j�max, which are themselves computed fromknown
fuel and topography models, such as the tables seen in Ref. [17].
By expanding this Markov chain operation across all cells within

Πt, the entire fire disturbance is propagated. Figure 2 displays a
Markovian simulation that attempts to replicate a 2019 fire that
crossed the Rio Grande River in Los Chavez, New Mexico due to a
westerly wind. For this simulation, National Oceanic and Atmos-
pheric Administration (NOAA) wind data and United States Geo-
logical Survey (USGS) vegetation and elevation maps were collated
to provide appropriate environmental inputs. To generate a probabi-
listic representation of the fire based on the assumed environmental
parameters (Fig. 2 shows a single instance of the Markov chain), it is
necessary to simulate many fire propagation instances (for example,
M Monte Carlo simulations) at every time step t. For example, the
frequentist probability of fire presencewithin a location (i, j) at time t
is given as the number of instances f that the cell transitions to fire:

P�πt�i; j� � 2� � limM→∞�f∕M�
As an extension, the vector

�P�πt�i; j� � 1�; P�πt�i; j� � 2�; P�πt�i; j� � 3��
is treated as the prior probability distribution for each cell. Note
that P�πt�i; j� � 4� is not included in the probability distribution
because it represents the “infinitely noncombustible type,” e.g., water
locations that make up the river in the central portion of the map.
There is no transition into cell type 4, and there is no transition out of

it. Because these facts are known a priori, there is no reason to include

them in the distribution. This improves the computational efficiency

of fire propagation because one can eliminate a certain number of

locations from possible fire spread in the simulations.

B. Information Fusion via Evidential Reasoning

Although the wildfire representation model described in Sec. II.A

provides amethod of propagating the locations of the flame front over

time (as seen in Fig. 2), the inherent stochasticity of the dynamics
illuminates the necessity of updating the wildfire’s belief state rep-

resentation based on real-time measurements from sensing agents.

This work considers two sources of wildfire observation: 1) a temper-

ature sensor agent that activates due to an encroaching fire’s radia-

tion, and 2) a thermal vision sensor agent that uses high-resolution

temperature readings in its field of view to identify wildfire presence.

Both sources are imperfect: the temperature sensor can suffer from

reporting false positives, whereas the vision sensor (mounted on the

SUAS)must contendwith various constraints that hinder its available

areas to survey. Wildfire belief state estimation is performed by

combining the forecaster’s predicted probability of fire in a given

location (i, j) with the beliefs of either the temperature or vision

sensor, or both if available. This fusion of beliefs is done under the

framework of evidential reasoning through the Dempster–Shafer

theory (DST) of probable reasoning.
The Dempster–Shafer theory is applicable when considering a

question with multiple (but finite) possible explanations. The finite

set of n mutually exclusive and collectively exhaustive hypotheses

that act as adequate answers to this question is defined as the frame

of discernment: Θ � fθ1; θ2; : : : ; θi; : : : ; θng, where exactly one

hypothesis θi is the truth. Within Kolmogorov’s conventional axi-

omatic probability theory, the probability of event θi and its comple-

ment ~θi have the relation P�θi� � 1 − P� ~θi�. Under DST, however,
the metrics of belief are allocated among members (known as

propositions) of the power set 2Θ, and a degree of belief can be

assigned to a set containing conflicting hypotheses. This is useful in

scenarios where observations indicate sets of events rather than
events themselves.

Fig. 2 Wildfire simulation: currently burning locations (red), ash locations (black), noncombustible RioGrandeRiver (blue). The remaining brown cells
are grassland fuel.
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It is useful to imagine belief as a finite resource that neither shrinks
nor grows but is instead rationed appropriately to each proposition,
given the available information. The amount of belief assigned to a
particular proposition A is based on the current evidence in support
ofA. This numerical belief for propositionA is quantified through the
basic probability number (BPN), denoted m�A�. This quantity
is calculated according to the basic probability assignment (BPA)

function m: 2Θ → �0; 1�:X
A⊆Θ

m�A� � 1 with m�∅� � 0 (5)

The summation of all basic probability numbers of the subsets of A,
which is a quantityknownsimply as the beliefBel�A�, is constructed as

Bel�A� �
X
B⊆A

m�B� (6)

To illustrate an example applicable to the wildfire scenario discussed
thus far, it is possible to assign belief to the following proposition set:

fVeg:; fVeg:; Fireg;Fire; fFire;Ashg;Ash;Θg

where Θ � fVeg:; Fire;Ashg represents complete ignorance of a
location’s state. The beliefs of multiple experts are fused through
Dempster’s rule of combination [18]. Consider the basic probability

numbers supplied by experts T and F over the power set 2Θ. The
combined BPN of both experts regarding proposition A is calculated
via Dempster’s rule:

mC�A� � K
X

Ai∩Bj�A

mT�Ai�mF�Bj� (7)

where the normalization constant K � �1∕1 − κ� is computed from
the degree of conflict κ ∈ �0; 1� between the BPAs of the two experts
T and F:

κ �
X

Ai∩Bj�∅
mT�Ai�mF�Bj� (8)

The resulting belief function givenby this combined basic probability
assignment mC�A� is known as the orthogonal sum of the beliefs of
experts T and F and is denoted BelC � BelT 	 BelF. Furthermore,
the combined beliefs of EN experts regarding proposition A may be
computed by performing Eq. (7) recursively:

BelC�A� � ���BelT�A� 	 BelF�A�� 	 BelE3
�A�� : : : � 	 BelEN

�A�

This work performs information fusion via Dempster’s rule of
combination by fusing the beliefs of three such “experts” at every
time step: 1) the Monte Carlo forecaster, 2) the ground-level temper-
ature sensors, and 3) the airborne vision sensors. The forecaster’s
belief assignment into the fire hypothesis at each location is derived
from the cell’s prior probability distribution (created viaMonte Carlo
sampling). Although the forecaster’s beliefs are inherently based on
the fire’s spreading dynamics and environmental conditions, the
temperature and vision sensors’ beliefs are apportioned via their
received measurements. For example, a temperature agent reporting
high-temperature readings for an extended period of time would
result in a higher belief in either the fire or ash possibilities. Interested
readers should refer to previous work by Soderlund et al. [16] for a
more detailed explanation of how each of these expert basic proba-
bility assignments are constructed. After belief combination is per-
formed as in Eq. (7), across each location, an updated estimate of the
wildfire’s belief state is available for further propagation. Although
this is useful for monitoring the probable locations of the fire perim-
eter, we are additionally interested in the output conflict value. High
conflict values between experts (such as the forecaster and a temper-
ature sensor) may indicate that one agent has inadequate or incorrect
information. An additional observationmade by an aerial sensor may
alleviate this discrepancy, although its route to this conflict location

must be feasible. To ensure consistent operation of path following,
sensing, processing, and communication of data, the computing
hardware encased in each SUAS must not encounter prolonged
thermal radiation. Thus, we seek tomaintain the health of each SUAS
by calculating paths containing safe levels of radiation that also
intersect locations of interest. The calculation of this (probabilistic)
radiation constraint requires an understanding of the heating effects
of flame surfaces on their surrounding environments, which will be
discussed in the following section.

III. Probabilistic Characterization of the Heat Aura

A. Characterization of Heat Aura as Obstacles

Although convection and radiation are the main methods of heat
loss experienced by the wildfire object, radiation becomes the dom-
inant form of heat transfer for surfaces exceeding 400°C [19]. As the
flame temperatures of a wildland fire can vary between 800 and
1000°C, we are primarily concerned with the effect of the fire’s
radiative heat aura that extends up into the atmosphere and hinders
the maneuverability of the SUAS. Each burning location is treated
as a radiative surface that emanates energy per unit area at a rate
according to the Stefan–Boltzmann law:

E � σsϵ̂T
4
f (9)

whereTf is the absolute temperature of the flame in kelvins, ϵ̂ ∈ �0; 1�
is the emissivity. and σs � 5.67 × 10−8 W∕�m2 ⋅ K4� is the Stefan–
Boltzmann constant. Conceptually, this rate of energy loss (referred
to as the heat flux for the remainder of this work)is radiated in all
directions from the flame surface A1. The radiant heat flux that is
incident upon a small element of a secondary surface A2 due to the
flame’s flux is given as

_q00 � Eϕ (10)

where ϕ, which is known as the configuration factor, is a dimension-
less quantity that describes the geometric relation (e.g., distance and
orientation) between surfaces A1 and A2. Within the field of fire
safety, the incident heat flux _q00 is often used as the metric to indicate
the level of danger: Wildland firefighters can tolerate a maximum

incident heat flux of 7 kW ⋅m−2 [20], andwoodwill ignite in amatter

of seconds with a heat flux of 20 kW ⋅m−2 [19]. Importantly, when
multiple radiating surfaces with heat flux E are acting upon the same
distant surface, their configuration factors are additive. Recall that the
environmental state representation Πt defined in Sec. II.A can be
partitioned into the following sets representing the vegetation, fire,
ash, and noncombustible cells at time t: fVt;F t;St;U tg. Because the
locations of the flame surfaces [i.e., πt�i; j� � 2] are being tabulated
as members inF t in eachMonte Carlo run, the incident flux imping-
ing on a surveillance drone at coordinate (i, j, j) can be modeled as

_q00�i; j; k� � E
XjF t j

�u;v�∈F t

ϕ�u; v� (11)

where the configuration factor ϕ�u; v� between a fire surface with a
width of w and an unmanned aerial vehicle (UAV) with an elevation

of z � ζk and a lateral translation of a � ζ
���������������������������������������
�i − u�2 � �j − v�2

p
relative to a ground-level cell (u, v) is given as

ϕ�u; v� � 1

2

�
1 −

υ − 2�w∕a�2����������������������������
ξ2 − 4�w∕a�2

p
�

(12)

where

υ � 1�
�
w

a

�
2

�
�
z

a

�
2

(see Ref. [21]) and ζ is the separation distance (in meters) between
the centers of adjacent cells. Recall that the forecaster outlined in
Sec. II.A outputs the probability that a given cell (i, j) at time twill take
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on the fire state. Analogously, the heat aura generated by a wildfire is

characterized as a probabilistic rather than a deterministic object. Note

that the aforementioned heat model is imperfect; and alternative

(potentially more precise) heat-aura constructions are possible, such

as the use of numerical integration mentioned in Ref. [20].

For path-planning purposes, we seek the frequency that a spatio-

temporal location exhibits a heat flux at flight level greater than a

critical value. The top half of Fig. 3 depicts the heat flux (ranging from

0 to 50 kW ⋅m−2) that an aerial drone would encounter over all

locations at flight levels at four separate time stamps. The bottom half

Fig. 3 Toppanel at each time label: progression of flight-level (120) heat aura for a singlewildfire simulation. Bottompanel at each time label: occurrence
rate of critical heat flux in spatiotemporal locations over 100 Monte Carlo runs.
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of Fig. 3 shows the probability that each location will exhibit a heat

flux over the critical value [ _q00�i; j; k� ≥ 5 kW ⋅m−2]. Thesewill form

the basis of the keepout zones discussed in the following sections.

B. Unsupervised Clustering

Clustering of unstructured data is counted among themost difficult

learning problems due to its unsupervised form and the open-ended

nature of the question: How many clusters exist in the data? For

obstacle characterization, it is important to separate obstacles from

each other so that available flight space can be maximized. See the

lower portion of Fig. 4a as an example of when this fails. This is

difficult because it is unknown how many clusters may be present in

the unstructured obstacle data. In this work, the initial data are

assumed to be binary (obstacle absent or present), which are to be

clustered first, followed by assignment of an appropriate probability

distribution to the resulting cluster boundaries. We present a novel

methodology for unsupervised clustering based on statistical formal-

ism, building on the well-known k-means algorithm [22]. Also

known as Lloyd’s algorithm, the k-means algorithm partitions the

data into k clusters identified by their centroids, where the value of k
must be specified at the start. However, as already mentioned, the

value of k is unknown in the present problem. The traditional work-

around is to design an optimization outer loop that aims to maximize

the cluster quality by spanning over a range of arbitrarily selected

values of k (for example, k � 1 to k � 20): we refer to this approach
as the optimal-k means. The cluster quality is roughly defined using
metrics such as “silhouette” of MATLAB©, which measures the

similarity of points to other points in their own cluster in comparison

with points in other clusters: usually in terms of Euclidean distances.

This optimization approach often fails because visual cluster quality

(as ascertained by humans) is often highly sensitive to variations in

the numerical value of such metrics, in the sense that the visually

optimal cluster assignment (including the value of k) often corre-

sponds to a local optimum.
The new method developed in this work achieves optimal unsu-

pervised clustering in a recursive manner. The method begins with

execution of the optimal-k-means algorithm as described earlier in
this paper. Then, each resulting cluster is analyzed in terms of its
statistical properties and flagged for further clustering (splitting or
reclustering). The flagging process begins by computing the statis-
tical mean μi and covariance Σi of each cluster, followed by deter-
mination of the maximum Mahalanobis distance of all points within
the cluster with respect to these statistics:

Mi � max
j∈Ci

�����������������������������������������������
�xj − μi�TΣ−1

i �xj − μi�
q
|��������������������{z��������������������}

Mij

(13)

where Ci denotes the ith cluster, and Mi represents the maximum
Mahalanobis distance among all points in Ci with respect to �μi;Σi�.
Ci is flagged for reclustering if Mi > Mcut, where Mcut is a suitable
threshold (chosen to be less than three, e.g., Mcut � 2.3). This
metric helps determine the statistical appropriateness of assigning
data points to a particular cluster. Figure 4b depicts the maximum
Mahalanobis distance metric Mi for each cluster resulting from
optimal-k-means clustering. In this figure, the centroid of each
cluster is identified as a red circle. All clusters flagged for recluster-
ing are passed into the optimal-k-means algorithm again, and the
process repeats until no more clusters flagged for reclustering
remain. A possible criticism of the metric given in Eq. (13) is that
a single outlier member can cause a cluster to be flagged for further
splitting. In the present use case, that is not necessarily a bad thing
because the idea is to separate out as many islands as possible such
that interobstacle space can be maximized for path planning. In a
more general setting, an appropriately high q quantile can be
employed instead of “max” as in Eq. (13). For example, one may
define Mi as the q � 0.96 quantile value of the Mahalanobis dis-
tance set fMijg.
At the end of this described splitting process, there will invariably

be more clusters than are needed or warranted. See Fig. 5a. A total of
48 clusters results after 39 iterations of cluster splitting using
Mcut � 2.3. This is clearly not desirable. Therefore, as the final step,
the set of oversplit clusters is analyzed statistically for recursive

Fig. 4 Outcome of optimal-k-means clustering.
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recombination. First, a “recombination favorability matrix R is
constructed. The (i, j)th element of this matrix is defined as follows:

R�i; j� � max

� ��������������������������������������������
� �μ − μi�TΣ−1

i � �μ − μi�
q

;
���������������������������������������������
� �μ − μj�TΣ−1

j � �μ − μj�
q 	

(14)

i.e., the greater of the Mahalanobis distance of �μ with respect to the
statistics �μj;Σj� of Cj and �μi;Σi� of Ci. Here, �μ is the centroid

(mean) of the combined cluster �Ci; Cj�. In essence, the definedmetric

measures the statistical distance of the combinedmeanwith respect to
the individual statistics of the clusters under consideration. The
recombination favorability matrix helps identify pools of clusters
that can be combined together, for example, as follows:

Pi � argjfR�i; j� ≤ Rcombg

This condition identifies all clusters that have proximity to the ith
cluster. The greater the value chosen for Rcomb, the more propensity
the algorithmwill have for pooling together clusters. Avalue close to
but less than 3.0 is reasonable and must be picked, depending on the
application. In the example shown in Fig. 5b,Rcomb was chosen to be
2.8, resulting in a total of six clusters. This result is adequate for path
planning.
Clearly, there are two main tuning parameters in the previously

described unsupervised clustering approach: Mcut and Rcomb.
For Mcut, the guiding principle is that the higher the chosen value,
the less the algorithm is inclined to split existing clusters. In other
words, a largeMcut implies that clusters containing points with high
Mahalanobis distances are allowed to exist. On the other hand, a large
value of Rcomb makes the algorithm more inclined to pool together
neighboring clusters. More research is required to develop tuning
principles for these parameters and is expected to be application
dependent.
As a final step, the cluster boundaries are examined in relation to the

flight vehicle size.A sensible simplification is tomerge boundaries that

are separated by less than the characteristic length of the SUAS.

Assuming the flight vehicle safety zone to be defined as a bubblewith

a diameter of 25m, qualifying cluster boundaries are merged to result

in the final result shown in Fig. 6.

Fig. 5 Clustering for obstacle identification using raw data from wildfire forecasting.

Fig. 6 Merging boundaries that are closer to each other than the vehicle
characteristic length.
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The previously described unsupervised clustering process has
two tuning parameters:Mcut and Rcomb. The former (Mcut) controls
the splitting process, whereas the latter (Rcomb) controls the recom-
bination process. The parameter Mi [Eq. (13)] captures the maxi-
mum statistical distance among member particles in the cluster Ci
from the cluster mean. Note that Mcut � 3 suggests that in order
for cluster Ci to be flagged for splitting, its weakest member must
be at least 3σ away from the mean (outside the 0.003 percentile for
one-dimensional data). By choosingMcut < 3, the idea is to enforce
a somewhat more stringent (consequently, more conservative)
threshold on clusters to be flagged for splitting. If Mcut is chosen
too high (greater than three), only a handful of clusters will be
flagged for splitting. Data islands of the kind shown in Fig. 4awould
not be broken up. This is further illustrated in the example shown
in Fig. 7d. On the other hand, if Mcut is too low (e.g., Mcut ≈ 2),
most clusters will be flagged for splitting, resulting in a very large
number of sparse clusters: see Fig. 7a. Experience suggests that a
good balance is achieved when Mcut is chosen to be around 2.5.
Figure 7 shows the comparative performance of various Mcut

values.
After splitting is complete, cluster recombination is performed

using the described favorability matrix [Eq. (14)]. The following
steps are involved:
1) For each pair of split clusters, the centroid of the combined

cluster is computed �μ.

2) The Mahalanobis distance of the joint centroid �μ is evaluated
against the statistics of each cluster in the pair.
3) The maximum of the two statistical distances (i.e., the worst-

case scenario) is entered into the recombination matrix as R�i; j� for
the cluster pair (Ci, Cj).

As previously mentioned, clusters are included in the recombina-
tion pool if R�i; j� < Rcomb. The implication is that even in the worst
case, if the joint centroid is close enough to fall in the tail regions of
the two individual clusters, the two clusters should be put back
together. Note that if Rcomb is too high, clusters that are too far away
may be tagged for recombination; see Fig. 8d. On the other hand,
recombination may be inactive if Rcomb is chosen to be too low; see
Fig. 8a. Experience suggests that a value close to three gives optimal
performance for difficult clustering problems like the horseshoe-
shaped structure shown in these examples. See the effect of Rcomb

in Fig. 8, where Mcut is set to 2.3.

IV. Chance-Constrained Path Planning

Depending on howmapping of the spatial domain is handled, path
planning can be divided into two approaches: 1) discrete space
planning, and 2) continuous space planning. Planning in a discrete
space can be further divided into 1) combinatorial planning, and
2) sampling-based planning [23–26]. These methods often use a
deterministic or sampling-based spatial discretization followed by a

Fig. 7 Role of tuning parameterMcut in the cluster splitting process.

1700 AGGARWAL ETAL.

D
ow

nl
oa

de
d 

by
 M

rin
al

 K
um

ar
 o

n 
Se

pt
em

be
r 1

0,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

G
00

63
65

 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.G006365&iName=master.img-006.jpg&w=499&h=432


graph search. They are suitable for global optimization but are also
prone to suffering from the curse of dimensionality: especially when
using high-resolution discretization. In the latter approach of con-
tinuous space path planning, a popular method involves the artificial
potential field, which uses the objective function to attract the agent
toward the final goal and repel it away from the obstacles [27–32].
Although it suffers from convergence issues [33], it also does not
provide an explicit framework to capture the performance metric and
agent dynamics.
As shown earlier in Sec. III, uncertainty in the heat aura is

captured well using probability distributions. Along with the pres-
ence of other performance metrics such as min-energy or min-time,
path planning can be formulated using collision avoidance chance
constraints. Although chance constraints in the context of path
planning have been studied previously (e.g., Refs. [9,34–37]), their
past implementations are known to be computationally intensive,
especially when using nonconvex constraints. A more detailed
review can be found in prior work by Aggarwal et al. [38]. This
paper presents a two-stage approach to path planning using the
optimal control framework, which allows explicit definition of
agent dynamics. The first stage employs discrete path-planning
techniques to obtain a globally optimal approximate path, followed
by generation of a kinematically smooth trajectory by solving the
optimal control problem. Note that tools such as Bezier curves can

be employed to smooth the path obtained from the discrete planning

stage; they do not capture agent dynamics. Optimal control formu-

lation, on the other hand, offers an explicit framework for capturing

the dynamics of the agent.

A. Optimal Control Problem: Formulation

We consider the problem of a SUAS flying over a spreading

wildfire. Considering the SUAS flight regulations and consistent

field of view of the aerial imagery, it is assumed for it to fly at a fixed

altitude and at a constant horizontal ground speed. Inspired from

nonholonomic constraints in carlike vehicles, we use the Dubins

vehicle model to represent the kinematic motion of the aerial vehicle

performing a coordinated turn in a horizontal flight. The vehicle size

is typically very small as compared to the no-fly-zone obstacles in

consideration, and the uncertainty in the vehicle’s localization is

considered negligible as compared to that of the obstacles. Hence,

only the obstacles are represented using chance constraints. The

problem of optimal path planning in the presence of obstacles with

uncertain boundaries can now be posed as a minimum time-optimal

control problem subject to the vehicle dynamics and the no-fly-zone

constraints as shown in Eq. (15):

min tf (15a)

Fig. 8 Role of tuning parameter Rcomb in the cluster recombination process.Mcut � 2.3.
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subject to dynamic constraints

_x�t� � V cos θ�t�
_y�t� � V sin θ�t�
_θ�t� � u (15b)

path constraints

∧
N

i�1

�
∨
Mi

j�1
P

�
ai;jx� bi;jy >



cμ;i;j � ζi;j

��������������������
a2i;j � b2i;j

q ��
≥ 1 − ϵi

�

(15c)

terminal conditions

fx�0�; y�0�g � fx0; y0g
fx�tf�; y�tf�g � fxf; yfg (15d)

and boundary conditions

juj ≤
�

V

rmin

�
(15e)

xmin ≤ x�t� ≤ xmax;

ymin ≤ y�t� ≤ ymax (15f)

where, ∨ and ∧ are or and and logic operations, respectively; and
aj;kx� bj;ky � cj;k denotes the jth edge of the ith polygon repre-

senting the no-fly zone or obstacles. Equation (15c) represents the
bound on the probability of successful obstacle avoidanceby staying in
the exterior of the obstacle polygons. The obstacle avoidance condition
is represented by the union of exterior half-planes formed by the Mi

edges of the ith polygon. Furthermore, cμ;i;j are mean values of the

boundary parameters of the polygon edges. Note that �1 − ϵi� is the
respective lower bound on successful avoidance of obstacle polygon i;
conversely, ϵ�⋅� is interpreted as the respective risk threshold for the

violation of obstacle boundaries. Also, ζj;k is the random variable

representing the uncertainty in the boundary parameter. It is important
to emphasize that the chance constraints do not guarantee obstacle
avoidance in a deterministic sense; rather, for a large number of trials,
the optimal path violates the obstacle boundaries for less than the ϵ�⋅�
fraction of the trials. This path planning with obstacle avoidance is
performed before themission; andweassume that, as a safetymeasure,
the flying vehicle is equipped with reactive decision-making capabil-
ities to prevent collisions while traversing the path, should the true
obstacle boundary exceed the one corresponding to the prescribed risk.
As a benefit, this approach allows the decisionmaker to explore shorter
paths while being aware of the risk associated with them.
When using chance constraints in an optimal control problem,

evaluation of the probability function poses the main operational
challenge. However, the chance-constrained formulation for obstacle
avoidance shown in Eq. (15c) follows the separable structure of the
form g�x; ζ� ≔ g�x� − ζ, and thus can be transformed to an equiv-
alent deterministic form using

P�g�x; ζ� ≥ 0� � P�ζ ≤ g�x��
as follows:

∧
N

i�1

�
∨
Mi

j�1
ai;jx� bi;jy > cμ;i;j � F−1

ζi;j
�1 − ϵi�

��������������������
a2i;j � b2i;j

q �
(16)

Here, F−1
ζi;j
�⋅� is the inverse Cumulative Distribution Function (CDF)

of the random variables ζj;k. Although these equations have forms

similar to deterministic equivalent constraints, they should not be
confused with the conventional obstacle perimeter inflation using

safety margins. The term F−1
ζi;j
�⋅� provides a direct approach to first

capture the statistical variability in the boundary uncertainty using
probability distributions and then tune the safety margin by choosing
an appropriate risk. This constraint formulation now allows us to use

the existing deterministic optimal control problem framework dis-
cussed in the next section.

B. Initial Guess Path Generation

Numerical optimization solvers require an initial guess. In path
planning, there may be more than one solution to avoid the keepout
zones that results in multiple convex solution spaces. When using
gradient-based optimization, it is desirable to provide an initial guess
that lies in the solution space containing the optimal. This not only
results in an optimal solution but also improves the convergence rate
of the numerical optimization, given the appropriate choice of other
solver parameters.
In this work, we employ a triangulation approach inspired from

the field of computer animation. Developed by Kallmann [39] for the
path planning in computer games, Triplanner is a tool for generating
paths in environments defined by constrained edges; i.e., no path can
cross the edge. At the heart of Triplanner, it uses a constrained
Delaunay triangulation (CDT)mesh, which is generated for the input
constrained edges. This CDT mesh is refined to generate a local
clearance triangulation, which stores a local clearance value: a prop-
erty that allows extraction of paths without using the Voronoi graph.
Once the input edges defining the boundaries and obstacles are
supplied along with the start and final locations, Triplanner yields a
path that is contained in a simplex corridor: a channel defined by
adjacent triangles of the refined CDT mesh. This channel consists of
constrained and unconstrained edges in such a way that edges con-
necting the adjacent triangles are always unconstrained. The resulting
domain formed by the channel is free of path constraints such as
obstacles. Although Triplanner is capable of generating the shortest
path with prescribed clearance, it is unable to account for the dynam-
ics of the SUAS. Hence, the path obtained from Triplanner serves as
an initial guess to the optimal control problem, as shown in Eq. (15).
The domain formed by the triangulation channel (an ordered list ofP

adjacent triangles) is incompatible with the R2 domain of the optimal
control problemdefined byEqs. (15) and (16).Hence, it is reformulated
into amultiphase problem. Each simplex that is traversed is represented
as a single phase p; and each phase is connected through event con-
straints by equating the states, control, and time at each boundary. The
dynamics represented in theCartesian coordinate frame inEq. (15b) are
transformed to a barycentric coordinate frame using Eq. (17):

α1 �
�y2 − y3��x − x3� � �x3 − x2��y − y3�
�y2 − y3��x1 − x3� � �x3 − x2��y1 − y3�

α2 �
�y3 − y1��x − x3� � �x1 − x3��y − y3�
�y2 − y3��x1 − x3� � �x3 − x2��y1 − y3�

α3 � 1 − α1 − α2

αi ∈ �0; 1�; i � f1; 2; 3g (17)

Taking the derivative of the Eq. (17), we obtain a new set of dynamic
equations for each simplex phase. The resulting phased optimal control
problem is shown in Eq. (18):

min t�P�f (18a)

subject to the dynamic constraints

_α�p�1 �t� � �y�p�2 − y�p�3 �V cos θ�p��t� � �x�p�3 − x�p�2 �V sin θ�p��t�
�y�p�2 − y�p�3 ��x�p�1 − x�p�3 � � �x�p�3 − x�p�2 ��y�p�1 − y�p�3 �

_α�p�2 �t� � �y�p�3 − y�p�1 �V cos θ�p��t� � �x�p�1 − x�p�3 �V sin θ�p��t�
�y�p�2 − y�p�3 ��x�p�1 − x�p�3 � � �x�p�3 − x�p�2 ��y�p�1 − y�p�3 �

_α�p�3 �t� � − _α�p�1 − _α�p�2

_θ�p��t� � u

�
V

rmin

�

X�p� �


α�p�1 ; α�p�2 ; α�p�3 ; θ�p�

�
(18b)
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path constraints

α�p�1 � α�p�2 � α�p�3 � 1 (18c)

event constraints

t�p�1�
0 � t�p�F

X�p�1� � X�p� ∀p ∈ f1; P − 1g (18d)

terminal conditions

fx�0��1�; y�0��1�g � fx0; y0g;
fx�tf��P�; y�tf��P�g � fxf; yfg (18e)

and boundary conditions

0 ≤ α�p�1 ≤ 1;

0 ≤ α�p�2 ≤ 1;

0 ≤ α�p�3 ≤ 1;

−π ≤ θ�p� ≤ π (18f)

juj ≤ umax (18g)

Clearly, the above set of equations [Eq. (18)] is free of obstacle

avoidance constraints because the triangulation domain, which is rep-

resented using

n
�x�p�j ; y�p�j �jj ∈ f1; 2; 3g; p � f1; 2; : : : ; Pg

o

is embedded in the multiphase dynamics shown in Eq. (18b).

C. Optimal Control Problem: Transcription and Solution

As the final step, the optimal path-planning problem posed in

Eq. (18) is solved using numerical optimal control problem-solving

techniques. This work employs pseudospectral discretization based

on Legendre–Gauss–Radau (LGR) quadrature to develop a multi-

phase nonlinear program. The interested reader is referred to the past

work of Keil et al. on these developments [40]. The transcribed NLP

can now be solved using off-the-shelf NLP solvers, using the initial

guess supplied by the Triplanner Toolbox. We use the software

package GPOPS − II [41], which transcribes the optimal control

problem using an LGR collocation method and invokes the NLP

solver: IPOPT [42].

D. Recurrent Planning

The evolving nature of thewildfire implies that the once the SUAS
member is en route to its destination, the wildfire may evolve and the
assumed obstacle map for path planning will no longer be valid.
However, the rate of spread of wildfire is typically slower than the
speed of the SUAS member, and so the evolution of the heat-aura
obstacle is considered quasi static. To account for the change in the
heat-aura map, a recursive planning (see Algorithm 1) approach is
adopted to the update the path as the wildfire’s areal spread evolves.
As the UAV is heading toward its destination, the obstacle map is
periodically updated and the corresponding the path is recomputed
and uploaded to the SUAS member. In this work, the obstacle
identification and path-planning problems are reformulated and
solved every 2 min. Note that the replanning process goes through
the full cycle, including obstacle identification via clustering and
chance-constraint modeling; and both the discrete and continuous
path-planning steps involve the Triplanner Toolbox and the optimal
control framework, respectively.

V. Results

This section presents the path-planning results for a single SUAS
member tasked to provide fire validation in an evolving wildfire. It is
assumed that the fire spread estimation (and the corresponding heat
aura) is available every 2 min. Therefore, the obstacle classification
via clustering, initial path generation, transcription, and solution of
the transcribed NLPmust be completed within this time. The follow-
ing subsections illustrate the single instance of the path planning
followed by demonstration of the same in a recursive approach. With
the experiments in foresight, it assumed that the SUAS is flying at the
maximum allowable flight level of 120 m (∼400 ft). It must be
pointed out that the obstacle identification (clustering) and path-
planning steps are not limited to a particular family of heat flux
contour shapes. The results shown in this section focus on the later
stages of the fire evolution illustrated in Fig. 3, namely, t > 60 min.
This is when more difficult heat-aura shapes emerge (horseshoe-like

Algorithm 1: Recursive path planning

Require: desired risk parameter value ϵ

1: repeat
Update obstacle boundaries using the obstacle model, the final location
�xf; yf�, and the current location �x0; y0�
Solve the chance-constrainedpath-planningproblem toobtain theoptimal
path. Send waypointsW � f�xi; yi�ji ∈ f1; 2; : : : ; Ngg to the agent.
Track path for period ΔT.
Observe environment and relay information to obstacle forecasting
model.

2: until �x; y� � �xf; yf�

Fig. 9 Cauchy distribution withmed�ζ� � 0, γ � 7.
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Fig. 10 Path-planning results for a static heat-aura obstacle map with ϵ � 0.03 using Triplanner for initial guess and GPOPS-II for optimal path with
dynamics constraints.
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structures) and there is a detachment of heat-flux contours, creating
the opportunity for keyhole trajectories.

A. Clustering

At each planning step with an interval of 2 min, the probabilistic
heat-aura map is updated using the fire forecaster, the temperature
sensor, and the available imagery captured so far. Clustering is then
performed on this map to generate obstacle polygons for path plan-
ning. Figure 5 shows clustering for nominal keepout locations of heat
aura atT � 70 min. To improve the computation performance of the
overall path-planning method, the clustering is performed for nomi-
nal keepout locations. The nominal keepout cell locations in the heat-
aura grid (as mentioned in Secs. II.A and III.A) are extracted,
corresponding to 0.5 probability, i.e.,

P� _q00�i; j; k� ≥ 5 kW ⋅m−2� ≥ 0.5

and clustering is performed. Figure 5a shows the recursive splitting
withMcut � 2.3 to achieve finer clusters with narrow flyable spaces
between them. Subsequently, the oversplit clusters are recombined
with Rcut � 2.8 to achieve the optimal number of clusters, as shown
in Fig. 5b. It is important to note that tuning of these parameters is
crucial for shapes with large concavities.
Furthermore, the uncertainty in the boundary of the keepout zones

can be captured using a distribution of the variation in the boundary
from the nominal boundary, and subsequently by using the inverse
CDF to obtain effective boundary inflation. For the illustration
purposes, we assume a a zero-median Cauchy distribution of
C�med�ζ� � 0; γ � 7� (see Fig. 9), which represents the heavy tails
in the uncertainty of the wildfire’s heat-aura estimation.

B. Path Planning

For the path planning, the location of greatest conflict between the
computational agent (forecaster) and the ground-based temperature
sensor is considered as the final destination of the SUASmember. To
illustrate the effect of varying risk of violation of heat flux constraints,
solutions with various risk thresholds are generated and shown in
Fig. 10d. Figure 10 illustrates the various stages of the path-planning
method (described in Sec. IV) for navigation around the heat aura at a
fixed time of T � 70 min. Figure 10a shows the initial path guess
generated using Triplanner and the corresponding simplex corridor
of adjacent triangles. As mentioned earlier, this simplex corridor is
free of keepout zone constraints. Then, the optimal control problem
for path planning is transcribed to the NLP using GPOPS − II and
solved using the phased approach (with barycentric coordinates); it
results in significantly faster and more stable convergence as com-
pared to a nonphased approach, thereby verifying the need of Tri-
planner for generation of a good initial guess and a phased approach
for “constraint-free” optimization. Figure 10c shows the multiphase
(using different colors) optimal path generated using GPOPS − II.
The path planning was performed for variable levels of risk, and it
was found that increasing the risk beyond ϵ � 0.02 to ϵ � 0.03opens
up a keyhole (in the lower right end of the crescent shape), resulting in
a path that is 7.74% faster (see Fig. 10d).With energy limitations such
as battery capacities, a small percentage of time savings couldmake a
big difference in the viability of the mission.

C. Recursive Planning with Evolving Wildfire

Although the rate of spread of the fire is slow with respect to the
SUAS cruise speeds, the long travel times over large distances are
enough for the fire to evolve and obstruct the planned path. At every
planning step of 2 min, using the available information so far, the
fire’s heat aura is forecast to the next 2 min to obtain a new heat-aura
map. By forecasting the SUASposition after 2min along the path, the
future current position is identified and used to obtain a new path that
avoids the keepout zones. Figure 11 shows the recursive path plan-
ning performed at periodic intervals with evolving heat-auramap and
conflict locations. The start point is assumed to be the initial location
of the mobile ground station for the SUAS operations, whereas the
red circle is the final destination. The computation time for each

planning window takes about 25 s on a 3.7 GHz Intel i7-8700 K
processor. For illustrative purposes, four planningwindowswith time
intervals of 2 min are shown in Fig. 11 to highlight the change in the
pathwith evolution of thewildfire. In the particular scenario shown in
the figure, it can be seen that replanning was able to exploit the
detachment of the heat aura and plan a keyhole path. The detailed
snapshots of the steps are shown in Fig. 12. We reiterate that the
recursive replanning process goes through the full planning cycle,
including both discrete planning with Triplanner and continuous
planning using the optimal control framework that includes SUAS
dynamics.

VI. Conclusions

This paper presents a risk-aware path path-planning framework for
small unmanned aerial systems operating in a wildfire environment
with uncertainties in estimation of heat-aura obstacle boundaries.
Estimation of the fire’s areal spread is performed using the combi-
nation of a Markov forecasting model and other in-field sensors. To
account for ignorance and potential conflict between sensing and
forecasting agents, an evidential framework of information fusion
was adopted for estimation of the heat aura at flight level. Using
Monte Carlo trials, probabilistic heat flux keepout locations were
identified as locations exceeding a threshold heat flux, which was
classified as unsafe for the SUAS. For path planning, obstacle

Fig. 11 Illustration of recursive path planning for evolving heat-aura

obstacles.
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boundaries were first identified through a novel unsupervised clus-
tering algorithm and then modeled as polygonal chance constraints
with Cauchy uncertainty. The resulting chance-constrained path-
planning problem was formulated for obstacle avoidance with
violation probabilities under a designated risk threshold. The path-
planning problem was solved via a Gauss quadrature collocation
method for multiple risk thresholds to elicit the risk associate with
each path. To account for the evolution of the heat-aura obstacle, a
recursive approach with a 2 min lookahead forecast was adopted. It
was shown that this framework provides an explicit means to capture
the uncertainty of the obstacles and plan the path with desired risk. It
was also seen that with a slight increase in the ability to take risk, it is

possible to explore paths for which the cost benefits exceed the perils
of higher mission risk.
Future studies to understand the effect of long exposure times on

SUASs along the low heat flux contours are underway. The imple-
mentation of described methodologies for SUASs deployed in con-
trolled forest burns is also under progress. Further work is also
needed to evaluate the computational complexity of the coupled
environmental estimation and path-planning problem presented in
this paper. As previously mentioned, the primary computational
bottleneck appears at the wildfire estimation step. Improving its
computational complexity will help elevate the proposed platform
as an online (real-time) tool.

Fig. 12 Stages of recursive path planning.
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