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Abstract— This work provides a finite-time stable disturbance
observer design for the discretized dynamics of an unmanned
vehicle in three-dimensional translational and rotational mo-
tion. The dynamics of this vehicle is discretized using a Lie
group variational integrator as a grey box dynamics model
that also accounts for unknown additive disturbance force and
torque. Therefore, the input-state dynamics is partly known.
The unknown dynamics is lumped into a single disturbance
force and a single disturbance torque, both of which are
estimated using the disturbance observer we design. This
disturbance observer is finite-time stable (FTS) and works like a
real-time machine learning scheme for the unknown dynamics.

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have
been increasingly used in several applications ranging from
security and monitoring, infrastructure inspection, agricul-
ture and wildland management to package delivery, remote
sensing and underwater exploration. All these applications
have challenges, mainly due to the presence of obstacles and
turbulence induced by air flow around structures or regions.
In particular, the flight of a UAV over a wildland fire is
subjected to unsteady and turbulent airflow, higher temper-
atures and variable density of air in such regions. These
effects affect the flight of the UAV, creating disturbances
in the form of perturbations, and bring adverse effects in the
control performance of these UAVs [?], [?]. Because of these
disturbances, a major challenge is to develop a complete
model of the dynamics of the UAV in real time. To add
to it, as the complexity of the dynamic system increases, the
difficulty in modeling uncertain dynamics increases.

This work adds a unique and valuable approach to the
numerous approaches proposed in research on control and
observer designs for uncertain systems over the last two
decades. These approaches are quite varied and use tech-
niques like neural nets, fuzzy logic, soft computing, as well
as data-driven extensions of predictive control, to learn the
uncertainties in the dynamics [?], [?], [?], [?], [?], [?]. Other
data-driven approaches that use disturbance or uncertainty
observers have also been treated in [?], [?].

Disturbance observers [?] [?] (DO) are advantageous in
the design of robust control. They are commonly used
to estimate uncertainties in nonlinear systems as they are
easy, intuitive and possess a simple structure. Their main
role is to estimate the disturbance inputs (uncertainties) to
the dynamics. This helps in creating a modular design of
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controllers where an outer loop controller can be designed
for the nominal plant and the disturbance estimate from the
DO is used to compensate it [?]. In this regard, a disturbance
observer has an advantage over other control methods like
Hoo control, adaptive control, or sliding mode control. Also,
it offers a much larger design freedom for the controller
design that works in the outer-loop. DO-based techniques
provide a feasible way to improve robustness and deal with
disturbances or system uncertainties in real time.

It is of critical importance in applications of UAVs with
disturbance forces and torques, to ensure nonlinearly stable
and robust performance of the disturbance observer. Stability
requires that the identified disturbance changes by a small
amount with small changes to inputs and outputs. Robustness
requires that bounded changes to the system lead to bounded
changes in the identified disturbance dynamics. In DO de-
signs for uncertain systems, lack of guaranteed stability is a
major shortcoming. The main contribution of this paper is a
finite-time stable DO design for stable and robust learning of
unsteady and unknown inputs on UAV flight dynamics. This
DO is also designed in discrete time, making it convenient
for onboard computation and implementation. The finite-
time stable disturbance observer (FTSDO) obtained here has
a faster convergence rate and better disturbance rejection
abilities than conventional nonlinear DO. It can be designed
to converge in a finite-time period that is smaller than the
settling time of the controller. Dynamic systems that have a
finite settling-time are more robust to bounded changes to
their dynamics than asymptotically stable systems [?], [?].

An important aspect of this formulation is that local
coordinates or quaternions are not used to represent the
attitude on SO(3). The observer is constructed to be finite-
time stable (FTS) on the space of rigid body motions, SE(3)
which is the semi-direct product of R3 and SO(3) [?].
One adverse consequence of unstable estimation and control
schemes is that, if they converge or settle, they end up taking
longer to converge compared to stable schemes with the same
initial conditions and same initial transient behavior [?], [?].
Attitude and pose observers and filtering schemes on SO(3)
and SE(3) have been reported in, e.g., [?], [?], [?], [?], [?].
Prior work on observer design and estimation directly on the
Lie groups of rigid body motions can be found in [?], [?],
[?].

The DO approach follows from the recent work [?],
which developed a finite-time stable disturbance observer in
discrete-time for a generalized MIMO system represented
by an ultra-local model [?]. Unlike prior work, here we treat
the complete 6-DoF dynamics for a UAV on the Lie group
of rigid body motions SE(3), using a disturbance observer.



Part of the dynamics model for the UAV is known and the
unknown (disturbance) inputs are estimated by the distur-
bance observer; together they make up a grey box model
for the input-state dynamics. All the unknown dynamics of
the model are combined into two terms, the disturbance
force and the disturbance torque. The discretization of the
equations of motion in the tangent bundle of SE(3) are car-
ried out in the framework of discrete geometric mechanics,
and the resulting discrete-time equations are in the form
of a Lie group variational integrator (LGVI) [?], [?]. As
they are known to preserve energy-momentum properties and
the geometry of the Lie group without any need of local
projections, LGVI schemes are ideal for this application [?].

A brief outline of this paper is given here. In Section
??, we give some preliminaries regarding rigid body motion.
The discretization of the kinematics and dynamics are given
in Section ?? using the discrete-time Lagrange d’Alembert
principle. Section ?? covers the main results for designing
a finite-time stable disturbance observer to estimate the
unknown dynamics. Numerical simulation results based on
a LGVI scheme for the observer discretization are demon-
strated in Section ??. We conclude the paper, in Section ??,
by summarizing the results and highlighting possible future
research directions.

II. PRELIMINARIES
A. Lie Group of Rigid Body Motions SE(3)

The set of possible configurations for rigid body trans-
lations and rotation is the Lie group SE(3). The group
SE(3) is the semi-direct product of R?® and the special
orthogonal group of rigid body orientations SO(3), i.e.,
SE(3) = R3 x SO(3). The configuration of a rigid body
is given by its position vector from the origin of an inertial
coordinate frame Z to the origin of a body-fixed coordinate
frame B denoted b € R3, and its attitude described by the
rotation matrix from body-fixed frame B to the inertial frame
T denoted by R € SO(3).

The special orthogonal group of rigid body rotation, SO(3)
[?], is defined by:

SO(3) = {R e R¥3, RTR = RRT = I, det(R) = 1} .
SO(3) C R3*3 is a matrix Lie group under matrix multipli-

cation. The Lie algebra (tangent space at identity) of SO(3)
is denoted s0(3) and defined as,

s0(3) = {S e R | 54+ ST},
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Here (.)* : R® — s0(3) denote the bijective map from
three dimensional Euclidean space to so(3). For a vector
s = [s1 89 53]T € R3, the matrix s* represents the vector
cross product operator, that is s X r = s*r, where r € R3.
The inverse of (.)* is denoted vex(.) : s0(3) — R3, such
that vex(a™) = a, for all a* € so0(3). Together with the

position vector of the (center of mass) of the rigid body, its
pose (position and orientation) is given by:
R b
= [O 1] € SE(3). (1)

B. System Kinematics and Dynamics

The instantaneous pose (position and attitude) is com-
pactly represented by g = (b, R) € SE(3). Denoting the
time derivative by (), the UAV’s kinematics is given by:

b=v=Rv
. ’ 2
{ R = RO, @
where v € R? and v € R? denote the translational velocity
in frames Z and B respectively, and € R? is the angular
velocity in frame B. The dynamics of a rotorcraft UAV with
a body-fixed plane of rotors is given by:

{ mb =mi = (f°R —mg)es + da, 3)
JQ =7 —QXJQ+ 74

where e3 = [0 0 l]T, f¢ € R is the scalar thrust force
and 7¢ € R? is the control torque created by the rotors,
g denotes the acceleration due to gravity and m € R™ and
J = JT € R3*3 are the mass and inertia matrix of the UAV,
respectively. The disturbance force and torque are denoted
¢? and 7¢ respectively, which are mainly due to unsteady
aerodynamics. The discretization of this model using an
LGVI scheme is expressed in the next section.

III. PROBLEM FORMULATION FOR DISTURBANCE
OBSERVER ON SE(3)

A. Discrete-time Dynamics:

Let fj denote the discrete approximation to a continuous
time-varying quantity f at time t; = t¢(k). Let us denote
h # 0 as the fixed step size, i.e., tx11 — tp = h. A discrete
Lagrangian L is constructed to approximate a segment of the
action integral and we construct F to approximate a segment
of the virtual work integral and then, the discrete dynamics
is prescribed by the discrete Lagrange-d’ Alembert principle:

N-1 N-1
53 L+ Y Fi=0, “)
k=0 k=0
Define the matrix inner product as the trace pairing (., .):
(A, B) :=tr(AT B).
The discrete-Lagrangian is chosen as the approximation:

h h, 1
Ly(b,v,R,Q) = §<ka,Vk»> + §<Jﬁ(exp (h2) = 1),

h
exp(h€)) — I) — E(u(bk,Rk) + U(bgg1, Ris1)),  (5)
where J is the inertia matrix, m is the mass of the body and

U(b, R) : SE(3) — R denotes the potential energy function,
which for a UAV in flight is given by uniform gravity:

UDb, R) = U(b) = mgbLes. (6)



The infinitesimal variations are given by:

Oby = Rk,

SRy, = RySY, -
dexp () = =X exp () +exp (Q;)Z;H,

5Vk = %R{(ébk+1 — 51)19) — Z: Vi,

where ¥ and 7 vanish at the end points but are otherwise
arbitrary. For F, we choose an approximation of the form:

h
Fr = 5(7,572,:“) + h(¢r, Rk410bk41), (8)

where 7 and v denote the nonconservative moments and

forces, respectively. The discrete kinematic equations as a

first order forward Euler discretization of eq. (??) gives:
{ br+1 = by + hRyvy,

9
Rji11 = Ry exp (hQY)), ®

Using the discrete Lagrange d’Alembert principle in (??),
we get the discretized dynamic equations as:

{ mvgr1 = mFL v, + h(f¢ — mgRY)es + hod,

JQpy1 = hT,g + ez:p(th;:)JQk + th’ (10)

where Fj, = RngH and the whole number subscript k €
W denotes time variable corresponding to sampling instant
tx. These equations are obtained in the form of a Lie group
variational integrator, and the matrix exponential in (??) is
evaluated using Rodrigues’ formula for numerical efficiency:

sin ||hQY|

(h¥) 1 — cos ||hQ|]
1P

exp (hQ*) =T+
Inell®

(REY)2.

1D
For a more detailed use of the discrete Lagrange d’ Alembert
principle to get the dynamic equations of a rigid body,
the reader is directed to the previous works [?], [?]. Some
definitions and lemma are stated next.

Definition 1: Any real-valued function f : Q@ — R is
Holder continuous with exponent o € (0,1) if it satisfies:

[f(@) = fW)l < Cllz —ylI*,
for all z and y in the domain of f.

Lemma 1: Consider a discrete-time system with outputs
s € RP — R and let V : RP — R be a corresponding
positive definite (Lyapunov) function and denote Vj :=
V(sk). Let « be a constant in the open interval ]0,1[ and
n € R*. Denote 7y := v(Vi) where v : Rf — R{ is a
positive definite function of Vj. Let v, satisfy the condition:

Yo > =€ for all Vi, > e. (12)

for some constant € € RT. Then, if V; satisfies the relation:
Virr = Vi < =V, (13)

the discrete system is (Lyapunov) stable at s = 0 and sy
converges to s = 0 for £k > N, where NV € W is finite.

Proof: The proof of this lemma is given in [?] and

omitted here for brevity. [ ]

Lemma 2: A discrete-time Lyapunov function that satis-
fies inequality (??) is Holder-continuous in discrete time.

Proof: The proof of this lemma is given in [?] and
omitted here for brevity. [ ]

IV. FINITE-TIME STABLE OBSERVER DESIGN

Many formulations are available to estimate the states from
measured outputs in the equations of motion (??). These
can be used in conjunction with the disturbance observer
presented here. In this work, we assume that reasonably
accurate state estimate are available from a novel scheme
like [?], [?]. Using this assumption, the estimators for the
disturbance forces and torques can be written as:

{ ¢ = 5 (m(De1 — Flve) — h(f — mgR[)es),
d

T = %(JQIH-I — hri — exp(=h&Q; ) JQ%). (9

The unknown disturbance inputs X% = ((I)Z,Tg) € R are
learnt in real time according to the past input-output history
using (??). Let us define the error in estimating X(,ﬁ as:

ex = Xk — Xk- (15)

Also, the first order finite difference of the unknown dynam-
ics, x¢, is denoted as:

1)

Axy = Xy, (16)

— 4 d
= Xk+1 ~ Xk
The disturbance estimate {{,, can be obtained in real time

from the following first order nonlinearly stable observer.
Theorem 1: The nonlinear observer for xj; given by

K1 = D(e)ef + xi, (17)

where Y& = x@ is given and D : Rt —R is a Holder-
continuous function that is given by:

(G )
()T 7+ X

and A > 0 and r € (1, 2) are constants. This observer design
leads to finite time stable convergence of the estimation error
vector e € R® to a bounded neighborhood of 0 € R, where
bounds on the neighborhood are obtained from the bounds
on AF; k-

D(ey) = (18)

Proof: Consider the discrete-time Lyapunov function
VX = (ef)Tey. (19)

Taking the first order discrete-time difference of this Lya-

punov function gives us:
- 1
ka+1 - VkX = _’Yi)c((vkx)ﬁ (20)
where 7 = (1= (D(e}))*) (V).

This implies that v is a positive definite function of V;* =
leX||. Using (2?) and (2?), we can express 7, as a function
of VX

(V)27
(VO + A2
It can be inferred from (??) that v} := (V,Y) is a class-x
function of ka. Moreover, it can be verified that:

VX = 4 Q1)

1
X —i/r
— ‘/N<)\1 1/ s



= N <A

The last two results together imply that ~;° satisfies the
sufficient condition for finite-time stability of e} stated in
Lemma 1. Now, consider the expression for e} 41 given by

ey = Dlep)er, (22)

Using (??) and (??), the following discrete-time disturbance
observer for {¢ is obtained:

X%H =D(ef)ey + xiﬂ- (23)

The above expression leads to a finite-time stable observer
for the unknown dynamics that ensures that the estimation
error e} converges to zero for k > N where N € W is finite.
However, due to the causality of the dynamics, the value of
xi 1 is not available at time 5.1, and it needs to be replaced
by a known quantity. Consequently, X , is replaced by
in (??) to obtain the first-order observer design given by (??).

The observer given by equation (??) is basically a first-
order perturbation of the ideal FTS observer design for x¢
as given by (??). The first-order finite difference term Ay
is the source of the perturbation in this case. [ ]

Theorem 2: Consider the nonlinear observer law for the
disturbance X% given by (??). Let the bound on the first order
difference Ay defined by (??) be given by:

[Axk]l < BY, (24)

where B, € R*. Then, the observer estimation error ) is
guaranteed to converge to the neighborhood given by:

NX = {ef e R": p(e})|ef|| < BX}, (25)
for finite £k > N, N € W, where
pley) = 1+[D(ey)l- (26)

Proof: Using the Lyapunov equation defined by (??)
and the observer equation (??), we obtain

Vierr = Vi = (D(ef))? = 1)(e) el — 2D(ef) Axj ef
+AXG Axks

Using the bound on the value of ||Axg|l given by (??),
we can get an upper bound on the first difference of the

Lyapunov function:
AV < (D? = 1)]|ex]* + 2IDIBX[lek|| + (BY)?,  @7)

where D := D(e}) for ease of notation. For large enough
initial (transient) ||e||, the right hand side of the inequality
(??) is negative, which gives us the following condition:

(1= DH)exI* = 2D|BX[le;|| — (BX)* >0, (28)

The above equation (??) can be considered as a quadratic
inequality expression in |le)|| with coefficients that depend

on e;g. This leads to the condition,
(ID(e)| + Dllexll > BX, (29)

for real positive solutions of ||e}| for which AV} < 0 is
guaranteed. Note that D(e)) is a monotonically increasing

function taking values in the range of [-1, 1). The discrete
Lyapunov function V;* will decrease monotonically for ||e)|]
large enough to satisfy inequality (??), which it will until a
finite value of k, say k& = IN. Therefore, the observer error
is guaranteed to converge to the neighborhood NX of the
zero vector € RS given by equation (??) and will stay in
this positively invariant neighborhood for £ > N. [ |
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Fig. 1: Model estimation error for (a) disturbance force, and
(b) disturbance torque, without noise

V. NUMERICAL SIMULATION

In this section, a comprehensive numerical simulation
study for the FTS disturbance observer presented in Theorem
1 is carried out. The disturbance estimation error vector from
this disturbance observer is shown to converge in finite-time
to a bounded neighborhood of the zero vector € R® as given
by Theorem 2.

A. Finite-time Convergence

Dynamic turbulent wind effects are difficult to model
exactly, even with the use of detailed CFD analysis and sim-
plifying assumptions for the wind fields. The uncertainties
that exist in a realistic wind field contain a variety of different
atmospheric sources like turbulence, vortex, gust and shear.
Despite this, a combination of sinusoidal wave-forms are
generally sufficient to capture the dominant characteristics
that exist in a realistic wind field.

To this avail, the wind disturbance is simulated here as
a combination of sinusoidal frequencies. To make the wind
model more realistic and close to a real-world environment,
lower frequency signals of relatively high amplitude are
combined with higher frequency signals of relatively low
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Fig. 2: Model estimation error for (a) disturbance force, and
(b) disturbance torque, with noise

amplitude, with the frequencies being not more than 10 Hz.
The total magnitude of the force and torque disturbance is
of the order of ~5-7 N and ~1-2 N-m, respectively.

These disturbances are propagated through the system
dynamics (??). In the simulation, the measurements are
generated by numerically propagating the true discrete-time
dynamics. For the results in this subsection, no (measure-
ment) noise is added to the outputs and only the finite-time
convergence of the disturbance estimates is examined. Output
measurements are assumed at a constant rate of 50 Hz,
i.e. sampling period At = 0.02 s. The unknown disturbance
dynamics is obtained from the estimated outputs.

The first order finite-time stable observer stated in The-
orem 1 is used for estimating the disturbance inputs. The
Hoélder-continuous function D(e)) defined in (??) is used
with the observer gains:

9
A=1.0, and r = —.
, and 7=

Simulation results for the estimation error in estimating
the unknown (disturbance) dynamics are depicted in Figure
??. The disturbance term x¢ € R® comprises of two parts:
the disturbance force @g € R3, and the disturbance torque
7 € R3. Figure ?? shows the estimation error in the
magnitude of disturbance force || ®¢|| and disturbance torque
|||, respectively. It can be inferred from the plots that
the disturbance estimation error vector settles down in a
neighborhood of the zero vector in finite-time when the
initial disturbance estimation error vector is outside this
neighborhood. This validates the finite-time convergence of

the first-order nonlinear observer given by (??). This ideal
scenario where the outputs do not have any measurement
noise associated with them is not realistic and hence, robust-
ness to output measurement noise is tested.

B. Robustness to measurement noise

Generally, the output states measured have additive mea-
surement noise, which results in the calculated disturbance
obtained from the input-output dynamics (as shown in (??))
being different from the actual disturbance inputs that are
acting on the system dynamics. A robust disturbance ob-
server will make the disturbance estimates converge to a
bounded neighborhood in the presence of bounded measure-
ment noise.

Here, simulations are carried out in a similar setting as
the previous subsection. In this case, the measurements are
generated by numerically propagating the true discrete-time
dynamics and adding noise to the true outputs. The added
noise signals are taken to be ~ 2 % of the true output values
which gives a realistic signal-to-noise ratio (SNR) of around
30 dB. This is representative of current off-the-shelf sensors
that are used in the UAV industry.

Simulation results for the estimation error with added
noise are depicted in Figure ??. It shows the estimation error
in the magnitude of disturbance force ||®¢|| and disturbance
torque ||7||, respectively. The numerical results show good
finite-time convergence of the disturbance estimation errors
to a bounded neighborhood of the zero vector, further vali-
dating the robustness of the observer design.

C. Convergence bounds for the DO

Theorem 2 gives a bound for the observer estimation
error which in turn is dependent on the bound on the first
order finite difference of the unknown dynamics, Xg. For the
disturbance force ®¢, the total magnitude is of the order of
~ 5-7 N and simulated measurements are taken at a constant
rate of 50 Hz, as stated earlier. This gives a bound B? for
the first order difference of the disturbance force. Calculating
the value of B? and using (??) gives:

|ADE[| < 0.14, (30)

From (??), we get:
ple)llex |l < 0.14, 31)

Taking the maximum value of e and substituting it in the
expression for D(ef) given by (??), we get the value of p(e})
from (2?) as:

pler) =~ 1.5, (32)
From (??) and (??), we get:
e || < .095, (33)

For the disturbance torque, the total magnitude is of the
order ~ 1-2 N-m and similarly, the bound for the first order
difference of the disturbance torque can be given by:

| AT < 0.035, (34)



Similarly, from (??) we get:
pler)ller | < 0.035, (35)

Following the same procedure as for the disturbance force
earlier, we get:
pler) ~ 1.7, (36)

From (??) and (2?), we get the bound for the estimation
error for the magnitude of disturbance torque given as:

le7|| < 0.021 (37)

The bounds (??) and (??) on estimation errors in disturbance
force and torque are satisfied by the plots in Fig. ??.

VI. CONCLUSION AND FUTURE WORKS

This research proposes a first order discrete-time distur-
bance observer for a rigid body with disturbance force and
disturbance torque inputs. The observer design is shown to be
nonlinearly stable and robust in estimating the disturbances
in real-time. The observer design makes the estimation
errors converge to a bounded neighborhood of zero errors.
A comprehensive simulation study for the observer design
is carried out for performance validation. In future work,
asymptotically stable or finite-time stable control schemes
will be designed to run in conjunction to formulate a unified
data-driven robust feedback control scheme. Another future
direction will be to obtain LGVI discretization schemes for
the case of variable time step size. Another important future
work will be the examination of the bounds on the estimation
errors for the disturbance force and torque in the presence
of measurement noise in the true outputs.
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