
184

Semi-symbolic Inference for Efficient Streaming Probabilistic

Programming

ERIC ATKINSON,MIT, USA

CHARLES YUAN,MIT, USA

GUILLAUME BAUDART, ENS ś PSL University ś CNRS ś Inria, France

LOUIS MANDEL, IBM Research, USA

MICHAEL CARBIN,MIT, USA

A streaming probabilistic program receives a stream of observations and produces a stream of distributions

that are conditioned on these observations. Efficient inference is often possible in a streaming context using

Rao-Blackwellized particle filters (RBPFs), which exactly solve inference problems when possible and fall

back on sampling approximations when necessary. While RBPFs can be implemented by hand to provide

efficient inference, the goal of streaming probabilistic programming is to automatically generate such efficient

inference implementations given input probabilistic programs.

In this work, we propose semi-symbolic inference, a technique for executing probabilistic programs using a

runtime inference system that automatically implements Rao-Blackwellized particle filtering. To perform exact

and approximate inference together, the semi-symbolic inference system manipulates symbolic distributions

to perform exact inference when possible and falls back on approximate sampling when necessary. This

approach enables the system to implement the same RBPF a developer would write by hand. To ensure this,

we identify closed families of distributions ś such as linear-Gaussian and finite discrete models ś on which

the inference system guarantees exact inference. We have implemented the runtime inference system in the

ProbZelus streaming probabilistic programming language. Despite an average 1.6× slowdown compared to

the state of the art on existing benchmarks, our evaluation shows that speedups of 3×ś87× are obtainable on

a new set of challenging benchmarks we have designed to exploit closed families.

CCS Concepts: •Mathematics of computing→ Sequential Monte Carlo methods; • Theory of computation

→ Streaming models; • Software and its engineering → Data flow languages.

Additional Key Words and Phrases: probabilistic programming, streaming inference

ACM Reference Format:

Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin. 2022. Semi-symbolic

Inference for Efficient Streaming Probabilistic Programming. Proc. ACM Program. Lang. 6, OOPSLA2, Article 184

(October 2022), 29 pages. https://doi.org/10.1145/3563347

1 INTRODUCTION

Probabilistic programming languages enable developers to describe a probabilistic model in a pro-

gramming language and let the language’s compiler and runtime perform Bayesian inference [Bing-

ham et al. 2019; Goodman and Stuhlmüller 2014; Murray and Schön 2018; Tolpin et al. 2016; Tran

et al. 2017]. In this work, we focus on streaming probabilistic programs, as first formalized in Baudart

et al. [2020]. In a streaming probabilistic program, the program receives a stream of observations

and produces a stream of distributions that are conditioned on these observations.

Authors’ addresses: Eric Atkinson, MIT, USA; Charles Yuan, MIT, USA; Guillaume Baudart, ENS ś PSL University ś CNRS ś

Inria, DI ENS, France; Louis Mandel, IBM Research, MIT-IBM Watson AI Lab, USA; Michael Carbin, MIT, USA.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART184

https://doi.org/10.1145/3563347

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3563347
https://doi.org/10.1145/3563347
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563347&domain=pdf&date_stamp=2022-10-31

184:2 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

Streaming Inference. Rao-Blackwellized particle filtering [Doucet et al. 2000] is a state-of-the-art

inference technique that can be used in a streaming context. Rao-Blackwellized particle filters

(RBPFs) exactly solve inference problems when possible (i.e., when a closed-form solution exists)

and fall back on sampling-based approximate particle filtering [Gordon et al. 1993] when symbolic

computations fail. The key challenge to applying RBPFs is designing an effective state representation

that maintains both a sample-based representation and a symbolic representation, with as much of

the state as possible in the symbolic representation.

Semi-Symbolic Inference. In this work, we propose semi-symbolic inference, in which a particle

filter is augmented with a symbolic state consisting of mathematical expressions that encode

distributions of random variables in the program. At runtime, the semi-symbolic inference system

transforms the expressions in the symbolic state according to closed-form solutions from probability

theory. Compared to previous work using a different state representation [Baudart et al. 2020],

semi-symbolic inference can maintain an exact representation in more cases. In particular, we prove

that the semi-symbolic inference system guarantees an exact representation on closed families,

which include linear-Gaussian and finite discrete probabilistic models.

Contributions. In this paper, we present the following contributions:

• We present semi-symbolic inference, a new technique for Rao-Blackwellized particle filtering

in streaming probabilistic programs. In Section 4, we define the state representation as well

as the operations the semi-symbolic inference system uses to perform inference.

• We discuss the guarantees and advantages of semi-symbolic inference. In Section 5, we

state and prove several theorems about closed families. In particular, we show that the semi-

symbolic inference system provides guaranteed exact inference on linear-Gaussian and finite

discrete probabilistic models, which developers can use to reliably write models that the

inference system implements as RBPFs.

• We implement semi-symbolic inference inside the streaming probabilistic programming

language ProbZelus [Baudart et al. 2020]. The implementation is available at https://github.

com/ibm/probzelus, and has been accepted as an artifact [Atkinson et al. 2022a].

• We evaluate semi-symbolic inference in ProbZelus on a set of benchmarks in Section 6, and

compare against prior work on delayed sampling [Murray et al. 2018] in ProbZelus. We show

that semi-symbolic inference has a slowdown of 1.6× on existing benchmarks. In exchange

for this overhead, by maintaining exact representations more often than delayed sampling,

semi-symbolic inference can achieve speedups of 3×ś87× on a set of challenging benchmarks

that exercise the closed family guarantee. We discuss in detail two of these benchmarks

that illustrate the situations in which delayed sampling fails to perform exact inference but

semi-symbolic inference can.

By executing streaming probabilistic programs with semi-symbolic inference, developers can

combine the efficiency of exact inference with the generality of approximate inference. The closed

family guarantee further ensures that the programs will deliver the performance developers expect.

An extended version of this paper including appendices is available [Atkinson et al. 2022b].

2 EXAMPLE

To demonstrate semi-symbolic inference, we use the streaming probabilistic programming language

ProbZelus to model a robot with two wheels. Figure 2 shows a diagram depicting the robot. Our

objective is to estimate the angular and forward velocity of the robot using sensors that measure

the speed of each wheel. Such a task is often a precursor to estimating the position of the robot, as

described, for example, in Larsen et al. [1999].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

https://github.com/ibm/probzelus
https://github.com/ibm/probzelus

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:3

1 let proba wheels (left_rate, right_rate) = (vel, omega) where

2 rec init omega = 0. and init vel = 0.

3 and omega = sample (gaussian (last omega, omega_var))

4 and vel = sample (gaussian (last vel, vel_var))

5 and () = observe (gaussian (vel -. wb *. omega, sensor_err), left_rate)

6 and () = observe (gaussian (vel +. wb *. omega, sensor_err), right_rate)

Fig. 1. A program that encodes the robot model in ProbZelus. The model inputs are two streams left_rate

and right_rate encoding the speed sensors on each wheel, and the outputs are streams of the estimated

velocity vel and angular velocity omega. The constants omega_var, vel_var, and sensor_err specify vari-

ances of omega and vel, and the wheel sensors respectively, and wb specifies the width of the robot’s wheel

base. In our example, we assume values omega_var = 2500, vel_var = 2500, wb = 2, and sensor_err = 1.

In this section, we first explain how to implement such a model in the ProbZelus streaming

probabilistic programming language. We then explain how our implementation of a semi-symbolic

runtime inference system for ProbZelus executes this program.

2.1 Implementation in ProbZelus

𝜔 𝑣

Fig. 2. Diagram of a two-

wheeled robot. The objective is

to estimate the angular velocity

𝜔 and the forward velocity 𝑣

using wheel sensors.

Figure 1 presents an implementation of the model in the ProbZelus

streaming probabilistic programming language. The core objects in

ProbZelus are stream functions that transform input streams into

output streams. The proba keyword on Line 1 signifies the definition

of a stream function whose definition may include probabilistic

operators. The remainder of the line specifies that the wheels stream

function takes as input a pair of streams left_rate and right_rate

encoding the speed sensors on each wheel, and returns a pair

of the robot’s estimated velocity vel and angular velocity omega.

These estimated velocities are defined by the subsequent mutually

recursive equations.

Lines 2 and 3 specify a probabilisticmodel for the angular velocity

omega. At each time step, Line 3 specifies that omega is a stream of

values, each sampled from a Gaussian distribution using the sample probabilistic operator. The

mean of the Gaussian is given by the previous value in the stream of omega values as specified using

the last omega syntax, except that at the first time step, last omega takes on the initial value of 0

as specified on Line 2 by the init keyword. The variance of the Gaussian is given by the constant

omega_var.

Lines 2 and 4 specify a model for the forward velocity vel symmetric to that for angular velocity.

Line 5 conditions the model by observing the left wheel’s velocity from the forward velocity and

angular velocity. In particular, it specifies that the left wheel’s velocity is sampled from a Gaussian

distribution. The mean of this distribution subtracts from the forward velocity vel the angular

velocity omega multiplied by the constant wb, which represents the width of the robot’s wheel base.

The program then specifies, using the observe probabilistic operator, that the model is conditioned

on this Gaussian random variable being equal to the input value left_rate. Line 6 specifies a similar

observation to for the right wheel, except that the product of omega and wb is added to vel instead

of subtracted. For both observations, the Gaussian’s variance is the constant sensor_err.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:4 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

vel

𝑋𝑣N(0, 2500)

omega

𝑋𝑜 N(0, 2500)

(a) The symbolic state after executing Lines 3 and 4.

Each program variable points to a new random vari-

able with a Gaussian distribution.

vel

𝑋𝑣N(0, 2500)

omega

𝑋𝑜 N(0, 2500)

𝑋𝑙N(𝑋𝑣 - 2 * 𝑋𝑜 , 1)

(b) The first step in executing the observe on Line 5

adds a new random variable with the appropriate

distribution. The symbolic distribution contains ref-

erences to both previous random variables.

vel

𝑋𝑣N
(((

−2 * 𝑋𝑜

2500
+

𝑋𝑙

1

)
* 1

1
2500 + 1

1

)
+ (2 * 𝑋𝑜), 1

1
2500 + 1

1

)
omega

𝑋𝑜 N(0, 2500)

𝑋𝑙N(0 - 2 * 𝑋𝑜 , 2500 + 1)

(c) Next, the inference system swaps the new random variable 𝑋𝑙 and 𝑋𝑣 . The result is that 𝑋𝑙 no longer

depends on 𝑋𝑣 and 𝑋𝑣 depends on 𝑋𝑙 and 𝑋𝑜 .

vel

𝑋𝑣N
(((

−2 * 𝑋𝑜

2500
+

𝑋𝑙

1

)
* 1

1
2500 + 1

1

)
+ (2 * 𝑋𝑜), 1

1
2500 + 1

1

)
omega

𝑋𝑜

N
((−2 * 0

−2 * −2 * 2500 +
𝑋𝑙

2500 + 1

)
* 1

1
−2 * −2 * 2500 + 1

2500 + 1

−2 ,

1
1

−2 * −2 * 2500 + 1
2500 + 1

−2 * −2

)
𝑋𝑙N(0 - 2 * 0, (2 * 2 * 2500) + (2500 + 1))

(d) Next, the inference system swaps 𝑋𝑙 with 𝑋𝑜 . The distribution of 𝑋𝑙 now has no dependencies.

vel

𝑋𝑣N
(((

−2 * 𝑋𝑜

2500
+

𝑋𝑙

1

)
* 1

1
2500 + 1

1

)
+ (2 * 𝑋𝑜), 1

1
2500 + 1

1

)
omega

𝑋𝑜

N
((−2 * 0

−2 * −2 * 2500 +
𝑋𝑙

2500 + 1

)
* 1

1
−2 * −2 * 2500 + 1

2500 + 1

−2 ,

1
1

−2 * −2 * 2500 + 1
2500 + 1

−2 * −2

)
𝑋𝑙𝛿 (−1)

(e) Then, the system intervenes to replace 𝑋𝑙 ’s distribution with a Delta distribution.

Fig. 3. Depiction of the evolution of the symbolic state during the execution of the program in Figure 1

under semi-symbolic inference. We use gray circles represent random variables, and solid arrows to represent

conceptual dependencies between random variables. Dotted lines point a) from program variables to the

random variables they refer to, and b) from random variables to their symbolic distributions. We also depict

the current values of the vel and omega program variables.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:5

2.2 Semi-Symbolic Inference

We now describe how to use semi-symbolic inference to execute the ProbZelus program in Figure 1.

In particular, we describe how the symbolic state of the semi-symbolic runtime inference system

evolves over the course of the first iteration of the wheels stream function. The symbolic states

described in this section are depicted in Figure 3.

Sampling. First, the semi-symbolic inference system executes the sample operators on Lines 3

and 4. The semi-symbolic implementation of sample constructs symbolic terms representing dis-

tributions and returns the random variables 𝑋𝑣 and 𝑋𝑜 that point to these distributions. It stores

handles to 𝑋𝑣 and 𝑋𝑜 inside the program variables vel and omega, respectively.

Figure 3a depicts the symbolic state after both of these sample operations. In these depictions,

we assume the constant variances omega_var and vel_var are both equal to 2500, corresponding to

a standard deviation of
√
2500 = 50 for both forward and angular velocity.

Observation. Next, the semi-symbolic inference system executes the observe operation on Line 5.

Like in standard probabilistic languages (e.g. Goodman and Stuhlmüller [2014]), the observe opera-

tion performs a scoring operation. However, in semi-symbolic inference, it also has to update the

symbolic state. Here, we describe the symbolic state update. The inference system first constructs a

random variable 𝑋𝑙 representing the distribution specified on Line 5. Where the program refers to

the variables vel and omega, in the corresponding symbolic distribution these expressions contain

handles to the corresponding random variables 𝑋𝑣 and 𝑋𝑜 .

Figure 3b depicts the resulting symbolic state. In these depictions, we assume that the constant

variance sample_err is 1 and the constant wb is 2.

Swapping. To perform the observation, the semi-symbolic inference system first converts this

new random variable into a root, meaning a random variable with no parents. A parent of a random

variable is another random variable that is mentioned in any of its sub-expressions. To perform this

conversion, the system performs a swap, the core operation of semi-symbolic inference. A swap

changes the dependency order between two random variables in the symbolic state. The swap

ensures that the overall joint distribution of variables in the symbolic state does not change.

In the example, the inference system tries to swap 𝑋𝑙 with the random variable to which vel

points,𝑋𝑣 . The system must first determine if such a swap is possible. Based on the state depicted in

Figure 3b, the system detects that𝑋𝑙 can be written as an affine function of𝑋𝑣 , namely𝑋𝑙 = 𝑎∗𝑋𝑣+𝑏
where 𝑎 = 1 and 𝑏 = −2 * 𝑋𝑜 (note that random variables other than 𝑋𝑣 may appear in 𝑎 and 𝑏).

Because the two distributions are Gaussians with constant variance, and they are related by an

affine function, the system determines that a swap is possible.

Conjugate Priors. The mathematical principle behind a swap is that of conjugate priors [Fink

1997]. Conjugate priors provide rules for manipulating distributions that are useful for performing

exact inference. The rules change the direction of dependencies while preserving the overall joint

distribution between the involved random variables. While an advanced understanding of the

theory of conjugate priors is not necessary to understand semi-symbolic inference, we briefly

explain how conjugate priors apply to the swap of 𝑋𝑙 and 𝑋𝑣 in the example. This swap uses

the conjugate rule that given random variables 𝑋𝑐 ∼ N(𝜇𝑐 , 𝜎2
𝑐) and 𝑋𝑑 ∼ N(𝑋𝑐 , 𝜎

2
𝑑
), then the

distribution of 𝑋𝑑 is equivalent to N(𝜇𝑐 , 𝜎2
𝑐 + 𝜎2

𝑑
), and the distribution of 𝑋𝑐 is equivalent to

𝑋𝑐 ∼ N
((

𝜇𝑐
𝜎2
𝑐

+ 𝑋𝑑

𝜎2
𝑑

)
∗ 𝜎2

cond, 𝜎
2
cond

)
, where 𝜎2

cond =

(
1
𝜎2
𝑐

+ 1
𝜎2
𝑑

)−1

The swap also uses the general rule of linear transformations of Gaussians: if 𝑋𝑎 ∼ N(𝜇𝑎, 𝜎2
𝑎), and

𝑋𝑏 = 𝑎 * 𝑋𝑎 + 𝑏, then 𝑋𝑏 ∼ N(𝑎 * 𝜇𝑎 + 𝑏, 𝑎2 * 𝜎2
𝑎).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:6 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

Figure 3c depicts the resulting state of the swap of 𝑋𝑙 and 𝑋𝑣 . The distribution of the variable to

which omega points is unchanged, but the other two random variables have new distributions to

satisfy their reversed dependence relationship while maintaining the correct joint distribution.

Next, the inference system swaps the variable to which omega points, 𝑋𝑜 , with 𝑋𝑙 . The system

determines that these variables have an affine relationship, namely 𝑋𝑙 = 𝑎 ∗ 𝑋𝑜 + 𝑏 where 𝑎 = −2
and 𝑏 = 0, and can therefore be swapped. Figure 3d depicts the results. The system replaces the

distribution of 𝑋𝑙 and 𝑋𝑜 , and leaves the distribution of 𝑋𝑣 unchanged. Note that at this point, the

distribution of 𝑋𝑙 does not depend on any other random variables, and can be evaluated to produce

a closed-form distribution.

Intervention. Next, the inference system performs the observation by intervening on the value

of 𝑋𝑙 . Let us assume that the input observed value (i.e., the value of left_rate) is −1. To condition

the symbolic state on the fact that 𝑋𝑙 is equal to −1, the system replaces the distribution of 𝑋𝑙 with

the Delta distribution 𝛿 (−1), the distribution with all mass at −1. The result is depicted in Figure 3e.

Simplification. The system further simplifies the symbolic state in Figure 3e using the fact that a

random variable sampled from a Delta distribution can be replaced with the interior expression

of the Delta. In this example, this means that when the variable 𝑋𝑙 appears in a distribution

expression, the system can replace it with −1. Using this fact and subsequent evaluation steps,

the distribution for 𝑋𝑜 evaluates to N(0.4, 500), and the distribution for 𝑋𝑣 partially evaluates

to N
((

−2∗𝑋𝑜

2500
+ −1

)
∗ 1, 1

)
. To facilitate this simplification, the semi-symbolic inference system

incorporates a partial evaluator, which we describe in Section 4.2.

Iteration. The inference system performs the observation on Line 6 using a similar sequence of

steps. This concludes the system’s operations at the first iteration. Subsequent iterations execute

similar operations, except that vel and omega are sampled by reference to their previous value

instead of their initial value 0. In subsequent symbolic states, the random variables to which vel

and omega point contain symbolic expressions that refer to variables sampled at earlier iterations.

Accuracy. As a result of the symbolic manipulations, the distributions of vel and omega become

closed-form symbolic expressions. These expressions estimate the forward and angular velocity of

the robot and may then be used to estimate additional properties such as its position. Importantly,

the distributions are exact, avoiding any loss of accuracy introduced by sampling approximations.

This is a notable improvement over the prior implementation of ProbZelus, which implemented

inference using delayed sampling [Murray et al. 2018]. Delayed sampling executes similarly to

semi-symbolic inference, but has a different symbolic state representation. Delayed sampling cannot

represent the distributions of vel and omega exactly, and thus falls back on approximate sampling.

We further discuss the implementation of ProbZelus in Section 3, and provide more details on the

specific differences between delayed sampling and semi-symbolic inference Section 6.4.

3 BACKGROUND: PROBZELUS SYNTAX AND SEMANTICS

In this section, we review from Baudart et al. [2020] the syntax and semantics of ProbZelus,

the streaming probabilistic programming language within which we implement semi-symbolic

inference. We consider a fragment of ProbZelus to illustrate the core concepts of how the system

works. A full presentation of the semantics reviewed here can be found in Baudart et al. [2020].

Syntax. We describe the fragment of ProbZelus presented in Figure 4. A program is given by a

sequence of stream function declarations each introduced by the keyword proba.

An expression is a variable 𝑥 , a constant 𝑐 , a pair of expressions, an operator application op, a

function application 𝑓 , an access to the previous value of a variable with last, or an expression

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:7

Decl F let proba 𝑓 𝑥 = Expr | Decl Decl

Expr F 𝑥 | 𝑐 | (Expr, Expr) | op(Expr) | 𝑓 (Expr) | last 𝑥 | Expr where rec Eq

| present Expr -> Expr else Expr | reset Expr every Expr

Eq F 𝑥 = Expr | init 𝑥 = 𝑐 | Eq and Eq

Fig. 4. Syntax for a fragment of the ProbZelus language.

whose free variables are defined by a set of mutually recursive equations given by where rec. The

present construct executes one of its two branches depending on the value of the first expression

which can be a Boolean expression or a sporadic signal. The reset expression re-initializes the state

of the first expression (i.e. last 𝑥 returns 𝑥 ’s inital value) each time the second expression is true.

The contents of a where rec definition either assigns a variable to an expression or specifies an

initial value for a variable using the init keyword. The initial value works in conjunction with the

last expression to provide the value last returns on the first time step.

The operators of the language include standard arithmetic operators as well as the probabilistic

operators sample to draw from a distribution and observe to condition on an observation. The

operator value forces the inference system to explicitly draw a sample. The purpose of the value

operator is to enable developers to explicitly control the location of random sampling.

Semantic Model. The semantics of a deterministic expression e is given by a pair of an initial

memory state ⟦e⟧init ∈ 𝑀 and a step function ⟦e⟧step𝛾 ∈ 𝑀 ↦→ 𝑂 × 𝑀 . The step function is

parameterized by an environment 𝛾 that contains the value of the free variables of e. The step

function takes the current memory and outputs a result value and an updated memory.

A program produces a stream of outputs (𝑜 𝑗) 𝑗∈N by repeatedly executing the step function on

the stream of inputs contained in the environment 𝛾𝑖 starting from the initial memory𝑚0:

𝑚0 = ⟦e⟧init

𝑜1,𝑚1 = ⟦e⟧step𝛾1
(𝑚0)

𝑜2,𝑚2 = ⟦e⟧step𝛾2
(𝑚1)

. . .

𝑜𝑛,𝑚𝑛 = ⟦e⟧step𝛾𝑛
(𝑚𝑛−1)

. . .

In contrast, the step function of a probabilistic expression takes the current memory and returns

a measure over pairs (result, new memory): {[e]}step𝛾 ∈ 𝑀 ↦→ Σ𝑂×𝑀 ↦→ [0,∞) where Σ𝑂×𝑀 denotes

the 𝜎-algebra over pairs of results and memory. This measure is then normalized and split into a

distribution of results and a distribution of memories. At each step, we integrate the step function

over the current distribution of memories to compute the next distribution of results and the next

distribution of memories. Details can be found in [Baudart et al. 2020, Section 3.3].

3.1 Particle Filtering Semantics

The semantics of an expression e may be given by approximate sampling through particle filtering.

Particle filtering defines the semantics of e by performingmultiple independent executions (particles)

of e and tracking the likelihood of each execution. We define the semantics of each particle for

an expression e by an initial memory {[e]}init and a step function {[e]}step𝛾 . The step function of

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:8 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

{[𝑐]}init = ()

{[𝑐]}step𝛾 (𝑚,𝑤) = (𝑐,𝑚,𝑤)
{[𝑥]}init = ()

{[𝑥]}step𝛾 (𝑚,𝑤) = (𝛾 (𝑥),𝑚,𝑤)
{[last 𝑥]}init = ()

{[last 𝑥]}step𝛾 (𝑚,𝑤) = (𝛾 (𝑥_last),𝑚,𝑤)
{[op(e)]}init = {[e]}init
{[op(e)]}step𝛾 (𝑚,𝑤) = let 𝑣,𝑚′,𝑤 ′

= {[e]}step𝛾 (𝑚,𝑤) in
(op(𝑣),𝑚′,𝑤 ′)

{[sample(e)]}init = {[e]}init
{[sample(e)]}step𝛾 (𝑚,𝑤) = let 𝜇,𝑚′,𝑤 ′

= {[e]}step𝛾 (𝑚,𝑤) in
(draw(𝜇),𝑚′,𝑤 ′)

{[observe(e𝜇,e𝑣)]}init = ({[e𝜇]}init, {[e𝑣]}init)
{[observe(e𝜇,e𝑣)]}step𝛾 ((𝑚𝜇,𝑚𝑣),𝑤) = let 𝜇,𝑚′

𝜇,𝑤1 = {[e𝜇]}step𝛾 (𝑚𝜇,𝑤) in
let 𝑣,𝑚′

𝑣,𝑤2 = {[e𝑣]}step𝛾 (𝑚𝑣,𝑤1) in
((), (𝑚′

𝜇,𝑚
′
𝑣),𝑤2 ∗ score(𝜇, 𝑣))

{[value(e)]}init = {[e]}init
{[value(e)]}step𝛾 (𝑚,𝑤) = {[e]}step𝛾 (𝑚,𝑤)

{[
e where rec init 𝑥1 = 𝑐1 and . . . and init 𝑥𝑘 = 𝑐𝑘

and 𝑦1 = e1 and . . . and 𝑦𝑛 = e𝑛

]}init

= ((𝑐1, . . . , 𝑐𝑘), ({[e1]}init, . . . , {[e𝑛]}init), {[e]}init){[
e where rec init 𝑥1 = 𝑐1 and . . . and init 𝑥𝑘 = 𝑐𝑘

and 𝑦1 = e1 and . . . and 𝑦𝑛 = e𝑛

]}step

𝛾

(((𝑣1, . . . , 𝑣𝑘), (𝑚1, . . . ,𝑚𝑛),𝑚),𝑤)

= let 𝛾1 = 𝛾 [𝑣1/𝑥1_last] in
. . .

let 𝛾𝑘 = 𝛾 [𝑣𝑘/𝑥𝑘_last] in
let 𝑣1,𝑚

′
1,𝑤1 = {[e1]}step𝛾𝑘 (𝑚1,𝑤) in

let 𝛾 ′1 = 𝛾𝑘 [𝑦1/𝑣1] in
. . .

let 𝑣𝑛,𝑚
′
𝑛,𝑤𝑛 = {[e𝑛]}step𝛾 ′

𝑛−1
(𝑚𝑛,𝑤𝑛−1) in

let 𝛾 ′𝑛 = 𝛾 ′𝑛−1 [𝑦𝑛/𝑣𝑛] in
let 𝑣,𝑚′,𝑤 ′

= {[e]}step
𝛾 ′
𝑛

(𝑚,𝑤𝑛) in
(𝑣, ((𝛾 ′𝑛 (𝑥1), . . . , 𝛾 ′𝑛 (𝑥𝑘)), (𝑚′

1, . . . ,𝑚
′
𝑛),𝑚′),𝑤 ′)

Fig. 5. Particle filtering semantics for a subset of ProbZelus constructs.

each particle takes a memory𝑚 and a real-valued weight𝑤 as input, and returns the value of the

expression, the updated memory for the next iteration, and the updated weight.

Figure 5 presents the particle filtering semantics of selected ProbZelus expressions. The initial

memory of a constant is empty and is represented with the value (). Its step function returns

the value of the constant and leaves the memory and weight unchanged. Similarly, an access to a

variable or the last value of a variable does not update the memory, and its value is taken from

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:9

the environment 𝛾 . The semantics of the application of an operator op(e), e.g. + or ∗, applies the
operator to the evaluation of the sub-expression e and propagates the memory and the weight.

The expression e where rec Eq introduces and updates the state variables 𝑥1, . . . , 𝑥𝑘 , which must

be the subset of the variables 𝑦1, . . . , 𝑦𝑛 used as last 𝑦𝑖 . To define the semantics, we assume that

all init equations appear first and other equations are sorted according to their data dependencies

where the last operator does not introduce a dependency. The memory is composed of a slot for

each variable introduced by an init equation and the memory required for each sub-expression. The

step function puts all the state variables in the environment 𝛾𝑘 and then evaluates each equation to

compute the current value of each variable. Finally, the expression returns the value of e evaluated

in the environment containing the value of all the variables. The memory is updated with the

current value of the state variables.

The semantics of sample(e) introduces probability into program execution. The step function

evaluates the sub-expression e to obtain a distribution 𝜇 and draws a random value from 𝜇 using

the draw primitive. The memory of this expression is the memory of the sub-expression.

The expression observe(e𝜇, e𝑣) conditions the model using the weight 𝑤 . The step function

evaluates the two sub-expressions to obtain a distribution 𝜇 and a value 𝑣 and updates the weight by

multiplying it by score(𝜇, 𝑣), the value of the probability density of 𝜇 in 𝑣 , i.e. score(𝜇, 𝑣) = 𝜇pdf (𝑣).
In the particle filter semantics, the value function simply evaluates its argument.

Inference. In this work, we present inference as a transformation called infer operating on

ProbZelus expressions that can contain free variables whose values are defined in the environment𝛾 .

The semantics of infer on expression e defines a stream of distributions as an initial memory and a

step function. The memory is the distribution of possible memory configurations for e. The step

function computes the distribution of outputs and the distribution of memories by performing 𝑁

independent executions of 𝑒 with the input memory sampled from the distribution of memories

from the previous iteration.

For particle filtering (PF), the infer construct is defined as follows:

⟦inferPF (𝑁, 𝑒)⟧init = 𝛿{[𝑒]}init

⟦inferPF (𝑁, 𝑒)⟧step𝛾 (𝑚) = let

[
𝑣𝑖 ,𝑚

′
𝑖 ,𝑤

′
𝑖 = let 𝑚𝑖 = draw(𝑚) in

{[𝑒]}step𝛾 (𝑚𝑖 , 1)

]

1≤𝑖≤𝑁
in

let 𝜇 = 𝜆𝑈 . Σ𝑁
𝑖=1𝑤𝑖 ∗ 𝛿 (𝑣𝑖 ,𝑚𝑖) (𝑈) in

(𝜋1∗ (𝜇), 𝜋2∗ (𝜇))

The initial memory is a Delta distribution on the initial memory of e. The step function first

builds a size-𝑁 array containing the result of 𝑁 executions of e on memories randomly drawn

from the input memory distribution. Then, the distribution 𝜇 of pairs of outputs and memory is

computed using the weight from each particle:𝑤𝑖 = 𝑤 ′
𝑖 /Σ𝑁

𝑗=1𝑤
′
𝑗 . Finally, the individual distributions

of outputs and memories are separated using the pushforward of 𝜇 across the projections 𝜋1 and 𝜋2.

3.2 Delayed Sampling Semantics

As an alternative to fully approximate particle filtering, ProbZelus programs may execute using

delayed sampling [Murray et al. 2018], a technique for incorporating exact inference into the

runtime inference system. With delayed sampling, the key idea is as follows: instead of eagerly

drawing samples at each invocation of the sample operation, the system will execute lazily, delaying

the sampling operation in the hope that it can find and exploit an opportunity to apply a known

closed-form solution to the inference problem. A complete exposition of delayed sampling in

ProbZelus may be found in Baudart et al. [2020].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:10 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

{[𝑐]}init = ()

{[𝑐]}step𝛾 (𝑚,𝑔,𝑤) = (𝑐,𝑚,𝑔,𝑤)
{[𝑥]}init = ()

{[𝑥]}step𝛾 (𝑚,𝑔,𝑤) = (𝛾 (𝑥),𝑚,𝑔,𝑤)
{[last 𝑥]}init = ()

{[last 𝑥]}step𝛾 (𝑚,𝑔,𝑤) = (𝛾 (𝑥_last),𝑚,𝑔,𝑤)
{[op(e)]}init = {[e]}init

{[op(e)]}step𝛾 (𝑚,𝑔,𝑤) = let 𝑣,𝑚′, 𝑔′,𝑤 ′
= {[e]}step𝛾 (𝑚,𝑔,𝑤) in

(app(op, 𝑣),𝑚′, 𝑔′,𝑤 ′)
{[sample(e)]}init = {[e]}init
{[sample(e)]}step𝛾 (𝑚,𝑔,𝑤) = let 𝜇,𝑚′, 𝑔′,𝑤 ′

= {[e]}step𝛾 (𝑚,𝑔,𝑤) in
let 𝑋,𝑔′′ = assume(𝜇, 𝑔′) in
(𝑋,𝑚′, 𝑔′′,𝑤 ′)

{[observe(e𝜇,e𝑣)]}init = ({[e𝜇]}init, {[e𝑣]}init)
{[observe(e𝜇,e𝑣)]}step𝛾 ((𝑚𝜇,𝑚𝑣), 𝑔,𝑤) = let 𝜇,𝑚′

𝜇, 𝑔𝜇,𝑤1 = {[e𝜇]}step𝛾 (𝑚𝜇, 𝑔,𝑤) in
let 𝑋,𝑔𝑥 = assume(𝜇, 𝑔𝜇) in
let 𝑣,𝑚′

𝑣, 𝑔𝑣,𝑤2 = {[e𝑣]}step𝛾 (𝑚𝑣, 𝑔𝑥 ,𝑤1) in
let 𝑣 ′, 𝑔′𝑣 = value(𝑣, 𝑔𝑣) in
let 𝑔′, 𝑠 = observe(𝑋, 𝑣 ′, 𝑔′𝑣) in
((), (𝑚′

𝜇,𝑚
′
𝑣), 𝑔′, 𝑠 ∗𝑤2)

{[value(e)]}init = {[e]}init
{[value(e)]}step𝛾 (𝑚,𝑔,𝑤) = let 𝑋,𝑚′, 𝑔′,𝑤 ′

= {[𝑒]}step𝛾 (𝑚,𝑔,𝑤) in
let 𝑣, 𝑔′′ = value(𝑋,𝑔′) in
(𝑣,𝑚′, 𝑔′′,𝑤 ′)

{[
e where rec init 𝑥1 = 𝑐1 and . . . and init 𝑥𝑘 = 𝑐𝑘

and 𝑦1 = e1 and . . . and 𝑦𝑛 = e𝑛

]}init

= ((𝑐1, . . . , 𝑐𝑘), ({[e1]}init, . . . , {[e𝑛]}init), {[e]}init){[
e where rec init 𝑥1 = 𝑐1 and . . . and init 𝑥𝑘 = 𝑐𝑘

and 𝑦1 = e1 and . . . and 𝑦𝑛 = e𝑛

]}step

𝛾

(((𝑣1, . . . , 𝑣𝑘), (𝑚1, . . . ,𝑚𝑛),𝑚), 𝑔,𝑤)

= let 𝛾1 = 𝛾 [𝑣1/𝑥1_last] in
. . .

let 𝛾𝑘 = 𝛾 [𝑣𝑘/𝑥𝑘_last] in
let 𝑣1,𝑚

′
1, 𝑔1,𝑤1 = {[e1]}step𝛾𝑘 (𝑚1, 𝑔,𝑤) in

let 𝛾 ′1 = 𝛾𝑘 [𝑦1/𝑣1] in
. . .

let 𝑣𝑛,𝑚
′
𝑛, 𝑔𝑛,𝑤𝑛 = {[e𝑛]}step𝛾 ′

𝑛−1
(𝑚𝑛, 𝑔𝑛−1,𝑤𝑛−1) in

let 𝛾 ′𝑛 = 𝛾 ′𝑛−1 [𝑦𝑛/𝑣𝑛] in
let 𝑣,𝑚′, 𝑔′,𝑤 ′

= {[e]}step
𝛾 ′
𝑛

(𝑚,𝑔𝑛,𝑤𝑛) in
(𝑣, ((𝛾 ′𝑛 (𝑥1), . . . , 𝛾 ′𝑛 (𝑥𝑘)), (𝑚′

1, . . . ,𝑚
′
𝑛),𝑚′), 𝑔′,𝑤 ′)

Fig. 6. Delayed sampling semantics of ProbZelus programs. These semantics make use of the assume, value,

and observe functions, which are the common interface for delayed sampling and semi-symbolic inference.

Pairs are automatically lifted to n-ary arguments in operator application. Differences with Figure 5 are

highlighted.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:11

Following Murray et al. [2018], we define the semantics in terms of a symbolic interface, a set of

functions that can be implemented to provide either delayed sampling, as presented in Baudart

et al. [2020]; Murray et al. [2018], or semi-symbolic inference, as presented in Section 4.

Definition 3.1 (Symbolic Interface). The symbolic interface consists of three functions that ma-

nipulate a symbolic state 𝑔. The symbolic state 𝑔 is a data structure that only interacts with the

semantics through these functions.

• 𝑋,𝑔′ = assume(𝜇, 𝑔) returns a pair of a new random variable 𝑋 and a new symbolic state 𝑔′

that has 𝑋 bound to a symbolic representation of the input distribution 𝜇.

• 𝑣, 𝑔′ = value(𝑋,𝑔) samples the input random variable and returns the sampled value and

the new symbolic state.

• 𝑔′, 𝑠 = observe(𝑋, 𝑣, 𝑔) conditions the model on the fact that the input random variable 𝑋

takes on the value 𝑣 , and returns the new state and the score (i.e., the value of the probability

density) of 𝑣 under the marginal distribution of 𝑋 .

For the purpose of this section, the symbolic state𝑔 is abstract. Different implementations provide

either delayed sampling (e.g. Murray et al. [2018]) or semi-symbolic inference (Section 4).

Semantics. In Figure 6, we redefine the semantics of Figure 5 to use delayed sampling constructs,

by means of the symbolic interface. The semantics of an expression {[e]}step𝛾 is now a function that

takes in a memory𝑚, a symbolic state 𝑔, and a weight𝑤 , and returns a symbolic value, an updated

memory, a new symbolic state, and an updated weight. The definition is similar to that in Figure 5

except that 1) the symbolic state 𝑔 is threaded throughout the semantics, 2) an operator application

yields a symbolic term app(op, 𝑣) for the application of op to the value 𝑣 , and 3) the semantics of

sample, observe, and value make use of the symbolic interface functions.

Inference. Inference under delayed sampling (DS) is also defined as a transformation on ProbZelus

expressions. It is defined as follows:

⟦inferDS (𝑁, 𝑒)⟧init = 𝛿 ({[𝑒]}init,{})

⟦inferDS (𝑁, 𝑒)⟧step𝛾 (𝑚) = let



𝑑𝑖 ,𝑚
′
𝑖 , 𝑔

′
𝑖 ,𝑤

′
𝑖 = let 𝑚𝑖 , 𝑔𝑖 = draw(𝑚) in

let 𝑒𝑖 ,𝑚
′
𝑖 , 𝑔

′
𝑖 ,𝑤

′
𝑖 = {[𝑒]}step𝛾 (𝑚𝑖 , 𝑔𝑖 , 1) in

distribution(𝑒𝑖 , 𝑔′𝑖),𝑚′
𝑖 , 𝑔

′
𝑖 ,𝑤

′
𝑖

1≤𝑖≤𝑁
let 𝜇 = 𝜆𝑈 . Σ𝑁

𝑖=1𝑤𝑖 ∗ 𝑑𝑖 (𝜋1 (𝑈)) ∗ 𝛿 (𝑚′
𝑖
,𝑔′
𝑖
) (𝜋2 (𝑈)) in

(𝜋1∗ (𝜇), 𝜋2∗ (𝜇))
The definition is similar to the particle-filter definition of infer, but additionally threads the

symbolic state 𝑔 through the execution. The initial memory is a Delta distribution of the initial

memory of e and the empty symbolic state {}, and the output is a pair of a distribution of outputs

and a distribution of memories and symbolic states. The step function of each particle can return a

symbolic expression containing un-sampled variables, and the distribution function returns the

distribution corresponding to the symbolic expression 𝑒𝑖 without altering the symbolic state.

Correctness. The operations in the symbolic interface must be designed such that the symbolic

state represents the same distribution as the particle filter. Lundén [2017] proposed a sufficient

condition for the delayed sampling symbolic state 𝑔 to be correct. Here we summarize the general

idea behind this correctness condition and restate it for the symbolic interface in general. We leave

the full formalization of correctness of the symbolic interface to the appendix of the extended

version of the paper [Atkinson et al. 2022b].

Let Pr(V) be the distribution induced by assume statements on the set of random variables V .

From this, for each random variable 𝑋 , there is a conditional distribution Pr(𝑋 | 𝑉 = 𝑣, 𝑂̂ = 𝑜) that

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:12 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

𝐷 F N(𝐸, 𝐸) | Bernoulli(𝐸) | 𝛽 (𝐸, 𝐸) | 𝛿 (𝐸)

𝐸 F app(Op,𝐸∗) | 𝑟 | 𝑐 | 𝑋

Op F + | - | * | / | sqrt | ite | = | != | < | <=

𝑟 ∈ R, 𝑐 ∈ Z, 𝑋 ∈ V

Fig. 7. Grammar of symbolic expressions.

specifies the marginal distribution of 𝑋 conditioned on the random variables in 𝑉 and 𝑂̂ taking

on the values 𝑣 and 𝑜 , respectively. We assume that 𝑉 is the set of random variables that have

previously been passed to value and 𝑂̂ is the set of random variables that have been passed to

observe. According to Lundén [2017], the symbolic interface functions are correct if:

• value(𝑋,𝑔) draws a sample from Pr(𝑋 | 𝑉 = 𝑣, 𝑂̂ = 𝑜), and
• observe(𝑋, 𝑟, 𝑔) evaluates the probability density of Pr(𝑋 | 𝑉 = 𝑣, 𝑂̂ = 𝑜) at the value 𝑟 .

We provide a more detailed formalism that precisely specifies Pr(𝑋 | 𝑉 = 𝑣, 𝑂̂ = 𝑜) in the appendix

of the extended version [Atkinson et al. 2022b].

4 SEMI-SYMBOLIC INFERENCE

In this section, we present semi-symbolic inference as a series of definitions that implement the

symbolic interface from Definition 3.1. The section begins by defining the syntax of symbolic

expressions and giving a definition of the symbolic state. It then implements the functions of the

symbolic interface through a series of definitions:

• Section 4.1 defines the swap operation, the core building block of semi-symbolic inference

that changes the dependency order between two random variables in the symbolic state.

• Section 4.2 presents the eval and intervene helper functions, which evaluate symbolic

expressions and perform interventions on the symbolic state, respectively.

• Section 4.3 presents the hoist operation, which combines a sequence of swap operations to

turn a given random variable into a root.

• Section 4.4 shows how to implement the interface in Definition 3.1.

• Section 4.5 shows that these definitions satisfy correctness properties.

Symbolic Expressions. Figure 7 gives the grammar of symbolic expressions used by semi-symbolic

inference. The grammar defines a set of symbolic distributions 𝐷 , consisting of a Gaussian dis-

tribution (denoted N), a Bernoulli distribution, a Beta distribution, and a Delta distribution. The

parameters for each distribution type are elements of a grammar of expressions 𝐸. An expression is

either a real number 𝑟 , an integer 𝑐 , a random variable 𝑋 , or a n-ary operator Op applied recursively

to sub-expressions: app(Op,𝐸∗). The operators consist of standard arithmetic operators (+, -, *, and

/), the square root operator sqrt, a conditional operator ite, and standard comparison operators

(=, !=, <, and <=). The interpretation of the conditional operator is that app(ite,𝑒𝑖,𝑒𝑡,𝑒𝑒) returns

the value of the expression 𝑒𝑡 if the condition expression 𝑒𝑖 evaluates to true, and otherwise returns

the value of the expression 𝑒𝑒 .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:13

For example, N(𝑋𝑣 − 2 ∗ 𝑋𝑜 , 1), the distribution of 𝑋𝑙 in Figure 3b, would be encoded in the

grammar of Figure 7 as

N(app(-,𝑋𝑣,app(*,2,𝑋𝑜)), 1)

Definition 4.1 (Symbolic State). We define the symbolic state of the semi-symbolic runtime infer-

ence system as a finite mapping from random variables to distributions 𝑔 ∈ 𝐺 = V ↦→ 𝐷 .

For example, the symbolic state depicted in Figure 3b is the finite map

𝑔example = {𝑋𝑣 ↦→ N (0, 2500); 𝑋𝑜 ↦→ N (0, 2500); 𝑋𝑙 ↦→ N (app(-,𝑋𝑣,app(*,2,𝑋𝑜)), 1)}

4.1 Swapping Random Variables

Algorithm 1 The definition of swap, incorporating exact inference for Gaussian distributions,

Beta distributions, and Bernoulli distributions. Note that this algorithm uses shorthand notation for

symbolic expression construction, e.g. 𝑒1 + 𝑒2 constructs a symbolic addition term app(+,𝑒1,𝑒2).

function swap(𝑋1, 𝑋2, 𝑔)

switch 𝑔(𝑋1), 𝑔(𝑋2) do
case N(𝜇0, var0),N(𝜇, var) if affine(𝜇, 𝑋1) = (𝑎, 𝑏) ∧ const(var0, var)

𝜇′0, var
′
0 ← (𝑎 * 𝜇0) + 𝑏, (𝑎 * 𝑎) * var0

var′′0 , 𝜇
′′
0 ← 1

1
var0

+ 1
var

,
(

𝜇′0
var′0

+
𝑋2

var

)
* var′′0

return (𝑔[𝑋1 ↦→ N
(
𝜇′′0 - 𝑏

𝑎
,
var′′0
𝑎 * 𝑎

)
]

[𝑋2 ↦→ N
(
𝜇′0, var

′
0 + var

)
], true)

case 𝛽 (𝑎, 𝑏), Bernoulli(𝑋1)
return (𝑔[𝑋1 ↦→ 𝛽 (𝑎 + (ite(𝑋2, 1, 0)), 𝑏 + (ite(𝑋2, 0, 1)))]

[𝑋2 ↦→ Bernoulli
(

𝑎
𝑎 + 𝑏

)
], true)

case Bernoulli(𝑝1), Bernoulli(𝑝2)
𝑝′1 ←

𝑝1 * ite(𝑋2,𝑝2,(1 - 𝑝2))[𝑋1←1]
ite(𝑋2,𝑝

′
2,(1 - 𝑝′

2))
𝑝′2 ← (𝑝1 * 𝑝2 [𝑋1 ← 1]) + ((1 - 𝑝1) * 𝑝2 [𝑋1 ← 0])
return (𝑔[𝑋1 ↦→ Bernoulli(𝑝′1)]

[𝑋2 ↦→ Bernoulli(𝑝′2)], true)
else

return (𝑔, false)
end function

The core operation of semi-symbolic inference is the swap. Swapping random variables changes

the probabilistic dependence structure of the symbolic state without changing the overall distribu-

tion the symbolic state represents.

Requirements. To swap two random variables 𝑋1 and 𝑋2, the following must hold:

(1) 𝑋1 is a parent of 𝑋2 in the initial state, making 𝑋2 a parent of 𝑋1 in the new state.

(2) After the swap, all variables other than 𝑋1 and 𝑋2 have the same distributions as before.

(3) The symbolic state represents the same overall joint distribution before and after the swap.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:14 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

Dependency Cycles. Furthermore, a swap is only legal in some circumstances because a swap

may introduce new probabilistic dependencies between random variables. In general, a swap will

introduce dependencies between each of 𝑋1 and 𝑋2 and all parents of either 𝑋1 or 𝑋2. A legal

swap is one that does not create dependency cycles between random variables. The function

can_swap(𝑋1, 𝑋2, 𝑔) determines if the swap of 𝑋1 and 𝑋2 is legal in symbolic state 𝑔, i.e. whether

or not swapping 𝑋1 and 𝑋2 will introduce a dependency cycle.

Swap Algorithm. Algorithm 1 defines the swap function for Gaussians, Beta distributions, and

Bernoulli distributions. The function takes as input a parent random variable 𝑋1, a child random

variable 𝑋2, and an initial state 𝑔. It returns a modified state and a boolean indicating whether or

not a swap is possible using closed-form solutions known to the semi-symbolic inference system.

Note that there is a difference between a swap being illegal due to dependency cycles and being

impossible due to the semi-symbolic inference system not identifying a closed-form solution. The

function swap returns false if no closed-form solution exists and a swap is impossible, whereas

can_swap returns false if the swap is illegal due to dependency cycles.

Also note that for ease of presentation, Algorithm 1 uses shorthand notation for symbolic

expression construction. In particular, Algorithm 1 uses 𝑒1+𝑒2, 𝑒1−𝑒2, 𝑒1∗𝑒2, 𝑒1𝑒2 , and ite(𝑒𝑖 , 𝑒𝑡 , 𝑒𝑒) as
shorthand for app(+,𝑒1,𝑒2), app(-,𝑒1,𝑒2), app(*,𝑒1,𝑒2), app(/,𝑒1,𝑒2), and app(ite,𝑒𝑖,𝑒𝑡,𝑒𝑒),

respectively. We stress that Algorithm 1 performs no numerical computation, and that these

operations are constructors for symbolic expressions.

The implementation of swap is separated into three cases:

Gaussian. The first case occurs when both 𝑋1 and 𝑋2 are Gaussian-distributed, and also requires

the variance of each distribution to be constant (i.e., to not depend on any random variables) and

for the mean of 𝑋2 to be expressible as an affine function of 𝑋1. We express the analysis for this

condition as affine(𝜇, 𝑋1) = (𝑎, 𝑏), which means that 𝜇 can be written as 𝑎 ∗ 𝑋1 + 𝑏 where 𝑎 and 𝑏

are themselves symbolic expressions that may contain random variables other than 𝑋1.

This case applies the following rules for Gaussian distributions: 1) the symbolic expressions

𝜇′0 and var′0 represent a linear transformation of the Gaussian distribution of 𝑋1, which is also

a Gaussian distribution; 2) the expressions 𝜇′′0 , var
′′
0 are computed from the rules for conjugate

priors [Fink 1997]; 3) the final expressions for the new distributions of 𝑋1 and 𝑋2 incorporate both

the inverse linear transformation to the one used to generate 𝜇′0 and var′0.
Using these rules, the symbolic state is updated and returned. The notation 𝑔[𝑋 ↦→ 𝑑] means

that the symbolic state 𝑔 is updated with the random variable 𝑋 remapped to the distribution 𝑑 .

Example. The example in Section 2 makes extensive use of swaps between Gaussian distribu-

tions. Here, we briefly discuss how swap executes to produce the distribution for 𝑋𝑙 in Figure 3c.

The runtime inference system produces the symbolic state depicted in Figure 3c from one de-

picted in Figure 3b by swapping the random variable 𝑋𝑣 with its child 𝑋𝑙 . Formally, it executes

swap(𝑋𝑣, 𝑋𝑙 , 𝑔example), where 𝑔example is the symbolic state depicted in Figure 3b.

This falls into the Gaussian case, with 𝜇0 = 0, var0 = 2500, 𝜇 = app(-,𝑋𝑣,app(*,2,𝑋𝑜)),

and var = 1. The affine analysis concludes that the expression for 𝜇 can be written as 𝜇 = 1 ∗
𝑋𝑣 + (−2 ∗ 𝑋𝑜), and thus produces 𝑎 = 1 and 𝑏 = app(*,−2,𝑋𝑜). Next, the swap function uses

these values of 𝜇0, var0, 𝑎, and 𝑏 to compute that 𝜇′0 = app(+,app(*,1,0),app(*,−2,𝑋𝑜)) and

var′0 = app(*,app(*,1,1),2500). Ultimately, using these values of 𝜇′0, var
′
0, and var, the swap

function will return a symbolic state in which 𝑋𝑙 maps to the symbolic expression

N(app(+,app(*,1,0),app(*,−2,𝑋𝑜)), app(+,app(*,app(*,1,1),2500),1))

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:15

Similarly, the swap function will compute the symbolic expressions 𝜇′′0 and var′′0 and use them to

produce a new distribution for 𝑋𝑣 .

Beta-Bernoulli. The second case occurs when 𝑋1 is distributed according to a Beta distribution

and 𝑋2 is distributed according to a Bernoulli distribution. This is an instance of the Beta-Bernoulli

conjugate model, with its own rules and transformations [Fink 1997].

Bernoulli-Bernoulli. The third case applies when both 𝑋1 and 𝑋2 have Bernoulli distributions.

This case applies the rules of discrete probability to produce a new symbolic state. In particular, it

sums out the random variable 𝑋1 to produce an expression for the new probability 𝑝′2 of 𝑋2. It then

uses Bayes’ rule to produce a new expression for 𝑋1. Note that this definition uses the notation

𝑒1 [𝑋 ← 𝑒2] to denote expression 𝑒1 with expression 𝑒2 substituted for the random variable 𝑋 .

Extensibility. In Algorithm 1, if none of these cases apply, swap returns the existing state and

the value false. However, the definition of swap is extensible and can handle additional cases as

necessary. In our implementation, we have added cases for multivariate Gaussians and categorical

distributions. Additional cases for more conjugate priors (e.g. those in Fink [1997]) may follow the

example of the Beta-Bernoulli conjugacy from the second case of Algorithm 1.

4.2 Evaluation and Intervention

Evaluation. To simplify symbolic expressions introduced by operator applications, semi-symbolic

inference makes use of a partial evaluator: a function eval(𝑒, 𝑔) ∈ 𝐸 × 𝐺 ↦→ 𝐸 that takes in an

expression and a symbolic state and produces a new expression that is evaluated to a constant if

possible. The partial evaluator is defined recursively on the structure of expressions. For example,

on addition, the evaluator proceeds according to:

eval(app(+,𝑒1,𝑒2), 𝑔) =
{
𝑟1 + 𝑟2 eval(𝑒1, 𝑔) = 𝑟1 ∧ eval(𝑒2, 𝑔) = 𝑟2

app(+,eval(𝑒1, 𝑔),eval(𝑒2, 𝑔)) otherwise

This equation specifies that if both subexpressions 𝑒1 and 𝑒2 evaluate to real numbers, the partial

evaluator performs real-number arithmetic and returns the result. Otherwise, it recursively partially

evaluates the subexpressions and leaves the result symbolic.

For example, the variance of the distribution for 𝑋𝑙 in Figure 3c is the symbolic expression

app(+,2500,1). Letting 𝑔′
example

be a depiction of the symbolic state in Figure 3c, this expres-

sion evaluates to eval(app(+,2500,1), 𝑔′
example

) = 2501. By contrast, the mean of this distri-

bution is app(-,0,app(*,2,𝑋𝑜)), which cannot be evaluated any further, which means that

eval(app(-,0,app(*,2,𝑋𝑜)), 𝑔
′
example

) = app(-,0,app(*,2,𝑋𝑜)).

One unique feature of the semi-symbolic partial evaluator is how it handles Delta distributions.

In particular, the evaluator leverages the fact that Delta-distributed variables must only take on

one value and therefore can be substituted like normal program variables. The partial evaluator

handles Deltas according to the equation:

eval(𝑋,𝑔) =
{
eval(𝑒, 𝑔) 𝑔(𝑋) = 𝛿 (𝑒)
𝑋 otherwise

This equation states that if a random variable has a Delta distribution, then the partial evaluator

evaluates the Delta’s internal expression and returns the result. For example, in Figure 3e, the

distribution for𝑋𝑜 is only a function of constants and𝑋𝑙 , and𝑋𝑙 has a Delta distribution. Formally, if

𝑔′′′
example

is the symbolic state depicted in Figure 3e, then eval(𝑔′′′
example

(𝑋𝑜), 𝑔′′′example
) = N(0.4, 500).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:16 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

We also define a version of the partial evaluator that updates the symbolic state, which we write

eval∗ (𝑋,𝑔) ∈ V ×𝐺 ↦→ 𝐺 . This evaluator updates each parameter of a given random variable’s

distribution to be its partially evaluated counterpart. For example, for Gaussian distributions:

eval∗ (𝑋,𝑔) = 𝑔[𝑋 ↦→ N (eval(𝜇, 𝑔), eval(var, 𝑔))] if 𝑔(𝑋) = N(𝜇, var)
Intervention. An intervention replaces a root node with a Delta distribution. Intervention is

defined as the function intervene ∈ V × V × 𝐺 ↦→ 𝐺 that takes in a random variable, the

intervention value, the symbolic state, and returns the new symbolic state. V denotes the sample

space of the random variable. The function is defined as follows:

intervene(𝑋, 𝑟, 𝑔) = 𝑔[𝑋 ↦→ 𝛿 (𝑟)]
In Figure 3 the transition from 3d to 3e depicts the execution of𝑔′′′

example
= intervene(𝑋𝑙 ,−1, 𝑔′′example

),
where 𝑔′′

example
is the symbolic state depicted in Figure 3d and 𝑔′′′

example
is the one depicted in Figure 3e.

4.3 Hoisting

Swaps are composed together to support the implementation of the operations from Definition 3.1

by an operation called hoist. The objective of hoisting a random variable is to update the symbolic

state so that the variable in question is a root that depends on no other random variables.

Preliminaries. The hoist operation depends on functions manipulating lists of random variables:

• get_parents(𝑋,𝑔) returns a list of parents of 𝑋 in 𝑔, i.e. a list of random variables that are

free variables in the expression of the distribution of 𝑋 .

• topo_sort(𝑋,𝑔) sorts a list of random variables in topological order according to the parent-

child relation of 𝑔.

• reverse(𝑋) reverses a list of random variables.

Hoisting Algorithm. Algorithm 2 defines hoist ∈ V ×𝐺 ↦→ 𝐺 . It makes use of a helper function

called hoist_helper that takes a set of root variables given by the parameter roots. hoist_helper’s

objective is to turn the input variable 𝑋cur into a root variable, except that variables that are in

roots do not count for the purpose of determining whether or not 𝑋cur is a root variable.

To do so, hoist_helper first recursively calls itself on all parents of 𝑋cur in topological order.

The topo_sort function yields an order such that the first element of the resulting parents list has

no ancestors that are also in parents. Then, because on subsequent recursive calls, all previously

visited parents are added to roots and are thus excluded from being hoisted or swapped, later

elements of parents will be descendants of earlier elements of parents after the recursive calls.

After the recursion, the function iterates through all parents in reverse topological order. This

reverse ordering ensures that the algorithm can always swap each parent with𝑋cur without creating

a cycle. This is because in order to create a cycle, the algorithm would need to swap the child node

with a parent whose descendant is the child node itself. By iterating in reverse topological order,

any other parent that would enable such a path to exist in the dependency graph must already

have been swapped and therefore does not have 𝑋child as a dependency. The can_swap assertion

encapsulates the above argument that the algorithm does not create cycles. In the appendix of

the extended paper [Atkinson et al. 2022b], we formally prove that this assertion always passes at

runtime.

In case the distributions are not conjugate and therefore a swap is impossible, as indicated by the

conjugate variable being false, the algorithm throws an exception that is caught at the outermost

level. It then calls the value function (from Definition 3.1 and defined below in Section 4.4) to

replace the parent variable with a random sample. It next evaluates the child random variable to

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:17

Algorithm 2 Hoisting a random variable to be a root depending on no other random variables.

function hoist_helper(𝑋cur, roots, 𝑔)

parents← topo_sort(get_parents(𝑋cur, 𝑔))
roots’← roots; 𝑔′ ← 𝑔

for 𝑋par ∈ parents do

if 𝑋par ∉ roots then

𝑔′ ← hoist_helper(𝑋par, roots’, 𝑔
′); roots’← 𝑋par :: roots’

end if

end for

𝑔′′ ← 𝑔′

for 𝑋par ∈ reverse(parents) do

if 𝑋par ∉ roots then

assert can_swap(𝑋par, 𝑋cur, 𝑔
′′); (𝑔′′, conjugate) ← swap(𝑋par, 𝑋cur, 𝑔

′′)
if not conjugate then

throw (𝑋par, 𝑋cur)
end if

end if

end for

return 𝑔′′

end function

function hoist(𝑋in, 𝑔)

try

return hoist_helper(𝑋in, {}, 𝑔)
catch (𝑋par, 𝑋child)

(_, 𝑔′) ← value(𝑋par, 𝑔); 𝑔
′′ ← eval∗ (𝑋child, 𝑔

′); return hoist(𝑋in, 𝑔
′′)

end try

end function

eliminate the resulting Delta distribution (thus eliminating the need to perform this swap) and

finally restarts the hoisting process from the beginning.

Example. In the example in Figure 3, Figures 3bś3d depict the result of executinghoist(𝑋𝑙 , 𝑔example)
where 𝑔example is the symbolic state depicted in Figure 3b. The function hoist immediately calls

hoist_helper with 𝑋cur = 𝑋𝑙 and roots = {}. The first stage of hoist_helper is to recursively

call hoist_helper on its ancestors in topological order. The ancestors of 𝑋𝑙 are 𝑋𝑜 and 𝑋𝑣 , and as

they have no dependencies between each other, any order is a valid topological order. Furthermore,

because neither𝑋𝑜 nor𝑋𝑣 has a parent, calling hoist_helper on these variables has no effect. After

all recursive calls, hoist_helper(𝑋𝑙 , {}) swaps 𝑋𝑙 with both 𝑋𝑜 and 𝑋𝑣 . In the example in Figure 3,

we assume that hoist_helper first swaps with 𝑋𝑣 (Figure 3c) and then with 𝑋𝑜 (Figure 3d). After

these swaps, hoist returns the resulting symbolic state.

4.4 Symbolic Interface

In this section, we describe how to implement the symbolic interface presented in Definiton 3.1.

Assume. The operation assume ∈ 𝐷 ×𝐺 ↦→ V ×𝐺 takes in a distribution and a current state,

and returns a new random variable and the updated state. It is defined as follows:

assume(𝑑,𝑔) = (𝑋new, 𝑔[𝑋new ↦→ 𝑑]) where 𝑋new is not assigned in 𝑔

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:18 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

This definition specifies that the assume function returns a fresh random variable, and that it

updates the symbolic state to have the new random variable point to the input distribution.

Value. The function value ∈ V × 𝐺 ↦→ 𝐺 × V instructs the inference system to replace a

particular random variable with a sample from its marginal distribution and return the resulting

sample. It is defined as follows, and is mutually recursive with the hoist operation:

value(𝑋,𝑔) = let 𝑔′ = hoist(𝑋,𝑔) in
let 𝑔′′ = eval∗ (𝑋,𝑔′) in
let 𝑣 = draw(𝑔′′ (𝑋)) in
(𝑣, intervene(𝑋, 𝑣, 𝑔′′))

This definition specifies that the value function first hoists the variable 𝑋 , guaranteeing that in

the resulting symbolic state it is a root. After hoisting, it evaluates the distribution of the random

variable that was just hoisted, producing a closed-form distribution that it then samples from. It

further updates the symbolic state by intervention.

Observe. The function observe ∈ V × V × 𝐺 ↦→ 𝐺 × R conditions the symbolic state on the

input random variable taking on the input value and returns the updated state and a score which

corresponds to how likely this value is according to its marginal density. It is defined as follows:

observe(𝑋, 𝑣, 𝑔) = let 𝑔′ = hoist(𝑋,𝑔) in
let 𝑔′′ = eval∗ (𝑋,𝑔′) in
let 𝑠 = score(𝑔′′ (𝑋), 𝑣) in
let 𝑔′′′ = intervene(𝑋, 𝑣, 𝑔′′) in
(𝑔′′′, 𝑠)

This definition specifies that the observe operation first hoists the input random variable and fully

evaluates its distribution’s parameters as it is now a root. It then calculates the probability density

of the variable’s marginal distribution using the score function. It returns a combination of the

new state, obtained by intervening to condition the symbolic state on the fact that the random

variable takes on the specified value, and the new weight.

4.5 Correctness

In this section, we formalize the correctness of semi-symbolic inference. We present the key ideas

necessary to specify and prove the correctness of each operation defined in the previous sections,

leaving the full formalization to the appendix of the extended paper [Atkinson et al. 2022b].

Swap Correctness. We first present the correctness requirements for swap. The swap function is

correct if it preserves the joint distribution of all random variables. This statement requires defining

⟦𝑔⟧, the joint distribution that is the meaning of the symbolic state 𝑔 . We defer this definition to

Atkinson et al. [2022b], and formalize the correctness property as follows:

Lemma 4.2 (Swap Preservation). If (𝑔′, _) = swap(𝑋1, 𝑋2, 𝑔), then ⟦𝑔′⟧ = ⟦𝑔⟧.
The proof of the theorem is also in Atkinson et al. [2022b]. The key idea is to incorporate known

results about conjugate priors [Fink 1997].

Evaluation Correctness. Similarly, the eval∗ operation must also preserve the joint distribution:

Lemma 4.3 (eval∗ Correctness). If 𝑔′ = eval∗ (𝑋,𝑔), then ⟦𝑔′⟧ = ⟦𝑔⟧.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:19

Intervention Correctness. The key idea for intervene is that if the random variable passed to

it is a root, then it should perform conditioning. In this theorem, we use the notation Pr𝑔 to refer

to probability distributions implied by the symbolic state 𝑔. We construct conditional probability

distributions from the overall joint distribution ⟦𝑔⟧ using standard techniques; see Atkinson et al.

[2022b] for details. We formalize this idea as follows:

Lemma 4.4 (intervene Correctness). If 𝑋 is a root in 𝑔, and 𝑔′ = intervene(𝑋, 𝑟, 𝑔), then for

any subsetV′ of random variables mapped in 𝑔, Pr𝑔′ (V′) = Pr𝑔 (V′ | 𝑋 = 𝑟).
Hoist Correctness. We next present the correctness of the subroutine hoist_helper. This sub-

routine must preserve the semantics of the overall joint distribution. It is also designed to turn its

input variable into a root, with the exception of variables in roots. We formalize this as follows:

Lemma 4.5 (hoist_helper Correctness). If 𝑔′ = hoist_helper(𝑋cur, roots, 𝑔), and no excep-
tions are thrown, ⟦𝑔′⟧ = ⟦𝑔⟧, and in 𝑔′, 𝑋cur is a root, except it may depend on variables in roots.

Next, we establish the correctness of hoist. Due to the fact that hoist and value are mutually

recursive, we combine their correctness properties into a single theorem. The correctness theorem

for hoist states that hoist turns the input random variable into a root and preserves the symbolic

state, except that the new symbolic state will be conditioned on any variables that needed to be

sampled due to lack of conjugacy. The correctness theorem for value states that it produces a

random sample from the appropriate marginal distribution, and conditions the new symbolic state

on this and any other sampled variables.

Theorem 4.6 (hoist and value Correctness). If 𝑔′ = hoist(𝑋in, 𝑔), then Pr𝑔′ (V) = Pr𝑔 (V |
𝑉 = 𝑣), where𝑉 is the set of variables sampled during the execution of hoist and 𝑣 is the corresponding

set of sampled values. Furthermore, after executing hoist, 𝑋in is a root in 𝑔
′.

Also, if (𝑔′, 𝑣) = value(𝑋,𝑔), then 𝑣 is a sample from Pr𝑔 (𝑋 | 𝑉 = 𝑣) and Pr𝑔′ (V) = Pr𝑔 (V | 𝑋 =

𝑣,𝑉 = 𝑣), where 𝑉 and 𝑣 are as above.

Observe Correctness. The final operation whose correctness we must ensure is observe. This

operation is correct if it conditions the symbolic state on the input variable being equal to the input

value. It further must return the density of the random variable’s marginal distribution evaluated

at the input value. We formalize this as follows:

Theorem 4.7 (observe Correctness). If (𝑔′,𝑤) = observe(𝑋, 𝑟, 𝑔), then we have that Pr𝑔′ (V) =
Pr𝑔 (V | 𝑋 = 𝑟,𝑉 = 𝑣), where 𝑉 and 𝑣 are the random variables that may need to be sampled during

the observation, and 𝑣 are their sampled values. Furthermore,𝑤 is the density of Pr𝑔 (𝑋 | 𝑉 = 𝑣).
Overall Correctness. As we explain in Section 3.2, Lundén [2017] provides conditions on the

symbolic interface that are sufficient to ensure the overall correctness of the inference algorithms.

These conditions depend, in general, on the total sequence of interface operations performed. We

provide a detailed formalism of the overall correctness of the semi-symbolic operations of the

symbolic interface in the appendix of the extended paper [Atkinson et al. 2022b].

5 CLOSED-FAMILY PROPERTIES OF SEMI-SYMBOLIC INFERENCE

In this section, we discuss the properties of semi-symbolic inference on closed families. Closed fami-

lies are sets of symbolic states on which the semi-symbolic operations from Section 4 are guaranteed

to maintain a symbolic representation without falling back on sampling-based approximations.

Developers can use this guarantee to reliably write probabilistic programs that the semi-symbolic

runtime inference system will automatically implement as Rao-Blackwellized particle filters. In

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:20 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

this section, we define closed families and formalize their properties. The definition of a closed

family that it should be closed under all legal swaps:

Definition 5.1 (Closed Family). A closed family C is a set of symbolic states such that if 𝑔 ∈ C,
and 𝑋1, 𝑋2 in 𝑔 such that can_swap(𝑋1, 𝑋2), then swap(𝑋1, 𝑋2, 𝑔) = (𝑔′, true) and 𝑔′ ∈ C.
For example, all the states depicted in Figure 3 are in the linear-Gaussian closed family we

define below. This means that any legal swap we may want to execute on one of these states will

be possible (i.e. will find available conjugate distributions), and furthermore will not modify the

symbolic state in such a way that future swaps could be impossible. Moreover, this means that the

hoisting we perform in Figures 3bś3d does not perform any random sampling.

We now explain two classes of distributions and show they are closed families: linear-Gaussian

distributions and finite discrete distributions.

Theorem 5.2 (Linear-Gaussian closed family). The set of linear-Gaussian symbolic states,

consisting of states such that a) all distributions in the state are Gaussian with constant variance (i.e.,

the variance does not depend on any random variables), and b) the mean of each Gaussian distribution

is an affine function of other random variables, is a closed family.

Theorem 5.3 (Finite discrete closed family). The set of finite discrete symbolic states, consisting

of states such that every distribution is a Bernoulli random variable, is a closed family.

The key step to prove that the linear-Gaussian family is closed is showing that the new means

for the distributions (i.e.
𝜇′′0 −𝑏
𝑎

and 𝜇′0 in Algorithm 1) are affine and can be analyzed as such by the

affine analysis. This is a constraint of the affine analysis’s precision. In our implementation, we

use a recursive analysis that meets this constraint, but we do not formalize it here. The remainder

of the proofs of these theorems follow straightforwardly from the definition of swap.

RBPF Guarantee. The goal of closed families is to enable developers to control when random

sampling happens over the course of semi-symbolic inference. In particular, developers want to

ensure the runtime does not perform any hidden calls to value through the catch clause of hoist,

which would occur when there is no conjugacy available to swap. To ensure this condition, we

present the following Rao-Blackwellized particle filtering (RBPF) guarantee of the semi-symbolic

implementation of the symbolic interface. This theorem states conditions under which variables

assumed from within the closed family are guaranteed to be exact. In particular, all variables must

either be in the closed family, or immediately sampled by being passed to value.

Theorem 5.4 (RBPF Guarantee). Given a closed family C, let 𝑋𝑒 be the set of random variables

the developer wants to keep exact, and 𝑋𝑠 = V \ 𝑋𝑒 the variables the developer wants to sample. If,

• For all calls 𝑋,𝑔′ = assume(𝜇, 𝑔) such that 𝑋 ∈ 𝑋𝑒 , if 𝑔 ∈ C then 𝑔′ ∈ C.
• For all calls 𝑋,𝑔′ = assume(𝜇, 𝑔) such that 𝑋 ∈ 𝑋𝑠 , 𝑋 is immediately passed to value, and 𝜇

does not depend on any variables in 𝑋𝑒 , then

all variables in 𝑋𝑠 will be sampled by value, and no variable in 𝑋𝑒 will ever be passed to value.

Proof Sketch. The key step of the proof is to show that the symbolic state will be in C during the

execution of hoist. Then, by the definition of closed families, swap will always return true and

hoist_helper will never throw an error.

6 EVALUATION

In this section, we evaluate our implementation of semi-symbolic inference (SSI) in the ProbZelus

streaming probabilistic programming language. We compare this new algorithm with the two

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:21

main inference algorithms previously implemented in ProbZelus [Baudart et al. 2020], particle

filtering (PF) and delayed sampling (DS). We address the following research questions:

RQ1 Does the new algorithm provide more accurate results?

RQ2 How fast is the new algorithm?

6.1 Benchmarks

To compare the different inference algorithms, we use the original benchmarks of ProbZelus [Bau-

dart et al. 2020] as well as two new examples based on realistic applications and one example

that is presented as challenging in the original delayed sampling paper [Murray et al. 2018]. The

benchmarks from ProbZelus are the following.

Beta-Bernoulli estimates the bias of a coin from a series of observations. The coin is modeled

with a Bernoulli distribution with a Beta prior distribution on the probability of heads.

Gaussian-Gaussian estimates the mean and variance of a Gaussian distribution from a series of

observations. This model has Gaussian priors on the mean and standard deviation.

Kalman-1D is a one-dimensional Kalman filter that estimates a hidden state from noisy observa-

tions. The state is modeled by a stream of random variables with Gaussian distributions centered

on the previous state.

Outlier is a variation on the Kalman-1D example where the sensor occasionally produces com-

pletely invalid observations [Minka 2001].

Robot implements a robot controller that computes the commands to reach a target. The controller

uses a probabilistic model to estimate the state of the robot (position, velocity, acceleration) using

a noisy accelerometer, some sparse noisy GPS observations, and the previous command.

SLAM (Simultaneous Localization AndMapping) is the problemwhere a robot has to build a map of

an unknown environment in which it travels while estimating its position. In the model adapted

from Doucet et al. [2000], the agent evolves on a one dimensional discrete black-and-white map

where the robot’s wheels can slip and the color sensor can produce faulty observations.

MTT (Multi-Target Tracker) tracks a variable number of moving objects. The model is adapted

fromMurray and Schön [2018]. It estimates the path of each object from a set of noisy observations

that do not identify the objects.

In addition to these benchmarks, we add the following more challenging models that rely on the

closed-family guarantees from Section 5 to achieve good performance under SSI. By contrast,

delayed sampling is unable to maintain exact inference on these benchmarks, and thus falls back

on approximate sampling.

Tree is adapted from Lundén [2017] to illustrate a challenge with delayed sampling. If the symbolic

graph forms a binary tree with at least three levels, to observe the leftmost variable and then the

rightmost variable, the delayed sampling algorithm samples intermediate nodes and thus fails to

produce exact results.

Wheels is the model presented in Section 2.

Delayed GPS is an extension of the Robot benchmark adapted from Solomon et al. [2012] to include

a variable delay to the GPS observations. It is also discussed in more detail in Section 6.4.2. The

maximal delay is bounded, so the model can keep a bounded history of the estimated positions

to condition the model when a new observation happens.

6.2 Methodology

To evaluate the accuracy of the inference algorithms, each benchmark must define an accuracy

metric. Following Baudart et al. [2020], for the Robot and Delayed GPS benchmarks, the accuracy

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:22 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

■ PF ▼ DS ♦ SSI

101

102

103

104

1 10 100 1000

■
■
■■

▼
▼▼▼♦ ♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ♦♦♦♦♦♦♦♦

Tree Accuracy

10−1
100
101
102
103
104
105

1 10 100 1000

M
S
E
(l
o
g
sc
a
le
) ■

■
■■■■■■■■

■■

▼

▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼♦ ♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ♦♦♦♦♦♦♦♦

Wheels Accuracy

101

102

103

104

1 10 100 1000

Number of Particles (log scale)

■ ■■■■■■■■■
■■

▼

▼
▼▼♦ ♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ♦♦♦♦♦♦♦♦

Delayed GPS Accuracy

(a) Accuracy.

10−1
100
101
102
103
104
105

1 10 100 1000

■
■■
■■■■
■■■
■■■
■■■■■
■■■■■■■■■
■■
■■
■■■■■
■■■■■■■■■
■■
■■■
■■■■

▼
▼▼
▼▼▼▼
▼▼▼
▼▼▼
▼▼▼▼
▼▼▼▼▼▼▼
▼▼▼▼
▼▼
▼▼▼
▼▼▼▼
▼▼▼▼▼▼▼▼
▼▼
▼▼▼▼
▼▼▼

♦
♦ ♦
♦♦♦
♦♦♦♦
♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦♦ ♦
♦♦♦
♦♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦♦♦
♦♦♦♦
♦

Tree Latency

10−1
100
101
102
103
104
105

1 10 100 1000S
te
p
la
te
n
cy

in
m
s
(l
o
g
sc
a
le
)

■
■■
■■■■
■■■
■■■
■■■■■
■■■■■■■■■
■■
■■
■■■■■
■■■■■■
■■■■■
■■■
■■■■

▼
▼▼
▼▼▼▼
▼▼▼
▼▼▼
▼▼▼▼
▼▼▼▼▼▼▼
▼▼▼▼
▼▼
▼▼
▼▼▼▼▼▼▼
▼▼▼▼▼▼▼
▼▼▼
▼▼▼▼
▼

♦
♦ ♦
♦♦♦
♦♦♦♦
♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦♦ ♦
♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦♦
♦♦♦
♦♦♦♦♦

Wheels Latency

101

102

103

104

105

106

1 10 100 1000

Number of Particles (log scale)

■ ■■■■■■
■■■■
■■■■
■■■■■■
■■■■■■■
■■■
■■■
■■■■■■■
■■■■■
■■
■■■
■■■

▼ ▼
▼▼▼▼
▼▼▼▼
▼▼▼
▼▼▼▼
▼▼▼▼▼▼
▼▼▼▼▼
▼▼
▼▼▼
▼▼▼▼▼
▼▼▼▼▼▼▼▼
▼▼
▼▼▼
▼▼▼

♦ ♦
♦♦♦♦
♦♦♦♦
♦♦
♦♦♦
♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦♦♦
♦♦♦♦
♦♦♦♦♦♦
♦♦♦♦♦
♦♦
♦♦♦
♦♦♦

Delayed GPS Latency

(b) Runtime.

Fig. 8. Accuracy and runtime as a function of number of particles. The step latency is the delay between two

successive time steps. Vertical bars indicates the number of particles where each algorithm reaches the target

accuracy reported Table 1

metric is the Linear-Quadratic Regulator (LQR) loss [Sontag 2013]. For the MTT benchmark, the

accuracy metric is a transformation of the Multiple Object Tracking Accuracy [Bernardin and

Stiefelhagen 2008] such that it is defined on [0,∞): MOTA∗
= (1/MOTA) − 1. For all the other

benchmarks, the accuracy metric is the Mean Squared Error (MSE) of the inferred parameters

compared to their exact values.

All the experiments were executed on a server with 64 Intel Xeon E5 CPUs (2.1GHz) and 128 GB

of RAM. Each benchmark is executed with an increasing number of particles varying from 1 to

5000 on a fixed input stream of 500 time steps.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:23

Table 1. For each benchmark, we report how many particles are required for 90% of the runs to reach an

accuracy close to a target (DS with 1000 particles), the corresponding median execution time, and below

and in gray the range between 10% and 90% execution time quantiles over 1000 runs. ✓ 1 indicates that the

algorithm is able to compute the exact solution. ✗ indicates a timeout.

PF DS SSI

model # part. time (ms) # part. time (ms) # part. time (ms)

Beta-Bernoulli 200 23.05 ✓ 1 0.28 ✓ 1 0.65
(22.54-23.90) (0.27-0.28) (0.65-0.66)

Gaussian-Gaussian 3000 877.44 150 62.99 150 182.57
(689.04-890.68) (61.69-65.86) (181.40-183.54)

Kalman-1D 15 3.27 ✓ 1 0.33 ✓ 1 1.15
(3.26-3.28) (0.33-0.34) (1.14-1.15)

Outlier 700 222.27 65 43.81 65 125.88
(220.76-223.84) (43.45-46.48) (125.27-128.08)

Robot 85 771.32 ✓ 1 91.44 ✓ 1 96.40
(767.98-775.51) (90.94-92.07) (96.21-97.53)

SLAM ✗ 800 2812.55 800 5649.30
(2755.99-2853.89) (5619.59-5675.81)

MTT ✗ 60 2889.11 60 4457.79
(2615.76-3244.30) (4068.35-4996.20)

Tree 150 35.55 90 58.83 ✓ 1 2.67
(35.41-35.68) (58.55-59.74) (2.66-2.70)

Wheels 550 246.48 550 699.12 ✓ 1 8.04
(245.06-248.75) (672.25-713.64) (8.00-8.10)

Delayed GPS 150 1221.00 9 304.73 ✓ 1 108.55
(1218.76-1230.67) (303.17-306.31) (108.02-109.07)

6.3 Results

Figure 8 presents the results of the evaluation for the Tree,Wheels, and Delayed GPS benchmarks.

Figures for the other benchmarks are in the extended paper’s appendix [Atkinson et al. 2022b].

Following Baudart et al. [2020], to summarize the results in Table 1, we evaluate how many

particles are required for 90% of the 1000 runs to reach a target accuracy ś in this case, the median

loss of DS with 1000 particles: log(𝑃90% (loss)) − log(losstarget) < 0.5.

RQ1. Accuracy. Figure 8a reports the median accuracy and the 90% and 10% quantiles over 1000

executions with different random seeds for the Tree,Wheels, and Delayed GPS benchmarks.

Overall, we observe in Table 1 that both DS and SSI outperform PF. For the three models where

DS is exact (Beta-Bernoulli, Kalman-1D, and Robot), SSI is also able to compute the exact solution.

Moreover, SSI is exact for the three more challenging models where DS requires multiple particles:

Tree, Wheels, and Delayed GPS. For the four remaining models (Gaussian-Gaussian, Outlier, SLAM,

and MTT), SSI behaves similarly to DS. More generally, SSI always outperforms DS in accuracy, i.e.,

SSI requires the same number of particles or less than DS to reach the same accuracy.

RQ2. Speed. Figure 8b reports the execution time in milliseconds for the three challenging

benchmarks and Table 1 reports the median execution time to reach the target accuracy.

The results show that SSI is on average 10.5× faster than PF, but there is a noticeable overhead

to run SSI compared to DS, as SSI is on average 1.6× slower than DS. However, SSI has a significant

speedup for models where DS fails to compute the exact solution. For the more challenging models,

compared to DS, SSI is 22× faster on the Tree model, 86.9× faster on theWheels model, and 2.8×
faster on the Delayed GPS model.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:24 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

1 let proba model (u, acc, gps) = x where

2 rec x = sample (mv_gaussian (last mu, noise))

3 and init mu = x0

4 and mu = (a *@ x) +@ (b *@ u)

5 and () = observe (gaussian (project_2 *@ x, acc_noise), acc)

6 and buff_x = buffer(max_delay, x)

7 and present gps(pos_delay, pos) -> do () =

8 observe (gaussian (project_0 *@ get(buff_x, pos_delay), gps_noise), pos) done

Fig. 9. The Delayed GPS example that exercises the single𝑚-path constraint.

6.4 Discussion: Comparison to Delayed Sampling

In this section we discuss in more detail the reasons why semi-symbolic inference outperforms

delayed sampling on the more challenging benchmarks. In particular, we identify two classes of

probabilistic programs on which delayed sampling cannot support exact inference on, but that

semi-symbolic inference can: programs with multiple parents and programs with multiple paths.

6.4.1 Multiple Parents. First, we compare delayed sampling and semi-symbolic inference on an

example exercising the multiple parents case. This means that this example has a random variable

that depends on more than one other random variable in the program (i.e. in the symbolic state,

the variable will have more than one parent). This example is the Wheels benchmark, presented in

full in Section 2. The observed random variables on Lines 5 and 6 of Figure 1 depend on both of the

sampled random variables on Lines 3 and 4, and thus each has two parents.

Delayed Sampling. Delayed sampling does not support random variables with multiple par-

ents [Murray et al. 2018]. Thus, to execute on this example, delayed sampling must adapt the

example to not have multiple parents. The implementation in ProbZelus performs this adaptation

by falling back on approximate sampling. When ProbZelus executes one of the observe statements

and detects that the random variable depends on both of the random variables pointed to by vel and

omega, it samples either vel or omega. Once this variable has been sampled, the remaining random

variables all have at most a single parent, and delayed sampling execution can proceed normally.

However, the sampling step introduces approximation error.

Semi-Symbolic Inference. This model satisfies the conditions of Theorem 5.4 under the linear-

Gaussian closed family. Thus, because the program contains no calls to value, all symbolic states

produced by the algorithm are in the Gaussian closed family and no sampling occurs.

6.4.2 Multiple Paths. One way, originally proposed in Murray et al. [2018], to circumvent the

multiple-parent restriction of delayed sampling is to collapse random variables into supernodes. For

example, for the program in Figure 1, the developer could rewrite the example to use multivariate

Gaussians and rewrite the arithmetic operators to use matrix multiplication.

However, there exist programs using supernodes that delayed sampling cannot execute purely

symbolically. In this subsection we consider the Delayed GPS benchmark that exercises a constraint

on delayed sampling called the single𝑚-path constraint. Due to this constraint, delayed sampling

must also fall back on a sampling-based approximation for this program.

Example. We consider the example of a robot trying to infer its position using sensors. The

robot’s sensors consist of an accelerometer and a GPS receiver. At each time step, the accelerometer

produces a noisy observation of the robot’s acceleration. Intermittently, the robot also receives

noisy observations of its position from the GPS receiver. However, due to delays in the internal

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:25

. . .

get(buff_x, 2) x

acc

(a) The delayed sampling symbolic state after the

inference system observes the acceleration acc

all nodes must be marginalized at this point.

. . .

get(buff_x, 2)

gps

x

acc

(b) The delayed sampling state after the inference

system observes the delayed GPS signal gps. Two

of the hidden statesmust become realized in order

to satisfy the single𝑚-path constraint.

Fig. 10. A depiction of how delayed sampling executes on the program in Figure 9. We depict marginalized

nodes in gray and realized nodes in black. Arrows mean that a given random variable depends on another

random variable (i.e., is sampled or observed from other variable). We have also labeled the random variables

pointed to by the current hidden state x, the 2-step delayed hidden state get(buff_x, 2), the observed

acceleration acc, and the observed GPS signal gps.

processing inherent to any GPS receiver [Solomon et al. 2012], the GPS signal may be delayed, in

that it provides a noisy observation of the position at a previous time step. The delay can vary, but

we assume that it is known as part of the GPS signal.

Figure 9 presents how such an example can be encoded in ProbZelus. Line 1 specifies that

the model stream function takes in three parameters: u, a stream of commands the robot issues

to adjust its position; acc, a stream of accelerometer inputs; and gps, a stream of GPS inputs. It

further specifies that the model stream function returns the hidden state x, which is defined by the

subsequent set of mutually recursive equations.

Line 2 specifies that the hidden state x is sampled from a multivariate Gaussian distribution with

mean last mu, the previous value of mu, and constant covariance matrix noise. The hidden state is

a vector of length 3 containing numbers that represent the position, velocity, and acceleration of

the robot. Line 3 specifies the initial value of mu ś the mean of the hidden state ś to be the constant

value x0. Line 4 defines mu at subsequent time steps, which is given by a sum of two components.

The first component uses the operator *@ ś specifying matrix multiplication ś to multiply the value

of the hidden state x with the fixed constant matrix a. The second component multiplies the the

input command u with the fixed constant matrix b, and the two components are added together

with the vector addition operator +@.

Line 5 describes the accelerometer process. It specifies a noisy observation of the component of

x at index 2 ś i.e., the robot’s acceleration ś which is extracted by multiplying x with the projection

matrix given by the constant project_2. The noisy observation consists of a random variable drawn

from a Gaussian distribution centered around the projected-out acceleration. The observe operation

conditions the model on this random variable being equal to the input acc.

Line 6 defines buff_x, a sliding window keeping the max_delay previous values of x, and Line 7

describes the GPS observations. The gps input stream is a ProbZelus construct called a signal that

may be present or not at each time step. The syntax present gps(pos_delay, pos) -> means that

whenever the gps has the value ś which is destructed to the pair of pos_delay and pos ś the program

will execute whatever follows. What follows in this case is the observation of the GPS signal.

The observation of the GPS signal uses get(buff_x, pos_delay), which accesses the value of

x delayed by pos_delay time steps in the buffered stream buff_x. The program then projects out

the position by multiplying with the constant matrix project_0. The observation specifies that the

input pos has a Gaussian distribution whose mean is the delayed position and variance is gps_noise.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:26 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

Delayed Sampling. This example exercises a constraint of delayed sampling called the single

𝑚-path constraint. In delayed sampling, random variables are represented using one of three types

of nodes in a graph: initialized, marginalized, or realized. Over the course of a delayed sampling

execution, nodes change state from initialized to marginalized and from marginalized to realized.

Notably, realizing a variable samples from a distribution and thus loses accuracy.

In delayed sampling, the symbolic state may only contain a single𝑚-path: a path from the root

containing all marginalized nodes.1 Furthermore, any variable that is being observed and all of its

ancestors must be marginalized. Thus, in the example in Figure 9, when the delayed GPS signal

is observed after the acceleration, the inference system moves the𝑚-path from the acceleration

variable to the delayed GPS variable, and all marginalized hidden states in between the current and

delayed time steps are realized to preserve the single𝑚-path constraint. Figure 10 depicts this case.

Semi-Symbolic Inference. In our implementation of semi-symbolic inference in ProbZelus, we

have implemented rules for multivariate Gaussians similar to the rules for the univariate Gaussians

in Algorithm 1. Multivariate Gaussians also form a closed family, and this model always produces

symbolic states in that closed family. Thus, the model will execute fully symbolically and the

runtime inference system will not draw any samples. The underlying reason is that semi-symbolic

inference’s swaps are fully reversible transformations. By contrast, when delayed sampling changes

a node’s state, it cannot change it back, and sets the execution on an irreversible path towards

sampling-based approximation.

7 RELATED WORK

In this section, we compare semi-symbolic inference to various related approaches.

7.1 Exact Inference Systems

Some probabilistic programming systems are designed specifically for exact inference. Examples

include the PSI Solver [Gehr et al. 2016], Dice [Holtzen et al. 2020], SPPL [Saad et al. 2021], and

Autoconj [Hoffman et al. 2018]. Some of these languages also take advantage of closed families.

For example, Dice focuses on exact inference with problems that only have finite discrete random

variables. Exact inference is always possible on these models, and Dice thus focuses on improving

the computational efficiency of exact inference. Other systems, such as PSI, use a complex solver

to potentially solve a much larger class of programs. The Autoconj system analyzes probabilistic

programs using a similar symbolic representation to that presented in Section 4. In general, these

systems do not support the symbolic interface we discuss in Section 3.2, inhibiting our ability to

use them to build delayed sampling runtime inference systems.

7.2 Delayed Sampling

We compared this work against ProbZelus’s delayed sampling system because prior work on

ProbZelus [Baudart et al. 2020] established that delayed sampling is an effective technique for im-

plementing RBPFs within the inference system of a streaming probabilistic programming language.

However, as we discuss in Section 6.4, the limitations of ProbZelus’s delayed sampling system

means that is not able to provide exact inference in all cases that semi-symbolic inference can.

ProbZelus uses the same delayed sampling system as Birch [Murray et al. 2018] and Angli-

can [Lundén 2017], and we expect these limitations to apply to these other languages as well.

Furthermore, because Birch and Anglican expose the same symbolic interface as ProbZelus, we

anticipate semi-symbolic inference could be applied to these languages.

1In general, delayed sampling can have multiple𝑚-paths, but may only have one𝑚-path per tree in the graph. Our example

has only one tree, so may have only one𝑚-path.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:27

Pyro [Bingham et al. 2019] supports delayed sampling using an alternative symbolic representa-

tion called functional tensors or funsors [Obermeyer et al. 2019a]. Pyro performs exact inference

on funsors using an alternative symbolic interface based on variable elimination [Obermeyer et al.

2019b; Zhang and Poole 1994]. Variable elimination works by removing variables from the symbolic

state. For batch execution of probabilistic programs, all remaining variables at the end of the

execution can be eliminated, but in a streaming context this approach needs to decide when to

eliminate variables. This decision needs to balance 1) eliminating old variables to limit the size of

the symbolic state, 2) eliminating variables to compute particle weights, and 3) keeping variables

available for use at future time steps. Due to these tradeoffs, more work is needed to develop a

delayed sampling system for streaming probabilistic programs based on variable elimination.

7.3 Alternatives for Combining Exact and Approximate Inference

Hakaru. Hakaru [Narayanan et al. 2016] is a probabilistic programming system that statically

rewrites probabilistic programs into inference procedures. This includes transformations that

introduce sampling-based approximations as well as analytically solving some distributions with

a solver. One tradeoff between Hakaru and this work is the inherent tradeoff between static and

dynamic techniques. Hakaru relies on a sufficiently powerful static analysis to determine if exact

inference is possible, whereas semi-symbolic inference will exploit the closed-family guarantees so

long as the program satisfies the necessary conditions at runtime.

Stochastic Procedures. Languages such as Venture [Mansinghka et al. 2018] support encapsulating

exact inference components inside stochastic procedure objects. These stochastic procedures can

then be used inside of various approximate inference algorithms. However, these require developers

to rewrite their input probabilistic models to use stochastic procedures, which breaks the separation

between modeling and inference. By contrast, semi-symbolic inference exists as an alternative

inference technique inside the language runtime inference system and only requires developers to

add calls to value to control where sampling occurs.

Shared Variables. Infer.NET [Minka et al. 2018] provides language support for inference on

graphical models, including exact inference with belief propagation [Pearl 1982]. Through its

feature of shared variables, Infer.NET supports combining belief propagation with the approximate

inference algorithms of expectation propagation [Minka 2001], variational message passing [Winn

and Bishop 2005], and Gibbs sampling [Geman and Geman 1984]. This does not present the

same interface as Definition 3.1. Instead, it provides an alternative way of combining exact and

approximate inference that does not result in an RBPF inference algorithm.

8 CONCLUSION

In this paper, we presented semi-symbolic inference, a novel technique for combining exact and

approximate probabilistic inference. It enables developers to write models in a high-level streaming

probabilistic programming language while the language runtime inference system automatically

implements Rao-Blackwellized particle filtering. It presents developers of streaming probabilistic

programs with the opportunity to combine the efficiency of exact inference with the generality of

sampling-based approximate inference to achieve the performance they expect.

ACKNOWLEDGMENTS

This work was supported in part by the MIT-IBM Watson AI Lab and the Office of Naval Research

(ONR N00014-17-1-2699). Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author and do not necessarily reflect the views of the Office of

Naval Research.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

184:28 Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin

REFERENCES

Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin. 2022a. Semi-Symbolic Inference for

Efficient Streaming Probabilistic Programming. https://doi.org/10.5281/zenodo.7082520.

Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin. 2022b. Semi-Symbolic Inference for

Efficient Streaming Probabilistic Programming. https://arxiv.org/abs/2209.07490

Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive

probabilistic programming. In PLDI. ACM, 898ś912. https://doi.org/10.1145/3385412.3386009

Keni Bernardin and Rainer Stiefelhagen. 2008. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics.

EURASIP J. Image and Video Processing 2008 (2008). https://doi.org/10.1155/2008/246309

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,

Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. J. Mach.

Learn. Res. 20 (2019), 28:1ś28:6. http://jmlr.org/papers/v20/18-403.html

Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. 2000. Rao-Blackwellised Particle Filtering for

Dynamic Bayesian Networks. In UAI. Morgan Kaufmann, 176ś183. https://doi.org/10.1007/978-1-4757-3437-9_24

Daniel Fink. 1997. A Compendium of Conjugate Priors.

Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In CAV

(1) (Lecture Notes in Computer Science, Vol. 9779). Springer, 62ś83. https://doi.org/10.1007/978-3-319-41528-4_4

Stuart Geman and Donald Geman. 1984. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.

IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 6 (1984). https://doi.org/10.1109/TPAMI.1984.4767596

Noah D. Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming Languages.

http://dippl.org Accessed October 2022.

N.J. Gordon, D.J. Salmond, and A.F.M. Smith. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In

IEE Proceedings-F. https://doi.org/10.1049/ip-f-2.1993.0015

Matthew D Hoffman, Matthew J Johnson, and Dustin Tran. 2018. Autoconj: Recognizing and Exploiting

Conjugacy Without a Domain-specific Language. In NeurIPS. https://proceedings.neurips.cc/paper/2018/file/

9b89bedda1fc8a2d88c448e361194f02-Paper.pdf

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic Programs.

In OOPSLA. https://doi.org/10.1145/3428208

T.D. Larsen, K.L. Hansen, N.A. Andersen, and Ole Ravn. 1999. Design of Kalman filters for mobile robots; evaluation

of the kinematic and odometric approach. In Proceedings of the IEEE International Conference on Control Applications.

https://doi.org/10.1109/CCA.1999.801027

Daniel Lundén. 2017. Delayed sampling in the probabilistic programming language Anglican. Master’s thesis. KTH Royal

Institute of Technology. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210756

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018. Probabilistic

programming with programmable inference. In PLDI. https://doi.org/10.1145/3192366.3192409

T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. 2018. Infer.NET 0.3. http://dotnet.github.io/infer

Microsoft Research Cambridge..

Thomas P. Minka. 2001. Expectation Propagation for approximate Bayesian inference. In UAI. Morgan Kaufmann, 362ś369.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas B. Schön. 2018. Delayed Sampling and

Automatic Rao-Blackwellization of Probabilistic Programs. In AISTATS (Proceedings of Machine Learning Research, Vol. 84).

PMLR, 1037ś1046. https://proceedings.mlr.press/v84/murray18a.html

Lawrence M. Murray and Thomas B. Schön. 2018. Automated learning with a probabilistic programming language: Birch.

Annual Reviews in Control 46 (2018), 29ś43.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic Inference

by Program Transformation in Hakaru (System Description). In FLOPS (Lecture Notes in Computer Science, Vol. 9613).

Springer, 62ś79. https://doi.org/10.1007/978-3-319-29604-3_5

Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Du Phan, and Jonathan Chen. 2019a. Functional Tensors for Probabilistic

Programming. In Program Transformations for ML Workshop at NeurIPS.

Fritz Obermeyer, Elias Bingham, Martin Jankowiak, Neeraj Pradhan, Justin Chiu, Alexander Rush, and Noah Goodman. 2019b.

Tensor Variable Elimination for Plated Factor Graphs. In ICML. https://proceedings.mlr.press/v97/obermeyer19a.html

Judea Pearl. 1982. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In AAAI.

Feras Saad, Martin Rinard, and Vikash Mansinghka. 2021. SPPL: Probabilistic Programming with Fast Exact Symbolic

Inference. In PLDI. https://doi.org/10.1145/3453483.3454078

P. D. Solomon, Jinling Wang, and Chris Rizos. 2012. Latency Determination and Compensation in Real-Time Gnss/ins

Integrated Navigation Systems. ISPRS 3822 (2012), 303ś307.

Eduardo D Sontag. 2013. Mathematical control theory: deterministic finite dimensional systems. Vol. 6. Springer Science &

Business Media. https://doi.org/10.1007/978-1-4612-0577-7

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

https://doi.org/10.5281/zenodo.7082520
https://arxiv.org/abs/2209.07490
https://doi.org/10.1145/3385412.3386009
https://doi.org/10.1155/2008/246309
http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.1007/978-1-4757-3437-9_24
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1109/TPAMI.1984.4767596
http://dippl.org
https://doi.org/10.1049/ip-f-2.1993.0015
https://proceedings.neurips.cc/paper/2018/file/9b89bedda1fc8a2d88c448e361194f02-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/9b89bedda1fc8a2d88c448e361194f02-Paper.pdf
https://doi.org/10.1145/3428208
https://doi.org/10.1109/CCA.1999.801027
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210756
https://doi.org/10.1145/3192366.3192409
http://dotnet.github.io/infer
https://proceedings.mlr.press/v84/murray18a.html
https://doi.org/10.1007/978-3-319-29604-3_5
https://proceedings.mlr.press/v97/obermeyer19a.html
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1007/978-1-4612-0577-7

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming 184:29

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank D. Wood. 2016. Design and Implementation of

Probabilistic Programming Language Anglican. In IFL. ACM, 6:1ś6:12. https://doi.org/10.1145/3064899.3064910

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017. Deep Probabilistic

Programming. In ICLR (Poster). OpenReview.net. https://openreview.net/forum?id=Hy6b4Pqee

John Winn and Christopher M. Bishop. 2005. Variational Message Passing. Journal of Machine Learning Research 6, 4 (2005).

https://www.jmlr.org/papers/v6/winn05a.html

N.L. Zhang and D. Poole. 1994. A Simple Approach to Bayesian Network Computations. In Canadian Conference on Artificial

Intelligence.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 184. Publication date: October 2022.

https://doi.org/10.1145/3064899.3064910
https://openreview.net/forum?id=Hy6b4Pqee
https://www.jmlr.org/papers/v6/winn05a.html

	Abstract
	1 Introduction
	2 Example
	2.1 Implementation in ProbZelus
	2.2 Semi-Symbolic Inference

	3 Background: ProbZelus Syntax and Semantics
	3.1 Particle Filtering Semantics
	3.2 Delayed Sampling Semantics

	4 Semi-Symbolic Inference
	4.1 Swapping Random Variables
	4.2 Evaluation and Intervention
	4.3 Hoisting
	4.4 Symbolic Interface
	4.5 Correctness

	5 Closed-family Properties of Semi-symbolic Inference
	6 Evaluation
	6.1 Benchmarks
	6.2 Methodology
	6.3 Results
	6.4 Discussion: Comparison to Delayed Sampling

	7 Related Work
	7.1 Exact Inference Systems
	7.2 Delayed Sampling
	7.3 Alternatives for Combining Exact and Approximate Inference

	8 Conclusion
	Acknowledgments
	References

