
115

Statically Bounded-Memory Delayed Sampling for

Probabilistic Streams

ERIC ATKINSON,MIT, USA

GUILLAUME BAUDART, INRIA, École normale supérieure ś PSL University, France

LOUIS MANDEL,MIT-IBM Watson AI Lab, IBM Research, USA

CHARLES YUAN,MIT, USA

MICHAEL CARBIN,MIT, USA

Probabilistic programming languages aid developers performing Bayesian inference. These languages provide
programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced
a probabilistic programming language, ProbZelus, to extend probabilistic programming functionality to
unbounded streams of data. This work demonstrated that the delayed sampling inference algorithm could be
extended to work in a streaming context. ProbZelus showed that while delayed sampling could be effectively
deployed on some programs, depending on the probabilistic model under consideration, delayed sampling is
not guaranteed to use a bounded amount of memory over the course of the execution of the program.
In this paper, we the present conditions on a probabilistic program’s execution under which delayed sampling
will execute in bounded memory. The two conditions are dataflow properties of the core operations of delayed
sampling: the 𝑚-consumed property and the unseparated paths property. A program executes in bounded
memory under delayed sampling if, and only if, it satisfies the𝑚-consumed and unseparated paths properties.
We propose a static analysis that abstracts over these properties to soundly ensure that any program that
passes the analysis satisfies these properties, and thus executes in bounded memory under delayed sampling.

CCS Concepts: • Theory of computation → Program analysis; Streaming models; • Software and its

engineering → Data flow languages.

Additional Key Words and Phrases: Probabilistic programming, reactive programming, streaming inference,
semantics, program analysis

ACM Reference Format:

Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin. 2021. Statically Bounded-
Memory Delayed Sampling for Probabilistic Streams. Proc. ACM Program. Lang. 5, OOPSLA, Article 115
(October 2021), 28 pages. https://doi.org/10.1145/3485492

1 INTRODUCTION

Probabilistic programming languages aid developers performing Bayesian inference [Atkinson et al.
2018; Bingham et al. 2019; Cusumano-Towner et al. 2019; Ge et al. 2018; Gelman et al. 2015; Goodman
et al. 2008; Goodman and Stuhlmüller 2014; Gordon et al. 2014; Huang et al. 2017; Mansingkha et al.
2018; Milch et al. 2007; Narayanan et al. 2016; Nori et al. 2015; Pfeffer 2009; Tran et al. 2017]. These
languages provide programming constructs and tools for probabilistic modeling and automated
inference. Researchers have developed probabilistic programming languages for several domains,

Authors’ addresses: Eric Atkinson, MIT, USA; Guillaume Baudart, INRIA, École normale supérieure ś PSL University,
France; Louis Mandel, MIT-IBM Watson AI Lab, IBM Research, USA; Charles Yuan, MIT, USA; Michael Carbin, MIT, USA.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART115
https://doi.org/10.1145/3485492

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485492
https://doi.org/10.1145/3485492
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3485492&domain=pdf&date_stamp=2021-10-15

115:2 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

including data science [Gelman et al. 2015], machine learning [Bingham et al. 2019; Tran et al.
2017], scientific simulation [Baydin et al. 2019], and real-time control [Baudart et al. 2020].

Probabilistic Programming with Streams. In this paper, we consider programs that accept inputs
and compute outputs at discrete time steps, with the outputs of each step flowing into the envi-
ronment to affect future inputs to the program. Mathematically, one can model these programs as
computations that operate on and produce infinite streams. Computing with streams is a common
computational model for applications in real-time control, such as robotics and avionics [Colaço
et al. 2017]. For example, control for an airplane fly-by-wire system can be implemented as a
program transforming a stream of altitude measurements into a stream of commands to the engine.

Baudart et al. [2020] introduced a probabilistic programming language, ProbZelus, to enable prob-
abilistic programming in this domain of computations on streams. A key innovation of ProbZelus
was to demonstrate that delayed sampling [Murray et al. 2018] could be extended to work with
streams to provide high-quality inference procedures. Delayed sampling is an inference algorithm
that combines both exact and approximate inference; it takes advantage of exact inference when
efficient known closed-formed solutions exist and falls back on sampling-based, approximate in-
ference when required. Specifically, delayed sampling combines Bayesian networks ś graphs that
encode exact distributions of probabilistic models ś with particle filtering [Del Moral et al. 2006] ś
an approximate inference algorithm.

The challenge in adapting delayed sampling to computations on streams is that such computations
run for indefinite periods of time and are often subject to stringent limits on resources, such as
memory. Baudart et al. [2020] showed that, in many cases, only a finite number of nodes in
delayed sampling’s graph data structures were reachable at any given time, and the rest could not
influence the computation in the future and could be removed frommemory. However, this behavior
depends on the probabilistic model under consideration; delayed sampling is not guaranteed to
maintain a bounded amount of memory for all programs. The result is then that though probabilistic
programming languages are designed to hide the complexities of developing probabilistic inference
algorithms, certain combinations of a model and the inference algorithm will result in undesirable
behaviors that the developer did not anticipate. Moreover, the developer has no means to reason
about these behaviors except by inspecting the implementation of the inference algorithm.

Bounded-Memory Delayed Sampling. In this paper, we formalize semantic conditions under which
applying delayed sampling to probabilistic programs with streams will execute in bounded memory.

The two conditions are dataflow properties of the core operations of delayed sampling: assume,
observe, and value, which respectively add a new random variable to the delayed sampling graph,
observe a random variable, and evaluate a random variable to produce a sampled value. The𝑚-

consumed property states that all variables introduced with assume are eventually consumed by an
observe or a value, or are passed to other assumes resulting in new variables that are themselves
(𝑚−1)-consumed. An unseparated path is a sequence of random variables, each passed as parameter
to the assume operation of the next, where no variable is passed to an observe or value operation.
The unseparated paths property states that no variable maintained in the program state starts an
unseparated longer than some fixed bound 𝑛. A program executes in bounded memory under
delayed sampling if, and only if, it satisfies the𝑚-consumed and unseparated paths properties.

Static Analysis. We propose a static analysis that checks the𝑚-consumed and unseparated paths
properties to soundly ensure that any program that passes the analysis satisfies these properties,
and thus executes in bounded memory under delayed sampling.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:3

Contributions. In this paper, we present the following contributions:

• We introduce and formalize the𝑚-consumed and unseparated paths properties, and show these
are necessary and sufficient for a program to have bounded-memory execution.

• We present a static analysis to check these properties, and prove that the analysis is sound.
• We implement the analysis and evaluate it against several probabilistic inference benchmarks.
Our results show that for eight of nine benchmarks, the analysis determines whether the semantic
properties necessary for bounded-memory execution are satisfied, and we identify the precision
limitation of conservative static analysis on the remaining benchmark.

This work brings probabilistic programming to control settings with the new benefit of static
guarantees on the system’s resource consumption. To the best of our knowledge, our work is
the first to develop a resource analysis for a probabilistic program in relation to its probabilistic
programming system’s underlying inference algorithm.
The remainder of the paper is structured as follows. In Section 2, we give an example program

to illustrate the concepts in the paper. In Section 3, we present the syntax and semantics of a
language for probabilistic programming with streams, adapted from the 𝜇𝐹 language from Baudart
et al. [2020]. In Section 4, we review background on delayed sampling, based on the contributions
from Murray et al. [2018] and Baudart et al. [2020]. In Section 5, we present the𝑚-consumed and
unseparated paths semantic properties. In Sections 6 and 7, we present and evaluate the static
analysis. Sections 8 and 9 summarize related work and present conclusions. An extended version
of this paper with all appendices is available [Atkinson et al. 2021].

2 EXAMPLE

Figure 1 presents the example of a robot designed to navigate to a desired position target using
measurements obs from a noisy position sensor. The robot issues a command u that indicates the
acceleration to apply to change its position. The robot (1) estimates its current position with a
probabilistic model kalman and (2) uses this estimate to compute the command uwith a deterministic
controller (e.g., a Linear-Quadratic Regulator [Sontag 2013], the implementation of which we
have elided for simplicity). We present the example in 𝜇𝐹 , a purely functional core calculus for
probabilistic programming with streams.

1 val kalman = stream {

2 init = 0.0;

3 step (pre_x, obs) =

4 let x = sample (gaussian (pre_x, 1.0)) in

5 let () = observe (gaussian (x, 1.0), obs) in

6 (x, x)

7 }

8 val robot = stream {

9 init = (0.0, init controller, infer kalman);

10 step ((c, k), (obs, target)) =

11 let x_dist, k' = unfold (k, obs) in

12 let u, c' = unfold (c, (target, mean (x_dist))) in

13 (u, (c', k'))

14 }

Fig. 1. 𝜇𝐹 program with main stream function robot.

The program is a set of stream func-

tion definitions that each consist of (1)
an initializer, and (2) a step function
that given the previous state and an in-
put value produces an output value and
a new state [Mealy 1955]. The opera-
tors init and infer instantiate a stream
function by creating an internal state. A
stream function can be applied to an in-
put stream to generate an output stream
with the operator unfold, which applies
the step function using the internal state
and the input values. Unlike init, the
step function of an instance created us-
ing infer performs probabilistic infer-
ence and thus returns at each iteration
a distribution of outputs and a distribution of states.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:4 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

The main stream function, robot, has a state composed of two stream function instances: c the
deterministic controller, and k the kalman probabilistic model. The robot initializer creates these
two instances (L.9). The transition function of instance k performs probabilistic inference to infer
a distribution of the robot’s state x_dist and an updated instance k' (L.11). Then the transition
function of instance c computes a command u to go toward the destination target using statistics
of the position distribution and an updated instance c' (L.12). The transition function of robot
returns the command u and the updated state (L.13).

2.1 Probabilistic Model

The stream function kalman specifies a hidden Markov model [Baum and Petrie 1966], a common
probabilistic model for tracking applications in which the goal is to estimate the trajectory of an
object given noisy measurements of the object’s position.

The stream function’s state consists of a latent random variable, pre_x, that denotes the position
of the robot at the previous iteration. The robot’s state is latent in that the robot is unable to directly
observe its position; instead it must leverage a noisy measurement or observation of its position to
infer a probability distribution over its potential states.
Inside the definition of kalman, the program models the latent nature of x by sampling the

current position from a Gaussian distribution centered around its previous position pre_x (L.4).
The program models the observation by taking the observed sensor value as input, obs, and
supplying it as an input to the observe operator. In this example, the observe specifies that obs is
an observation from a Gaussian distribution centered around the position x. The observe operator
conditions the program’s execution on the observed value (L.5) in that it adjusts the distribution
that will be inferred for x.

The sequence of diagrams in Figure 2 illustrates the evolution of a representation of the hidden
Markov model over the first four iterations of the program. Each light grey node denotes a latent
random variable for pre_x or x at a given iteration. Each dark grey node denotes an observation
at the given iteration. Each solid black arrow signifies a dependence between random variables
as in a traditional Bayesian network representation of a probabilistic graphical model [Koller and
Friedman 2009]. Of note, each observation at each iteration depends on the current position and
the robot’s state at a given iteration depends only on its position at the previous iteration.

2.2 Inference with Delayed Sampling

The kalman probabilistic model is not sufficient for the robot to reason about its position. Instead, the
robot must perform inference on the model to compute a posterior distribution of x conditioned on
its observations. As mentioned, the infer operator in the robot stream function applies inference
to the probabilistic model it receives as input. In this paper, we study delayed sampling [Baudart
et al. 2020; Murray et al. 2018] as the algorithmic implementation of the infer operator.
Delayed sampling is an extension of a particle filtering algorithm that leverages symbolic ex-

ecution to reason about the relationship between random values and perform exact inference if
possible. A particle filter estimates the posterior distribution from a set of particles, i.e., independent
executions of the model. For each particle, delayed sampling operates by dynamically maintaining
a graph Ð i.e., a Bayesian network ś that records the dependence relationships between the random
variables in the program (Figure 2). The key idea is that rather than sample a concrete value for each
random variable in the program (e.g., x), delayed sampling instead returns a reference to a node
in the graph. This node contains a closed-form representation of the distribution that the sample
operator sampled from, along with the distribution’s dependence on other random variables in
the program. If a symbolic computation fails, delayed sampling can fall back to a particle filter by
drawing concrete values for the random variables.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:5

x

obs

(a) iteration 1

pre_x

✗

✗

x

obs

(b) iteration 2

✗

✗

pre_x

✗

✗

x

obs

(c) iteration 3

✗

✗

✗

✗

pre_x

✗

✗

x

obs

(d) iteration 4

Fig. 2. The evolution of the delayed sampling graph for the hidden Markov model in Figure 1 (kalman) as

implemented by Baudart et al. [2020]. Each node denotes either a value (dark gray) or a distribution (light

gray). A plain arrow denotes a dependency in the underlying Bayesian network. A dotted arrow denotes a

pointer in the implementation of the delayed sampling graph. Each label indicates the program variable that

corresponds to a node. An ✗ on a node denotes that the node is not reachable from the program state.

2.3 Bounded-Memory Delayed Sampling

A key concern when applying delayed sampling to streams, which may execute for an indefinite
number of iterations, is if the size of the delayed sampling graph is bounded from above by a fixed
constant for all iterations of the program. If not, then the delayed sampling graph may not consume
bounded memory and the program may exhaust its resources if permitted to execute indefinitely.

In general, bounding memory use is challenging because the underlying Bayesian network can
in fact be unbounded. Nevertheless, a delayed sampling implementation can maintain bounded
memory for some programs, depending on the operation of said programs. In this subsection, we
review the delayed sampling implementation presented by Baudart et al. [2020] which can execute
in bounded memory for some programs.

Bounded-Memory Example. Figure 2 shows how delayed sampling maintains bounded memory
for the program in Figure 1. For each particle, the delayed sampling implementation must keep in
memory all the nodes that are reachable from any node referenced in the program state. The dashed
lines in Figure 2 visualize the reachability relation, where the node each line points to is reachable
from the node the line points from. As the program evolves its state and changes the variables the
state contains, nodes in the delayed sampling graph may become unreachable, marked ✗.
Figure 2a shows the delayed sampling graph after the first iteration. The graph consists of two

nodes: one introduced by sampling the variable x, and one introduced by the observation of obs.
At the end of the step, both are in the program state and reachable.

Figure 2b shows the delayed sampling graph after the second iteration. The program has added
two nodes to the graph for sampling x and observing obs. The nodes left over from the first iteration
are still in the graph, but are no longer reachable.
Figures 2c and 2d show the delayed sampling graph at iterations 3 and 4 respectively. In each

case, the most recently introduced nodes for x and obs are reachable, and the nodes from the
previous iterations are unreachable. In general, the program ensures that at any iteration, the most
recently introduced nodes are reachable, and the rest are unreachable. Because there are at most
two reachable nodes for all iterations, inference executes in bounded memory.

Unbounded-Memory Example. Figure 3 presents an example of a program that does not execute
in bounded memory. This is a modified version of kalman from Figure 1 that samples an initial
latent position i from a Gaussian distribution and keeps a reference to this random variable in the
state. Figure 4 shows how the program in Figure 3 fails to maintain bounded memory.

Figure 4a shows the delayed sampling graph after the first iteration. The graph consists of three
reachable nodes introduced by sampling the variables i and x and by the observation of obs.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:6 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

val kalman_first = stream {

init = (true, 0.0, 0.0);

step ((first, i, pre_x), obs) =

let (i, pre_x) =

if first then (let i = sample (gaussian (0.0, 1.0)) in (i, i))

else (i, pre_x) in

let x = sample (gaussian (pre_x, 1.0)) in

let () = observe (gaussian (x, 1.0), obs) in

(x, (false, i, x))

}

Fig. 3. Model with unbounded memory consumption.

i x

obs

(a) iteration 1

i

✗

x

obs

(b) iteration 2

i

✗ ✗

x

obs

(c) iteration 3

i

✗ ✗ ✗

x

obs

(d) iteration 4

Fig. 4. The evolution of the delayed sampling graph for the variant of a Kalman probabilistic model in Figure 3.

Nodes and edges have the same meaning as in Figure 2.

𝜏2 = x1 f nil :: y1 f x1 :: obs y1 :: x2 f x1 :: y2 f x2 :: obs y2

iteration 1 iteration 2

Fig. 5. A depiction of a trace of the program in Figure 1. The figure depicts the trace 𝜏2 at the end of iteration 2.

The trace is a ::-separated list of primitive operations, where each primitive operation is a sampling operation

f or an observation operation obs. In this diagram, we use x𝑛 and y𝑛 to refer to the random variables

introduced at iteration 𝑛 by, respectively, sampling x and observing obs in Figure 1.

Figure 4b shows the delayed sampling graph after the second iteration. The program has added
two nodes to the graph for sampling x and observing obs. Since the variable i is in the program
state, the node between i and x is reachable.

Figures 4c and 4d show that in the next iterations two new nodes are introduced at each step and
one remains reachable. The primary observation to note is that the number of introduced nodes
increases at every iteration. Therefore, there is no bound on the size of the delayed sampling graph
and, hence, the program does not execute in bounded memory.

2.4 Analyzing Delayed Sampling

In this paper, we present an analysis that can show that the program in Figure 1 maintains bounded
memory while the program in Figure 3 does not. For that, we define two dataflow properties that
encode whether a program executes in bounded memory: the unseparated paths property and the
𝑚-consumed property. We then show how these properties can be verified using a static analysis.

Traces. We formalize the dataflow properties as properties of traces. A trace is a recording of the
important features of a program execution. In our case, a trace records all sampling and observation
operations that the program has executed, as well as the variables that were involved in these
operations. Figure 5 illustrates a trace of the execution of the program in Figure 1.

Unseparated Paths. An unseparated path in a trace is a sequence of variables {𝑥𝑖 }, where the
trace specifies that each variable 𝑥𝑖 was sampled from its predecessor 𝑥𝑖−1 and no 𝑥𝑖 is observed.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:7

𝜏2 = if nil :: x1 f i :: y1 f x1 :: obs y1 :: x2 f x1 :: y2 f x2 :: obs y2

iteration 1 iteration 2

𝑣2 = (false, i, x2)

Fig. 6. A depiction of a trace of the program in Figure 3. The figure depicts the trace 𝜏2 and the value of

the program state 𝑣2 at the end of iteration 2. In this diagram, we use i, x𝑛 , y𝑛 , respectively, to refer to the

random variable introduced by sampling i, the variable introduced at iteration 𝑛 by sampling x, and the

variable introduced at iteration 𝑛 by observing obs in Figure 3. We have highlighted the elements of the

unseparated path between 𝑖 and x2 in green.

The unseparated paths property states that there is a uniform bound 𝑐 so that for all iterations no
variable in the program state starts an unseparated path with more than 𝑐 variables in it.

Figure 6 illustrates the trace for the program in Figure 3. This program carries the variable i in
the program state, and because the trace specifies that x1 was sampled from i, and x2 was sampled
from x1, the sequence i, x1, x2 is an unseparated path with 3 variables. In general, at iteration 𝑛,
the program in Figure 3 maintains that i is in the program state and starts an unseparated path
with length 𝑛 + 1. Because no bound can exist on the length of this path for an arbitrary number of
iterations, this program fails the unseparated path property.

𝑚-consumed. A variable is𝑚-consumed if it is no more than𝑚 sampling operations away from a
variable that is consumed by an observe statement. The𝑚-consumed property states that there is a
uniform bound𝑚 such every variable introduced by a sampling operation is𝑚-consumed for some
𝑚 ≤ 𝑚. We note that the traces in Figures 5 and 6 satisfy the𝑚-consumed property, because every
variable is at most 2-consumed. For all 𝑡 , y𝑡 is 0-consumed because it is directly observed, and x𝑡 is
1-consumed because y𝑡 is sampled from x𝑡 and y𝑡 is 0-consumed. The variable i is 2-consumed
because x1 is sampled from i, and x1 is 1-consumed.
The Outlier benchmark presented in Section 7 is an example of a program that fails the 𝑚-

consumed property, and thus does not execute in bounded memory. This program sometimes
observes values close to the true latent state but otherwise observes values from an outlier distri-
bution. When the program observes a value from the outlier distribution, it fails to observe any
dependencies of the latent state, and thus cannot guarantee that the latent state is𝑚-consumed.
Over time, if the program performs latent state updates that remain unobserved (due to the program
always observing from the outlier distribution), the lack of this guarantee results in there being no
uniform bound𝑚 under which the latent state could be𝑚-consumed.

Analysis. Our goal is ultimately to analyze whether a given program executes in boundedmemory.
As we show in Section 5, a program execution maintains bounded memory if and only if it satisfies
both the unseparated path and𝑚-consumed properties. This reduces the problem of analyzing
the bounded-memory behavior of a program to analyzing these dataflow properties. Our analysis
utilizes an abstract delayed sampling graph, formally defined in Section 6, with the key aspects of
these properties. For𝑚-consumed, the abstract graph maintains a set of variables that have been
introduced but not yet consumed, and for unseparated paths, it maintains an upper bound on their
length. For example, the abstract graphs for the trace in Figure 6 are given in Figure 7.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:8 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

𝜏2 = if nil :: x1 f i :: y1 f x1 :: obs y1 :: x2 f x1 :: y2 f x2 :: obs y2

iteration 1 iteration 2

𝑚-consumed i x1 y1 x2 y2

unseparated paths (i, i), 0 (i, x1), 1 (i, y1), 2 (i, x1), 1 (i, x2), 2 (i, y2), 3 (i, x2), 2

Fig. 7. A depiction of the abstract graphs of the program in Figure 3, with the same trace as Figure 6. At

each operation, we depict the𝑚-consumed abstract graph, a set of nodes that have been introduced but

not consumed. Because this set is empty at the end of any iteration, the program satisfies the𝑚-consumed

semantic property. The unseparated paths abstract graph is a mapping, for each unseparated path in the

graph, from its endpoints to its length. We depict the longest path in the mapping. After each iteration, this

longest path continues to lengthen, so the program does not satisfy the unseparated paths semantic property.

3 LANGUAGE MODEL

In this section, we present a semantics for probabilistic programs with streams using the language
𝜇𝐹 . We have adapted 𝜇𝐹 from Baudart et al. [2020]’s core calculus for probabilistic programs and
extended it with syntax for explicit streams.

3.1 Syntax

The syntax of the 𝜇𝐹 language is defined according to the following grammar:

program ::= 𝑑∗ 𝑚

𝑑 ::= val 𝑝 = 𝑒 | val 𝑓 = fun 𝑝 -> 𝑒 | val𝑚 = stream { init = 𝑒 ; step(𝑝,𝑝) = 𝑒 }

𝑒 ::= 𝑣 | op(𝑣) | 𝑓 (𝑣) | if 𝑣 then 𝑒 else 𝑒 | let 𝑝 = 𝑒 in 𝑒

| init(𝑚) | unfold(𝑥,𝑣) | sample(𝑣) | observe(𝑣,𝑣) | infer(𝑚)

𝑣 ::= 𝑐 | 𝑥 | (𝑣,𝑣)

𝑝 ::= 𝑥 | (𝑝,𝑝)

A program is a set of value, function, and stream function definitions followed by the name of the
main stream function. A stream function𝑚 is composed of an initial state (init) and a transition
function (step). Given a state and an input, the transition function returns an output and a new
state. An expression is either a value (constant, variable, or pair), the application of a primitive
operator (arithmetic operator, distribution, etc.), a function call, a conditional, or a local definition.

The expression init(𝑚) creates an instance of a stream function, and unfold(𝑥,𝑣) applies the
instance 𝑥 of a stream function on an input and returns the next element and the updated instance.
Finally, the set of expressions comprises the probabilistic operators sample, observe, and infer.
Nested inference and higher-order functions on streams are not allowed in the language. We require
that arguments for all syntactic operators are values to simplify the presentation of the semantics.
Since new variables can always be introduced to capture the value of any expression, this choice
does not reduce the expressiveness of the language.

3.2 Semantics

The execution of a program 𝑝 = 𝑑∗𝑚 comprises three steps. First, declarations 𝑑∗ are evaluated to
produce an environment 𝛾 which contains the definition of the main stream function𝑚. Second,
an instance of the stream function𝑚 is created.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:9

⟦val 𝑥 = 𝑒⟧𝛾 = 𝛾 [𝑥 ← ⟦𝑒⟧𝛾]

⟦val 𝑓 = fun 𝑝 -> 𝑒⟧𝛾 = 𝛾 [𝑓 ← (𝜆𝑣 . ⟦𝑒⟧𝛾+[𝑣/𝑝])]

⟦val𝑚 = stream { init = 𝑒init ; step(𝑝state,𝑝input) = 𝑒 }⟧𝛾
= 𝛾 [𝑚 ← stream { init = 𝑒init ; step(𝑝state,𝑝input) = 𝑒 }𝛾]

⟦init(𝑚)⟧𝛾 = let stream { init = 𝑒init ; step(𝑝state,𝑝input) = 𝑒 }𝛾 ′ = ⟦𝑚⟧𝛾 in

let 𝑠init = ⟦𝑒init⟧𝛾 ′ in (𝑠init, 𝜆(𝑠, 𝑣). ⟦𝑒⟧𝛾 ′+[𝑠/𝑝state,𝑣/𝑝input])
if 𝑒 is deterministic

⟦init(𝑚)⟧𝛾 = let stream { init = 𝑒init ; step(𝑝state,𝑝input) = 𝑒 }𝛾 ′ = ⟦𝑚⟧𝛾 in

let 𝑠init = ⟦𝑒init⟧𝛾 ′ in (𝑠init, 𝜆(𝑠, 𝑣). {[𝑒]}𝛾 ′+[𝑠/𝑝state,𝑣/𝑝input])
if 𝑒 is probabilistic

⟦unfold(𝑥,𝑣)⟧𝛾 = let 𝑣state, 𝑓 = ⟦𝑥⟧𝛾 in

let 𝑣output, 𝑣
′
state = 𝑓 (𝑣state, ⟦𝑣⟧𝛾) in

(𝑣output, (𝑣
′
state, 𝑓))

⟦infer(𝑚)⟧𝛾 = let stream { init = 𝑒init ; step(𝑝state,𝑝input) = 𝑒 }𝛾 ′ = ⟦𝑚⟧𝛾 in

let 𝑠init = ⟦𝑒init⟧𝛾 ′ in (𝛿𝑠init , infer (𝜆(𝑠, 𝑣). {[𝑒]}𝛾 ′+[𝑠/𝑝state,𝑣/𝑝input]))

where infer (𝑓) = 𝜆(𝜎, 𝑣). let 𝜇 = 𝜆𝑈 .
∫
𝑆
𝜎 (𝑑𝑠) 𝑓 (𝑠, 𝑣) (𝑈) in

let 𝜈 = 𝜆𝑈 . 𝜇 (𝑈)/𝜇 (⊤) in
(𝜋1∗ (𝜈), 𝜋2∗ (𝜈))

Fig. 8. Deterministic semantics of 𝜇𝐹 (complete definition in Figure 16).

Third, the instance is iteratively applied on an input stream (𝑖𝑛)𝑛∈N to produce an output
stream (𝑜𝑛)𝑛∈N, defined in the following way:

⟦𝑝⟧(𝑖)𝑛 = 𝑜𝑛 where 𝑝 = 𝑑∗𝑚 𝛾 = ⟦𝑑∗⟧∅

𝑠0 = ⟦init(𝑚)⟧𝛾 𝑜𝑛, 𝑠𝑛+1 = ⟦unfold(𝑠𝑛,𝑖𝑛)⟧𝛾 ∀𝑛 ≥ 0

Figure 8 defines the semantics of declarations and deterministic expressions ⟦·⟧. The declarations
build the evaluation environment 𝛾 which maps names to values, functions, and stream functions.

The semantics of deterministic expressions corresponds to a first order functional language with
new constructs to handle streams and the infer(·) operator (the complete definition is given in
Figure 16 of Appendix A). The expression init(𝑚) creates an instance of the stream function𝑚: a
pair corresponding to the current state, and the transition function. The current state is initialized
with the value of the init field. The expression unfold(𝑥,𝑣) executes the transition function of
the instance 𝑥 on its current state and the input 𝑣 . This expression produces a pair composed of the
transformed value and the updated instance.
The ideal semantics of 𝜇𝐹 probabilistic expressions {[·]} is a measure-based semantics similar

to the one presented by Staton [2017] (the complete definition is given in Appendix A). Given an
environment 𝛾 , an expression is interpreted as a measure {[𝑒]}𝛾 : Σ𝐷 → [0,∞), that is, a function
which associates a positive number to each measurable set𝑈 ∈ Σ𝐷 , where Σ𝐷 denotes the Σ-algebra
of the domain of the expression 𝐷 (i.e., the set of measurable sets of possible values). sample(𝑣)
returns the distribution ⟦𝑣⟧𝛾 . observe(𝑣1,𝑣2) weights execution paths using the likelihood of
the observation ⟦𝑣2⟧𝛾 w.r.t. the distribution ⟦𝑣1⟧𝛾 (for a distribution 𝜇 we denote its probability
density function as 𝜇pdf). Local definitions are interpreted as integration, and we use the Dirac
delta measure to interpret deterministic expressions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:10 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

{[𝑣]}𝛾 = 𝜆𝑔,𝑤 . (⟦𝑣⟧𝛾 , 𝑔,𝑤)

{[op(𝑣)]}𝛾 = 𝜆𝑔,𝑤 . (app(op, ⟦𝑣⟧𝛾), 𝑔,𝑤)

{[𝑓 (𝑣)]}𝛾 = 𝜆𝑔,𝑤 . 𝛾 (𝑓) (⟦𝑣⟧𝛾) (𝑔,𝑤)

{[let 𝑝 = 𝑒1 in 𝑒2]}𝛾 = 𝜆𝑔,𝑤 . let 𝑣1, 𝑔1,𝑤1 = {[𝑒1]}𝛾 (𝑔,𝑤) in {[𝑒2]}𝛾+[𝑣1/𝑝] (𝑔1,𝑤1)

{[if 𝑣 then 𝑒1 else 𝑒2]}𝛾 = 𝜆𝑔,𝑤 . let 𝑏,𝑔𝑏 = value(⟦𝑣⟧𝛾 , 𝑔) in
if 𝑏 then {[𝑒1]}𝛾 (𝑔𝑏,𝑤) else {[𝑒2]}𝛾 (𝑔𝑏,𝑤)

{[unfold(𝑥,𝑣)]}𝛾 = 𝜆𝑔,𝑤 . let 𝑣state, 𝑓 = ⟦𝑥⟧𝛾 in

let (𝑣output, 𝑣
′
state), 𝑔

′𝑤 ′
= 𝑓 (𝑣state, ⟦𝑣⟧𝛾) (𝑔,𝑤) in

((𝑣output, (𝑣
′
state, 𝑓)), 𝑔

′𝑤 ′)

{[sample(𝑣)]}𝛾 = 𝜆𝑔,𝑤 . let 𝑋,𝑔′ = assume(⟦𝑣⟧𝛾 , 𝑔) in (𝑋,𝑔′,𝑤)

{[observe(𝑣1,𝑣2)]}𝛾 = 𝜆𝑔,𝑤 . let 𝑋,𝑔𝑥 = assume(⟦𝑣1⟧, 𝑔) in
let 𝑣, 𝑔𝑣 = value(⟦𝑣2⟧, 𝑔𝑥) in
let 𝑔′ = observe(𝑋, 𝑣, 𝑔𝑣) in ((), 𝑔′,𝑤 ∗ 𝜇pdf (𝑣))

Fig. 9. Delayed sampling semantics. Probabilistic expressions are functions from a graph and a weight to a

triplet (value, graph, weight).

The infer(𝑚) operator creates an instance of a probabilistic stream: the initial state is a Dirac
delta distribution on the initial state of𝑚, and the transition function is infer (𝑓) where 𝑓 is the
transition function of 𝑚. The body of 𝑓 (the expression 𝑒) is interpreted with the probabilistic
semantics which defines a measure over pairs of output values and states. The function infer (𝑓)
takes as arguments a distribution of states 𝜎 and an input 𝑣 and returns a distribution of outputs
and a distribution of new states. These two distributions are obtained by integrating the transition
function 𝑓 along the distribution 𝜎 of possible states (domain 𝑆) to build a measure 𝜇 which is then
normalized to build a distribution 𝜈 of pairs (outputs, states). The distribution 𝜈 is then split into a
pair of marginal distributions using the pushforward of 𝜈 across the projections 𝜋1 and 𝜋2.

4 DELAYED SAMPLING

In this section, we present the details of delayed sampling that underpin this work. This is a new
formalization of results that were presented by Murray et al. [2018] and Baudart et al. [2020].
Delayed sampling is a semi-symbolic algorithm combining exact inference and ś when exact

computation fails ś approximate inference with particle filtering [Del Moral et al. 2006]. A particle
filter launches multiple executions of the model. Each execution Ð or particle Ð is associated to a
weight. In the operational semantics, sample(𝑑) statements draw samples from the corresponding
distributions, and observe(𝑥,𝑑) statements update the weight to reflect the quality of the samples.
At the end of the executions the results of all the particles are normalized according to their weights
to form a categorical distribution that approximates the posterior distribution of the model.

In delayed sampling, each particle contains a graph of random variables and their dependencies
that can be used to compute closed-form distributions. Observations can be incorporated by
analytically conditioning the network. If symbolic conditioning fails, inference falls back to a
particle filter, drawing concrete samples for required random variables.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:11

4.1 Operational Semantics

The definition of infer in Figure 8 makes use of an intractable integral. The delayed sampling
semantics replaces this integral by a discrete sum over the set of particles of the particle filter.
Compared to traditional particle filtering, delayed sampling performs exact computations when
possible. Thus, we extend values 𝑣 with symbolic terms. Symbolic terms include random variables (𝑋)
Ð the nodes of the delayed sampling graph Ð and applications of operators.

𝑣 ::= ... | 𝑋 | app(op, 𝑣)

The semantics in Figure 9 rely on the following high-level operations to update the graph 𝑔.

𝑣 ′, 𝑔′ = value(𝑣, 𝑔) samples all the random variables in 𝑣 to produce a concrete value.
𝑔′ = observe(𝑋, 𝑣, 𝑔) conditions the graph on the fact that the random variable 𝑋 takes the value 𝑣 .
𝑋,𝑔′ = assume(𝑑,𝑔) adds and returns a new random variable 𝑋 with distribution 𝑑 .

Probabilistic semantics. The semantics of a probabilistic expressions are defined in Figure 9. The
semantics of an expression {[𝑒]}𝛾,𝑔,𝑤 takes two additional arguments: 𝑔, the delayed sampling graph,
and 𝑤 , the weight for the particle filter, and returns a symbolic value, an updated graph, and
an updated weight. Operator application op(𝑣) introduces a symbolic expression app(op, 𝑣). if
uses the value operation to sample a concrete value for the condition. sample(𝑣) introduces a
new random variable in the graph with distribution 𝑣 . observe(𝑣1,𝑣2) introduces a fresh random
variable 𝑋 with distribution 𝑣1, and conditions the graph on the fact that 𝑋 takes the value 𝑣2.

Inference. Given a transition function 𝑓 , a distribution over states 𝜎 from the previous iteration,
and inputs 𝑣𝑖 , the infer operator computes a distribution of outputs and new distribution over
states for the next iteration. First, the inference draws 𝑁 states from 𝜎 . Each of theses states 𝑠𝑛 is
associated with a delayed sampling graph 𝑔𝑛 . Second, the transition function 𝑓 returns a symbolic
output value 𝑣𝑛 , a new state 𝑠 ′𝑛 , the updated graph 𝑔′𝑛 , and the importance weight𝑤𝑛 . Third, the
distribution(𝑜𝑛, 𝑔

′
𝑛) function returns a distribution of values without altering the graph, and the

new distribution over states is a Dirac delta distribution on the pair (𝑠 ′𝑛, 𝑔
′
𝑛). Finally, results are

accumulated in a mixture distribution using the weights 𝑤𝑛 and this distribution is split into a
distribution of values and a distribution of next states.1

⟦infer(𝑚)⟧𝛾 = let stream { init = 𝑒init ; step(𝑝state,𝑝input) = 𝑒 }𝛾 ′ = ⟦𝑚⟧𝛾 in

let 𝑠init = ⟦𝑒init⟧𝛾 ′ in (𝛿 (𝑠init ,∅) , infer (𝜆(𝑝state, 𝑝input). {[𝑒]}𝛾 ′))

where infer (𝑓) = 𝜆(𝜎, 𝑣𝑖). let 𝜇 = 𝜆𝑈 .
𝑁∑
𝑛=1

let 𝑠𝑛, 𝑔𝑛 = draw(𝜎) in
let (𝑜𝑛, 𝑠

′
𝑛), 𝑔

′
𝑛,𝑤𝑛 = 𝑓 (𝑠𝑛,𝑣𝑖)(𝑔𝑛, 1) in

let 𝑑𝑛 = distribution(𝑜𝑛, 𝑔
′
𝑛) in

𝑤𝑛 ∗ 𝑑𝑛 (𝜋1 (𝑈)) ∗ 𝛿𝑠′𝑛,𝑔′𝑛 (𝜋2 (𝑈))
in (𝜋1∗ (𝜇), 𝜋2∗ (𝜇))

4.2 Graph Manipulation

We now describe the graph manipulation functions that are required to define the high-level
operations value, assume, and observe used in the semantics of Figure 9. Lundén [2017] and Murray
et al. [2018] provide detailed explanations of these operations.

Notation. In this section and those that follow, frv(𝑣) denotes the free random variables of a
program value 𝑣 , i.e., the set of variables used in the symbolic expression 𝑣 .

1we write 𝑤𝑖 = 𝑤𝑖/
∑

𝑁

𝑖=1 𝑤𝑖 for the normalized weights.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:12 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

Graph Data Structure. A delayed sampling graph 𝑔 is defined by a tuple (𝑉 , 𝐸, 𝑞) where𝑉 is a set
of vertices ś the random variables, 𝐸 is a set of directed edges ś the dependencies between random
variables, and 𝑞 is a relation mapping each node to a state: Initialized, Marginalized, or Realized.

A node Initialized (𝑝𝑋 |𝑌) represents a random variable 𝑋 with a conditional distribution 𝑝𝑋 |𝑌

where 𝑌 is the unique parent of𝑋 . A nodeMarginalized (𝑝𝑋) represents a random variable𝑋 with a
marginal distribution 𝑝𝑋 . AMarginalized node has at most one parent. If there is a parent node, the
distribution 𝑝𝑋 incorporates its distribution. A node Realized (𝑣) represents a random variable 𝑋
associated to a concrete value 𝑣 . By construction, a delayed sampling graph is a forest ś a set of
trees (each node has at most one parent).

value. The operation value(𝑣, 𝑔) converts the symbolic expression 𝑣 into a concrete value by
sampling all the random variables in 𝑣 . All these random variables become Realized nodes in the
graph, and the distributions depending on these variables are updated.

value(𝑣, 𝑔) = (𝑣, 𝑔) if 𝑣 is a concrete value
value(app(op, 𝑣), 𝑔) = let 𝑣 ′, 𝑔′ = value(𝑣, 𝑔) in (op(𝑣 ′), 𝑔′)
value(𝑋,𝑔) = let 𝑉 , 𝐸, 𝑞 = 𝑔 in

if 𝑞(𝑋) = Realized (𝑣) then (𝑣, 𝑔)
else let 𝑉 ′, 𝐸 ′, 𝑞′[𝑋 ← Marginalized (𝜇)] = graft (𝑋,𝑔) in

let 𝑣 = draw(𝜇) in
(𝑣, (𝑉 ′, 𝐸 ′, 𝑞′[𝑋 ← Realized (𝑣)]))

If 𝑣 is already a concrete value, there is nothing to do. If 𝑣 is the application of an operator, value
recursively samples a concrete value for the argument and applies the operator to this value. If 𝑣 is a
random variable 𝑋 that is already realized, value returns the corresponding value. Otherwise, value
(1) calls the graft function defined in Appendix C to marginalize 𝑋 and all its ancestors, (2) draws a
sample from the marginalized distribution, and (3) returns this value and turns 𝑋 into a Realized
node. Note that graft might have to realize some nodes since it marginalizes all its ancestors and a
marginal node has a single marginalized child. During marginalization, graft also removes edges
between Marginalized nodes and their Realized child if any.

assume. The operation assume(𝑣, 𝑔) adds a new random variable𝑋 with distribution 𝑣 in graph 𝑔.

assume(𝑣, 𝑔) = let (𝑉 , 𝐸, 𝑞) = 𝑔 in

let 𝑋 = fresh(𝑉) in
if frv(𝑣) = ∅ then (𝑋, (𝑉 ∪ {𝑋 }, 𝐸, 𝑞 [𝑋 ← Marginalized (𝑣)]))
else if frv(𝑣) = {𝑌 } ∧ conj(𝑣, 𝑌 , 𝑔) then

(𝑋, (𝑉 ∪ {𝑋 }, 𝐸 ∪ {(𝑋,𝑌)}, 𝑞[𝑋 ← Initialized (𝑣)]))
else

let 𝑣 ′, (𝑉 ,′ 𝐸 ′, 𝑞′) = value(𝑣, (𝑉 ∪ {𝑋 }, 𝐸, 𝑞)) in
(𝑋, (𝑉 ′, 𝐸 ′, 𝑞′[𝑋 ← Marginalized (𝑣 ′)]))

The distribution 𝑣 is a symbolic expression which can be a marginal distribution that does not
depends on other random variables Ð e.g., app(bernoulli, 0.5)Ð or a conditional distribution Ð e.g.,
app(bernoulli, 𝑌) where 𝑌 is a random variable. If 𝑣 is a marginal distribution, assume just adds a
new marginalized node in the graph. If 𝑣 is a conditional distribution, assume tries to keep track of
the dependency between 𝑋 and a random variable used in 𝑣 (the delayed sampling graph is a forest
where each node has at most one parent).

The value 𝑣 thus represents a distribution 𝑝𝑋 |𝑌 where 𝑋 depends on a unique random variable 𝑌 .
If the distribution 𝑝𝑋 |𝑌 and 𝑝𝑌 are conjugate (conj(𝑣, 𝑌 , 𝑔)) Ð e.g., app(bernoulli, 𝑌) with 𝑌 ∼
beta(𝛼, 𝛽) Ð marginalization and conditioning are tractable operations, and assume adds an edge

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:13

between 𝑌 and a new initialized node 𝑋 to the graph. Otherwise, symbolic computation is not
possible; assume calls value to sample a concrete value, thus breaking the dependency, and adds a
new independent Marginalized node to the graph.

observe. The operation observe(𝑋, 𝑣, 𝑔) assigns the concrete value 𝑣 to 𝑋 and updates the distri-
butions depending on 𝑋 accordingly.

observe(𝑋, 𝑣, 𝑔) = let (𝑉 , 𝐸, 𝑞) = graft (𝑋,𝑔) in (𝑉 , 𝐸, 𝑞 [𝑋 ← Realized (𝑣)])

Similarly to value, the observe operation uses the function graft to marginalize the variable 𝑋 and
then turns 𝑋 to a Realized node associated with the value 𝑣 .

4.3 Memory Usage

Baudart et al. [2020] proposed an implementation of delayed sampling where an Initialized node
only has a pointer to its parent, a Marginalized node only has a pointer to its unique Marginalized

or Realized child, if any, and a Realized node has no pointers to its parent or any of its children.

Garbage Collection. A node in the delayed sampling graph can be safely removed if none of the
program variables depend on its value. We assume the existence of a garbage collection routine
that deallocates the nodes of the graph that are not reachable as soon as possible.

Definition 4.1 (Reachability). Given a set of root variables 𝑟 and a delayed sampling graph
𝑔 = (𝑉 , 𝐸, 𝑞), the set of reachable variables ś written reachable(𝑔, 𝑟) ś is defined as follows:

𝑅 = {(𝑋,𝑌) |
(
(𝑋,𝑌) ∈ 𝐸 ∧ 𝑞(𝑋) = Initialized

)
∨
(
(𝑌,𝑋) ∈ 𝐸

∧ 𝑞(𝑋) = Marginalized ∧ (𝑞(𝑌) = Marginalized ∨ 𝑞(𝑌) = Realized)
)

reachable(𝑔, 𝑟) = {𝑌 | (𝑅∗ (𝑋,𝑌)) ∧ 𝑋 ∈ 𝑟 ∧ 𝑌 ∈ 𝑉 }

where 𝑅∗ denotes the reflexive transitive closure of the relation 𝑅.

If we consider the graph in Figure 2b, reachable(𝑔, {x}) = {x}. In the example of Figure 4b, we
have reachable(𝑔, {i, x}) = {i, pre_x, x}, where pre_x is the gray node in between the nodes for i
and x. Reachability is the core property used in Definition 5.1 to define what it means for a program
to run in bounded memory.

Graph Expansion. The only operation that increases the size of the graph is assume which
introduces new nodes. The operations value and observe can only marginalize and realize nodes.
If 𝑔′ is the graph resulting from the application of value or observe on a graph 𝑔, 𝑔 and 𝑔′ have
the same structure but Initialized nodes can be Marginalized or Realized, and Marginalized nodes
can be Realized. The reachability relation of the graph implies that value and observe reduce the
number of dependencies in the delayed sampling graph, that is, reachable(𝑔′, 𝑟) ⊆ reachable(𝑔, 𝑟).

Initialized and Marginalized Chains. Two patterns can yield unbounded memory consumption.
First, it is possible to keep adding nodes without realizing them (via observation or sampling),
thus forming initialized chains. An initialized chain is a sequence of initialized nodes, each of
which holds a pointer to its parent and thereby expands the number of random variables that are
reachable. Second, it is possible that nodes are only indirectly used to realize one of their children.
These marginalized nodes can form marginalized chains. A marginalized chain is a sequence of
marginalized nodes, each of which holds a pointer to its child and thus expands the number of
random variables that are reachable. The last node of a marginalized chain may be realized.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:14 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

5 SEMANTIC PROPERTIES

In this section, we define conditions under which delayed sampling executes in bounded memory.
We define these conditions as properties of executions. An execution is a sequence of pairs of a state
and a delayed sampling graph (𝑠𝑛, 𝑔𝑛)𝑛∈N, where each state is a semi-symbolic value as defined in
Section 4.1. An execution defines the sequence of states and graphs a model Ð i.e., an argument of
an infer Ð goes through.
The inference step function infer (𝑓) in ⟦infer(𝑚)⟧ may operate over multiple executions

of 𝑓 (see Section 4.1). However, infer (𝑓) executes in bounded memory if every execution of 𝑓 is
bounded-memory. This is because infer (𝑓) always updates its state by mapping 𝑓 over states and
graphs from the distribution at the previous iteration. Thus, any state and graph in the distribution
at the next iteration must have come from some execution of 𝑓 , and if all executions of 𝑓 are
bounded-memory, all states and graphs in the distribution must have bounded memory. We have
formalized this in more details in Appendix E.1.

Based on this notion of execution, we introduce two notions of bounded-memory executions
of delayed sampling, and semantic properties which are necessary and sufficient for bounded-
memory execution. In Section 5.1 we present a low-level definition of bounded memory that directly
corresponds to how the delayed sampling runtime executes. In Section 5.2 we present an alternative
high-level definition in terms of dataflow properties of the high-level delayed sampling operators:
the𝑚-consumed and unseparated paths properties. In Section 5.3 we show that the high-level and
low-level formulations are equivalent. In particular, Section 5.3 shows a correspondence between the
𝑚-consumed property and a bound on the length of initialized chains, as well as a correspondence
between the unseparated paths property and a bound on the length of marginalized chains.

5.1 Low-Level Bounded Memory

A program executes in bounded memory if the delayed sampling graph maintains a bounded
number of reachable variables over time. We formalize this as follows:

Definition 5.1 (Low-level Bounded-Memory). An execution (𝑠𝑛, 𝑔𝑛)𝑛∈N of a model is low-level
bounded-memory if

∃𝑘. ∀𝑛 ≥ 0 |reachable(𝑔𝑛, 𝑠𝑛) | ≤ 𝑘 ∗ |frv(𝑠𝑛) |

This definition states that at each iteration, the size of the set of reachable nodes in the delayed
sampling graph may be at most a constant multiple of the number of free random variables in
the state. We do not consider the runtime to violate bounded memory in the trivial case that the
program state is intrinsically unbounded, i.e., when |frv(𝑠𝑛) |𝑛∈N is unbounded. Such a program
would not execute in bounded memory under any inference algorithm; even a particle filter would
require unbounded memory to store the program state.

5.2 High-Level Definitions

In this section, we present an alternative high-level definition of bounded memory that is easier
to reason about. The high-level definition is in terms of dataflow properties of delayed sampling
operations. We have formalized these dataflow properties by augmenting the delayed sampling
operations with tracing. A trace is defined as follows:

𝜏 ::= 𝜏 :: 𝜏1 | nil

𝜏1 ::= 𝑋 f 𝑋 | 𝑋 f nil | eval(X) | obs(𝑋)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:15

assume(𝑣, (𝑔, 𝜏)) = let 𝑋 ′, 𝑔′ = assume(𝑣, 𝑔) in



𝑋 ′, (𝑔′, 𝜏 :: 𝑋 ′
f nil) frv(𝑣) = ∅

𝑋 ′, (𝑔′, 𝜏 :: 𝑋 ′
f 𝑋) {𝑋 } = frv(𝑣) ∧ conj(𝑣, 𝑋, 𝑔)

𝑋 ′, (𝑔′, 𝜏 :: eval(frv(𝑣)) :: 𝑋 ′
f nil) otherwise

value(𝑣, (𝑔, 𝜏)) = let (𝑣 ′, 𝑔′) = value(𝑣, 𝑔) in 𝑣 ′, (𝑔′, 𝜏 :: eval(frv(𝑣)))

observe(𝑋, 𝑣, (𝑔, 𝜏)) = observe(𝑋, 𝑣, 𝑔), (𝜏 :: obs(𝑋))

Fig. 10. Tracing semantics of delayed sampling operators.

A trace is a list of primitive operations, where each primitive is one of:

• Assumption, written 𝑋 f 𝑋 ′ when 𝑋 is assumed from another random variable 𝑋 ′ or
𝑋 f nil when it is assumed without a parent.

• Evaluation using the eval keyword, which refers to evaluating a set of random variables X.
• Observation using the obs keyword, which refers to observing a random variable 𝑋 .

We define an augmented semantics that operates on a pair of a delayed sampling graph and a trace.
Figure 10 defines augmented versions of the assume, value, and observe operations, and the full

semantics (written ⟦·⟧ and {[·]}) is defined by replacing these operators in Figure 9 with their traced
counterparts from Figure 10.

The 𝑚-consumed Property. The 𝑚-consumed property is used to enforce that every variable
introduced with assume is eventually consumed either by directly being passed to a value or observe
or transitively by being passed to a assume that introduces a variable that is also𝑚-consumed.

Definition 5.2 (𝑚-consumed). A variable 𝑋 is 𝑚-consumed in a trace 𝜏 under the following
circumstances:

• 𝑋 is 0-consumed if it is observed or evaluated (i.e., 𝜏 has eval(𝑋) where 𝑋 ∈ X or obs(𝑋)).
• 𝑋 is 0-consumed if it is never used (i.e., there is no 𝑋 ′

f 𝑋 , eval(𝑋), or obs(𝑋) in 𝜏).
• 𝑋 is𝑚-consumed if it is passed to the assume statement that introduces another variable 𝑋 ′

(i.e., 𝑋 ′
f 𝑋 is in 𝜏), and 𝑋 ′ is (𝑚 − 1)-consumed.

The Unseparated Paths Property. The unseparated paths property states the existence of a sequence
of variables, each assumed from the previous, with no variable in the sequence observed or evaluated.

Definition 5.3 (Unseparated Paths). Anunseparated path in𝜏 is a sequence of variables𝑋0, 𝑋1, . . . , 𝑋𝑛

such that each 𝑋𝑖+1 was assumed from 𝑋𝑖 (i.e., 𝑋𝑖+1 f 𝑋𝑖 is in 𝜏) and no 𝑋𝑖 is directly observed or
evaluated (i.e., 𝜏 does not contain any eval or obs operations that reference 𝑋𝑖).

High-level Bounded Memory. We now present the high-level bounded memory property. This
property states that all variables must eventually be𝑚-consumed, and there must be a uniform
bound across iterations on the length of an unseparated path starting from a program state variable.

Definition 5.4 (High-level Bounded-Memory). A program execution (𝑠𝑛, (𝑔𝑛, 𝜏𝑛))𝑛∈N is high-level
bounded-memory if and only if

• There exists an𝑚 such that for every iteration 𝑛 and every variable introduced before 𝑛 (i.e.,
𝑋 such that 𝑋 f 𝑋 ′ or 𝑋 f nil is in 𝜏𝑛), there exists a 𝑛′ ≥ 𝑛 such that for all 𝑛′′ ≥ 𝑛′, 𝑋
is𝑚-consumed in 𝜏𝑛′′ .

• There exists a 𝑐 such that for all 𝑛, no random variable referenced in 𝑠𝑛 starts an unseparated
path in 𝜏𝑛 of length more than 𝑐 .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:16 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

5.3 Equivalence of Low-Level and High-Level Definitions

In this section, we show the equivalence of the low-level and high-level definitions. We do so
by showing that both properties are equivalent to the delayed sampling graph having a uniform
bound (i.e., a bound that holds across all iterations) on the length of initialized and marginalized
chains as defined in Section 4.3.

5.3.1 Low-Level Bounded Memory vs. Infinite Chains.

Lemma 5.5. If the delayed sampling graph is constructed using assume, observe, and value op-

erations, then each random variable starts either an initialized chain, a marginalized chain, or an

initialized chain followed by a marginalized chain.

Proof. The assume, observe, and value operations can only make the following modifications to
a delayed sampling graph 𝑔. (1) Add a independentMarginalized node which creates a marginalized
chain of length zero. (2) Attach a new Initialized node𝑋 to a node𝑌 with a conjugate distribution. It
means that 𝑌 is either Initialized orMarginalized and thus it creates either a longer initialized chain
or an initialized chain followed by a marginalized chain. (3) Perform a graft which ensures that
every ancestor of a node is marginalized and has a single marginalized child. Every non-ancestor
variable is either as it was before or becomes realized, so this operation preserves the structure of
the previous graph and cannot increase the length of the chains. (4) convert a Marginalized node
into a Realized node which can only break a chain. □

Theorem 5.6. A program is low-level bounded-memory iff there is a uniform bound𝑚 on the length

of an initialized chain and a uniform bound 𝑐 on the length of a marginalized chain.

Proof. Assuming a uniform bound, when the number of variables is bounded by 𝑁 , according
to Lemma 5.5, the number of reachable nodes in the graph is bounded by 𝑁 × (𝑐 +𝑚).
Conversely, if no uniform bound exists (i.e., for every potential bounds 𝑐 and𝑚, there exists

a iteration 𝑛 such that chains may exceed the bound at 𝑛), the execution cannot be low-level
bounded-memory, because even if the number of root variables is bounded by 𝑁 , the reachable
variables may exceed 𝑁 × (𝑐 +𝑚). □

5.3.2 High-Level Bounded Memory vs. Infinite Chains.

Theorem 5.7 (High-level Soundness). In a program execution that is high-level bounded-memory,

no infinite chains can exist in any of the delayed sampling graphs.

Proof. All initialized chains must be shorter than𝑚, where𝑚 is from the𝑚-consumed property
of high-level bounded-memory. This is because when a variable’s descendant is subject to observe

or value, the variable becomes marginalized. Such a descendant can be at most𝑚 variables away
because of the definition of𝑚-consumed.

All marginalized chains must be shorter than 𝑐+𝑚, where 𝑐 is from the unseparated path property
of high-level bounded-memory and𝑚 is from the𝑚-consumed property. By Lemma 5.5, every
marginalized chain must start at either a root or an initialized chain. If it starts at a root, the
unseparated path property ensures that the path between the root and the end of the chain can
contain at most 𝑐 variables. This is because any observed or valued variables become realized and
become the end of the chain. If it starts at an initialized chain, by the above reasoning that chain
has length at most𝑚, and there was a previous iteration at which the marginalized chain started at
a root and had length at most 𝑐 , giving an overall length of at most 𝑐 +𝑚. □

Lemma 5.8. If there exists a variable that is not𝑚-consumed, then the program produces a graph at

some iteration with an initialized chain of length𝑚.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:17

Proof. If a variable is not𝑚-consumed, then by the definition of𝑚-consumed must start an
assume chain of length𝑚. All of the nodes in this chain must be initialized, and therefore form an
initialized chain of length𝑚. □

Lemma 5.9. If every variable is𝑚-consumed, and there exists a variable that starts an unseparated

path of length 𝑐 where 𝑐 > 𝑚, then there exists an iteration with a marginalized chain that has length

at least 𝑐 −𝑚.

Proof. Note that the first 𝑐 −𝑚 variables in the unseparated path must be either marginalized or
realized. Otherwise, there would be more than𝑚 initialized variables in the tail of the unseparated
path that are initialized, which would violate soundness of𝑚-consumed. Let 𝑋 be the variable that
starts the unseparated path and 𝑋 ′ be the last marginalized or realized variable in the unseparated
path, and consider the iteration 𝑛′ when 𝑋 ′ was first marginalized. It must be true that (1) 𝑋 is in
the program state at iteration 𝑛′ because it is in the state at the current iteration 𝑛 > 𝑛′, and (2) a
marginalized chain runs from 𝑋 to 𝑋 ′. Thus, at 𝑛′, the marginalized chain had length 𝑐 −𝑚. □

Theorem 5.10 (High-level Completeness). If a program execution is not high-level bounded-

memory, the delayed sampling graph has either unbounded initialized chains or marginalized chains.

Proof. If the execution is not high-level bounded-memory, it either fails the 𝑚-consumed
property or the unseparated path property. If it fails the𝑚-consumed property, apply Lemma 5.8.
Otherwise, apply Lemma 5.9. □

Theorem 5.11. A program execution is high-level bounded-memory if and only if it is low-level

bounded-memory.

Proof. Apply Theorems 5.6, 5.7, and 5.10. □

6 ANALYSIS

In this section, we develop an analysis to check that a 𝜇𝐹 program executes in bounded memory. We
approach this problem by developing two independent analyses within a shared analysis framework.
One analysis checks the𝑚-consumed property of a program and the other checks the unseparated
paths property, which together ensure that the program executes in bounded memory (Section 5).

Our shared analysis framework abstracts the execution of a program as the execution of abstract
operations on an abstract graph. An abstract graph abstracts the dynamic state of a program’s
delayed sampling graph. We implement the analysis framework by means of a type system, such
that well-typed programs satisfy the𝑚-consumed and unseparated paths properties, given each
analysis’s respective instantiation of the abstract graph. The typing judgment

Γ,G ⊢𝛼 𝑒 : 𝑡,G′

asserts that in a context Γ, and for an abstract graph G, that an expression 𝑒 accesses the random
variables denoted by the type 𝑡 and yields a new abstract graph G′. The parameter 𝛼 is either mc

to denote the𝑚-consumed analysis or up to denote the unseparated paths. We write Γ ⊢𝛼 𝑒 : 𝑡 as
shorthand for Γ,G ⊢𝛼 𝑒 : 𝑡,G when 𝑒 has no effect on the graph.

6.1 Types and Contexts

A type 𝑡 captures the random variables the expression could refer to as well as its shape, as primitive
data, a product, a function, or a stream instance.

𝑡 F 𝑟 | () | 𝑡1 × 𝑡2 | 𝑡1 → 𝑡2 | stream(𝑡, 𝑠) | bounded

𝑠 F stepfn(𝑝state, 𝑝in, Γ𝑒 , 𝑒)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:18 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

The type of a primitive expression is a reference set, denoted 𝑟 , which specifies the random variables
to which the expression refers. We distinguish two types of stream instances, before and after
bounded-memory checking. The first is stream(𝑡, 𝑠), where 𝑡 is the type of the current state and 𝑠 is
a step function representation to be described later. The second is bounded, representing instances
that have passed bounded memory analysis and hide their inner structure.

Reference Sets. A reference set of a 𝜇𝐹 expression, denoted 𝑟 , specifies the random variables that
are affected when the expression is observed or evaluated. In the presence of branches, we define 𝑟
to be a pair of sets (lb, ub), where the lower bound lb contains all random variables which must

be affected and the upper bound ub all random variables which may be affected. For example,
a constant value in 𝜇𝐹 such as 1.5 has the reference set (∅, ∅) because it references no random
variables. If the program variables x and y correspond to random variables 𝑋 and 𝑌 respectively,
then the expression gaussian(x,y), specifying a distribution with two parameters, has reference
set ({𝑋,𝑌 }, {𝑋,𝑌 }), meaning that observing it will observe the random variables 𝑋 and 𝑌 .

Contexts. The context Γ, 𝑥 : 𝑡 maps variable 𝑥 to type 𝑡 . As 𝜇𝐹 syntactic patterns 𝑝 may be
variables or pairs, we use the shorthand Γ, 𝑝 : 𝑡 to define types for variables in 𝑝 by structural
correspondence with 𝑡 , as defined by the first rule below. We also define a judgment ⊢𝑝 𝑝 : 𝑡 that
synthesizes a deterministic type 𝑡 from a pattern 𝑝 .

Γ, 𝑝1 : 𝑡1, 𝑝2 : 𝑡2 ⊢𝛼 𝑒 : 𝑡

Γ, (𝑝1, 𝑝2) : 𝑡1 × 𝑡2 ⊢𝛼 𝑒 : 𝑡 ⊢𝑝 𝑥 : (∅, ∅)

⊢𝑝 𝑝1 : 𝑡1 ⊢𝑝 𝑝2 : 𝑡2

⊢𝑝 (𝑝1,𝑝2) : 𝑡1 × 𝑡2

6.2 Abstract Graphs

An abstract graph G is an abstraction of the delayed sampling graph that tracks which random
variables have been consumed and active paths between random variables, properties relevant to
the semantic properties. For each analysis 𝛼 there exists an abstract graph type, G, and a set of
operations that form its interface (Figure 11).
Specifically, in the 𝑚-consumed analysis we define G to be a pair of sets in and con which

respectively represent an over-approximation of variables introduced into the graph and an under-
approximation of the variables consumed by observation or sampling (Figure 12). In the unseparated
paths analysis, we define G to be a set sep of separators containing consumed random variables
and a partial path function 𝑝 mapping a pair of random variables to an upper bound on the length
of an unseparated path between them (Figure 13).

Operations on the abstract graph manipulate random variables, graphs, and reference sets. The
function assume returns a new graph with a random variable 𝑋 from a distribution with reference
set 𝑟 added to G, observe returns a graph where 𝑋 is observed with a value with reference set 𝑟 ,
and value returns a graph where an expression with reference set 𝑟 is evaluated. The join operator
⊔𝛼 represents a conservative choice between two graphs.

𝑚-consumed Graph Operations. In Figure 12, assumemc (𝑋, 𝑟,G) marks the random variable 𝑋 as
introduced. In all cases, the lower bound of random variables in the input is marked consumed. To
join two states, we union the introduced variables and intersect the consumed variables.

Unseparated Paths Graph Operations. In Figure 13, observeup and valueup mark input variables as
separators. In assumeup , we set the length of the path from the new variable 𝑋 to itself to zero. For
a parent 𝑋𝑝 that is not a separator, we set the length of the path from any variable 𝑋𝑖 to 𝑋 to one
more than the length from 𝑋𝑖 to 𝑋𝑝 . To join two states, we intersect the separators and take the
maximum length between the results of the two path functions (where defined, or 0 otherwise).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:19

assume𝛼 : RV → 𝑟 → G → G

observe𝛼 : RV → 𝑟 → G → G

value𝛼 : 𝑟 → G → G

⊔𝛼 : G → G → G

Fig. 11. Abstract graph interface.

G F {𝑖𝑛 ⊆ RV; con ⊆ RV}

assumemc (𝑋, 𝑟,G) = {G.𝑖𝑛 ∪ {𝑋 };G.con ∪ 𝑟 .lb}

observemc (𝑋, 𝑟,G) = {G.𝑖𝑛;G.con ∪ 𝑟 .lb ∪ {𝑋 }}

valuemc (𝑟,G) = {G.𝑖𝑛;G.con ∪ 𝑟 .lb}

G1 ⊔mc G2 = {G1.𝑖𝑛 ∪ G2.𝑖𝑛;G1.con ∩ G2.con}

Fig. 12. 𝑚-consumed abstract graph operations.

G F {𝑝 : RV × RV ↩→ N; sep ⊆ RV}

assumeup (𝑋, 𝑟,G) = {𝑝 ′;G.sep} where 𝑝 ′(𝑋,𝑋) ↦→ 0,

𝑝 ′(𝑋𝑖 , 𝑋) ↦→ G.𝑝 (𝑋𝑖 , 𝑋𝑝) + 1 for all 𝑋𝑝 ∈ 𝑟 .ub \ G.sep, 𝑋𝑖 ∈ RV,

𝑝 ′(𝑋,𝑌) ↦→ G.𝑝 (𝑋,𝑌) otherwise

observeup (𝑋, 𝑟,G) = {G.𝑝;G.sep ∪ 𝑟 .lb ∪ {𝑋 }}

valueup (𝑟,G) = {G.𝑝;G.sep ∪ 𝑟 .lb}

G1 ⊔up G2 = {𝑝 ′;G1.sep ∩ G2 .sep} where 𝑝
′(𝑣1, 𝑣2) ↦→ max(G1.𝑝 (𝑣1, 𝑣2),G2 .𝑝 (𝑣1, 𝑣2))

Fig. 13. Unseparated paths abstract graph operations.

6.3 Typing Rules

In Figure 14 we present the typing rules that are relevant to analyzing probabilistic streams, with
the full definition in Appendix D. Constants reference no random variables. sample introduces a
fresh random variable sampled from its argument and adds it to the graph. observe introduces
an intermediate random variable for its first argument by the same mechanism as sample, and
observes it to be the evaluation of its second argument.

Operators and Scalar Folding. We use 𝜇𝐹 operators 𝑜𝑝 to describe probability distributions and
other operations over scalars and assume them to have scalar return values. The auxiliary judgment
↘ folds products and stream instances into scalars by taking unions of variable sets.

() ↘ (∅, ∅) 𝑟 ↘ 𝑟

𝑡1 ↘ (lb, ub) 𝑡2 ↘ (lb′, ub′)

𝑡1 × 𝑡2 ↘ (lb ∪ lb′, ub ∪ ub′)

𝑡 ↘ (lb, ub)

stream(𝑡, 𝑠) ↘ (lb, ub) bounded ↘ (∅, ∅)

Sequencing. Sequencing using the let-expression follows the standard typing rule for let, and
also threads the output graph of evaluating 𝑒 into the evaluation of 𝑒 ′.

() ⊔ () = ()

(𝑡1 × 𝑡2) ⊔ (𝑡 ′1 × 𝑡 ′2) = (𝑡1 ⊔ 𝑡 ′1) × (𝑡2 ⊔ 𝑡 ′2)

(lb, ub) ⊔ (lb′, ub′) = (lb ∩ lb′, ub ∪ ub′)

Fig. 15. Join operator for types.

Conditionals and Join. if-expressions evaluate
the condition, check both branches in parallel, and
join the resulting reference set and graphs. The join
operator ⊔ (Figure 15), representing the conserva-
tive union of two types, unions the upper bounds
and intersects the lower bounds. We disallow if-
branching over functions and stream instances.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:20 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

Γ ⊢𝛼 𝑐 : (∅, ∅)

Γ ⊢𝛼 𝑣 : 𝑟 𝑋 = fresh(G)

Γ,G ⊢𝛼 sample(𝑣) : ({𝑋 }, {𝑋 }), assume𝛼 (𝑋, 𝑟,G)

Γ,G ⊢𝛼 sample(𝑣1) : ({𝑋 }, {𝑋 }),G′
Γ ⊢𝛼 𝑣2 : 𝑟2

Γ,G ⊢𝛼 observe(𝑣1,𝑣2) : (), observe𝛼 (𝑋, 𝑟2, value𝛼 (𝑟2,G
′))

Γ ⊢𝛼 𝑣 : 𝑡 𝑡 ↘ 𝑟

Γ ⊢𝛼 op(𝑣) : 𝑟

Γ,G ⊢𝛼 𝑒 : 𝑡,G′
Γ, 𝑝 : 𝑡,G′ ⊢𝛼 𝑒 ′ : 𝑡 ′,G′′

Γ,G ⊢𝛼 let 𝑝 = 𝑒 in 𝑒 ′ : 𝑡 ′,G′′

Γ ⊢𝛼 𝑣 : 𝑟 G′
= value𝛼 (𝑟,G) Γ,G′ ⊢𝛼 𝑒1 : 𝑡1,G1 Γ,G′ ⊢𝛼 𝑒2 : 𝑡2,G2

Γ,G ⊢𝛼 if 𝑣 then 𝑒1 else 𝑒2 : 𝑡1 ⊔ 𝑡2,G1 ⊔𝛼 G2

Γ ⊢𝛼 𝑚 : (𝑡, 𝑠)

Γ ⊢𝛼 init(𝑚) : stream(𝑡, 𝑠)

Γ ⊢𝛼 𝑥 : stream(𝑡, stepfn(𝑝state, 𝑝in, Γ𝑒 , 𝑒)) Γ ⊢𝛼 𝑣 : 𝑡in Γ𝑒 , 𝑝state : 𝑡, 𝑝in : 𝑡in,G ⊢𝛼 𝑒 : 𝑡 ′ × 𝑡out ,G
′

Γ,G ⊢𝛼 unfold(𝑥,𝑣) : 𝑡out × stream(𝑡 ′, stepfn(𝑝state, 𝑝in, Γ𝑒 , 𝑒)),G
′

Γ ⊢mc 𝑚 bounded Γ ⊢up 𝑚 bounded

Γ ⊢𝛼 infer(𝑚) : bounded

Γ ⊢𝛼 𝑥 : bounded Γ ⊢𝛼 𝑣 : 𝑡 𝑡 ↘ (∅, ∅)

Γ ⊢𝛼 unfold(𝑥,𝑣) : (∅, ∅) × bounded

Fig. 14. Delayed sampling type system.

Streams and Inference. To facilitate typing of stream functions, we define the following auxiliary
judgment, which computes, for a stream function, the type of its initial state and the syntactic
fragment for its step function.

Γ ⊢𝛼 𝑒 ′ : 𝑡init 𝑡init ↘ (∅, ∅)

Γ ⊢𝛼 stream { init = 𝑒 ′ ; step(𝑝state,𝑝in) = 𝑒 } : (𝑡init, stepfn(𝑝state, 𝑝in, Γ, 𝑒))

Correspondingly, we define the context Γ,𝑚 : (𝑡init, stepfn(𝑝state, 𝑝in, Γ𝑒 , 𝑒)) to map the stream
function name𝑚 to its initial state type and step function.

Instances that are created by init expose the type of their internal state and their step function.
The unfold rule applies the step function to the current state, yielding an output and an instance
with the new state. It ensures that the argument 𝑣 is compatible with the type of the step function.

An infer expression marks the entry point of a new sub-analysis for its new delayed sampling
graph. The premises of the typing rule for infer are the success conditions for both analyses that
must hold regardless of 𝛼 . This judgment, Γ ⊢𝛼 𝑚 bounded, states that the stream function𝑚 can be
unfolded for an arbitrary number of iterations while satisfying property 𝛼 starting with an empty
delayed sampling graph.

Instances created by infer possess a newly instantiated delayed sampling graph. Their internal
state contains the delayed sampling graph and bookkeeping information for the inference algorithm.
Thus, the state is hidden to the exterior and the instance is assigned the opaque type bounded.
unfold on a bounded type only requires that the input and output are purely deterministic.

m-consumed Success Condition. We conclude a stream function passes the𝑚-consumed analysis
when all variables that are introduced are consumed by the program. Because an introduced variable
may take several stream iterations to be consumed, we repeatedly execute the analysis until we

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:21

consume all variables and succeed or reach a fixed point and fail. Define the iteration judgment
Γ ⊢𝛼 (𝑛) 𝑚 : 𝑡 ′,G, where 𝛼 is either𝑚𝑐 or 𝑢𝑝 , as follows:

Γ ⊢𝛼 𝑚 : (𝑡, stepfn(𝑝state, 𝑝in, Γ𝑒 , 𝑒)) ⊢𝑝 𝑝in : 𝑡in Γ𝑒 , 𝑝in : 𝑡in, 𝑝state : 𝑡,⊥𝛼 ⊢𝛼 𝑒 : 𝑡out × 𝑡 ′,G

Γ ⊢𝛼 (0) 𝑚 : 𝑡 ′,G

Γ ⊢𝛼 𝑚 : (𝑡, stepfn(𝑝state, 𝑝in, Γ𝑒 , 𝑒)) Γ ⊢𝛼 (𝑛−1) 𝑚 : 𝑡 ′,G
⊢𝑝 𝑝in : 𝑡in Γ𝑒 , 𝑝in : 𝑡in, 𝑝state : 𝑡

′,G ⊢𝛼 𝑒 : 𝑡out × 𝑡 ′′,G′

Γ ⊢𝛼 (𝑛) 𝑚 : 𝑡 ′′,G′

On each iteration, this judgment applies the appropriate type rule for the step function and returns
the result, using the abstract graph from the previous iteration as the context for the step function
rule. The initial iteration uses an empty abstract graph as the context, represented by ⊥𝛼 . For the
𝑚-consumed analysis, we specialize the judgment to Γ ⊢𝑚𝑐 (𝑛) 𝑚 : 𝑡 ′,G, and define ⊥mc to be (∅, ∅).

The rule continues iterating until it reaches the success condition. The success condition states
that every variable introduced that is kept in the program state must be used with in a bounded
number of time steps. We formalize this as the following type rule:

Γ ⊢𝑚𝑐 (0) 𝑚 : 𝑡,G 𝑡 ↘ (𝑙𝑏,𝑢𝑏) Γ ⊢𝑚𝑐 (𝑛) 𝑚 : 𝑡 ′′,G′ (G.𝑖𝑛 \ G′.con) ∩ ub = ∅

Γ ⊢mc 𝑚 bounded

Alternatively, if evaluating one more iteration does not consume any more variables, we reach a
fixed point and return failure. Since every iteration we either consume a variable or reach a fixed
point, the analysis is guaranteed to terminate.

Unseparated Paths Success Condition. Like the 𝑚-consumed analysis, the unseparated paths
analysis is iterative, and we may need to repeat it for some number of iterations. We specialize the
iteration judgment defined in the previous section to Γ ⊢𝑢𝑝 (𝑛) 𝑚 : 𝑡,G and define ⊥up to be a pair
of an empty map and an empty set. Define path(𝑡,G) where 𝑡 ↘ (lb, ub) to be the length of the
longest path from any random variable in ub to any other variable in G.𝑝 . Then we conclude the
program passes the unseparated path analysis when the length of the longest path converges after
some finite number of iterations:

Γ ⊢𝑢𝑝 (𝑛) 𝑚 : 𝑡,G Γ ⊢𝑢𝑝 (𝑛+(path(𝑡,G)∗size(𝑡))+1) 𝑚 : 𝑡 ′′,G′ path(𝑡,G) = path(𝑡 ′′,G′)

Γ ⊢up 𝑚 bounded

The implementation of this rule repeatedly computes a new abstract graph starting from the
previous iteration’s output. It exits when the longest path length at the current iteration is equal to
the longest path after (path(𝑡,G) ∗ size(𝑡)) + 1 additional iterations. The function size determines,
for a given type 𝑡 , how many values of base type are contained in 𝑡 .

size(𝑟) = 1 size(𝑡1 × 𝑡2) = size(𝑡1) + size(𝑡2)

The extra iterations ensure that the path length has stabilized and the analysis can safely conclude
that there is a bound on the length of the longest unseparated path.

If the path length check fails, the implementation keeps iterating until a pre-specified bound is
reached. Upon reaching this bound, the implementation outputs an analysis failure. Note that the
analysis may be imprecise and reject correct programs if the bound is not sufficiently high.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:22 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

6.4 Example Type Derivation

This section presents an example type derivation used by the analysis to confirm that the program
in Figure 1 satisfies the𝑚-consumed property. In particular, we confirm that the stream function
kalman passes the𝑚-consumed analysis.
Using 𝑒 as shorthand for the body of its step function, we derive the following𝑚-consumed

success condition for kalman:

Γ ⊢mc (0) kalman : (({𝑋 }, {𝑋 }) × ({𝑋 }, {𝑋 })) (({𝑋 }, {𝑋 }) × ({𝑋 }, {𝑋 })) ↘ ({𝑋 }, {𝑋 })
Γ ⊢mc (0) kalman : (({𝑋 }, {𝑋 }) × ({𝑋 }, {𝑋 })) ({𝑋 } \ {𝑋 }) ∩ {𝑋 } = ∅

Γ ⊢mc kalman bounded

The second and fourth premises follow immediately from definitions and set operations. The
derivation of the first and third premises is as follows:

Γ ⊢mc kalman : ((∅, ∅), stepfn(pre_x, obs, Γ𝑒 , 𝑒)) ⊢𝑝 obs : (∅, ∅)
Γ𝑒 , obs : (∅, ∅), pre_x : (∅, ∅), (∅, ∅) ⊢mc 𝑒 : (({𝑋 }, {𝑋 }) × ({𝑋 }, {𝑋 })), ({𝑋 }, {𝑋 })

Γ ⊢mc (0) kalman : (({𝑋 }, {𝑋 }) × ({𝑋 }, {𝑋 }))

The second premise follows from definitions. The derivation of the first premise is as follows:

Γ𝑒 ⊢mc 0.0 : (∅, ∅) (∅, ∅) ↘ (∅, ∅)

Γ ⊢mc stream { init = 0.0 ; step(pre_x,obs) = 𝑒 } : ((∅, ∅), stepfn(pre_x, obs, Γ𝑒 , 𝑒))

where the premises follow immediately. Finally, let Γ′ be the context Γ𝑒 , obs : (∅, ∅), pre_x : (∅, ∅)
and 𝑡 be the type (∅, ∅). The derivation of the third premise is as follows.

Γ
′, (∅, ∅) ⊢𝑚𝑐 sample(gaussian(pre_x, 1.0)) : 𝑡, ({𝑋 }, ∅)

Γ
′, x : 𝑡, ({𝑋 }, ∅) ⊢𝑚𝑐 let () = observe(gaussian(x, 1.0),obs) in (x, x) : (𝑡 × 𝑡), ({𝑋 }, {𝑋 })

Γ
′, (∅, ∅) ⊢𝑚𝑐 𝑒 : (𝑡 × 𝑡), ({𝑋 }, {𝑋 })

The first premise follows from the typing rule for sample. The second premise follows from the
typing rule for let as follows:

Γ
′, x : 𝑡, ({𝑋 }, ∅) ⊢𝑚𝑐 observe(gaussian(x, 1.0),obs) : (), ({𝑋 }, {𝑋 })

Γ
′, x : 𝑡, ({𝑋 }, {𝑋 }) ⊢𝑚𝑐 (x, x) : (𝑡 × 𝑡), ({𝑋 }, {𝑋 })

Γ
′, x : 𝑡, ({𝑋 }, ∅) ⊢𝑚𝑐 let () = observe(gaussian(x, 1.0),obs) in (x, x) : (𝑡 × 𝑡), ({𝑋 }, {𝑋 })

where the first premise follows from the rule for observe and the second from the rule for pairs.

6.5 Soundness

Here, we outline how we show the type system is sound. We give a high-level overview of the
approach; the details are in Appendix E.

Entailment Relations. In Appendix E.2, we establish several entailment relations that relate se-
mantic objects to their type-level counterparts. These relations are parameterized by 𝛼 which is
either𝑚𝑐 for the𝑚-consumed relation or 𝑢𝑝 for the unseparated path relation. We write 𝑣 ⊨𝛼 𝑡

to mean a value entails a type. We write 𝛾 ⊨𝛼 Γ to mean an environment entails a type context.
We write 𝑣, (𝑔, 𝜏) ⊨𝛼 𝑡,G to mean a value and traced graph (see Section 5.2 for the definition of a
traced graph) entail a type and abstract graph. We write 𝛾, (𝑔, 𝜏) ⊨𝛼 Γ,G to mean an environment
and traced graph entail a type context and abstract graph.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:23

Soundness. The following theorems establish the soundness of the type system. The first theorem
states that the type system soundly ascribes types to values and soundly updates the abstract
delayed sampling graph:

Theorem 6.1 (𝑚-consumed and Unseparated Path Soundness). If𝛾, (𝑔, 𝜏) ⊨𝛼 Γ,G and Γ,G ⊢𝛼
𝑒 : 𝑡,G′ and {[𝑒]}𝛾 (𝑔, 𝜏),𝑤 = 𝑣, (𝑔′, 𝜏 ′),𝑤 ′, then 𝑣, (𝑔′, 𝜏 ′) ⊨𝛼 𝑡,G′.

Next, the type system soundly ensures a stream function maintains bounded memory.

Theorem 6.2 (Analysis Soundness). If 𝛾 ⊨𝛼 Γ and Γ ⊢𝛼 𝑚 : bounded, then ⟦𝑚⟧𝛾 ⊨𝛼 bounded.

We prove these theorems in Appendix E.2.

6.6 Implementation

We implemented our analysis framework and the𝑚-consumed and unseparated paths analyses in
OCaml. Our implementation takes as input a 𝜇𝐹 program and outputs either true or false for each
analysis. It also accepts a parameter for the iteration bound for the unseparated paths analysis.
The implementation goes beyond the type system laid out in the paper by supporting functions
that have probabilistic effects as well as interfaces for list and array operations. 𝜇𝐹 programs can
further be compiled to OCaml and executed using the ProbZelus delayed sampling runtime. The
code is available at https://github.com/psg-mit/probzelus-oopsla21.

7 EVALUATION

To evaluate the ability of the analysis to accept only 𝜇𝐹 programs that can execute in bounded
memory, we executed it on several benchmarks reflective of real-world inference tasks.

Research Questions. We used our implementation to answer two research questions. For realistic
probabilistic programs, (1) does the type system precisely verify the properties required for bounded-
memory execution, and (2) is a small iteration bound sufficient for the unseparated paths analysis?

7.1 Methodology

We executed the analysis on example programs from Baudart et al. [2020] originally written in
ProbZelus, a probabilistic programming language featuring probabilistic data streams and delayed
sampling. We manually translated them to 𝜇𝐹 , and they reflect a range of realistic control problems
with different memory usage characteristics. For the unseparated paths analysis, we set an iteration
count bound of 10, which was sufficient for these programs. We compared the outputs of the
analysis to our manual logical reasoning about the ability of each of the following programs to
execute in bounded memory. We provide source code for all benchmarks in Appendix F.
Kalman is the simplified core model of Figure 1 and models an agent that estimates position

from noisy observations. Applying delayed sampling on this model is equivalent to a Kalman filter
[Kalman 1960] where each particle returns the exact solution.

Kalman Hold-First is the example from Figure 3 with a reference to the output of the first iteration.
Gaussian Random Walk is a simplification of Kalman that does not observe of the true position,

effectively expressing a Gaussian random walk.
Robot is the full example from Figure 1 that includes the Kalman core model as well as a main

stream function that invokes a controller based on the inferred position.
Coin models an agent that estimates the bias of a coin. The model chooses the probability of

the coin from a uniform distribution, and thereafter chooses the observations by flipping a coin
with that probability. Applying delayed sampling to this model is equivalent to exact inference in a
Beta-Bernoulli conjugate model [Fink 1997] where each particle returns the exact solution.

Gaussian-Gaussian estimates the mean and variance of a Gaussian distribution.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

https://github.com/psg-mit/probzelus-oopsla21

115:24 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

Table 1. Bounded memory analysis on benchmark programs.

𝑚-consumed unsep. paths bounded mem.

output actual output actual output actual

Kalman ✓ ✓ ✓ ✓ ✓ ✓

Kalman Hold-First ✓ ✓ ✗ ✗ ✗ ✗

Gaussian Random Walk ✗ ✗ ✓ ✓ ✗ ✗

Robot ✓ ✓ ✓ ✓ ✓ ✓

Coin ✓ ✓ ✓ ✓ ✓ ✓

Gaussian-Gaussian ✓ ✓ ✓ ✓ ✓ ✓

Outlier ✗ ✗ ✓ ✓ ✗ ✗

MTT ✗ ✗ ✓ ✓ ✗ ✗

SLAM ✗ ✓ ✓ ✓ ✗ ✓

Outlier, adapted from Section 2 of [Minka 2001], models the same situation as the Kalman
benchmark, but with a sensor that can occasionally produce invalid readings. The model chooses
the probability of an invalid reading from a beta(100,1000) distribution, so that invalid readings
occur approximately 10% of the time. At each time step, with the previously chosen probability,
the model chooses the observation from either the invalid distribution gaussian(0,100) or the
Kalman model. Applying delayed sampling to this model is equivalent to a Rao-Blackwellized
particle filter [Doucet et al. 2000b] combining exact inference with approximate particle filtering.
MTT (Multi-Target Tracker) is adapted from [Murray and Schön 2018] and involves a variable

number of targets with linear-Gaussian 2D position/velocity motion models that produce measure-
ments of position at each time step. The model randomly introduces targets as a Poisson process
and deletes them with fixed probability at each step.

SLAM (Simultaneous Localization and Mapping) is adapted from [Doucet et al. 2000a] and models
an agent that estimates its position on a one-dimensional grid and also a map of its environment
associating each cell with black or white. The robot uses inference to decide its next move, but its
motion commands are noisy with some probability that its wheels may slip, and its observations
may also be incorrectly reported.

7.2 Analysis Results

Table 1 displays the analysis outputs for each of the benchmark programs. For each analysis, the
łoutputž column is the result of the implementation, and the łactualž column is the ground truth, i.e.,
whether the program satisfies the semantic property according to manual analysis. The łbounded
memoryž columns are the logical conjunction of the two semantic properties.
For the first six benchmarks, the analysis implementation yielded the same answer as manual

analysis for whether the program satisfies both semantic properties and thus permits execution in
bounded memory. In every case, the output of the implementation is sound with respect to the
ground truth. Furthermore, all unseparated-path analyses converged within 10 iterations.
Kalman. For this program, every variable is𝑚-consumed for𝑚 ≤ 1 and starts an unseparated

path of length at most 1, and thus it can execute in bounded memory.
Kalman Hold-First. For this program, every variable is𝑚-consumed for𝑚 ≤ 1. However, the

analysis detects that unseparated paths starting from the initial value for x grow without bound
and fail to converge after 10 iterations, so this program cannot execute in bounded memory.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:25

Gaussian RandomWalk.Here, every unseparated path has length at most 1. However, the analysis
detects that there is no𝑚 such that any variable is𝑚-consumed because no variable is ever observed
or evaluated, so this program cannot execute in bounded memory.

Robot. Every variable is 1-consumed and every separated path has length at most 1. The analysis
succeeds and indicates this program can execute in bounded memory.

Coin. Every variable is 1-consumed and every unseparated path has length at most 1. The analysis
succeeds and indicates this program can execute in bounded memory.

Gaussian-Gaussian. Every variable is 1-consumed and every separated path has length at most 1.
The analysis succeeds and indicates this program can execute in bounded memory.

Outlier. Every unseparated path has length at most 1. However, in the event that samples
are indefinitely considered outliers, no observation will occur that causes the variable xt to be
consumed, so this program cannot execute in bounded memory.
MTT. Every unseparated path has length at most 1. However, not all random variables are

guaranteed to be consumed, as the final observe operation is only executed based on a dynamic
condition on the lengths of two list data structures. Because this condition is not guaranteed to be
met, this program cannot execute in bounded memory.

SLAM. Every unseparated path has length at most 1. The analysis concludes that the environment
map array is not consumed because the model makes random choices that are not guaranteed to
cover all the entries of the map. However, manual examination shows that an entry of the map
that is never covered by a random choice is 0-consumed by virtue of being never used. Thus, the
analysis soundly but imprecisely determines that the𝑚-consumed condition fails.

7.3 Discussion

For the Outlier and MTT benchmarks, even though both fail the𝑚-consumed semantic property
and therefore are not guaranteed to execute in bounded memory, they will almost certainly execute
in bounded memory. For example, in Outlier, the only way that the memory consumption of the
model will increase indefinitely is if a particular random choice always takes one branch, which is
a probability-zero event. In general, our semantic properties and analysis implementation reason
about the absence of any program execution that yields unbounded memory. However, in practice,
almost certain bounded-memory execution may also be a useful property of programs.
In general, the analysis can provide a sound guarantee that a program executes with bounded

memory. However, as we saw with SLAM, it is not always precise enough such that if it rejects a
program, then the program must have unbounded memory consumption. For example, it is possible
to deliberately construct pathological programs requiring a large number of iterations for the
unseparated paths analysis. Remaining limitations on precision include common static analysis
challenges such as path sensitivity due to if statements and aliasing due to complex data structures.
When facing conditional branches, the analysis takes a conservative approach that may not

utilize all statically available knowledge. Specifically, it cannot determine that certain branches
are taken at most once over the entire input stream or that only certain program paths are valid
over multiple sequential branches. The analysis also cannot accurately track variables that are
stored into complex data structures, meaning it cannot mark them as consumed. We discuss these
challenges in greater detail and provide specific examples in Appendix G.

8 RELATED WORK

Resource Analysis for Probabilistic Programs. Static resource analysis is capable of automatically
determining upper bounds for resources such as time or memory required to execute a probabilistic
program. Ngo et al. [2018] proposed a weakest-precondition approach to determine the expected
memory usage of a probabilistic program, which bounds the number of loop iterations executed

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:26 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

and number of explicit memory allocation ticks encountered. Our analysis, on the other hand,
extends static reasoning to the inherent memory usage of the inference algorithm itself.

Reactive Probabilistic Programming. Gupta et al. [1997] first introduced the idea of reactive
probabilistic programming. They extend a concurrent constraint language with random variables.
In contrast, our language is based on a synchronous dataflow model and focus on resource analysis.

Baudart et al. [2020] developed ProbZelus, a reactive probabilistic programming language which
operates over streams of data and supports inference at each stream iteration. It uses an implemen-
tation of delayed sampling designed to provide bounded-memory inference for a class of reactive
probabilistic programs. However, ProbZelus provides no static guarantee of bounded-memory
inference. In this work, we define a language that can be used as a target for the compilation
of ProbZelus and identify the semantic conditions and a static analysis that makes it possible to
provide a static guarantee.

Delayed Sampling and Bounded-Memory Inference. The mechanism of delayed sampling in proba-
bilistic programs was introduced by Murray et al. [2018] and implemented in the Anglican and
Birch programming languages, neither of which supports inference over streams. Delayed sampling,
a form of Sequential Monte Carlo [Liu and Chen 1998], can execute in bounded memory because it
automates the construction of Rao-Blackwellized particle filters [Doucet et al. 2000b], a particularly
efficient variant of SMC. By comparison, Markov chain Monte Carlo techniques generally cannot
execute in bounded memory because they maintain a sample of the full history of program execu-
tion, the size of which can grow without bound for a probabilistic stream. Variational inference has
extensions that make it amenable to streaming [Broderick et al. 2013], but we are not aware of any
probabilistic programming system that makes use of them.
Other programming languages such as Hakaru [Narayanan et al. 2016] use static program

transformations to accomplish the same goal of deferring approximate inference as much as possible.
It is unclear if these transformations apply to a streaming context, where dynamic information is
necessary to reflect the evolution of the underlying model over many iterations.

9 CONCLUSION

Probabilistic programming has been augmented by constructs that perform inference over un-
bounded iterations on streams of data. Underlying this programming model is delayed sampling,
which combines the benefits of exact inference and the flexibility of sampling.

In our paper, we introduce the𝑚-consumed and unseparated path semantic properties, which
show that delayed sampling can execute in bounded memory for reactive probabilistic programs.We
present a sound static analysis that verifies these two properties with a type system and an abstract
delayed sampling graph. To the best of our knowledge, our work is the first to develop a resource
analysis for a probabilistic program in relation to its probabilistic programming system’s underly-
ing inference algorithm. We hope this work will enable automatic inference mechanisms whose
performance is better understood by model developers in probabilistic programming languages.

ACKNOWLEDGMENTS

We would like to thank Cambridge Yang, Alex Renda, Jesse Michel, and Ben Sherman, who all
provided feedback on drafts of this paper. This work was supported in part by the MIT-IBMWatson
AI Lab and the Office of Naval Research (ONR N00014-17-1-2699). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the Office of Naval Research.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:27

REFERENCES

Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin. 2021. Statically Bounded-Memory
Delayed Sampling for Probabilistic Streams. In arXiv e-prints. Available at https://arxiv.org/abs/2109.12473.

Eric Atkinson, Cambridge Yang, and Michael Carbin. 2018. Verifying Handcoded Probabilistic Inference Procedures. In
arXiv e-prints.

Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive
Probabilistic Programming. In Conference on Programming Language Design and Implementation.

Leonard E. Baum and Ted Petrie. 1966. Statistical Inference for Probabilistic Functions of Finite State Markov Chains. The
Annals of Mathematical Statistics 37, 6 (1966).

Atilim Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk, Saeid
Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip Torr, Victor Lee, Kyle Cranmer,
Prabhat, and Frank Wood. 2019. Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’19).

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,
Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. Journal of
Machine Learning Research 20, 28 (2019).

Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. 2013. Streaming Variational
Bayes. In International Conference on Neural Information Processing Systems.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: A formal language for embedded critical software
development (invited paper). In TASE. IEEE Computer Society, 1ś11.

Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mansinghka. 2019. Gen: a General-purpose
Probabilistic Programming System with Programmable Inference. In Conference on Programming Language Design and

Implementation.
Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo samplers. J. Royal Statistical Society: Series

B (Statistical Methodology) 68, 3 (2006), 411ś436.
Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. 2000a. Rao-Blackwellised Particle Filtering for

Dynamic Bayesian Networks. In UAI.
Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. 2000b. Rao-Blackwellised Particle Filtering for

Dynamic Bayesian Networks. In Conference on Uncertainty in Artificial Intelligence.
Daniel Fink. 1997. A Compendium of Conjugate Priors. (1997).
Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: Composable inference for probabilistic programming. In

International Conference on Artificial Intelligence and Statistics.
Andrew Gelman, Daniel Lee, and Jiqiang Guo. 2015. Stan: A probabilistic programming language for Bayesian inference

and optimization. Journal of Educational and Behavioral Statistics 40, 5 (2015), 530ś543.
Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A

language for generative models. In Conference on Uncertainty in Artificial Intelligence.
Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming Languages.

http://dippl.org. Accessed: 2020-10-30.
Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio Russo, Johannes Borgstrom, and John Guiver. 2014. Tabular: a

schema-driven probabilistic programming language. In Symposium on Principles of Programming Languages.
Vineet Gupta, Radha Jagadeesan, and Vijay A. Saraswat. 1997. Probabilistic Concurrent Constraint Programming. In

CONCUR (Lecture Notes in Computer Science, Vol. 1243). Springer, 243ś257.
Daniel Huang, Jean-Baptiste Tristan, and Greg Morisett. 2017. Compiling Markov Chain Monte Carlo Algorithms for

Probabilistic Modeling. In Conference on Programming Language Design and Implementation.
R. E. Kalman. 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering 82, 1 (1960).
Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles and Techniques. MIT Press.
Jun S. Liu and Rong Chen. 1998. Sequential Monte Carlo Methods for Dynamic Systems. J. Amer. Statist. Assoc. 93, 443

(1998), 1032ś1044.
Daniel Lundén. 2017. Delayed sampling in the probabilistic programming language Anglican. Master’s thesis. KTH Royal

Institute of Technology.
Vikash Mansingkha, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018. Probabilistic

Programming with Programmable Inference. In Conference on Programming Language Design and Implementation.
George H. Mealy. 1955. A method for synthesizing sequential circuits. The Bell System Technical Journal 34, 5 (1955),

1045ś1079.
Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov. 2007. BLOG: Probabilistic

models with unknown objects. Statistical relational learning (2007).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

https://arxiv.org/abs/2109.12473
http://dippl.org

115:28 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

Thomas P. Minka. 2001. Expectation Propagation for Approximate Bayesian Inference. In Conference in Uncertainty in

Artificial Intelligence.
Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas B. Schön. 2018. Delayed Sampling and

Automatic Rao-Blackwellization of Probabilistic Programs. In International Conference on Artificial Intelligence and

Statistics.
Lawrence M. Murray and Thomas B. Schön. 2018. Automated learning with a probabilistic programming language: Birch.

Annual Reviews in Control 46 (2018).
Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by

program transformation inHakaru (system description). In International Symposium on Functional and Logic Programming.
Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic

Programs. In Conference on Programming Language Design and Implementation.
Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijaykeerthy. 2015. Efficient Synthesis of Probabilistic

Programs. In Conference on Programming Language Design and Implementation.
Avi Pfeffer. 2009. Figaro: An object-oriented probabilistic programming language. Vol. 137. 96.
Eduardo D Sontag. 2013. Mathematical control theory: deterministic finite dimensional systems. Vol. 6. Springer Science &

Business Media.
Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In European Symposium on Programming.
Dustin Tran, Matthew D Hoffman, Rif A Saurous, Eugene Brevdo, Kevin Murphy, and David M Blei. 2017. Deep probabilistic

programming. In International Conference on Learning Representations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

	Abstract
	1 Introduction
	2 Example
	2.1 Probabilistic Model
	2.2 Inference with Delayed Sampling
	2.3 Bounded-Memory Delayed Sampling
	2.4 Analyzing Delayed Sampling

	3 Language Model
	3.1 Syntax
	3.2 Semantics

	4 Delayed Sampling
	4.1 Operational Semantics
	4.2 Graph Manipulation
	4.3 Memory Usage

	5 Semantic Properties
	5.1 Low-Level Bounded Memory
	5.2 High-Level Definitions
	5.3 Equivalence of Low-Level and High-Level Definitions

	6 Analysis
	6.1 Types and Contexts
	6.2 Abstract Graphs
	6.3 Typing Rules
	6.4 Example Type Derivation
	6.5 Soundness
	6.6 Implementation

	7 Evaluation
	7.1 Methodology
	7.2 Analysis Results
	7.3 Discussion

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

