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Abstract

The measurement of individual differences in specific cognitive functions has been an important area of study for
decades. Often the goal of such studies is to determine whether there are cognitive deficits or enhancements associated
with, for example, a specific population, psychological disorder, health status, or age group. The inherent difficulty,
however, is that most cognitive functions are not directly observable, so researchers rely on indirect measures to
infer an individual’s functioning. One of the most common approaches is to use a task that is designed to tap into a
specific function and to use behavioral measures, such as reaction times (RTs), to assess performance on that task.
Although this approach is widespread, it unfortunately is subject to a problem of reverse inference: Differences in
a given cognitive function can be manifest as differences in RTs, but that does not guarantee that differences in RTs
imply differences in that cognitive function. We illustrate this inference problem with data from a study on aging and
lexical processing, highlighting how RTs can lead to erroneous conclusions about processing. Then we discuss how
employing choice-RT models to analyze data can improve inference and highlight practical approaches to improving

the models and incorporating them into one’s analysis pipeline.
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Researchers in psychology and related fields have long
been interested in identifying whether specific cogni-
tive functions differ across individuals. They might
investigate if people with depression show a deficit in
memory (Brand et al., 1992), or if children’s implicit
learning is similar to adults’ (Meulemans et al., 1998),
or if people with stronger inhibitory control show
greater functional MRI activation in a specific neural
region (Congdon et al., 2010). Such investigations are
a core component of the National Institutes of Mental
Health’s Research Domain Criteria (RDoC) initiative,
which is aimed at identifying dimensions of cognitive
functioning associated with abnormal and normal
behavior (Insel et al., 2010). Thus, the degree to which
individual differences in cognitive function can be suc-
cessfully measured has strong implications for a wide
range of scientific disciplines, from clinical psychology
to health science.

Accordingly, it is critical that studies of cognitive func-
tion provide valid measures of the functions of interest.

The primary challenge is that most, if not all, cognitive
functions are not directly observable. One cannot “see”
a person’s level of attentional control; instead, one must
rely on indirect measures, such as reaction times (RTs)
or error rates in an attention task. Although such mea-
sures have been useful, our concern is that measures of
cognitive processes do not always measure what they
are supposed to measure. In this article, we provide an
overview of this measurement problem with an example
from published data and then discuss how incorporating
cognitive modeling into the analysis pipeline can miti-
gate the issue. We close with discussion of how to best
adopt model-based analyses and how to encourage and
improve their usage in the future.
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Fig. 1. Ilustration of forward (top) and reverse (bottom) inference for the lexical decision task. “Bias for nonwords” refers to a relative
preference for the “nonword” response over the “word” response. “Stimulus evidence” refers to the task-relevant information, in this case,
the lexicality of the letter string. DDM = drift diffusion model; RT = reaction time.

The Reverse-Inference Problem
for RT Tasks

A common approach to measuring differences in cogni-
tive function is to take a task designed to rely on a
given function and then infer processing on the basis
of behavioral performance. In the lexical decision task,
for example, participants decide if strings of letters are
words or not, and performance is typically measured
by RTs. In general, such tasks are based on a simple
Jorward inference (Fig. 1, top left): If a person has poor
lexical processing, then that person will have slow RTs
in the task. For most cognitive tasks, this forward infer-
ence is supported. For instance, lexical decision RTs
are slower for low-frequency (uncommon) words com-
pared with high-frequency (common) words (Ruben-
stein et al., 1970), and slower for visually degraded
words compared with clearly presented ones (Yap
et al., 2013). Thus, the cause, weaker lexical processing,
does indeed lead to the effect, slower RTs.

However, when one analyzes data from cognitive
tasks, one is actually reversing the inference (Fig. 1,
bottom left). The reverse-inference problem is a chal-
lenge for all scientific domains, arising when one
observes an effect and infers that it resulted from a

specific cause out of several possible causes. In this
example, one infers that slower RTs indicate a person
has weaker lexical processing, assuming that the slow
RTs are a valid measure of the cognitive function of
interest. Researchers have become so accustomed to
this type of reverse inference that they substitute the
phrase “weak lexical processing” for “slow RTs in the
lexical decision task,” as if the two phrases are com-
pletely interchangeable. But such a reverse inference
is valid only if the process of interest is the only factor
that influences RTs.

Unfortunately, this is not always the case. As illus-
trated in Figure 1 (top right), RTs are also affected by
differences in response caution (speed-vs.-accuracy
preferences), response bias, and even the speed of
encoding the stimulus and the motor response. Thus,
a difference in RTs on a lexical decision task might
reflect lexical processing, as the reverse inference
assumes, but it might reflect other factors, such as cau-
tion or bias. Behavioral measures such as RTs and accu-
racy do not indicate which inference is correct. One
way to reduce this reverse-inference problem is to
model RT and accuracy data with choice-RT models
(described in the next section), which decompose the
behavioral data into separate measures of different
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decision components (Fig. 1, bottom right). This allows
better determination of which factor is driving the dif-
ference in behavior.

To illustrate this issue, we take data from a study of
aging and lexical decision (Ratcliff, Thapar, et al., 2004,
Experiment 1) that compared lexical processing among
older (65+) adults and college-age students. We have
replotted the main summary data in Figure 2 (top),
which shows two results: Older adults were slower than
college students, and they had a larger word-frequency
effect (i.e., a greater difference in RTs between high-
and low-frequency words). Thus, the RT data support
the inference that aging impairs the ability to access
words in the lexicon, and that it has a particularly
strong effect for words that are not commonly used.

Although this conclusion might seem reasonable, it
is valid only to the extent that the RTs are reflecting
differences in lexical processing and nothing else. How-
ever, as Ratcliff, Thapar, et al. (2004) found, an RT model
analysis of the data (Fig. 2 bottom) suggests a different
conclusion: The older adults were more cautious and
slower to press the response button than the college
students (and thus their RTs were slower), but their
lexical-processing ability was the same as the college
students’. The inference changes significantly with the
model-based analysis: Whereas the RT comparison sug-
gests a deficit in lexical processing for older participants
(especially for low-frequency words), the model-based
analysis suggests that the older participants were simply
more cautious and slower to make the motor response.

The reverse-inference problem inherent in the stan-
dard analysis of RTs (or error rates) creates a potentially
misleading interpretation. This issue has wide-reaching
implications for studies of individual and group differ-
ences, as different groups, such as people with and
without depression or children with and without attention-
deficit/hyperactivity disorder (ADHD), might have dif-
ferent levels of response caution, encoding and motor
speed, or response bias. Fortunately, one can mitigate
this issue by incorporating RT modeling into analyses,
an approach we explore in the next section.

RT Models for Analyzing Data From
Choice Tasks

Many, if not most, RT tasks are decision-making tasks.
In lexical decision tasks, participants decide if the letter
string is a word or not; in recognition memory tasks,
they decide if a word was previously studied or not;
and so on. Thus, RT and accuracy data from a lexical
decision task are the result of both lexical processing
and decision making. To obtain a cleaner measure of
lexical processing, one needs to identify and separate
out the effects of the decision process.

An increasingly common way to accomplish this is
to analyze the data with decision models, such as the
drift diffusion model (DDM; Ratcliff, 1978) or the linear
ballistic accumulator (LBA) model (Brown & Heathcote,
2008). These models assume that the decision process
involves the noisy accumulation of evidence until a
criterion amount is reached. Decision behavior is driven
by four primary components: response caution (speed-
vs.-accuracy settings), response bias (leaning toward
one response over the other), nondecision duration
(amount of time needed for encoding the stimulus and
executing the response), and stimulus evidence (a
reflection of the ability to process the stimulus and
extract accurate evidence for the correct response). In
most cases, the stimulus-evidence component, termed
the drift rate, is the one that actually reflects the task-
specific process of interest (e.g., in a lexical decision
task, the drift rate is driven by lexical processing). (For
detailed explorations of these models, see the Recom-
mended Reading.)

These models are instantiated mathematically and
specify (mostly) precise relationships between potential
causes (decision components) and effects (RTs and
accuracy). Researchers can fit the model to behavioral
data from a participant or condition, using a search
algorithm that estimates the value of each component
that most closely matches the observed data. The result-
ing set of parameter values allow researchers to com-
pare separate measures of caution, bias, stimulus
evidence, and nondecision time. These parameter val-
ues can be analyzed in the same manner as RTs—
entered into ¢ tests or analyses of variance, or used as
regressors for functional MRI analyses, and so on.

Advantages of RT models

There are three primary advantages to employing
model-based analyses. First, the models incorporate all
of the behavioral data, including the proportion of cor-
rect responses (accuracy) and the RT distributions for
both correct and error responses. Oftentimes, research-
ers will analyze RTs while more or less ignoring accu-
racy (or vice versa). Further, comparing individuals’ or
groups’ mean RTs for correct responses neglects infor-
mation from RTs for error responses and the shape of
the RT distributions. RT distribution analyses, such as
ex-Gaussian analyses (Heathcote et al., 1991), are an
improvement in this regard, though they still do not
account for accuracy or error RTs the way RT models
do. In general, the relationship between accuracy and
the RT distributions for correct and error responses
provides critical information for understanding decision
behavior. For example, DDM and LBA analyses typically
show that faster error RTs than correct RTs for one
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response option indicate the presence of a response
bias for the opposing response option (see White &
Poldrack, 2014).

The second advantage is that RT models provide
better specificity for identifying which factors are driv-
ing group or condition differences. For example, in the
go/no-go task of inhibitory control, participants are
asked to quickly respond (“go”) to a frequent stimulus
but inhibit their response (“no go”) to an infrequent
stimulus. Children with ADHD commonly show faster
“g0” RTs when trials are presented more rapidly, which
was initially thought to reflect a deficit in task engage-
ment. However, a diffusion-model analysis showed that
faster presentation rates actually increased task engage-
ment in these children, but also led to slower accumula-
tion of “no-go” evidence that counteracted the higher
engagement (Huang-Pollock et al., 2017). The modeling
captured this effect through the relationships among
accuracy, correct (go) RTs, and error (no-go) RTs, and
countered the widespread belief that a fast presentation
rate produces a deficit in arousal regulation for children
with ADHD.

In a similar vein, a diffusion-model analysis changed
the interpretation of feedback-learning performance in
patients with schizophrenia (Moustafa et al., 2015). The
behavioral data showed that these patients were sig-
nificantly slower than control individuals on the learn-
ing task, but only slightly, nonsignificantly less accurate.
The inference based on the standard accuracy metric
would be that patients with schizophrenia were not
significantly worse at learning from feedback. How-
ever, a DDM analysis of the data showed that they were
significantly more cautious than control individuals
and did show a deficit in punishment-based feedback
learning. This learning deficit, which reduced accuracy,
was offset by increased caution, which increased accu-
racy, and was apparent only once the model-based
analysis identified and controlled for the specific effect
of caution.

The third advantage of model-based analyses is that
they can provide better sensitivity to small differences
in processing. Individual differences in extraneous fac-
tors such as caution or bias add noise to the RT and
accuracy measures, which can reduce researchers’ abil-
ity to detect small or weak differences. But this noise
is controlled for with model-based analyses, as the
effects of caution and bias are separated out from the
effects of stimulus processing, which provides a cleaner
measure of the latter. Multiple studies, including the
schizophrenia study just mentioned, have found that
the model-based measures show larger effect sizes than
RTs and accuracy do, and in some cases, this increased
sensitivity is enough to tip the balance from a null to
a significant effect. For example, empirical studies have

found that people with high anxiety show enhanced
processing of threatening information when there are
two or more stimuli competing for attention, but not
when single stimuli are presented. This suggests that
the threat bias is driven by the process of allocating
attention between competing stimuli. In one such study
(White et al. 2010), although a standard RT comparison
showed a small, nonsignificant threat bias for singular
stimuli in lexical decision, a DDM analysis of the data,
which increased sensitivity by controlling for differ-
ences in caution and bias, showed a consistent, signifi-
cant threat bias for high-anxiety participants. This
model-based analysis suggests that the threat bias is
still present when there are not multiple stimuli com-
peting for attention; it is just smaller and harder to
detect. The increased sensitivity offered by model-
based analyses relative to standard RT models can be
critical in domains such as clinical psychology, where
effects are often small.

Using RT models to analyze data

Given the advantages of utilizing all the data and
increasing specificity and sensitivity, we recommend
that researchers apply models such as the DDM or LBA
model to analyze their RT data. In many cases, the
models can be added to the analysis pipeline with
minimal extra effort, and they can often be used on
data that have already been collected. To date, these
models have been successfully applied to a wide range
of tasks, including those that measure recognition mem-
ory (Ratcliff, Thapar, & McKoon, 2004), threat classifica-
tion (White et al., 2016), inhibitory control (Gomez
et al., 2007), and economic choice (Clithero, 2018).
Likewise, these models have been used with functional
MRI and electromyogram data (see Recommended
Reading for sources providing further information).

There are a number of software packages available to
ease the implementation of these models, including pack-
ages for MATLAB (Vandekerckhove & Tuerlinckx, 2008)
and R Studio (Brown & Heathcote, 2008; Wagenmakers
et al., 2007), as well as stand-alone packages (Singmann
et al., 2022; Voss & Voss, 2007; Wiecki et al., 2013). For
each of these packages, the researcher need only pre-
pare the data according to the instructions and run the
program. The output provides, for each participant or
condition, a list of parameter estimates that reflect the
levels of caution, bias, nondecision time, and stimulus
evidence (task performance) and can then be used in
the same manner as RTs for ¢ tests, regressions, and
other analyses.

Although the statistical packages increase usability,
they also make it easier for one to potentially misuse
the models when they are not appropriate. There are
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important considerations that ensure the models are
providing valid parameter estimates, including having
enough observations (usually 30+ per condition) and
making sure that the model predictions match the
observed data. A researcher who uses a model but does
not verify its accuracy could end up with erroneous
inferences. One simple way to avoid these pitfalls is to
collaborate with researchers who have experience using
these models; the experts can help to troubleshoot the
process and leverage their experience when adjustments
need to be made to the modeling process.

Limitations and future directions

Although using RT models to analyze data is a step in
the right direction, it is not without limitations. First,
the model-fitting process is simply a transformation of
the data, and there are small correlations among the
parameters that mean the estimates are not completely
precise or unbiased (Ratcliff & Tuerlinckx, 2002). Thus,
model-based analyses are still subject to the reverse-
inference problem, albeit to a lesser degree than mean
RTs or error rates. Second, the models perform best
when there are a large number of trials and error RTs,
which might not occur because of practical constraints
and the nature of the tasks. Although these are struc-
tural problems that cannot be completely avoided,
newer estimation approaches, including hierarchical
Bayesian versions of the models, have been developed
to improve application to sparse data (Alexandrowicz
& Gula, 2020; Wiecki et al., 2013).

Future research can focus on extending RT models
so that they incorporate task-specific processes and can
be applied to new paradigms. For example, Lerche and
Voss (2019) showed that the DDM can be used even
when the decisions are slower than is typical (> 3 s,
Lerche & Voss, 2019). Holmes et al. (2016) developed
an LBA model in which the evidence can change over
the course of the decision. And hybrid RT models that
add components to describe where the decision evi-
dence comes from can be developed. Although the
DDM can be applied to lexical decision data, it says
nothing about how lexical processing works. Hybrid
models address this by adding a “front end” to describe
how the stimulus is processed to provide the decision
evidence. This evidence is fed into the “back end” of
the decision process. For example, conflict paradigms
such as the flanker task produce data patterns indicative
of time-varying decision evidence, and these data can-
not be captured by a standard DDM or an LBA model.
But conflict-diffusion models that add conflict-control
processes such as delayed suppression can successfully
account for data from these tasks (Hubner et al., 2010;
Ulrich et al., 2015; White et al., 2011).

Such model extensions (a) provide a formal frame-
work for testing theoretical assumptions, (b) expand the
tasks to which the models can be applied, and (¢) add
constraints to improve parameter identifiability (i.e.,
identifying which parameter values are estimated accu-
rately). However, these newer hybrid models need to
be validated, particularly if they are to be used to ana-
lyze RT data. For instance, a recent study (White et al.,
2018) found that conflict-diffusion models had signifi-
cant parameter trade-offs (i.e., changes in one parameter
could be compensated for by changes in another).
These trade-offs made the raw parameter values difficult
to estimate accurately, but a targeted combination of
specific parameters improved their validity.

Conclusion

Psychologists should look toward improving the way
they measure cognitive functions, particularly when RT
tasks are used to assess individual differences. Although
RT-based measures have provided important insights
over the past 100+ years, they are still noisy and prone
to problems of reverse inference. It is important to
remember that in a task like lexical decision, the RTs
are a proxy for lexical processing, not a perfect measure
of it. Analysis with choice-RT models can reduce the
reverse-inference problem by incorporating all of the
data, providing better specificity for which cognitive
components differ among individuals and better sensi-
tivity for detecting small differences.

We recommend that, when feasible, researchers add
model-based analyses to their pipeline for RT data.
Often this can be done without much overhead, par-
ticularly when collaborations are formed with experi-
enced modelers. Meaningful progress in psychology
cannot occur if researchers are not measuring what they
think they are measuring, and cognitive modeling pro-
vides one approach to improve inferences about cogni-
tive functions.

Recommended Reading

Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing
conclusions from choice response time models: A tuto-
rial using the linear ballistic accumulator. Journal of
Matbematical Psychology, 55(2), 140-151. https://doi
.0rg/10.1016/j.jmp.2010.10.001. A tutorial focusing on
how to use and interpret results from a reaction time
(RT) model, with a worked example illustrating the gen-
eral principles for employing such models and drawing
appropriate inferences from the results.

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016).
Sequential sampling models in cognitive neuroscience:
Advantages, applications, and extensions. Annual Review
of Psychology, 67, 641-666. https://doi.org/10.1146/
annurev-psych-122414-033645. An overview of how and
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why to use RT models in conjunction with neural data
such as from functional MRI or electroencephalography,
highlighting how the models can be used to bridge the
neural recordings, behavioral responses, and underlying
cognitive mechanisms.

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016).
Diffusion decision model: Current issues and history.
Trends in Cognitive Sciences, 20(4), 260-281. https://
doi.org/10.1016/j.tics.2016.01.007. An overview of diffu-
sion models with a focus on historical development, core
aspects of the model framework, and current applications.

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010).
Using diffusion models to understand clinical disorders.
Journal of Mathematical Psychology, 54(1), 39-52. https://
doi.org/10.1016/j.jmp.2010.01.004. A discussion of how
RT models can help improve understanding of cognitive
processing in clinical populations, although the general
approach can be applied to other populations (e.g., peo-
ple with hypertension) and domains (e.g., developmental
or social psychology).
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