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Researchers in psychology and related fields have long 
been interested in identifying whether specific cogni-
tive functions differ across individuals. They might 
investigate if people with depression show a deficit in 
memory (Brand et  al., 1992), or if children’s implicit 
learning is similar to adults’ (Meulemans et al., 1998), 
or if people with stronger inhibitory control show 
greater functional MRI activation in a specific neural 
region (Congdon et al., 2010). Such investigations are 
a core component of the National Institutes of Mental 
Health’s Research Domain Criteria (RDoC) initiative, 
which is aimed at identifying dimensions of cognitive 
functioning associated with abnormal and normal 
behavior (Insel et al., 2010). Thus, the degree to which 
individual differences in cognitive function can be suc-
cessfully measured has strong implications for a wide 
range of scientific disciplines, from clinical psychology 
to health science.

Accordingly, it is critical that studies of cognitive func-
tion provide valid measures of the functions of interest. 

The primary challenge is that most, if not all, cognitive 
functions are not directly observable. One cannot “see” 
a person’s level of attentional control; instead, one must 
rely on indirect measures, such as reaction times (RTs) 
or error rates in an attention task. Although such mea-
sures have been useful, our concern is that measures of 
cognitive processes do not always measure what they 
are supposed to measure. In this article, we provide an 
overview of this measurement problem with an example 
from published data and then discuss how incorporating 
cognitive modeling into the analysis pipeline can miti-
gate the issue. We close with discussion of how to best 
adopt model-based analyses and how to encourage and 
improve their usage in the future.
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Abstract
The measurement of individual differences in specific cognitive functions has been an important area of study for 
decades. Often the goal of such studies is to determine whether there are cognitive deficits or enhancements associated 
with, for example, a specific population, psychological disorder, health status, or age group. The inherent difficulty, 
however, is that most cognitive functions are not directly observable, so researchers rely on indirect measures to 
infer an individual’s functioning. One of the most common approaches is to use a task that is designed to tap into a 
specific function and to use behavioral measures, such as reaction times (RTs), to assess performance on that task. 
Although this approach is widespread, it unfortunately is subject to a problem of reverse inference: Differences in 
a given cognitive function can be manifest as differences in RTs, but that does not guarantee that differences in RTs 
imply differences in that cognitive function. We illustrate this inference problem with data from a study on aging and 
lexical processing, highlighting how RTs can lead to erroneous conclusions about processing. Then we discuss how 
employing choice-RT models to analyze data can improve inference and highlight practical approaches to improving 
the models and incorporating them into one’s analysis pipeline.
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The Reverse-Inference Problem  
for RT Tasks

A common approach to measuring differences in cogni-
tive function is to take a task designed to rely on a 
given function and then infer processing on the basis 
of behavioral performance. In the lexical decision task, 
for example, participants decide if strings of letters are 
words or not, and performance is typically measured 
by RTs. In general, such tasks are based on a simple 
forward inference (Fig. 1, top left): If a person has poor 
lexical processing, then that person will have slow RTs 
in the task. For most cognitive tasks, this forward infer-
ence is supported. For instance, lexical decision RTs 
are slower for low-frequency (uncommon) words com-
pared with high-frequency (common) words (Ruben-
stein et  al., 1970), and slower for visually degraded 
words compared with clearly presented ones (Yap 
et al., 2013). Thus, the cause, weaker lexical processing, 
does indeed lead to the effect, slower RTs.

However, when one analyzes data from cognitive 
tasks, one is actually reversing the inference (Fig. 1, 
bottom left). The reverse-inference problem is a chal-
lenge for all scientific domains, arising when one 
observes an effect and infers that it resulted from a 

specific cause out of several possible causes. In this 
example, one infers that slower RTs indicate a person 
has weaker lexical processing, assuming that the slow 
RTs are a valid measure of the cognitive function of 
interest. Researchers have become so accustomed to 
this type of reverse inference that they substitute the 
phrase “weak lexical processing” for “slow RTs in the 
lexical decision task,” as if the two phrases are com-
pletely interchangeable. But such a reverse inference 
is valid only if the process of interest is the only factor 
that influences RTs.

Unfortunately, this is not always the case. As illus-
trated in Figure 1 (top right), RTs are also affected by 
differences in response caution (speed-vs.-accuracy 
preferences), response bias, and even the speed of 
encoding the stimulus and the motor response. Thus, 
a difference in RTs on a lexical decision task might 
reflect lexical processing, as the reverse inference 
assumes, but it might reflect other factors, such as cau-
tion or bias. Behavioral measures such as RTs and accu-
racy do not indicate which inference is correct. One 
way to reduce this reverse-inference problem is to 
model RT and accuracy data with choice-RT models 
(described in the next section), which decompose the 
behavioral data into separate measures of different 
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Fig. 1.  Illustration of forward (top) and reverse (bottom) inference for the lexical decision task. “Bias for nonwords” refers to a relative 
preference for the “nonword” response over the “word” response. “Stimulus evidence” refers to the task-relevant information, in this case, 
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decision components (Fig. 1, bottom right). This allows 
better determination of which factor is driving the dif-
ference in behavior.

To illustrate this issue, we take data from a study of 
aging and lexical decision (Ratcliff, Thapar, et al., 2004, 
Experiment 1) that compared lexical processing among 
older (65+) adults and college-age students. We have 
replotted the main summary data in Figure 2 (top), 
which shows two results: Older adults were slower than 
college students, and they had a larger word-frequency 
effect (i.e., a greater difference in RTs between high- 
and low-frequency words). Thus, the RT data support 
the inference that aging impairs the ability to access 
words in the lexicon, and that it has a particularly 
strong effect for words that are not commonly used.

Although this conclusion might seem reasonable, it 
is valid only to the extent that the RTs are reflecting 
differences in lexical processing and nothing else. How-
ever, as Ratcliff, Thapar, et al. (2004) found, an RT model 
analysis of the data (Fig. 2 bottom) suggests a different 
conclusion: The older adults were more cautious and 
slower to press the response button than the college 
students (and thus their RTs were slower), but their 
lexical-processing ability was the same as the college 
students’. The inference changes significantly with the 
model-based analysis: Whereas the RT comparison sug-
gests a deficit in lexical processing for older participants 
(especially for low-frequency words), the model-based 
analysis suggests that the older participants were simply 
more cautious and slower to make the motor response.

The reverse-inference problem inherent in the stan-
dard analysis of RTs (or error rates) creates a potentially 
misleading interpretation. This issue has wide-reaching 
implications for studies of individual and group differ-
ences, as different groups, such as people with and 
without depression or children with and without attention- 
deficit/hyperactivity disorder (ADHD), might have dif-
ferent levels of response caution, encoding and motor 
speed, or response bias. Fortunately, one can mitigate 
this issue by incorporating RT modeling into analyses, 
an approach we explore in the next section.

RT Models for Analyzing Data From 
Choice Tasks

Many, if not most, RT tasks are decision-making tasks. 
In lexical decision tasks, participants decide if the letter 
string is a word or not; in recognition memory tasks, 
they decide if a word was previously studied or not; 
and so on. Thus, RT and accuracy data from a lexical 
decision task are the result of both lexical processing 
and decision making. To obtain a cleaner measure of 
lexical processing, one needs to identify and separate 
out the effects of the decision process.

An increasingly common way to accomplish this is 
to analyze the data with decision models, such as the 
drift diffusion model (DDM; Ratcliff, 1978) or the linear 
ballistic accumulator (LBA) model (Brown & Heathcote, 
2008). These models assume that the decision process 
involves the noisy accumulation of evidence until a 
criterion amount is reached. Decision behavior is driven 
by four primary components: response caution (speed-
vs.-accuracy settings), response bias (leaning toward 
one response over the other), nondecision duration 
(amount of time needed for encoding the stimulus and 
executing the response), and stimulus evidence (a 
reflection of the ability to process the stimulus and 
extract accurate evidence for the correct response). In 
most cases, the stimulus-evidence component, termed 
the drift rate, is the one that actually reflects the task-
specific process of interest (e.g., in a lexical decision 
task, the drift rate is driven by lexical processing). (For 
detailed explorations of these models, see the Recom-
mended Reading.)

These models are instantiated mathematically and 
specify (mostly) precise relationships between potential 
causes (decision components) and effects (RTs and 
accuracy). Researchers can fit the model to behavioral 
data from a participant or condition, using a search 
algorithm that estimates the value of each component 
that most closely matches the observed data. The result-
ing set of parameter values allow researchers to com-
pare separate measures of caution, bias, stimulus 
evidence, and nondecision time. These parameter val-
ues can be analyzed in the same manner as RTs—
entered into t tests or analyses of variance, or used as 
regressors for functional MRI analyses, and so on.

Advantages of RT models

There are three primary advantages to employing 
model-based analyses. First, the models incorporate all 
of the behavioral data, including the proportion of cor-
rect responses (accuracy) and the RT distributions for 
both correct and error responses. Oftentimes, research-
ers will analyze RTs while more or less ignoring accu-
racy (or vice versa). Further, comparing individuals’ or 
groups’ mean RTs for correct responses neglects infor-
mation from RTs for error responses and the shape of 
the RT distributions. RT distribution analyses, such as 
ex-Gaussian analyses (Heathcote et al., 1991), are an 
improvement in this regard, though they still do not 
account for accuracy or error RTs the way RT models 
do. In general, the relationship between accuracy and 
the RT distributions for correct and error responses 
provides critical information for understanding decision 
behavior. For example, DDM and LBA analyses typically 
show that faster error RTs than correct RTs for one 
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response option indicate the presence of a response 
bias for the opposing response option (see White & 
Poldrack, 2014).

The second advantage is that RT models provide 
better specificity for identifying which factors are driv-
ing group or condition differences. For example, in the 
go/no-go task of inhibitory control, participants are 
asked to quickly respond (“go”) to a frequent stimulus 
but inhibit their response (“no go”) to an infrequent 
stimulus. Children with ADHD commonly show faster 
“go” RTs when trials are presented more rapidly, which 
was initially thought to reflect a deficit in task engage-
ment. However, a diffusion-model analysis showed that 
faster presentation rates actually increased task engage-
ment in these children, but also led to slower accumula-
tion of “no-go” evidence that counteracted the higher 
engagement (Huang-Pollock et al., 2017). The modeling 
captured this effect through the relationships among 
accuracy, correct (go) RTs, and error (no-go) RTs, and 
countered the widespread belief that a fast presentation 
rate produces a deficit in arousal regulation for children 
with ADHD.

In a similar vein, a diffusion-model analysis changed 
the interpretation of feedback-learning performance in 
patients with schizophrenia (Moustafa et al., 2015). The 
behavioral data showed that these patients were sig-
nificantly slower than control individuals on the learn-
ing task, but only slightly, nonsignificantly less accurate. 
The inference based on the standard accuracy metric 
would be that patients with schizophrenia were not 
significantly worse at learning from feedback. How-
ever, a DDM analysis of the data showed that they were 
significantly more cautious than control individuals 
and did show a deficit in punishment-based feedback 
learning. This learning deficit, which reduced accuracy, 
was offset by increased caution, which increased accu-
racy, and was apparent only once the model-based 
analysis identified and controlled for the specific effect 
of caution.

The third advantage of model-based analyses is that 
they can provide better sensitivity to small differences 
in processing. Individual differences in extraneous fac-
tors such as caution or bias add noise to the RT and 
accuracy measures, which can reduce researchers’ abil-
ity to detect small or weak differences. But this noise 
is controlled for with model-based analyses, as the 
effects of caution and bias are separated out from the 
effects of stimulus processing, which provides a cleaner 
measure of the latter. Multiple studies, including the 
schizophrenia study just mentioned, have found that 
the model-based measures show larger effect sizes than 
RTs and accuracy do, and in some cases, this increased 
sensitivity is enough to tip the balance from a null to 
a significant effect. For example, empirical studies have 

found that people with high anxiety show enhanced 
processing of threatening information when there are 
two or more stimuli competing for attention, but not 
when single stimuli are presented. This suggests that 
the threat bias is driven by the process of allocating 
attention between competing stimuli. In one such study 
(White et al. 2010), although a standard RT comparison 
showed a small, nonsignificant threat bias for singular 
stimuli in lexical decision, a DDM analysis of the data, 
which increased sensitivity by controlling for differ-
ences in caution and bias, showed a consistent, signifi-
cant threat bias for high-anxiety participants. This 
model-based analysis suggests that the threat bias is 
still present when there are not multiple stimuli com-
peting for attention; it is just smaller and harder to 
detect. The increased sensitivity offered by model-
based analyses relative to standard RT models can be 
critical in domains such as clinical psychology, where 
effects are often small.

Using RT models to analyze data

Given the advantages of utilizing all the data and 
increasing specificity and sensitivity, we recommend 
that researchers apply models such as the DDM or LBA 
model to analyze their RT data. In many cases, the 
models can be added to the analysis pipeline with 
minimal extra effort, and they can often be used on 
data that have already been collected. To date, these 
models have been successfully applied to a wide range 
of tasks, including those that measure recognition mem-
ory (Ratcliff, Thapar, & McKoon, 2004), threat classifica-
tion (White et  al., 2016), inhibitory control (Gomez 
et  al., 2007), and economic choice (Clithero, 2018). 
Likewise, these models have been used with functional 
MRI and electromyogram data (see Recommended 
Reading for sources providing further information).

There are a number of software packages available to 
ease the implementation of these models, including pack-
ages for MATLAB (Vandekerckhove & Tuerlinckx, 2008) 
and R Studio (Brown & Heathcote, 2008; Wagenmakers 
et al., 2007), as well as stand-alone packages (Singmann 
et al., 2022; Voss & Voss, 2007; Wiecki et al., 2013). For 
each of these packages, the researcher need only pre-
pare the data according to the instructions and run the 
program. The output provides, for each participant or 
condition, a list of parameter estimates that reflect the 
levels of caution, bias, nondecision time, and stimulus 
evidence (task performance) and can then be used in 
the same manner as RTs for t tests, regressions, and 
other analyses.

Although the statistical packages increase usability, 
they also make it easier for one to potentially misuse 
the models when they are not appropriate. There are 
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important considerations that ensure the models are 
providing valid parameter estimates, including having 
enough observations (usually 30+ per condition) and 
making sure that the model predictions match the 
observed data. A researcher who uses a model but does 
not verify its accuracy could end up with erroneous 
inferences. One simple way to avoid these pitfalls is to 
collaborate with researchers who have experience using 
these models; the experts can help to troubleshoot the 
process and leverage their experience when adjustments 
need to be made to the modeling process.

Limitations and future directions

Although using RT models to analyze data is a step in 
the right direction, it is not without limitations. First, 
the model-fitting process is simply a transformation of 
the data, and there are small correlations among the 
parameters that mean the estimates are not completely 
precise or unbiased (Ratcliff & Tuerlinckx, 2002). Thus, 
model-based analyses are still subject to the reverse-
inference problem, albeit to a lesser degree than mean 
RTs or error rates. Second, the models perform best 
when there are a large number of trials and error RTs, 
which might not occur because of practical constraints 
and the nature of the tasks. Although these are struc-
tural problems that cannot be completely avoided, 
newer estimation approaches, including hierarchical 
Bayesian versions of the models, have been developed 
to improve application to sparse data (Alexandrowicz 
& Gula, 2020; Wiecki et al., 2013).

Future research can focus on extending RT models 
so that they incorporate task-specific processes and can 
be applied to new paradigms. For example, Lerche and 
Voss (2019) showed that the DDM can be used even 
when the decisions are slower than is typical (> 3 s, 
Lerche & Voss, 2019). Holmes et al. (2016) developed 
an LBA model in which the evidence can change over 
the course of the decision. And hybrid RT models that 
add components to describe where the decision evi-
dence comes from can be developed. Although the 
DDM can be applied to lexical decision data, it says 
nothing about how lexical processing works. Hybrid 
models address this by adding a “front end” to describe 
how the stimulus is processed to provide the decision 
evidence. This evidence is fed into the “back end” of 
the decision process. For example, conflict paradigms 
such as the flanker task produce data patterns indicative 
of time-varying decision evidence, and these data can-
not be captured by a standard DDM or an LBA model. 
But conflict-diffusion models that add conflict-control 
processes such as delayed suppression can successfully 
account for data from these tasks (Hubner et al., 2010; 
Ulrich et al., 2015; White et al., 2011).

Such model extensions (a) provide a formal frame-
work for testing theoretical assumptions, (b) expand the 
tasks to which the models can be applied, and (c) add 
constraints to improve parameter identifiability (i.e., 
identifying which parameter values are estimated accu-
rately). However, these newer hybrid models need to 
be validated, particularly if they are to be used to ana-
lyze RT data. For instance, a recent study (White et al., 
2018) found that conflict-diffusion models had signifi-
cant parameter trade-offs (i.e., changes in one parameter 
could be compensated for by changes in another). 
These trade-offs made the raw parameter values difficult 
to estimate accurately, but a targeted combination of 
specific parameters improved their validity.

Conclusion

Psychologists should look toward improving the way 
they measure cognitive functions, particularly when RT 
tasks are used to assess individual differences. Although 
RT-based measures have provided important insights 
over the past 100+ years, they are still noisy and prone 
to problems of reverse inference. It is important to 
remember that in a task like lexical decision, the RTs 
are a proxy for lexical processing, not a perfect measure 
of it. Analysis with choice-RT models can reduce the 
reverse-inference problem by incorporating all of the 
data, providing better specificity for which cognitive 
components differ among individuals and better sensi-
tivity for detecting small differences.

We recommend that, when feasible, researchers add 
model-based analyses to their pipeline for RT data. 
Often this can be done without much overhead, par-
ticularly when collaborations are formed with experi-
enced modelers. Meaningful progress in psychology 
cannot occur if researchers are not measuring what they 
think they are measuring, and cognitive modeling pro-
vides one approach to improve inferences about cogni-
tive functions.

Recommended Reading

Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing 
conclusions from choice response time models: A tuto-
rial using the linear ballistic accumulator. Journal of 
Mathematical Psychology, 55(2), 140–151. https://doi 
.org/10.1016/j.jmp.2010.10.001. A tutorial focusing on 
how to use and interpret results from a reaction time 
(RT) model, with a worked example illustrating the gen-
eral principles for employing such models and drawing 
appropriate inferences from the results.

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). 
Sequential sampling models in cognitive neuroscience: 
Advantages, applications, and extensions. Annual Review 
of Psychology, 67, 641–666. https://doi.org/10.1146/
annurev-psych-122414-033645. An overview of how and 

https://doi.org/10.1016/j.jmp.2010.10.001
https://doi.org/10.1016/j.jmp.2010.10.001
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1146/annurev-psych-122414-033645
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why to use RT models in conjunction with neural data 
such as from functional MRI or electroencephalography, 
highlighting how the models can be used to bridge the 
neural recordings, behavioral responses, and underlying 
cognitive mechanisms.

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). 
Diffusion decision model: Current issues and history. 
Trends in Cognitive Sciences, 20(4), 260–281. https://
doi.org/10.1016/j.tics.2016.01.007. An overview of diffu-
sion models with a focus on historical development, core 
aspects of the model framework, and current applications.

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010). 
Using diffusion models to understand clinical disorders. 
Journal of Mathematical Psychology, 54(1), 39–52. https://
doi.org/10.1016/j.jmp.2010.01.004. A discussion of how 
RT models can help improve understanding of cognitive 
processing in clinical populations, although the general 
approach can be applied to other populations (e.g., peo-
ple with hypertension) and domains (e.g., developmental 
or social psychology).
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