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Abstract—Autonomous cyber-physical systems (CPS) are sus-
ceptible to non-invasive physical attacks such as sensor spoofing
attacks that are beyond the classical cybersecurity domain. These
attacks have motivated numerous research efforts on attack
detection, but little attention on what to do after detecting
an attack. The importance of attack recovery is emphasized
by the need to mitigate the attack’s impact on a system and
restore it to continue functioning. There are only a few works
addressing attack recovery, but they all rely on prior knowledge
of system dynamics. To overcome this limitation, we propose
Recovery-by-Learning, a data-driven attack recovery framework
that restores CPS from sensor attacks. The framework leverages
natural redundancy among heterogeneous sensors and historical
data for attack recovery. Specially, the framework consists of
two major components: state predictor and data checkpointer.
First, the predictor is triggered to estimate systems states after
the detection of an attack. We propose a deep learning-based
prediction model that exploits the temporal correlation among
heterogeneous sensors. Second, the checkpointer executes when
no attack is detected. We propose a double sliding window based
checkpointing protocol to remove compromised data and keep
trustful data as input to the state predictor. Third, we implement
and evaluate the effectiveness of our framework using a realistic
data set and a ground vehicle simulator. The results show that
our method restores a system to continue functioning in presence
of sensor attacks.

Index Terms—autonomous cyber-physical systems, sensor at-
tacks, attack recovery, attack resiliency

I. INTRODUCTION

Cyber-Physical Systems (CPS) tightly couple computing

and communication components with physical processes. Self-

driving cars, smart grid, intelligent manufacturing systems,

and many other CPS have been revolutionizing our modern

life. For example, autonomous CPS such as unmanned aerial

vehicles (UAV) have been used in many applications including

aerial photography, construction site management, policing

and surveillance, and even package delivery.

CPS has changed from once-isolated systems to open ar-

chitectures, which makes them susceptible to various cyber

and physical attacks. On the one hand, cyber attacks such

as network eavesdropping, data modification, packet spoof-

ing, packet replaying, buffer overflow, etc, are attacks that

compromise the computing and communication components

of the CPS. Physical attacks, on the other hand, perturbs

the physical environment of the CPS such that it allows the

injection of malicious signals into sensors and actuators. Such

attacks include dazzling cameras with light, injecting false

radar signals, GPS Spoofing etc. Defense measures for cyber

attacks are relatively advanced. Conventional cyber security

techniques such as memory isolation [1], control-flow integrity

[2], firmware hardening [3] are applicable in defending CPS

against cyber attacks. These security techniques are, however,

inadequate against physical attacks.

This observation is highlighted by non-invasive sensor at-

tacks in the literature and real world. For example, Rutkin [4]

demonstrated a GPS spoofing attack that misguided a yacht

off course. Shoukry et al. [5] used an external magnetic field

to perturb the physical environment of a vehicle’s wheel speed

sensors to disrupt the function of Anti-lock Braking System

(ABS). Camera and LiDAR devices on modern automobiles

can be also attacked from a remote location [6]. Non-invasive

physical attacks do not require close proximity to a physical

component in order to succeed. In addition, it requires little

knowledge and inexpensive tools for an attacker to launch

physical attacks. The effectiveness of such attacks will con-

tinue to rise as the autonomy in CPS increases.

These new CPS threats have motivated many research

efforts to defend against sensor attacks. However, most of

them have focused on attack detection rather than recovery

measures. Raising attack alerts, usually done in attack de-

tection works, do not ensure the continuous functioning of

the CPS [7]–[9]. Hence, to respond to attack alerts, recovery

measures are required to mitigate the effect of an attack on

a system and continue the system’s operation with minimum

interruption. Only a few existing works have addressed attack-

recovery in any form. As the pioneer work in this research

thread, Kong et al. [10], [11] assumes full observability of the

system and replaces measurements of compromised sensors

by model-predicted values. Fei et al. [12] follow the idea of

[10] and proposes a redundant controller for attack recovery

that is trained also based on the system model. Although these

works validate the performance under their own settings, they

require prior knowledge of system dynamics that builds the

system model.

To address these limitations, we propose Recovery-by-

Learning, a data-driven attack recovery framework that re-

stores automotive cyber-physical systems from sensor attacks.

The framework requires little knowledge of the system’s

dynamics, but leverages natural redundancy among heteroge-

neous sensors and historical data for attack recovery. Specially,

the framework consists of two major components: state predic-
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tor and data checkpointer. At the core of this paper are novel

techniques to realize these components.

First, the state predictor is activated to estimate system

states when an attack is detected. The predicted states are

forwarded to the controller to calculate and issue appropriate

control commands to bring the system back to normalcy.

The predictor is built on a deep learning model that captures

the nominal system behavior. The model exploits the natural

redundancy as well as the short and long term temporal

correlation among heterogeneous sensors on an autonomous

CPS, through combining convolutional neural network (CNN)

and recurrent neural network (RNN).

Second, the data checkpointer executes in the normal mode

when no attack is detected. It employs a checkpointing pro-

tocol to remove corrupted data and keep valid historical data

as input to the state predictor to make state estimation. The

protocol uses double sliding windows: detection window and

logging window. The former accommodates the substantial

detection delay (i.e., the time interval between the start of an

attack and the detection of it), during which the correctness

of the sensor data is still in question and thus using them may

result in unsuccessful recovery. The logging window governs

sufficient trustful data for the state prediction.

We implement and evaluate the effectiveness of our frame-

work using a real-world data set, AEGIS Big Data Project

[13], and a ground vehicle simulator, Ardupilot SITL Rover

[14]. The results show that the proposed framework is capable

of ensuring continuous functionality in presence of sensor

attacks.

Scope and Contributions. This paper focuses on sensor

attack-recovery. We assume an attack detector is already in

place, and our goal is to take the alerts generated by the

detector to recover the system from the attacks. The contribu-

tions of this work are as follows. (i) We propose Recovery-

by-Learning, a model-free attack recovery framework. (ii) We

propose a deep learning based state prediction method and

a double sliding window based checkpointing protocol. (iii)

We perform extensive data-driven simulations to validate the

proposed methods.

The rest of the paper is organized as follows. Section II

describes the system overview and the threat model we con-

sider. The design details of the proposed system are provided

in section III. We evaluate our approach in Section IV. Section

V concludes the paper.

II. PRELIMINARIES

A. Sensor Correlation

Autonomous CPSs are equipped with a number of sensors

that enable them to perform their function. The sensors mon-

itor various physical properties such as engine revolutions,

vehicle and wheel speed, oil temperature, boost pressure,

accelerator pedals, location, etc. It is observed that a subset

of sensors on the CPS responds to a physical phenomenon

in a correlated or related manner. Such a group of sensors

are referred to as heterogeneous sensors or are said to exhibit

inherent sensor redundancy. For instance, applying the brakes

Fig. 1. Pearson Correlation Coefficients heatmap of some some sensors in
the dataset.

of a vehicle causes decrements in the engine’s RPM, wheel

speed, vehicle speed and GPS speed sensors measurements.

Similarly, pressing the accelerator pedal leads to increases in

the readings of these heterogeneous sensors. Fig. 1 shows the

pairwise correlation among sensors in an automobile using

the dataset of [13]. Details of the data set will be given in

Section IV-B. It is observed in the figure that the wheel speed

sensors have a strong correlation with the engine RPM and

boost pressure sensors. Hence, when the wheel speed sensor

reading increases as a result of applying the accelerator pedals,

the readings of the engine RPM and boost pressure will also

be observed to increase under normal conditions [15]–[18].

We believe that exploiting and capturing this inherent sensor

redundancy allows us to approximate the nominal system

behavior which in turn, enables the accurate prediction of

system behavior such as sensor readings. We leverage this

notion in our proposed attack recovery system.

B. System Overview

Fig. 2 shows an overview of the proposed system. It consists

of an offline phase and an online phase. The offline phase

involves the data collection, pre-processing of the data, and

training the model on the data. The online phase has two

major components: the State Predictor and Checkpointer. The

state predictor estimates system states when the observed

sensor data are no longer trustworthy. The state predictor

is built on a deep learning model that captures the nominal

system behavior. The Checkpointer ensures valid historical

state estimates are stored so that the state predictor can output

accurate state estimations.

The proposed system works as follows: When a time-

window-based attack detector raises an alert, the state predictor

is activated. The checkpointer provides valid and trustful

sensor values as input to the state predictor to predict state

estimates. The predicted values are forwarded to the controller

to perform recovery control commands. In the event the attack

detector does not raise an alert, the system continues to
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function and only the checkpointer performs tasks to warrant

that only valid historical sensor data is stored as checkpoints.

C. Threat Model

We consider the attack scenario where an attacker launches

physical attacks against the CPS sensors. Examples of such

attacks include optical sensor spoofing [19], gyroscope sensor

spoofing [20], accelerometer spoofing attacks [21] among

others. These attacks transmit compromised sensor data which

does not reflect the actual system state. When the controller

receives and processes such data, erroneous control inputs are

calculated and issued resulting in safety problems, abnormal

system operation and possibly stalling the CPS.

As noted above, there are many proposed attack detection

solutions, therefore, we assume the existence of a sensor

attack detector that is able to raise an alert whenever any

of these attacks occur. Our goal is to automatically respond

to the attack alert and steer the system towards a reference

state thereby ensuring safety and CPS operation continuity.

We also assume the controller, actuator, the proposed deep

learning model and the stored historical sensor data are not

compromised.

III. RECOVERY SYSTEM DESIGN

We describe the details of the proposed attack recovery

system in this section.

Rationale. Estimating the accurate behavior of a cyber-

physical system, specifically sensor measurement is non-

trivial, yet it is a crucial step in attack recovery. The actual

behavior of the CPS is guarded by physical laws hence under

normal conditions, the physical system properties, called phys-
ical invariant should always hold. While physical invariant can

be captured using a physical system model, it requires in-depth

knowledge of the system dynamics which may not be easy to

attain.

We propose an attack recovery system that does not re-

quire substantial knowledge of system dynamics. We treat

the physical system as a black box yet we are able to

approximate the nominal system behavior. We achieve this

through a deep learning technique that explores the natural

redundancy among its heterogeneous sensors. Our approach

is based on the insight that under normal conditions, where

physical laws are obeyed, the sensor readings also indirectly

obey physical laws. Therefore, by learning the relationships

among sensor data, the physical invariants are approximated.

Having modeled the system from sensor data, we are able to

estimate sensor readings with a near-zero error.

A. Problem formulation

We envision a solution for the attack recovery problem to

involve two main steps. The first step seeks to replace the

corrupted sensor data that no longer reflect the true state of the

system with reconstructed system state estimates. The second

step attempts to control the CPS with the reconstructed values

which we call recovery control. Given that we consider mul-

tiple heterogeneous sensor time-series data or measurements

Actuator Plant Sensor

PID

Controller

Attacked?

State Predictor

No

Yes

Checkpointer

LSTNet

Training
Data processing Offline Phase

Online Phase

Fig. 2. Design overview of our Recovery-by-Learning framework.

in making a prediction, we formulate the first step as a deep

learning multivariate time series forecasting problem [22].

Hence, given valid historical time series output of n hetero-

geneous sensors Y = {y1, y2, y3, ...yK} where yk ∈ R
n, we

aim to predict yk+h where h is a time ahead of the current

time k. We ensure Y = {y1, y2, y3, ...yK} is always available

by proposing a checkpointing protocol to store such valid

historical sensor data. For ease of presentation, we assume

that the system has full observability. Thus, we formulate the

input matrix as XK = {y1, y2, y3, ..., yK} ∈ R
n×K . Once a

valid prediction is made, the second step undertakes a recovery

control that uses the predicted values to drive the system.

B. System Components

Data Processor: Data pre-processing is an important step

in a machine or deep learning task. Specifically, we ensure

we extract only features that have a strong correlation with

the sensor of interest. While this can be achieved from do-

main knowledge, we leverage Pearson Correlation Coefficients

(PCC) statistic to observe this correlation in the dataset. This

step also has the potential to reveal correlations that may not

be obvious to humans. PCC outputs values between −1.0 and

+1.0. Feature pairs that have a strong positive correlation

have PCC values close to +1.0. Conversely, a strong negative

correlation has PCC values close to −1.0. A zero PCC value

indicates there is no correlation between the features. For

example, in Fig. 1, the vehicle speed sensor has PCC of

approximately 1.0 with the engine RPM and the wheel speed

sensors. The vehicle speed sensor, however, has a PCC value

close to zero with the ambient temperature sensor.

LSTNet Training: In order to automatically exploit the

correlation that exists in the sensor data, we train a deep

learning model based on LSTNet [22]. LSTNet was orig-

inally developed to model long and short term temporal

forecasting for multivariate time series. The deep learning

architecture captures nonlinear aspects of the system by using

a convolutional neural network (CNN) and recurrent neural

network (RNN) for exploiting short and long term correlations

respectively. To improve scalability and robustness, the model

also includes autoregressive units that enable the DL model to

capture linear aspects of the system as well. Fig. 3 shows the

deep learning architecture that trains our model. Training the
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FC

Autoregressive

CNN RNN

Time
Series

Prediction

Fig. 3. Overview of deep learning model architecture (LSTNet [22]). FC
refers to Fully Connected.

model requires a number of hyperparameters to be specified,

notable among them is the window p. The window p specifies

how many historical data points should be used in making a

prediction.

State Predictor: This component is built on the trained deep

learning model training discussed above. At this point, the

data model has captured the nominal behavior of the system

by exploring the correlation among heterogeneous sensors. It

serves as a nominal approximation of the system behavior and

hence it is able to make predictions of the system behavior

given the right input. In order to make the deep learning model

useful in a non-Python environment, we utilize Torchscript

to build an intermediate representation (IR) so that it can be

used in high-performance environments such as C++ to make

predictions. The firmware of the ground vehicle simulator used

in our experiment is written in C++.

Checkpointer: Attack detection mechanisms take some

time to detect an attack after the attack’s launch, called

detection delay, before raising an alert. As a result, we cannot

trust the sensor readings during the detection delay since they

may have been compromised. A successful recovery cannot

be achieved if we rely on corrupted data, hence to address

this issue, checkpointing protocols [10], [23]–[25] have been

proposed to provide trustworthy historical data that can be

used for recovery. Though viable, especially for model-based

recovery methods [11], these protocols have limitations of

storing only one data point making it unsuitable for learning-

based methods such as ours which require an interval of data

points for reconstructing sensor data.

The checkpointer component addresses this limitation by

proposing a checkpointing protocol shown in Fig. 4 that is

not only applicable to learning-based methods but model-

based methods as well. The proposed protocol adopts a double

sliding window instead of the single sliding window approach

used in existing works. This approach enables the protocol to

capture an interval of historical data and the detection delay.

The two windows of the protocol slide forward and records

the sensor values x(t) as time ticks.

The protocol has three steps namely buffer, store, and delete.

(1) Buffer: The data in this step is possibly compromised and

has a duration equivalent to the detector’s detection delay.

State estimates or sensor data within the detection window,

x(t0), ..., x(th) are first buffered. (2) Store: Given that the

detection window equals the detection delay, the data points

......

deleted stored buffered

...

logging window detection window

Fig. 4. A double sliding window based checkpointing protocol.

in this step have moved outside the detection window and

are therefore considered trustworthy. Note that an interval of

time series datapoints (logging window data) are stored instead

of a single data point. Hence, for the interval [tk, t0 − 1],
datapoints {x(tk), ..., x(t0 − 1)} are stored. Remember that

this length is equal to the p window hyperparameter of the

LSTNet component discussed above. (3) Delete: All historical

data that are older than those in the logging window are no

longer needed and should therefore be deleted. Data points

x(tk − 1) and x(tk − 2) are discarded as shown in the figure.

When the detector raises an alarm, time series datapoints of

the interval [tk, t0] will be used to rebuild estimate x(th).

IV. EVALUATION

We perform experiments to evaluate the effectiveness of our

proposed attack recovery.

A. Implementation and Experimental Setup

We implemented our deep learning model in Python, uti-

lizing PyTorch Deep Learning framework. The experimental

model is made up of 120 convolutional layers, 120 GRU layers

and an AR model. A batch size of 128 serves as input to

the network. We train our proposed DL model on Ubuntu

18.04 64-bit with sixteen Intel(R) Xeon(R) CPU E5-2680 v4

@ 2.40GHz CPUs, two Nvidia GeForce GTX 1080 GPUs and

64 GB RAM. We split the original dataset into 60% training,

20% validation and 20% test sets.

B. Dataset Description

We evaluate the efficiency of the proposed recovery system

using the publicly-available automotive CAN bus dataset from

the AEGIS Big Data Project [13] and data collected from

Ardupilot SITL virtual ground vehicle.

The AEGIS data was collected during trips conducted by

three drivers driving the same vehicle. It contains more than

40 sensor measurements including but not limited to the four

wheel speed sensors, engine speed, vehicle speed, steering

angle, ambient temperature, GPS, oil temperature and boost

pressure.

Ardupilot SITL (software in the loop) is a simulator package

that provides a native executable that allows one to run Plane,

Copter or Rover (ground vehicle) without any hardware. The

virtual ground vehicle that we use in our experiment runs

a firmware (APMrover2 2.5) that is used in real unmanned

ground vehicle boards. The vehicle is equipped with a number

of sensors including GPS, IMU, RPM, optical flow sensors.
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Fig. 5. Observed and predicted engine speed sensor readings in the AEGIS
dataset.

Fig. 6. Observed and predicted boost pressure sensor readings in the AEGIS
dataset.

C. Experiments and Results

Experiment I: This experiment verifies if the State Predictor

learned the nominal behavior of the CPS and evaluates its

effectiveness in reconstructing sensor data. We build two

models: the first one is based on the AEGIS dataset and the

second is based on the virtual unmanned ground vehicle’s

sensor data. The second model is also used in a case study

to demonstrate how the proposed framework recovers the

unmanned ground vehicle (UGV) from a speed sensor attack.

Note, however, that in this experiment no attack has been

launched. Fig. 5 and Fig. 6 show the model predictions for

the engine speed and boost pressure sensors in the AEGIS test

dataset. In the figures, the predicted speed (red line) closely

matches the observed speed (blue line) indicating the model

captured the nominal behavior of the vehicle. The figures

also show the mean error or residual is near zero indicating

the predictor is not biased. Residual analysis shows the error

follows a normal Gaussian distribution and it is free from any

cyclic, trend and seasonal structures.

We perform a similar experiment on the UGV. Using

Mission Planner [26], we generate missions (trajectory) that

the vehicle executes. We collected the sensor data from the

dataflash log and used it to build a data model. The model’s

predictions for the UGV’s speed sensor test dataset is shown

in Fig. 7. The results depict a close match between the model

predictions and the observed sensor values. Similar to the

results in Fig. 5 and Fig. 6, there is a mean error in the model

that is near-zero.

Experiment II - Case Study: We demonstrate attack recovery

in this case study. The attacker launches attack on the speed

sensor which leads the cruise/speed controller to issue wrong

control inputs resulting in the UGV to travel above its cruise

speed of 5 m/s. Fig. 8 shows the case study considered in this

experiment. At 60 sec, we simulate an attack that transmits

Fig. 7. Observed and predicted boost speed measurements of the unmanned
ground vehicle.

Fig. 8. UGV cruises above its reference speed of 5 m/s.

ρ − 4 m/s as the forward speed of the vehicle, where ρ is

the actual speed of the vehicle. Hence, in order to maintain

the reference speed, the PID controller issued a higher throttle

output that resulted in the vehicle to cruise at about 9 m/s. In

real-life, this scenario can be a safety concern.

Recovery control: When this attack is detected, we can no

longer trust the sensor data and therefore the system states

must be estimated or reconstructed. Our proposed framework

responds with the goal of getting the UGV to cruise at its

reference speed (5 m/s). It achieves that by activating the state

predictor component which uses the data in the checkpointer

as input. The state predictor reconstructs sensor values that

are forwarded to the cruise controller. The controller calcu-

lates throttle outputs based on the reconstructed values that

eventually cause the vehicle to travel at the reference speed as

seen in Fig. 9.

Experiment III: The effectiveness of the proposed framework

largely depends on the p value selected i.e. how many histor-

ical values are used for the deep learning model’s prediction

(see Section III-B). Remember also that the p value is

equal to the length of the logging window in the proposed

checkpointing protocol. In this experiment, we provide an

analysis of the p value so that the optimal value can be

selected to predict more accurate sensor values. We compare

various p values based on accuracy metrics: mean square error

(mse), root relative squared error (rse) and relative absolute

error (rae). Table I shows the results of the vehicle speed

sensor values in the AEGIS dataset. Values between 56 and 84

produced the highest prediction values. A similar analysis done

on the ground vehicle showed a slightly different results which

leads us to conclude that the best p value is device/dataset-

specific.
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Fig. 9. Speed attack recovery.

TABLE I
COMPARISON OF P VALUES BASED ONE ACCURACY METRICS.

p mse rse rae

28 0.020843 0.0034 0.0020
42 0.019189 0.0034 0.0020
56 0.012859 0.0031 0.0018

84 0.011068 0.0032 0.0018
168 0.021194 0.0034 0.0020
188 0.008365 0.0034 0.0018

V. CONCLUSION

In this paper, we have presented a model-free attack re-

covery system that does not require in-depth knowledge of

system dynamics and also allow autonomous CPS to use

existing components (controllers and sensors) without further

duplication. We achieve this by applying a novel deep learning

framework to capture the nominal behavior of the cyber-

physical system. We proposed a new generalized double

sliding window checkpointing protocol that is usable both

in model-based and learning-based recovery methods. We

performed experiments to evaluate the effectiveness of the

proposed framework using real-world dataset and realistic

unmanned ground vehicle simulator. Our results show that

our method restores a system to continue functioning in the

presence of sensor attacks.
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