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Abstract—Autonomous cyber-physical systems (CPS) are sus-
ceptible to non-invasive physical attacks such as sensor spoofing
attacks that are beyond the classical cybersecurity domain. These
attacks have motivated numerous research efforts on attack
detection, but little attention on what to do after detecting
an attack. The importance of attack recovery is emphasized
by the need to mitigate the attack’s impact on a system and
restore it to continue functioning. There are only a few works
addressing attack recovery, but they all rely on prior knowledge
of system dynamics. To overcome this limitation, we propose
Recovery-by-Learning, a data-driven attack recovery framework
that restores CPS from sensor attacks. The framework leverages
natural redundancy among heterogeneous sensors and historical
data for attack recovery. Specially, the framework consists of
two major components: state predictor and data checkpointer.
First, the predictor is triggered to estimate systems states after
the detection of an attack. We propose a deep learning-based
prediction model that exploits the temporal correlation among
heterogeneous sensors. Second, the checkpointer executes when
no attack is detected. We propose a double sliding window based
checkpointing protocol to remove compromised data and keep
trustful data as input to the state predictor. Third, we implement
and evaluate the effectiveness of our framework using a realistic
data set and a ground vehicle simulator. The results show that
our method restores a system to continue functioning in presence
of sensor attacks.

Index Terms—autonomous cyber-physical systems, sensor at-
tacks, attack recovery, attack resiliency

I. INTRODUCTION

Cyber-Physical Systems (CPS) tightly couple computing
and communication components with physical processes. Self-
driving cars, smart grid, intelligent manufacturing systems,
and many other CPS have been revolutionizing our modern
life. For example, autonomous CPS such as unmanned aerial
vehicles (UAV) have been used in many applications including
aerial photography, construction site management, policing
and surveillance, and even package delivery.

CPS has changed from once-isolated systems to open ar-
chitectures, which makes them susceptible to various cyber
and physical attacks. On the one hand, cyber attacks such
as network eavesdropping, data modification, packet spoof-
ing, packet replaying, buffer overflow, etc, are attacks that
compromise the computing and communication components
of the CPS. Physical attacks, on the other hand, perturbs
the physical environment of the CPS such that it allows the
injection of malicious signals into sensors and actuators. Such
attacks include dazzling cameras with light, injecting false

radar signals, GPS Spoofing etc. Defense measures for cyber
attacks are relatively advanced. Conventional cyber security
techniques such as memory isolation [1], control-flow integrity
[2], firmware hardening [3] are applicable in defending CPS
against cyber attacks. These security techniques are, however,
inadequate against physical attacks.

This observation is highlighted by non-invasive sensor at-
tacks in the literature and real world. For example, Rutkin [4]
demonstrated a GPS spoofing attack that misguided a yacht
off course. Shoukry et al. [5] used an external magnetic field
to perturb the physical environment of a vehicle’s wheel speed
sensors to disrupt the function of Anti-lock Braking System
(ABS). Camera and LiDAR devices on modern automobiles
can be also attacked from a remote location [6]. Non-invasive
physical attacks do not require close proximity to a physical
component in order to succeed. In addition, it requires little
knowledge and inexpensive tools for an attacker to launch
physical attacks. The effectiveness of such attacks will con-
tinue to rise as the autonomy in CPS increases.

These new CPS threats have motivated many research
efforts to defend against sensor attacks. However, most of
them have focused on attack detection rather than recovery
measures. Raising attack alerts, usually done in attack de-
tection works, do not ensure the continuous functioning of
the CPS [7]-[9]. Hence, to respond to attack alerts, recovery
measures are required to mitigate the effect of an attack on
a system and continue the system’s operation with minimum
interruption. Only a few existing works have addressed attack-
recovery in any form. As the pioneer work in this research
thread, Kong et al. [10], [11] assumes full observability of the
system and replaces measurements of compromised sensors
by model-predicted values. Fei et al. [12] follow the idea of
[10] and proposes a redundant controller for attack recovery
that is trained also based on the system model. Although these
works validate the performance under their own settings, they
require prior knowledge of system dynamics that builds the
system model.

To address these limitations, we propose Recovery-by-
Learning, a data-driven attack recovery framework that re-
stores automotive cyber-physical systems from sensor attacks.
The framework requires little knowledge of the system’s
dynamics, but leverages natural redundancy among heteroge-
neous sensors and historical data for attack recovery. Specially,
the framework consists of two major components: state predic-
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tor and data checkpointer. At the core of this paper are novel
techniques to realize these components.

First, the state predictor is activated to estimate system
states when an attack is detected. The predicted states are
forwarded to the controller to calculate and issue appropriate
control commands to bring the system back to normalcy.
The predictor is built on a deep learning model that captures
the nominal system behavior. The model exploits the natural
redundancy as well as the short and long term temporal
correlation among heterogeneous sensors on an autonomous
CPS, through combining convolutional neural network (CNN)
and recurrent neural network (RNN).

Second, the data checkpointer executes in the normal mode
when no attack is detected. It employs a checkpointing pro-
tocol to remove corrupted data and keep valid historical data
as input to the state predictor to make state estimation. The
protocol uses double sliding windows: detection window and
logging window. The former accommodates the substantial
detection delay (i.e., the time interval between the start of an
attack and the detection of it), during which the correctness
of the sensor data is still in question and thus using them may
result in unsuccessful recovery. The logging window governs
sufficient trustful data for the state prediction.

We implement and evaluate the effectiveness of our frame-
work using a real-world data set, AEGIS Big Data Project
[13], and a ground vehicle simulator, Ardupilot SITL Rover
[14]. The results show that the proposed framework is capable
of ensuring continuous functionality in presence of sensor
attacks.

Scope and Contributions. This paper focuses on sensor
attack-recovery. We assume an attack detector is already in
place, and our goal is to take the alerts generated by the
detector to recover the system from the attacks. The contribu-
tions of this work are as follows. (i) We propose Recovery-
by-Learning, a model-free attack recovery framework. (ii) We
propose a deep learning based state prediction method and
a double sliding window based checkpointing protocol. (iii)
We perform extensive data-driven simulations to validate the
proposed methods.

The rest of the paper is organized as follows. Section II
describes the system overview and the threat model we con-
sider. The design details of the proposed system are provided
in section III. We evaluate our approach in Section IV. Section
V concludes the paper.

II. PRELIMINARIES
A. Sensor Correlation

Autonomous CPSs are equipped with a number of sensors
that enable them to perform their function. The sensors mon-
itor various physical properties such as engine revolutions,
vehicle and wheel speed, oil temperature, boost pressure,
accelerator pedals, location, etc. It is observed that a subset
of sensors on the CPS responds to a physical phenomenon
in a correlated or related manner. Such a group of sensors
are referred to as heterogeneous sensors or are said to exhibit
inherent sensor redundancy. For instance, applying the brakes
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Fig. 1. Pearson Correlation Coefficients heatmap of some some sensors in
the dataset.

of a vehicle causes decrements in the engine’s RPM, wheel
speed, vehicle speed and GPS speed sensors measurements.
Similarly, pressing the accelerator pedal leads to increases in
the readings of these heterogeneous sensors. Fig. 1 shows the
pairwise correlation among sensors in an automobile using
the dataset of [13]. Details of the data set will be given in
Section IV-B. It is observed in the figure that the wheel speed
sensors have a strong correlation with the engine RPM and
boost pressure sensors. Hence, when the wheel speed sensor
reading increases as a result of applying the accelerator pedals,
the readings of the engine RPM and boost pressure will also
be observed to increase under normal conditions [15]-[18].

We believe that exploiting and capturing this inherent sensor
redundancy allows us to approximate the nominal system
behavior which in turn, enables the accurate prediction of
system behavior such as sensor readings. We leverage this
notion in our proposed attack recovery system.

B. System Overview

Fig. 2 shows an overview of the proposed system. It consists
of an offline phase and an online phase. The offline phase
involves the data collection, pre-processing of the data, and
training the model on the data. The online phase has two
major components: the State Predictor and Checkpointer. The
state predictor estimates system states when the observed
sensor data are no longer trustworthy. The state predictor
is built on a deep learning model that captures the nominal
system behavior. The Checkpointer ensures valid historical
state estimates are stored so that the state predictor can output
accurate state estimations.

The proposed system works as follows: When a time-
window-based attack detector raises an alert, the state predictor
is activated. The checkpointer provides valid and trustful
sensor values as input to the state predictor to predict state
estimates. The predicted values are forwarded to the controller
to perform recovery control commands. In the event the attack
detector does not raise an alert, the system continues to
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function and only the checkpointer performs tasks to warrant
that only valid historical sensor data is stored as checkpoints.

C. Threat Model

We consider the attack scenario where an attacker launches
physical attacks against the CPS sensors. Examples of such
attacks include optical sensor spoofing [19], gyroscope sensor
spoofing [20], accelerometer spoofing attacks [21] among
others. These attacks transmit compromised sensor data which
does not reflect the actual system state. When the controller
receives and processes such data, erroneous control inputs are
calculated and issued resulting in safety problems, abnormal
system operation and possibly stalling the CPS.

As noted above, there are many proposed attack detection
solutions, therefore, we assume the existence of a sensor
attack detector that is able to raise an alert whenever any
of these attacks occur. Our goal is to automatically respond
to the attack alert and steer the system towards a reference
state thereby ensuring safety and CPS operation continuity.
We also assume the controller, actuator, the proposed deep
learning model and the stored historical sensor data are not
compromised.

III. RECOVERY SYSTEM DESIGN

We describe the details of the proposed attack recovery
system in this section.

Rationale. Estimating the accurate behavior of a cyber-
physical system, specifically sensor measurement is non-
trivial, yet it is a crucial step in attack recovery. The actual
behavior of the CPS is guarded by physical laws hence under
normal conditions, the physical system properties, called phys-
ical invariant should always hold. While physical invariant can
be captured using a physical system model, it requires in-depth
knowledge of the system dynamics which may not be easy to
attain.

We propose an attack recovery system that does not re-
quire substantial knowledge of system dynamics. We treat
the physical system as a black box yet we are able to
approximate the nominal system behavior. We achieve this
through a deep learning technique that explores the natural
redundancy among its heterogeneous sensors. Our approach
is based on the insight that under normal conditions, where
physical laws are obeyed, the sensor readings also indirectly
obey physical laws. Therefore, by learning the relationships
among sensor data, the physical invariants are approximated.
Having modeled the system from sensor data, we are able to
estimate sensor readings with a near-zero error.

A. Problem formulation

We envision a solution for the attack recovery problem to
involve two main steps. The first step seeks to replace the
corrupted sensor data that no longer reflect the true state of the
system with reconstructed system state estimates. The second
step attempts to control the CPS with the reconstructed values
which we call recovery control. Given that we consider mul-
tiple heterogeneous sensor time-series data or measurements
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Fig. 2. Design overview of our Recovery-by-Learning framework.

in making a prediction, we formulate the first step as a deep
learning multivariate time series forecasting problem [22].
Hence, given valid historical time series output of n hetero-
geneous sensors Y = {y1,y2,¥s, ...yx } Where y, € R", we
aim to predict yi4, where h is a time ahead of the current
time k. We ensure Y = {y1,y2,ys, ...yx } is always available
by proposing a checkpointing protocol to store such valid
historical sensor data. For ease of presentation, we assume
that the system has full observability. Thus, we formulate the
input matrix as Xx = {y1, 2,93, ...,yx} € R"*K. Once a
valid prediction is made, the second step undertakes a recovery
control that uses the predicted values to drive the system.

B. System Components

Data Processor: Data pre-processing is an important step
in a machine or deep learning task. Specifically, we ensure
we extract only features that have a strong correlation with
the sensor of interest. While this can be achieved from do-
main knowledge, we leverage Pearson Correlation Coefficients
(PCC) statistic to observe this correlation in the dataset. This
step also has the potential to reveal correlations that may not
be obvious to humans. PCC outputs values between —1.0 and
+1.0. Feature pairs that have a strong positive correlation
have PCC values close to 4+1.0. Conversely, a strong negative
correlation has PCC values close to —1.0. A zero PCC value
indicates there is no correlation between the features. For
example, in Fig. 1, the vehicle speed sensor has PCC of
approximately 1.0 with the engine RPM and the wheel speed
sensors. The vehicle speed sensor, however, has a PCC value
close to zero with the ambient temperature sensor.

LSTNet Training: In order to automatically exploit the
correlation that exists in the sensor data, we train a deep
learning model based on LSTNet [22]. LSTNet was orig-
inally developed to model long and short term temporal
forecasting for multivariate time series. The deep learning
architecture captures nonlinear aspects of the system by using
a convolutional neural network (CNN) and recurrent neural
network (RNN) for exploiting short and long term correlations
respectively. To improve scalability and robustness, the model
also includes autoregressive units that enable the DL model to
capture linear aspects of the system as well. Fig. 3 shows the
deep learning architecture that trains our model. Training the
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model requires a number of hyperparameters to be specified,
notable among them is the window p. The window p specifies
how many historical data points should be used in making a
prediction.

State Predictor: This component is built on the trained deep
learning model training discussed above. At this point, the
data model has captured the nominal behavior of the system
by exploring the correlation among heterogeneous sensors. It
serves as a nominal approximation of the system behavior and
hence it is able to make predictions of the system behavior
given the right input. In order to make the deep learning model
useful in a non-Python environment, we utilize Torchscript
to build an intermediate representation (IR) so that it can be
used in high-performance environments such as C++ to make
predictions. The firmware of the ground vehicle simulator used
in our experiment is written in C++.

Checkpointer: Attack detection mechanisms take some
time to detect an attack after the attack’s launch, called
detection delay, before raising an alert. As a result, we cannot
trust the sensor readings during the detection delay since they
may have been compromised. A successful recovery cannot
be achieved if we rely on corrupted data, hence to address
this issue, checkpointing protocols [10], [23]-[25] have been
proposed to provide trustworthy historical data that can be
used for recovery. Though viable, especially for model-based
recovery methods [11], these protocols have limitations of
storing only one data point making it unsuitable for learning-
based methods such as ours which require an interval of data
points for reconstructing sensor data.

The checkpointer component addresses this limitation by
proposing a checkpointing protocol shown in Fig. 4 that is
not only applicable to learning-based methods but model-
based methods as well. The proposed protocol adopts a double
sliding window instead of the single sliding window approach
used in existing works. This approach enables the protocol to
capture an interval of historical data and the detection delay.
The two windows of the protocol slide forward and records
the sensor values z(t) as time ticks.

The protocol has three steps namely buffer, store, and delete.
(1) Buffer: The data in this step is possibly compromised and
has a duration equivalent to the detector’s detection delay.
State estimates or sensor data within the detection window,
x(to), ..., x(tp) are first buffered. (2) Srore: Given that the
detection window equals the detection delay, the data points
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in this step have moved outside the detection window and
are therefore considered trustworthy. Note that an interval of
time series datapoints (logging window data) are stored instead
of a single data point. Hence, for the interval [tg,to — 1],
datapoints {z(ty),...,z(top — 1)} are stored. Remember that
this length is equal to the p window hyperparameter of the
LSTNet component discussed above. (3) Delete: All historical
data that are older than those in the logging window are no
longer needed and should therefore be deleted. Data points
x(tr — 1) and z(t;, — 2) are discarded as shown in the figure.
When the detector raises an alarm, time series datapoints of
the interval [ty to] will be used to rebuild estimate x(¢y,).

IV. EVALUATION

We perform experiments to evaluate the effectiveness of our
proposed attack recovery.

A. Implementation and Experimental Setup

We implemented our deep learning model in Python, uti-
lizing PyTorch Deep Learning framework. The experimental
model is made up of 120 convolutional layers, 120 GRU layers
and an AR model. A batch size of 128 serves as input to
the network. We train our proposed DL model on Ubuntu
18.04 64-bit with sixteen Intel(R) Xeon(R) CPU E5-2680 v4
@ 2.40GHz CPUs, two Nvidia GeForce GTX 1080 GPUs and
64 GB RAM. We split the original dataset into 60% training,
20% validation and 20% test sets.

B. Dataset Description

We evaluate the efficiency of the proposed recovery system
using the publicly-available automotive CAN bus dataset from
the AEGIS Big Data Project [13] and data collected from
Ardupilot SITL virtual ground vehicle.

The AEGIS data was collected during trips conducted by
three drivers driving the same vehicle. It contains more than
40 sensor measurements including but not limited to the four
wheel speed sensors, engine speed, vehicle speed, steering
angle, ambient temperature, GPS, oil temperature and boost
pressure.

Ardupilot SITL (software in the loop) is a simulator package
that provides a native executable that allows one to run Plane,
Copter or Rover (ground vehicle) without any hardware. The
virtual ground vehicle that we use in our experiment runs
a firmware (APMrover2 2.5) that is used in real unmanned
ground vehicle boards. The vehicle is equipped with a number
of sensors including GPS, IMU, RPM, optical flow sensors.
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C. Experiments and Results

Experiment I: This experiment verifies if the State Predictor
learned the nominal behavior of the CPS and evaluates its
effectiveness in reconstructing sensor data. We build two
models: the first one is based on the AEGIS dataset and the
second is based on the virtual unmanned ground vehicle’s
sensor data. The second model is also used in a case study
to demonstrate how the proposed framework recovers the
unmanned ground vehicle (UGV) from a speed sensor attack.

Note, however, that in this experiment no attack has been
launched. Fig. 5 and Fig. 6 show the model predictions for
the engine speed and boost pressure sensors in the AEGIS test
dataset. In the figures, the predicted speed (red line) closely
matches the observed speed (blue line) indicating the model
captured the nominal behavior of the vehicle. The figures
also show the mean error or residual is near zero indicating
the predictor is not biased. Residual analysis shows the error
follows a normal Gaussian distribution and it is free from any
cyclic, trend and seasonal structures.

We perform a similar experiment on the UGV. Using
Mission Planner [26], we generate missions (trajectory) that
the vehicle executes. We collected the sensor data from the
dataflash log and used it to build a data model. The model’s
predictions for the UGV’s speed sensor test dataset is shown
in Fig. 7. The results depict a close match between the model
predictions and the observed sensor values. Similar to the
results in Fig. 5 and Fig. 6, there is a mean error in the model
that is near-zero.

Experiment II - Case Study: We demonstrate attack recovery
in this case study. The attacker launches attack on the speed
sensor which leads the cruise/speed controller to issue wrong
control inputs resulting in the UGV to travel above its cruise
speed of 5 m/s. Fig. 8 shows the case study considered in this
experiment. At 60 sec, we simulate an attack that transmits
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p — 4 m/s as the forward speed of the vehicle, where p is
the actual speed of the vehicle. Hence, in order to maintain
the reference speed, the PID controller issued a higher throttle
output that resulted in the vehicle to cruise at about 9 m/s. In
real-life, this scenario can be a safety concern.

Recovery control: When this attack is detected, we can no
longer trust the sensor data and therefore the system states
must be estimated or reconstructed. Our proposed framework
responds with the goal of getting the UGV to cruise at its
reference speed (5 m/s). It achieves that by activating the state
predictor component which uses the data in the checkpointer
as input. The state predictor reconstructs sensor values that
are forwarded to the cruise controller. The controller calcu-
lates throttle outputs based on the reconstructed values that
eventually cause the vehicle to travel at the reference speed as
seen in Fig. 9.

Experiment ITI: The effectiveness of the proposed framework
largely depends on the p value selected i.e. how many histor-
ical values are used for the deep learning model’s prediction
(see Section III-B). Remember also that the p value is
equal to the length of the logging window in the proposed
checkpointing protocol. In this experiment, we provide an
analysis of the p value so that the optimal value can be
selected to predict more accurate sensor values. We compare
various p values based on accuracy metrics: mean square error
(mse), root relative squared error (rse) and relative absolute
error (rae). Table I shows the results of the vehicle speed
sensor values in the AEGIS dataset. Values between 56 and 84
produced the highest prediction values. A similar analysis done
on the ground vehicle showed a slightly different results which
leads us to conclude that the best p value is device/dataset-
specific.
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TABLE I
COMPARISON OF P VALUES BASED ONE ACCURACY METRICS.

p mse rse rae

28 0.020843  0.0034  0.0020
42 0.019189  0.0034  0.0020
56 0.012859  0.0031  0.0018
84 0.011068  0.0032  0.0018
168  0.021194  0.0034  0.0020
188 0.008365  0.0034  0.0018

V. CONCLUSION

In this paper, we have presented a model-free attack re-
covery system that does not require in-depth knowledge of
system dynamics and also allow autonomous CPS to use
existing components (controllers and sensors) without further
duplication. We achieve this by applying a novel deep learning
framework to capture the nominal behavior of the cyber-
physical system. We proposed a new generalized double
sliding window checkpointing protocol that is usable both
in model-based and learning-based recovery methods. We
performed experiments to evaluate the effectiveness of the
proposed framework using real-world dataset and realistic
unmanned ground vehicle simulator. Our results show that
our method restores a system to continue functioning in the
presence of sensor attacks.
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