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The increasing autonomy and connectivity in cyber-physical systems (CPS) come with new security vulner-
abilities that are easily exploitable by malicious attackers to spoof a system to perform dangerous actions.
While the vast majority of existing works focus on attack prevention and detection, the key question is “what
to do after detecting an attack?”. This problem attracts fairly rare attention though its significance is empha-
sized by the need to mitigate or even eliminate attack impacts on a system. In this article, we study this attack
response problem and propose novel real-time recovery for securing CPS. First, this work’s core component
is a recovery control calculator using a Linear-Quadratic Regulator (LQR) with timing and safety constraints.
This component can smoothly steer back a physical system under control to a target state set before a safe
deadline and maintain the system state in the set once it is driven to it. We further propose an Alternating Di-
rection Method of Multipliers (ADMM) based algorithm that can fast solve the LQR-based recovery problem.
Second, supporting components for the attack recovery computation include a checkpointer, a state recon-
structor, and a deadline estimator. To realize these components respectively, we propose (i) a sliding-window-
based checkpointing protocol that governs sufficient trustworthy data, (ii) a state reconstruction approach
that uses the checkpointed data to estimate the current system state, and (iii) a reachability-based approach
to conservatively estimate a safe deadline. Finally, we implement our approach and demonstrate its effective-
ness in dealing with totally 15 experimental scenarios which are designed based on 5 CPS simulators and
3 types of sensor attacks.
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1 INTRODUCTION

Cyber-Physical Systems (CPS) tightly couple computing and communication with physical pro-
cesses via sensing and actuation components. The integration of new technologies to interact and
control physical systems enables applications and services, such as autonomous and connected
vehicles, unmanned aerial vehicles, and unmanned delivery, that promise enormous societal and
economic benefits. Meanwhile, these benefits come with new security vulnerabilities beyond the
classical cyber security domain that mainly focuses on information technology systems [10, 28, 33].
Exploiting them, malicious attackers can spoof the system to perform dangerous actions and fur-
ther cause catastrophic consequences.

One crucial security risk of CPS is sensor attacks, that is, attacks that alter sensor data to nega-
tively interfere with the physical system. Fed with malicious sensor information, a controller ob-
tains corrupted state estimates and may drive the system to unsafe physical states. Sensor attacks
can be launched from cyber attack surfaces such as compromising control software or the net-
work between sensors and the controller. Different from these convectional vectors, an emerging
attack, know as transduction attacks, non-invasively affects sensor readings through manipulating
a physical properties to allow injection of malicious signals to sensors [46, 58, 59]. For example,
an attacker can compromise wheel speed sensors to impact antilock braking systems [51], spoof
GPS signals to misguide a yacht [47], or corrupt a LIDAR sensor remotely to make a vehicle per-
ceive non-existent objects [45]. Moreover, exclusively using cyber security is inadequate to secure
CPS against these attacks [33, 44, 46]. Further, the effectiveness of these attacks will continue to
increase with the rise of CPS autonomy.

These new threats have motivated many research efforts on defending against sensor attacks.
Most works fall into the two categories: prevention and detection. The first category prevents at-
tacks from negatively impacting the physical system, for instance, attack-resilient sensor fusion
[32] or state estimation [44]. The second category detects sensor attacks by monitoring the differ-
ences between observed and expected (or estimated) sensor data. Attack detectors usually utilize
system models (i.e., trained models or physical dynamics) [24, 46] or sensor correlation [20, 28].

In spite of the extensive volume of works on attack detection, a key question that remains rarely
addressed is what to do after detecting an attack. A recent survey that summarizes 32 CPS security
papers also raises the same question and points out the future work of attack response [23]. Ma-
licious sensor information can make a controller generate misleading inputs that drive a physical
system away from the desired state. The system may deviate to the unsafe region in the end if
no responding measures are taken for an attack. Therefore, we believe that it is important to take
advantage of benefits from attack detection, discontinue this deviation, and remove the negative
impact caused by the attack to the system [8, 24]. Further, several other surveys on CPS attack
detection such as [1, 24] also emphasize the scarcity of attack response work. Thus, this article at-
tempts to fill this gap and propose techniques to recover the physical state of a CPS as the response
to sensor attacks.
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To achieve this goal is challenging. First, attack detection usually comes with some detection
delay, i.e., the time interval between the start of an attack and its detection. During the delay, a
CPS might have considerably drifted off and towards the unsafe region. The system should be
recovered before touching unsafe states or causing serious consequences, for instance, before an
autonomous vehicle hit an obstacle. We call this timing constraint as the safety deadline, after
which the system may reach the unsafe set. Second, it is infeasible to offline determine the safety
deadline due to two reasons. One is that the safe deadline changes as the physical state varies
over time [59]. The other is that it is impossible to forecast when an attack occurs beforehand or
the physical state at that time. Hence, an appropriate recovery design needs to accommodate the
variety of the safety deadline.

Existing works are incapable of solving this real-time recovery problem. First, one common
method to respond to a detected attack is to isolate the compromised sensors, derive state estimates
from virtual sensors, and then continue to use the original controller to control the system [3, 12, 19,
33, 38, 39]. However, there are two major issues for this method. One is that the original controller
implements a mild policy that is not fast enough to restore the system before the safety deadline.
The other is that the original controller may be not sufficiently robust to avoid unsafe states during
the recovery. Second, as to the control domain, robust control techniques are focused on how to
tolerate bounded disturbance or errors [60]. Thus, they are incapable dealing with sensor attacks
where sensor readings may be arbitrarily modified by attackers [8, 43]. In addition, control methods
that have static policies are suitable to the real-time recovery problem here because of the need to
handle the varying safety deadline.

To solve these issues, this article proposes a new recovery control that can (i) safely recover a
system in real time with a smooth control trajectory, and (ii) maintain the system state in a target
set (at least for a certain amount of time) once it is driven to the set. To realize such a controller,
our work makes the following major contributions.

e The core component of the recovery controller is a control calculator based on a Linear-
Quadratic Regulator (LQR) with constraints. The time horizon of LQR is set as a safety deadline
plus a conservatively estimated time that the system is maintained in the target set (named main-
tainable time) when under an attack. This setting, together with appropriate constraints on the
system state, can achieve the goals (i)(ii) as above. Then, we propose an Alternating Direction
Method of Multipliers (ADMM) based algorithm for the LQR-based recovery problem. The algo-
rithm iteratively solves the problem and fast converges to the optimal solution.

e Supporting components of the recovery controller include a checkpointer, a state reconstruc-
tor, and a deadline estimator. First, we propose a sliding-window-based checkpointing protocol
that considers a varying detection delay, removes false data and keeps sufficient trustworthy data
for attack recovery computations. Second, in the presence of an attack, the information of the
sensors is no longer trustworthy. Thus, we present a state reconstruction approach that considers
the computational overhead and uses the checkpointed data to estimate the system state when re-
covery sequence begins to be applied. Third, to determine an appropriate length for the recovery
control sequence, we develop a reachability based approach to calculate a safety deadline and an
approach to conservatively estimate the maintainable time.

e We implement our framework and evaluate it by using 5 CPS simulators under 3 sensor attack
scenarios. The results demonstrate the efficiency and efficacy of our design and techniques.

The rest of the article is organized as follows. Section 2 discusses the background and re-
lated work. Section 3 introduces preliminaries and design overview of the recovery framework.
Sections 4 and 5 present the design of each component of the framework in detail. Section 6 vali-
dates our approach and Section 7 concludes the article.
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2 BACKGROUND AND RELATED WORK

CPS Security and Current Research Focus. Before concerning CPS security, researchers have paid
much attention to deal with faults in control systems. Extensive studies exist in the literature
on identifying bad data, tracking the source of the anomaly, and recovering from faults [31]. For
example, many works rely on redundant sensors to cross-validate their readings for detection
and remove faulty sensors for recovery. However, these works are inadequate to provide security
against anomalies caused by malicious attackers because of two reasons. One reason is that these
studies generally assume faults are caused by nature and thus model an independent and non-
malicious failure behavior. The other is that an adversary can easily bypass the fault protections
by violating these assumptions [8, 9, 18, 24, 41]. Hence, overcoming the limitations needs more
powerful defense methods against CPS attacks.

This need has motivated many research works on defending against sensor attacks. These works
generally fall into two groups: prevention and detection. In the first group, one area that has drawn
much attention is to tolerate sensor attacks by sensor redundancy so as to prevent corrupted sen-
sors from affecting the physical system. The sensor redundancy involves homogeneous sensors
(e.g., multiple encoders measuring the vehicle speed) and heterogeneous sensors that can measure
the same physical parameter (e.g., encoders and GPS sensors: the speed can also be calculated us-
ing the GPS information). The value fed into the controller is produced by fusing readings of the
redundant sensors. Existing works usually assume that there is at least triple modular redundancy
and less than half of the redundant sensors can be compromised [32, 37, 44]. Given that these
assumptions hold, the corrupted sensors can be tolerated and the fused sensor data is treated as
trustworthy.

In the second group, one area that has drawn much attention is how to utilize physical invariants
to detect sensor attacks. A physical invariant is defined as an invariant guarded by certain physical
laws. There are two kinds of physical invariants commonly adopted in the literature. The first kind
uses a system model to capture the physical system’s dynamics [13, 24, 46]. For example, a set of
differential equations [14] or a machine learning model can be used to describe the motion of
a quadcopter. The second kind of physical invariant refers to sensor correlation, where multiple
(heterogeneous) sensors correlatively respond to the same physical aspect at the same time [2, 28,
54]. For example, pressing the accelerator will increase engine RPM and vehicle speed as well as
affect GPS readings. There are usually two phases for attack detection. The offline learning phase
is to extract the physical invariant of a system. The online detection phase is to monitor sensor
(and actuation) values from physical observations, and identify anomalies between these values
and the expected ones given by the physical invariant.

Research Problem and Scope. There is much less attention on recovering CPS from sensor attacks,
compared to the large body of the literature on attack detection. As noted above, the need to remove
the impacts caused by sensor attacks to a system emphasizes the importance of the attack recovery
problem studied in this article. To be specific, the proposed recovery is a responsive procedure
that is used with detection methods. This work considers that there is an attack detector already
in place, and the objective is to take in the alerts that this detector generates and respond to them
for recovering the physical system. The execution of the recovery is tightly tied to the capability
of the attack detector. For example, if a false negative occurs, i.e., the detector fails to detect an
attack, the recovery will not be triggered and thus cannot help defend against the attack.

The recovery problem studied in this work differs from the recovery concept defined purely for
computer systems. The latter, called cyber recovery, is confined to the cyber part because its scope
is on recovering computing tasks. The state of the cyber recovery refers to computing information
such as variable values in the program or the cyber state. The conventional method is that after a
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fault is detected, the computing tasks will be rolled back to a globally consistent state checkpointed
in the history [17]. By contrast, this article aims to restore the state of a physical system or the
physical state.

Inadequacy of Existing Works. One possible method to react to a detected attack is to restart a CPS.
However, a physical system may need a great amount of time to shutdown and reboot [30, 57, 59].
During the time, a CPS is taken offline and serious consequences may occur. Hence, a better method
needs to respond to detected attacks in an online manner. For example, as to sensor attacks, we
may just restart the attacked sensors instead of the whole CPS. During the sensor reboot time, a
recovery method is needed to stop a system from further drifting and bring the system to a safe
state. Further, as mentioned, the online recovery needs to meet the timing constraint. That is, this
article pursues real-time attack-recovery that brings a CPS back to a safe state before the safety
deadline. In the following, we will discuss two major groups of related work that are from two
different research communities, respectively, and give the reason why they are inapplicable or
inadequate to address this recovery problem.

The first group of related work includes studies from the cyber security community. As noted
above, a commonly used attack response approach is to obtain state estimates for the corrupted
sensors and continue to use the original controller to restore the physical system [3, 12, 19, 33, 38,
39]. Actually, this approach just performs state prediction using a system model that is pre-known
or learnt, which is only one component in the recovery framework in Section 3. Notably, several
important aspects for recovering a CPS under attack are missed in these existing works. First, they
do not consider the timing constraint, i.e., the safety deadline, and thus cannot guarantee a timely
recovery. Second, they still rely on the original controller and thus cannot ensure that no unsafe
states will be touched during the recovery.

The second group of related work includes studies from the control community. First, conven-
tional robust control approaches are good at tolerating disturbance and modeling errors that can
be bounded [25, 60]. However, they are inadequate to defend against sensor attacks because the
impacts caused by sensor attacks are hard to bound as attackers may arbitrarily manipulate sen-
sor readings [8, 9, 35, 43]. Similarly, Kalman filter based approaches are also insufficient to handle
such malicious sensor attacks [41, 56]. Further, the timing constraint, i.e., the safety deadline, is
not considered by these approaches. Second, as to the hierarchical control architecture, also called
the multi-mode architecture sometimes, the control policy for each mode is usually static. Using
static control polices is not suitable for the recovery problem here, because as mentioned above,
the safety deadline varies at run time and it is infeasible to determine the deadline beforehand. To
handle the varying deadline, We need a dynamic control policy that can generate recovery con-
trol to adapt to different deadlines on the fly. Lastly, from the concept level, our recovery problem
is different from event-driven control. Although the event of attack detection triggers the recov-
ery controller, the recovery control is time-driven because the generated control actions are still
applied periodically [29, 50]. More discussion on the recovery framework is in Section 3.2.1.

Closest Related Work. The closest related work to this article is [59], which is regarded as the first
work of its kind in online and timely recovery from sensor attacks in CPS. This work develops a
recovery controller that is automatically activated to take over a system after an attack is detected.
The controller steers back to a safe state in real-time in presence of the attack, and guarantees that
no unsafe states are reachable along the recovery process. This work provides an initial solution
to the problem, but leaves several important issues unsolved.

First, the work overlooks the control performance during the recovery. More precisely, there
is considerable oscillation in the resulted recovery trajectory (as shown in Section 6). Second, the
work just focuses on bringing a system back to a target state set, but it is not clear how to maintain
the system state in that set afterwards. That is, the system state may move outside the target set
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Table 1. Notations and Symbols Used in This Article

\ Notation \ Description
1 control stepsize/control interval
X; state estimate at time ¢
u; control input to be implemented at time ¢
X real/true/actual system state at time ¢
tw the time when the system state is the last trustworthy state
to the time when the sensor attack starts
ta the time when the sensor attack is detected
t the time when the recovery control sequence begins to be implemented
tq safe deadline, the end time of the recovery period
t the end time of the maintenance period or maintainable time
D recovery length, D = t; — t,
M maintenance length, M = t; — t4
N total recovery control length, N = t; — ¢,

v, the uncertainty at time ¢
Umax the maximum value of the uncertainty
the dimension of system state vector
the dimension of control input vector
the objective function of optimization problem
the state cost
the final state cost
the control input cost
Minkowski sum, ie, X®Y ={x+y|x e X,y e Y}
Minkowski difference, i.e, X © Y = (N ey{x —y|x € X}

O|®|=PI0l—|3 =

again if using inappropriate control inputs after the recovery. Third, the work assumes the recov-
ery control sequence can be applied immediately once an attack is detected, but the computational
overhead of the sequence is non-negligible for complex systems. Fourth, the checkpointing proto-
col does not consider a varying detection delay, which is common for attack detectors. This article
addresses these key issues by proposing new recovery control techniques.

3 PRELIMINARIES AND DESIGN OVERVIEW

In this section, we present the system model, the threat model, and the design overview of the
real-time attack-recovery framework. Table 1 summarizes the notations and symbols used in this
article.

3.1 System and Threat Model

Under our consideration, the cyber-physical system model is a physical process (or a plant) con-
trolled by a controller. The controller operates at every control step, denoted by a positive value
6. When a control step starts, the controller reads sensor measurements and computes the plant’s
state estimate, denoted by a set of real-valued variables {x1, . . ., x,}. Base on it, the controller gener-
ates the control signals {u, . . ., u;,} through the control algorithm and then sends the result to the
actuators. The actuator will apply the control inputs to the plant in the current step. For brevity, we
collectively represent the variables {x;(¢), ..., x,(¢)} by x(¢), i.e., x(¢) € R", and {u; (¢), . . ., um ()}
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Fig. 1. The Framework of Real-Time Attack-Recovery.

by u(t), ie., u(t) € R™, at time t. For easy presentation of equations, we sometimes use x; or u;
to denote x(t) or u(t), respectively.

The parameter x(¢) denotes the state estimate, while x(¢) is the real (true) state of the plant. The
parameter u(t) denotes the control input computed by the controller, while #@(t) is the real input
to the plant. We assume that the plant is fully observable to the sensor.

Threat Model. We consider a malicious attacker who can launch sensor attacks, that is, to alter
the sensor data before sent to the controller so as to compromise the integrity and availability of
sensor measurements in CPS.

o Compromising Integrity of Sensor Data. The attack scenarios we consider under this category
are bias and reply attacks. (i) Bias attacks. This kind of attack modifies sensor data by adding or
subtracting certain values. That is, the value x(t) can be set to be x(t) + e by an attack, where e
is the modification value. Our work has no restriction on the number of the system state that can
be compromised. For example, it can e = (ey,...,e,)7,e; # 0,Vi, all dimensions compromised,
ore=(0,...,0,¢j,..., en)T, partial dimensions compromised, starting from the beginning of the
attack. (ii) Replay attacks. This kind of attack sends historical sensor data instead of current ones
to the controller. That is, x(t) = x(¢ — s) starting from the attack for some s > 0.

o Compromising Availability of Sensor Data. The attack scenario we consider here is delay attack.
This kind of attack intentionally delays the data sent to the controller, i.e., x(t) = x(t,) for a time
period of d where t; is the start time of the attack, and then x(t) = x(t — d) for t > t, + d. Note
that the Denial-of-Service (DoS) attack can also be seen as delay attacks with infinite time delay.

In these attack scenarios, the data observed by the controller may not be consistent with the
actual system state, i.e., x(¢) # x(t). As a result, the controller may generate an inappropriate con-
trol input based on a corrupted state estimate. In this way, the controller might steer the system to
unsafe states with misleading sensor data. Hence, this article aims to utilize a recovery framework
to eliminate safety problems caused by sensor attacks in the CPS.

3.2 Overview of the Real-time Attack-recovery Framework

This work follows the novel real-time recovery framework first proposed in [59], and updates
each component as mentioned in Section 1. For completeness, the following introduces the frame-
work, which is illustrated in Figure 1. The framework has two operating modes: normal and recov-
ery mode. The attack detector determines whether the system is under attack. Once the detector

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 79. Publication date: September 2021.



79:8 L. Zhang et al.

identifies an attack, the system will be switched from the normal mode to the recovery mode. As
mentioned in the introduction, the attack detection is outside the scope of our article, and we
assume an existing detection method that works with our recovery, such as [13, 24, 28, 40, 46].
Although attack detection is a flourishing track in CPS security, how to extend its main benefits
and secure the system is still an open question. This article aims to fill this gap.

Note that as mentioned above, the recovery problem studied in this article is a reactive procedure.
We assume there is an attack detector already in place and the detector can give us the time when
an attack starts. Our goal is to take the alerts that are generated by the detector and respond to
them in order to recover the physical system.

Recovery Mode. Switching to the recovery mode, the recovery controller takes over the system.
The recovery controller consists of three components, as shown by the shaded boxes in Figure 1:
(i) recovery control calculator, (ii) state reconstructor, and (iii) deadline estimator. The following
briefly describes these components, and we will provide their detailed design in Sections 4 and 5.

e Recovery Control Calculator. It takes a substantial time for attack detectors to identify the attack
after it is launched [24, 33, 46]. During this delay, the attack may drive the system to an undesired
state. Thus, this component can compute a Piece-Wise Constant (PWC) control sequence that
restores the system from a compromised state into a target state set within a safety deadline and
maintain the system in this set before the maintainable time. The control sequence starts from
a time point that is close to when an attack is detected. The initial states and two deadlines are
obtained from the following two supporting components.

e State Reconstructor. Due to a sensor attack, the state estimates may incorrectly reflect the
system state during the detection delay. Based on the trustworthy historical data from the check-
pointer, this component can reconstruct the state estimate when the recovery control sequence is
applied.

e Deadline Estimator. This component estimates a safety deadline by which the system should
be recovered to a target state set. The deadline is a conservative estimation of the lastest safe time
after which the system may reach the unsafe state set and cause serious consequences. Meanwhile,
a maintainable time is also estimated, before which the system state can be kept in the target state
set.

Normal Mode. In the normal mode, the system runs the original controller, and system states
follow the reference or target states. We use a checkpointer to record historical data, including state
estimates x(t) and control inputs u(t). It uses a sliding window to compensate for the maximum
detection delay, during which the attack may corrupt the data but not be detected. The data outside
this window is trustworthy and are provided to reconstruct state estimates in the recovery mode.

3.2.1 Discussion on the Proposed Framework. The framework has two controllers: the original
controller already in the system and the recovery controller proposed by this work. First, the
recovery controller is an extension to an existing system rather than a substitution, and the original
plant dynamics and the control algorithm remain unchanged.

Second, this framework can be seen as an extension of the simplex architecture [15, 42, 55],
which consists of a “complex” controller and a “safety” controller. Our framework extends this
architecture by adding the four new components, checkpointer, state reconstructor, deadline esti-
mator, and recovery control calculator, as shown in Figure 1.

Third, the proposed framework is different from event-driven control. In our framework, al-
though the recovery controller is triggered by an event of attack detection, the controller is peri-
odic or time-triggered, i.e., with equidistant sampling intervals. That is, the event of the detection
of an attack only makes the system switches from the original controller to the recovery controller,
which is still time-triggered. By contrast, the sampling is event-triggered in the regime of event-
driven control [29, 50]. Hence, event-driven control is inapplicable to our recovery problem.
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Fig. 2. Recovering a system under an sensor attack.

Fourth, this framework handles multiple types of sensor attacks, which are illustrated in Sec-
tion 3.1. By contrast, some works require the attack to belong to a particular class. For example,
some works from networked control systems (NCS) domain pay more attention to the delay at-
tack. They explore to stabilize NCS in the presence of network-induced delay that is inherent to
NCS [7, 21].

3.2.2  Recovery Control Sequence. We illustrate an example of the use of recovery control in
Figure 2. The system works normally from the start of the time ¢t = 0. A sensor attack starts
at the time ¢ = f; and is detected by the attack detector at the time t = ¢,. Here, we do not
require a particular value for ¢, but assume that during the time interval [t, t,], although the
system is drifted by the attack, no unsafe state is reached. It can be fulfilled by a well-designed
attack detector. Our recovery framework takes over the control of the system at ¢t = t,, it firstly
computes a recovery control sequence, and then applies it at the time ¢ = ¢,. The value of t, — t, is
the maximum bound for the computational overhead of the recovery control and we assume that
it can be conservatively estimated by offline-profiling. The framework is required to obtain the
recovery control before t,.

The recovery control is a piecewise constant sequence which should satisfy the following prop-
erties. (i) It consists of two parts: the first D steps, D = t; — t,, is the recovery period, while the
second part is the maintenance period which has M steps where M = t; — t4. (i) The D control
steps in the recovery period are guaranteed to steer the system to a state in the target set without
reaching any unsafe state. (iii) After the system is recovered, the M control steps in the mainte-
nance period can still keep the system in the target set till the time ¢ = ;. The reason to have the
maintenance period is to allow the system to tolerate attacks after the recovery period [33]. For
example, to have a time period for resetting the attacked sensors to make them trustworthy again
if possible. After the maintenance period, the control of the system is given back to the original
controller.

Solving a recovery problem on a system is to find a recovery control satisfying the above prop-
erties. However, it requires to compute the key parameters including at least D, M, and the control
inputs. Since all of the parameters are dependent, finding the best values for them requires to
solve a complex optimization problem and the high time cost does not allow it to be used in an
online mode. Hence, we use the 4-step approach presented in Figure 3 to find a sound recovery
control sequence instead of the optimal one. In the following sections, we firstly introduce the core
part which is the Step 3 and 4 in the figure and then present our methods for Step 1 and 2 using
reachability computation.

4 LQR BASED RECOVERY CONTROL CALCULATOR

In this section, we present the design of the recovery control calculator. The component computes
a PWC control sequence for real-time recovering a CPS from a sensor attack and based on a Linear
Time-Invariant (LTI) model of its plant dynamics. First, we encode the problem of finding such a
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Step 1: Computing an overapproximation set X, for the actual system
state at the time ¢,.

Step 2: Computing an estimation for #; and an estimation for ¢;.

|

Step 3: Building the quadratic programming problem describing the
recovery control based on X, t; and t;.

|

Step 4: Solving the above quadratic programming problem to find the
control sequence.

Fig. 3. High-level description of our approach to find a recovery control.

sequence using a Linear-Quadratic Regulator (LQR) with constraints. The result is guaranteed to
safely recover the original system to a target set given the LTI model. In addition, the recovery
trajectory is free of oscillations due to the quadratic cost function of states and control inputs.
Second, we present an Alternating Direction Method of Multipliers (ADMM) based algorithm to
solve the LQR-based recovery problem. The algorithm decomposes a global problem over states
and control inputs jointly into two small local subproblems over them separately, which are much
easier to handle. Compared to the global problem, the solving time of iterative subproblems is
reduced. Third, we also present the discussion on the soundness and completeness of the result.

4.1 Recovery Problem Formulation

We consider an LTI system and the dynamics is given by Equation (1),
X1 = Axy + Buy + vy, (1)

where x; € R” denotes the plant’s state vector at time ¢, u, € R™ is the control input vector, v; €
R™ is the uncertainty vector, and A, B have suitable dimensions. We assume that the uncertainty v,
at any time is constrained by a bounded range V, and use v,,4x to denote its magnitude sup,, . || v||
where || - || is the euclidean norm. The LTI model has been widely used in both control and security
communities [13, 25, 33, 59]. Given the current system state and control input, we can predict next
system state from the system model, which represents the system’s behavior.

The Linear Quadratic Regulator (LQR) [34] is a well-known optimal feedback controller in con-
trol community. It describes the cost as two quadratic terms of states x and control input u, which
jointly considers the control performance and actuator effort.

As in Figure 2, the (absolute) safe deadline is t4, estimated by the deadline estimator, and there
are D = t; —t, control steps before this deadline. In order to stabilize the system states, M = t; —t4
control steps are added after ¢4, and the physical states are restrained within target set X1 during
the M control steps. We use LOR with discrete-time finite horizon to formulate our problem. This
recovery process is an optimization problem, and we define the objective function as

-1
J(xpy ooy X, Uy ooy up_ ) = Z (xiTQxi + ul-TRui) + xlTQfxl (2)

i=r
where x; is the states of LTI system during recovery, u; is the input used in the i-th step in the
recovery control, optimization horizon N = D + M is the number of recovery steps from t = t, to
t;,and Q,Qr € R™" R € R™™ are semi-definite symmetric matrices that define the state cost,
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final state cost, and input cost respectively. With properly designed Q, Qr and R, minimizing J
is to minimize the deviation of the states from the target set as well as the size of control signals
required within the horizon.

To understand the formal definition of a recovery control, we first introduce the notations @
and ©, respectively for Minkowski sum and difference, ie: X ® Y = {x + y|x € X,y € Y},
XoY=yeyix—-ylx e X}

Given that the system state is x, at the time ¢ = ¢,, we have an over-approximation set X, around
x,, a safe set X and a target set Xr. A recovery control is a solution of the following constraint:

G(xpy .oy X, Upy .., upq) = (x, = center(X,)) (3a)
1
A /\(xi ®B; C Xs0 A IR) (3b)
i=r
1
A\ (xi®B; € Xr© A7 Iy) (3¢
i=d
-1 -1
A /\(ui € U) A /\(xis1 = Ax; + Bu) (3d)
i=r i=r

such that By is a box around x; representing some uncertainty in evolution, and 7y is an box
around x, containing X,. Formally, $B; is an origin-centered box whose radius is Unax - Y, j.;(’)_l |AV,
and X, C {x} ® Ig. For a later state x;, its over-approximation box should be Al T based on
the dynamics, and we use this box as tolerance, i.e., if the state x; is inside X5 © A" Ik then we
consider it safe, and inside X7 © A’™" I then we consider it hitting the target set.

Referring to Figure 2, the sub-constraint (3a) denotes that the first state at t = t,, x, is the center
of X,. (3b) requires that the state x; is always inside the safe set X, considering the accumulation
of the uncertainty 8;. (3c) requires that the state x; is always within target set after the deadline ¢4,
still considering the uncertainty. Finally, (3d) defines the control input range and system dynamics,
by which the evolution follows. The correctness of the formulation is proved in [59].

Then an LQR recovery control can be obtained by solving the following problem:

min J(x,, ..., X7, Up,..., U_1) site Xy, X1, Upy o, Up_q) (4)

4.2 ADMM Algorithm
The alternating direction method of multipliers (ADMM) is an optimization algorithm that de-
composes a large global problem into small local subproblems and coordinates to find the global
solution [6, 27]. With ADMM, we can solve minimization problems with separable objectives and
constraints in the form of:
min  f(x) + g(2)
st. x€Cy, z€(C,, Ax+Bz=c¢

©)

with variables x € R"” and z € R™, parameters A € RP*" B € RP*™ and ¢ € RP, and convex
functions f and g. We form the augmented Lagrangian function for (5) as

Ly(x,2z,y) = f(x) +g(2) + ¥y (Ax + Bz —¢) + (p/2)||Ax + Bz — c||? (6)

where p > 0 is the penalty parameter and y € R? is the Lagrangian multiplier.
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ADMM solves problem using the following iterations:

x5 1= argmin, (x, 2, y®) (7a)
xeCy

25 .= argminL,, (x(k“), z, y(k)) (7b)
zeC,

PR = 8 4 p (AxkH) 4 B _ ) (7)

Each iteration includes an x-minimization step (7a), a z-minimization step (7b), and a dual update
step (7c). Since the objective function is separable, (6) can be minimized over f and g separately
in step (7a) and (7b). Usually, it is easier to solve these two sub-problems than to solve the global
problem directly, and the total solving time can be reduced.

4.3 ADMM-Based Control Sequence Calculation

Our recovery problem (4) can be solved by ADMM method, because the optimization variables x
and u are decoupled and thus separable. To construct a separable objective function and equality
constraint, we define the following matrices:

Q

or R A ~1 B

Therefore, we obtain the matrix form of (2) as

J(x,u) = x'Ox + u'Ru (8)
where x = [xg xlT e xIT\,]T e RPN+ 4 = [ug ulT e uITV_l]T € R™N . The equality constraint

(3d) becomes Ax + Bu = 0. Now, we can reformulate our problem in the form of (5) for ADMM
method. Formally:
min  f(x) +g(u)

N-1 B B (9)
st (32)(3b)(3c), /\ (u; €U), Ax+Bu=0
i=0

The objective function J(x, u) can be split into f(x)+g(u), where f(x) = x”Qx and g(u) = u’ Ru.
Then, we find the augmented Lagrangian function for (9):

Ly(x,wA) = f(x) + g(u) + AT (Ax + Bu) + §||Ax + Bul)? (10)
Under this ADMM construct, for the (k+1)-th iteration, the x-minimizaion sub-problem is:
xk*D) :=argmin L, (x, u(k),).(k)) , where 1 = (3a)(3b)(3c) 11)
v
the u-minimizaion sub-problem is:
N-1
uk+ .= argmin L, (x(k“), u,/l(k)) , where y = /\ (u; € U) (12)
Y i=0

and the dual update step uses the sub-problem results x**! and u**! to compute ARTL
A= 20 4 p (AxKHD 4 Bulk) (13)

Algorithm 1 shows the procedure to solve our recovery problem. First, at Line 1, we compute
the coefficients of the separable objective function and the equality constraints, i.e., Q, R, A and
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B. Line 3-10 are the iterations of ADMM, which solve the two sub-problems (11) and (12) and do
the dual update. Within every iteration, a residual term r is computed to estimate the convergence.
When the ||7| |§ is not greater than a tolerance ¢, the algorithm converges and halts. We output the
final control sequence wu.

ALGORITHM 1: ADMM-based Control Input Calculation
Input: Q, Qr, R, ¢, y, LTI model, N

/* Q: state cost matrix  Qp: final state matrix R: input cost matrix */
/% y: constrains on state x y: constrain on control input u */
/* LTI model: state space model N: the number of recovery step */
Output: u

/% ue R™N: control input in the last iteration */

1 Compute Q and R from Q and R, Compute A and B from LTI model and N
2 Initiate proper u(® and A
3 for k < 0 to MAX ITERS do

4 x*+)  argmin L, (x, u®), A(k)) > x-minimization
5 uk+)  argmin L, (x(k“), u, A(k)) > u-minimization
6 r — Ax(K+D 4 By (k+1) > calculate residual
7 if ||r||§ < € then

8 L break > stop condition
9 else

10 L A 2R 4y > dual update

THEOREM 4.1. Starting from time t = t,, the control input sequence u obtained from our LQR
approach is able to recover the system to a state in the target set by the time t = tg, and keep the
system inside the target set till the time t = t;.

Remark 4.1. Due to the formal modeling and methods used to find the recovery control, the
obtained control sequence is guaranteed to recover the LTI dynamics if it is applied at the time ¢ =
t,. Therefore, our LQR approach is sound. On the other hand, in order to achieve good performance,
conservative methods are used in overestimating the recovery initial state and the deadlines, which
will be described in detail in Section 5. It is not guaranteed that our approach can always find a
recovery control even there exists one. Hence, our approach is not complete.

Remark 4.2. The O(é) iteration complexity of ADMM algorithm is shown in [26], where € is
the tolerance.

5 SUPPORTING COMPONENTS FOR RECOVERY CONTROL

In this section, we give a detailed description for the design of other components in our real-
time attack-recovery framework. We first propose a sliding window based checkpointing protocol
to obtain the nearest trustworthy sensor data, which can accommodate varying attack detection
delays. Then, based on this, a conservative estimation of the start state of recovery can be obtained
using a reachability computation technique. Third, we present a conservative deadline estimation
method that uses a safety verification method. Finally, we discuss a conservative way to cover the
computation overhead of the three components in the recovery controller.
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——nominal window —

S

—o—¢

to—3 tp—2 th—1 ¢t to ta
ﬁ_’ l L T J
deleted stored buffered

Fig. 4. lllustration of the Sliding Window Based Checkpointing Protocol.

5.1 A Sliding Window Based Checkpointing Protocol

Attack detection usually comes with a substantial detection delay. Historical state estimates and
control inputs during the delay are not trustworthy, i.e., may incorrectly reflect the true physical
states and actuation, as they may be already compromised due to the attack. Thus using them
can result in unsuccessful recovery. To address this issue, we propose to develop a new sliding
window based checkpointing protocol. This protocol will provide trustworthy historical data for
the components of the recovery controller.

The protocol proposed in the work [33] assumes a constant detection delay. However, as in-
dicated in the attack detection work [24, 46, 53], the detection delay of approaches based on the
cumulative sum of residuals (CUSUM) varies with factors such as attack scale and a drift parameter.
To address these limitations, the new protocol can be viewed as a generalization that is applicable
to the methods with both constant and varying detection delays.

This new protocol uses a nominal window to accommodate a varying attack detection de-
lay. The length of this window equals the maximum delay of a detection approach. For exam-
ple, the maximum delay can be analyzed by assuming the worst-case attack (e.g., a stealthy
attack) given a drift parameter for CUSUM based detection [24, 46]. The real delay of the de-
tection of an attack can be less than the nominal window. As shown in Figure 4, the interval
[£5: ta] denotes the maximum delay and [fo, t,] is the true delay, where #, and #, are the start
and detection of an attack, respectively. The window slides forward as the time ticks. The proto-
col records estimate x(t) and control input u(t) by the following three steps: buffer, store, and
delete.

e Buffer. Estimates and control inputs within the window, ie., {(x(t)),u(t})), ...,
(x(t}), u(ty))} in [t;, ta], are first buffered, because they may be already corrupted and it
is still in question whether they are correct. Note that the recovery controller starts to run
from the time ¢, when the attack is detected. Thus, these data cannot be used for reconstruct-
ing x(t,).

e Store. Estimates and control inputs that have moved outside the window are considered to
be trustworthy. Thus, (x(t; — 1), u(t; — 1)) is stored.

e Delete. The stored data that is no longer needed will be deleted, e.g., (x(t; — 2), u(t; — 2)) is
discarded.

When the detector raises an alarm, it gives us the actual time ¢, when the attack started (this can
be done by finding the time of a breakpoint of the time series of the residuals [24, 46]). Since t, > £,
the data in [t;, t] has already passed the detection and is also considered as trustworthy. Hence,
the data point (x(ty — 1), u(ty — 1)) will be used to rebuild x(t,), instead of that of t; — 1. Using
data closer to the time of the detection of an attack can result in better reconstructed estimates.
Further, it is worth noting that using the maximum delay as the nominal window guarantees that
there is always trustworthy data for state reconstruction.
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5.2 State Reconstruction

We present the method to construct an overapproximate estimation X, for the initial system state
of recovery, that is the state at the time ¢ = ¢, when the recovery control starts to be applied. Given
that x,, is the latest trustworthy state recorded at the time t = t,, by our checkpointer, then the
actual system state x(#,) can be overapproximated by the result of the reachability computation
from x,, to the time t = t, — t,,.

Given the LTI dynamics (1) and the latest trustworthy state x,, recorded at the time ¢,,, we can
obtain the state at time t,,41, i.e, X,y41 = Ax,, + Buy + vy. The the state at time £,,49 1S X,y42 =
Axyy41 + Buy + vi = A%x,, + ABuy + Buy + Av + vy. In the same way, the state at the following
control steps x,,4+3 - - - X, can also be derived. Thus, the system reachable state at the time t,, which
is the current time, can be overapproximated by the range of the following linear expression:

Na-1 Na-1
Xa(vo,. .. VN,—1) = ANe x,, + Z A'Bu; + Z Alv;
i=0 i=0

where N, = t, — ty, Uy, ..., un,—1 are the historical control inputs used in the past N, steps
respectively, i.e., from the time #,, to t,, v,..., Vn,-1 are the variables symbolically represent
the uncertainty in those steps. Since the uncertainty is not able to be recorded precisely, we use
variables constrained by their maximal interval range V to symbolically represent them in the
estimation of X,. Then X, is essentially a linear constraint over the uncertainty variables.

We then extend the expression of X, to obtain still a linear expression for overapproximating
the reachable state at the recovery start time ¢ = ¢, based on the fact that the control input will be
fixed at u(t,) after an attack is detected:

Ng—1 N, -1 N,-1

X, (Vo ..., vN,—1) = AV x,, + Z A'Bu; + Z A'Bul(ty) + Z Al
i=0 i=N, i=0
where N, = t, — t,,, and vy, ..., vn,_; are the variable representations for the uncertainty from

the time t,, to t,. X, is also derived through the evolution of the system states based on the LTI
dynamics (1).

5.3 Deadline Estimation

We present our approaches to obtain the deadline f; and t;.

Estimation of t;. The purpose of using t; is to set up a deadline for recovering the system.
Since the computation of the optimal deadline requires to solve an optimization problem which
is too costly, we use a heuristic to find a feasible control sequence for keeping the system (1) safe
from any state in X,, and set t; = t, + D where D is the length of the control sequence. To do so,
we assume that all of the control inputs used in the future steps from the time ¢, are fixed at u(t,),
i.e., we use the constant inputs at the time ¢, from the time ¢, to estimate the system safety. Then
we repeatedly verify the safety for the reachable set overapproximation Xj:

k-1 k-1
Xk = AR xy + ZAi Bu(ty) + ZAi ViiN,
< Z (14)
i=0 i=0
xo =Xr(vo,...,VN,—1), and vg, ..., VN, 1k-1 €V
atthe time ¢t = t, + k for k = 0,1, 2, ... until it has a nonempty intersection with the unsafe set or

D reaches the given maximum bound kmay. Then D is set to be k — 1, or kpay if there is no unsafe
intersection till the maximum bound.
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Estimation of ;. The purpose to use a maintenance deadline ¢; which is no earlier than ¢, is
to make the recovery trajectories smoother than those without a maintenance period [59]. Unlike
the safe deadline ¢4, a later t; might make the recovery problem harder to solve since it requires
the recovery control to keep the system in the target set for a longer time. To obtain a reasonable
estimate for ¢;, we consider using an approach which is similar to the real-time monitoring tech-
nique described in [11]. We require that all of the reachable state at the time from ¢y + 1 to t; + N
which is #; should be able to be kept in the target set. Hence, the reachable set overapproximation

Jj-1 Jj-1
Xj=Alxo+ Y Al Bun, + ) Al v,
i=0 i=0
forall j = D+ 1,...,N can be kept in the target set with at least one instantiation sequence of
U, ..., un. In order to verify it, we may check whether X inevitably exceeds the target set X7 or

not. That is, the containment X; C Xr is inevitably violated. To do so, we check the emptiness of
the intersection between the control envelope

j-1
Ej = {ZAIB Uj+N, | UN,>. .- UN,+j-1 € U}

i=0

which contains all possible control effect at the j-th step, and the Minkowski difference,

j-1
DJ- =Xr©e {ijo + ZAl Vi+N, | VN,>---5 VN, +j-1 € V}

i=0

which is a constrained safe set by the accumulation of uncertainty. If the intersection is empty,
then there is no feasible control of the length j to keep the system safe, otherwise there exists at
least one.

LEmMA 5.1 ([11]). If the intersection E; N D; is nonempty then there exists a control sequence to
keep X; in the target set.

Since a Minkowski difference is often hard to compute, we resort to a more efficient but also
conservative way to verify the emptiness of the intersection. We use the interval hull of the second
operand in the Minkowski difference, and the result ﬁj is an underapproximation of the actual
difference. Therefore, we may conservatively check the emptiness of E; N D; to verify whether a
recovery control can maintain the systemin the target set. We may do so using linear programming.
We repeatedly check the intersection for j = D + 1, ... until we meet an empty intersection or j
reaches a given maximum bound jmay. In the first case, ¢; is set to be ¢, + j — 1, and in the second
case we set t; = t, + jmax-

Remark 5.1. Solving the recovery control problem as a whole is difficult even the dynamics is
linear, since we need to find all of the parameters such as control sequence length, safe deadline and
control inputs by solving a single optimization problem in order to strictly keep their dependencies
to obtain the optimal solution. To avoid the high computational cost, we decompose the problem
to first estimate the deadline t; and the "latest" maintainable time t;, and then use them in the LP
modeling of the recovery control problem. Although our method is not complete, i.e., it may not
find a feasible recovery control in some cases, but the result is always sound, that is the control
sequence found by our method is guaranteed to steer the system to the target set at the time ¢4
and maintain it there till the time ¢;.
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6 EVALUATION

We implement a prototype simulation tool in Python to evaluate the effectiveness of our LQR-based
real-time recovery, based on 5 CPS simulators under 3 attack scenarios. Then, we also compared
the computational overhead between linear programming recovery, LQR-based recovery, and LQR-
based recovery with ADMM algorithm.

6.1 Simulation Settings

6.1.1  Simulation Scenarios. We consider the following CPS models: vehicle turning, series RLC
circuit, DC motor position, aircraft pitch, and quadrotor. The LTI models for these systems are
obtained by linearization and discretization. All these simulators are LTI models, which are repre-
sentative and used in both security and control works, such as [4, 13, 22, 33, 36, 48, 49, 52].

Vehicle Turning. The following ODE models the turning of a vehicle, which changes the speed
difference between two wheels to steer [33]. The state x denotes the speed difference between two
wheels, and control input u is the voltage difference applied to motors controlling the two wheels.

. 25
X=—-—x+5u
3

Series RLC Circuit. A basic RLC circuit contains a resistor, an inductor, and a capacitor con-
nected in series. An adjustable voltage source is connected to form a closed loop circuit. The system
dynamics are modeled by the right equation such that state x; denotes the voltage across the ca-
pacitor and state x, denotes the electric current in the loop. The control input u is considered the
voltage of the voltage source.

0 ]
1 u
I

)&'1 _ 0 % X1
)&'2 —% —% X2

DC Motor Position. The following ODE models the rotary position of a DC motor. The state
x1 denotes the rotation angle, x; is the rotary angular velocity, and x3 is the armature current. The
control input u is considered the voltage applied to the motor.

+

X‘l 0 1 0 X1 0
X’g = 0 —I% % X2 + 0 |(u
o] o b Al 1y

Aircraft Pitch. The following ODE describes the longitudinal dynamics of motion for the air-
craft. The x; denotes the angle of attack, x, denotes the pitch rate, and x; denotes the pitch angle.
The control input u is the elevator deflection angle.

%1 0313 567 0 x1 0.232
% | =] —0.0139 —0.426 0 xp |+ 0.0203 |u
%3 0 56.7 0 x3 0

Quadrotor. A linear quadrotor model is described in [49]. The system consists of 12 state vari-
ables: [x, v, Z]T and [¢, 0, rﬁ]T are linear and angular positions of the quadrotor in the earth frame.
[u,v,w]T and [p, g, r]T are the linear and angular velocities in the body frame. The control in-
put is denoted by u, in which f; is total thrust and [, 7y, 7;]” are the control torques caused by
differences of rotor speeds.

Other simulation settings are listed in Table 2. For example, we use a PI controller (Kp = 5,K; =
5) to update the control input u of series RLC circuit every 0.02 seconds. The attacks start at time
to = 3s, and are detected at time ¢, = 4.3s. The system is safe when the capacitor voltage x; is in
[0,7], and the target set of this scenario is [2.9, 3.1]. The voltage of source can be adjusted between
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Table 2. Simulation Scenarios
Simulation Cyber-physical System Properties Recovery-related Parameters
Scenarios S | Xs \ U | PID to ] ta | X1 | O |R
Vehicle Turning [ 0.02 | x € [-2.7,2.7] | [-5, 5] 0.5,7,0 4145 x €[0.9,1.1] 01 =10| 5
Series RLC Circuit || 0.02 x; € [0, 7] —15, 15 5,5,0 3143 x1 € [2.9,3.1] O;=1101
DC Motor Position || 0.1 x1 € [—4, 4] —20, 20 11,0,5 6199 [x €[-1.67,-1.47] | Q; =100.01
Aircraft Pitch || 0.02| 3 €0, 2] |[=20, 20] | 14, 08,57 3 | 43 | x5 €[0.68,0.72] | Os=1| 1
Quadrotor 0.02] ze[-18] —50, 50] | 0.1,0,0.6 || 12|13.1 z €[3.9,4.1] Oy=11] 1

(Time unit: second) Cyber-physical System Properties - §: control stepsize, Xs: safe state set, U: control input limits,
PID: PID parameters of original controller. Recovery-related Parameters - #j: attack launched time, #,: attack detected
time, X7: target state set, Q;: state cost corresponding to the i th gtate (other costs set to 1), R: control input cost.

Table 3. Attack Scenarios

Attack | Vehicle Turning | Series RLC Circuit | DC Motor Position | Aircraft Pitch | Quadrotor
Bias x—-1.5 x1 — 2.5 X1+ 2 x3+ 0.3 z—2

Replay [0s, 6s] [0s, 5s] [0s, 6s] [1s,2s] [3s, 5s]

Delay 1s 1s 1s 1s 1s

Bias attack: add a certain value to or subtract it from sensor data. Replay attack: send historical data from a certain
time interval. Delay attack: delay data sent to the controller for a certain time.

[-15, 15]. We concern the first state, so the first diagonal element of Q is Q;, others are all 1. We
choose control input cost as 0.1.

6.1.2 Attack Scenarios. We consider three attack scenarios mentioned in Section 3.1, i.e., bias
attacks, replay attacks and delay attacks. These attack scenarios are combined with each simula-
tion scenario, which contributes to fifteen situations in total. We list the simulation parameters in
Table 3. For each simulation scenario, we set up an attack parameter.

6.2 Baselines

We compare our proposed method with three baselines:

No recovery: the system is attacked during running, and there is no recovery method available.
The sensor attack takes effect constantly, and the system state may reach the unsafe set, which
causes catastrophic consequences.

Non-real-time recovery: the system performs the recovery method in [33] after a sensor attack
is detected. This method cannot guarantee the system is recovered before a deadline.

Linear-programming recovery: the system runs under a real-time recovery method in [59].
This method is formulated as an linear programming problem.

LQR-based recovery: the system run under the proposed real-time recovery method. This
article formulates the recovery method as a LQR-based optimization problem.

6.3 Simulation Results

We compared our method with baselines from recovery effect and recovery overhead.

6.3.1  Recovery Effect. We plot the actual system states in Figure 5, which demonstrates the
recovery effect against three types of sensor attacks in five CPS simulations. The following obser-
vations are obtained from these figures.

Recovery mechanism is needed during sensor attacks. The red lines represent the baseline
without recovery. The results in Figure 5(f)(i)(k)(I)(o) shows the system states reach the unsafe set,
which causes catastrophic consequences in CPS system. This indicates that a recovery mechanism
is needed to secure the CPS in presence of sensor attacks.
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Fig. 5. Comparison of the system executions under three situations for each attack scenario. RED = No
recovery. YELLOW = Non-real-time recovery (previous work [33]). BLUE = Linear-Programming recovery
(previous work [59]). GREEN = LQR-based recovery (our proposal). Dotted Black Line = Reference state.

Non-real-time recovery cannot steer system state back to normal within a dead-
line. The yellow lines show the state recovered using non-real-time recovery method. From
Figure 5(a)(b)(c)(d)(f)(m)(n)(o), the recovery processes take a long time, and they failed to pull
the system states back to target set before the deadline. There is no guarantee on deadline and
safety.

LP recovery may make the system oscillate before the deadline. The blue lines are pow-
ered by LP recovery method. They can recover the system within deadline, because this method
formulates the safety deadline as a constraint. However, the recovery trajectories are circuitous,
shown in Figure 5(a)(b)(c)(e)(j)(k)(1)(m)(n), because of the linear objective function.

LQR-based recovery can recover systems smoothly within the deadline. The Green lines
represent the recovery process of our LQR-based method. The proposed method can recover the
system within the deadline, and the recovery trajectories are straightforward. The quadratic objec-
tive function adds penalty on states and control inputs, thus, play a key role in smooth trajectories.
Moreover, our method makes the state maintain within the target set for a while, which is helpful
to return the system to original controller or buy time to restart the original controller.

6.3.2 Overhead Analysis. We also analyze the time cost under three conditions. The time cost
includes state estimate reconstruction time, deadline estimation time, problem formulation time,
and solving time. Note that the solving time is measured from the time solve function is called to the
time the result is returned. For linear programming recovery, we use PyGLPK solver with simplex
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Table 4. Time Cost of Computing the Recovery Controls

Vehicle turning RLC Circuit DC Motor Position
bias | delay | replay bias | delay | replay bias | delay | replay
Trp 0.83 1.04 1.03 1.31 2.51 1.17 3.92 3.48 1.80
%o1.P 4.15% 5.20% 5.15% 6.55% 12.55% 5.85% 3.92% 3.48% 1.80%
Teolver 24.05 24.54 26.80 27.10 35.21 2282 | 8278 | 67.92 81.19
Tosolver 120.25% | 122.70% | 134.00% | 135.50% | 176.05% | 114.10% | 82.78% | 67.92% 81.19%
Tapmm 1.69 1.97 1.85 2.09 3.82 2.00 4.48 4.32 3.20
% ADMM 8.45% 9.85% 9.25% 10.45% 19.10% 10.00% 4.48% 4.32% 3.20%
Aircraft Pitch Quadrotor
bias delay replay bias delay replay
Trp 10.79 6.10 4.78 10.91 11.34 8.10
%Lp 53.95% 30.50% 23.90% 54.55% 56.70% 40.50%
Teotwer || 81.10 62.02 73.42 1415 57.00 80.28
Yosolver || 405.50% | 310.10% | 367.10% | 220.75% | 285.45% | 401.40%
Tapmm 27.37 22.80 19.76 38.52 25.18 35.17
%oapmm || 136.85% | 114.00% | 98.80% | 192.60% | 125.90% | 175.85%

The time unit is millisecond. legends: Ty p: time cost of Linear-Programming (LP) method, %, p: ratio of Ty p to control
stepsize, Tso1eer: time cost of LQR-based method using ECOS solver, %74 er: ratio of Tspj4 e, to control stepsize,
Taparar: time cost of LQR-based method using ADMM algorithm with OSQP solver, % 4 paras: ratio of Taparas to
control stepsize.

method to generate the control input signals. For LQR-based recovery, we first use CVXPY with
ECOS solver [16], and then use OSQP solver [5], a standard implementation of ADMM algorithm,
to accelerate the solving process. There are following observations from Table 4.

We considered the larger overhead of LQR-based recovery in the framework. The first
two rows show the time cost of LP recovery method, and all recovery can be done in one control
stepsize. This work assumes that the recovery sequence can be applied immediately after an attack
is detected, but this may not be true for complex system. The middle two rows are the time cost of
our LQR-based recovery without ADMM algorithm, and the cost is more than one stepsize for most
scenarios. A larger overhead is because we use a quadratic objective function instead of a linear
one. However, we considered a small computational time (¢, — t,) to get the recovery sequence
in our framework, shown as Figure 2, and apply our recovery control sequence at time t,, which
makes our method practical.

ADMM algorithm accelerates our LQR-based recovery effectively. The last two rows are
the time cost of our method using ADMM algorithm. Compared to the middle two rows, the result
shows the overhead of ADMM algorithm is smaller for all benchmarks and can effectively acceler-
ate the computing. This is because the ADMM algorithm can split a global optimization problem
into two small subproblems, and solve them iteratively.

The speedup of ADMM is significant for small systems. The benchmarks with fewer state
variables, such as vehicle turning, RLC circuit, and DC motor position, run much faster and are
close to the overhead of linear programming recovery. The most computational intensive operation
in OSQP solver is factorizing the coefficient matrices, which has polynomial time in the matrix
dimensions. Thus, ADMM performs especially well for small systems.

6.3.3 The Impact of Load Disturbance. We take the quadrotor simulator under bias attacks as
an example to demonstrate the impact of load disturbance. In this experiment, the safe set is set to
be z € [-1,5.7], and other parameters remain the same as those in Table 2. In the Equation (1), we
consider that the uncertainty v(t) includes both sensing noise and load disturbance, and is bounded
by Umax. We change the load disturbance by varying v, in this experiment. We perform multiple
simulations with increasing v, .y, and record the safe deadline and maintainable time in Table 5.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 79. Publication date: September 2021.



Real-time Attack-recovery for Cyber-physical Systems Using Linear-quadratic Regulator ~ 79:21

Table 5. The Impact of Load Disturbance on
Quadrotor Simulator under Bias Attack

Umax(X107H) | 1 2 | 3 ]4]5]6]7] 8
D 18 | 18 [ 18 |18 171717 ] 17
N 209 [ 122 ] 82 [59[43[31[23] 16
Tsolving 251130 [ 103 | 61|57 | 40 | 23 [ N/A

Legends: v, qx: the maximum load disturbance in each control step,
D: recovery length (D = t4 — t,), N: total recovery control length
(N =1t; = 1), Tsolving: the solving time of OSQP solver in millisecond.

In the table, v, denotes the maximum uncertainty/load disturbance that at each control step; D
means the recovery length, i.e., the number of control steps from ¢, to t;; N denotes total recovery
control length, i.e., the number of control steps from ¢, to t;; the safe deadline t; and maintainable
time ¢; are estimated using our deadline estimator illustrated in the Section 5.3. We also plot the
quadrotor’s vertical position z in Figure 6. In the figure, the blue solid line is the real states; the
orange solid line is the desired recovery states predicted by the recovery controller; the red solid
line indicates the boundary of target state set. In the Figure 6(a), the load disturbance begins from
time ty, and in the Figure 6(b), the load disturbance begins from time ¢,. Based on the results, we
have several observations as follows.

Larger load disturbance leads to earlier safe deadline and earlier maintainable time.
The load disturbance exists at each control step and is bounded by vyax. If Upay is larger, the
reachable set overapproximation Xy is bigger according to the Equation (14). Then, the reachable
set is more likely to intersect with the unsafe state set, which leads to a shorter recovery length N.
Likewise, the constrained safe set with the accumulation of uncertainty, i.e., D;, is smaller, which
results in an earlier maintainable time ¢;.

Larger total recovery control length N requires more computational overhead. The state
constraints, i.e., Equation (3b) and Equation (3c), cover all states in the recovery and maintenance
period. Thus, a larger N means more variables in the optimization problem, which comes with
more computational overhead. When vy, is smaller,the system state can be maintained within
the target set for a longer time once recovered into the set. We may choose a smaller maintenance
length to reduce the computational overhead according to different application needs.

The system can still steer the system state back to the target state set and maintain it
in the set in presence of load disturbance. In the Figure 6(a), the load disturbance starts from
time fy. At time ¢,, the reconstructed state is slightly different from the real state because of the
load disturbance. From t; to t;, the real state (marked in blue solid line) is within the target state
set, although there exists difference between predicted states and the real states. This is because
we considered the accumulation of load disturbance in our state constraint in the Equation (3c).
In the Figure 6(b), the load disturbance starts from time t,. At time f,, the reconstructed state is
almost the same as the real state. By comparing the two figures, we can see that the real state at
time t; is closer to the reference state in Figure 6(b) than the Figure 6(a). The reason is that the
load disturbance in Figure 6(b) starts later than that in Figure 6(a), and thus affects the recovery
for a shorter time. Further, as long as the load disturbance can be bounded to a certain range, the
system can still be recovered by our method.

Our recovery method is sound but not complete. The right most column in Table 5 shows a
case that our optimization problem is infeasible, when the total recovery control length N = 16 is
less than the recovery length D = 17. This is because X7 ©A' Iy, in the Equation (3c) becomes empty
because of the accumulation of load disturbance. Our method cannot guarantee finding a recovery
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Fig. 6. The recovery of vertical position z of quadrotor under bias attacks with vmax = 5 x 107%. The solid
blue line represents real system states; the orange solid line shows the desired recovery states predicted by
recovery controller; black dashed line is the reference or target states; red solid line marks the boundary of
target state set.

control sequence to steer the system back to target state set under such a large load disturbance.
Further, if our optimization is feasible, then the solution can guarantee that the recovery process
will be successful.

7 CONCLUSION

Two fundamental elements for the operation of safe and resilient cyber-physical systems are attack
detection and recovery. While the vast majority of existing works focus on attack detection, while
little attention has been paid to attack-recovery. In this article, we study this problem and novel
techniques on real-time recovery for securing CPS. These techniques include i) an LQR based re-
covery control calculator that can smoothly and safely recover the system before a safety deadline
and maintain the recovered system for a certain amount of time, ii) a checkpointer that keeps
enough trustworthy data for the recovery computation, iii) a state reconstructor that rebuilds the
current system state, and iv) a deadline estimator that uses reachability analysis to conservatively
compute a safety deadline. Using multiple CPS simulators, we show that our methods can recover
the attacked-system in a timely and safe manner, outperforming previous related work in terms
of smoothness and maintainability.
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