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ABSTRACT
Sensor attacks alter sensor readings and spoof Cyber-Physical Sys-

tems (CPS) to perform dangerous actions. Existing detection works

tend to minimize the detection delay and false alarms at the same

time, while there is a clear trade-off between the two metrics. In-

stead, we argue that attack detection should dynamically balance

the two metrics when a physical system is at different states. Along

with this argument, we propose an adaptive sensor attack detection

system that consists of three components - an adaptive detector,

detection deadline estimator, and data logger. It can adapt the de-

tection delay and thus false alarms at run time to meet a varying

detection deadline and improve usability (or false alarms). Finally,

we implement our detection system and validate it using multiple

CPS simulators and a reduced-scale autonomous vehicle testbed.
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1 INTRODUCTION
Cyber-Physical Systems (CPS) integrate computing and networking

components with physical processes through sensing and actuator

units. One crucial security risk in CPS is sensor attacks, where an

attacker alters sensor measurements to negatively interfere with

the physical system. When acting on malicious sensor information,

a controller can drive the physical system to unsafe states. In ad-

dition to software and network attacks, transduction attacks have

been emerging to non-invasively affect sensor readings through

manipulating a physical property [6, 12, 15]. For example, an at-

tacker can inject fake GPS signals to guide a yacht off course [7] or

use sound noise to affect gyroscope readings [9].

These new threats have motivated many research efforts on

sensor attack detection. Usually, they detect attacks by identifying

anomalies between observed sensor measurements and predicted
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values [1, 3, 6, 11]. Existing works attempt to minimize the detection

delay and maximize usability at the same time. The detection delay

is the time between the onset of an attack and the detection of it.

Usability refers to the false alarm rate, i.e., a lower rate means better

usability. It is, however, difficult to achieve the above goal due to

the clear trade-off between the two metrics, i.e., greater usability

usually comes with a longer detection delay [2, 10]. Instead, we

propose that attack detection should bias the different metrics when

a CPS runs in different states. For instance, if the current state of a

physical system is close to the unsafe region, lowering the detection

delay is preferable over reducing false alarms; and vice versa.

However, it is challenging to realize this adaptability in attack

detection. First, timing is essential for safety-critical CPS, i.e., detec-

tion of an attack after consequences occur, is just as damaging. For

example, detecting an attack after car accidents is useless. This time

constraint is known as the detection deadline, before which attacks

must be detected. Thus, the detection delay should not exceed the

deadline. Second, it is not trivial to online calculate a detection

deadline, which varies as the physical system state evolves. The

overhead of the calculation should be low; otherwise, the calculated

deadline may be outdated. In addition, a detector with fixed or

unpredictable detection delay is inapplicable to match the varying

deadline. Third, the detection delay should not be greater than the

deadline, but a shorter detection delay is not always favorable. For

example, a detector that raises an alert at every control period can

discover every attack once it occurs, i.e., it has the shortest detection

delay. However, the detector will raise an unmanageable number

of false alarms and thus unacceptable usability. On the contrary,

to determine the occurrence of an attack, a detector can raise an

alert after monitoring multiple control periods. However, this will

increase the detection delay.

To address these challenges, we propose a real-time adaptive

attack detection system that can dynamically adjust detection delay

and thus false alarms according to the varying system state. Our

detection system will have a shorter detection delay and more false

alarms when the detection deadline is stringent; and vice versa. Our

system has three major components (shaded box in Fig. 1), and the

technical contribution for each component is as follows.

•Detection Deadline Estimator. We develop a reachability-based

technique to conservatively estimate the detection deadline on the

fly. The technique finds the vulnerability of a system by computing

the reachable set of future potential behaviors of the system.

•Adaptive Detector. We develop a window-based detection algo-

rithm that can dynamically adapt its detection delay according to

the deadline without missing any data points during the adaptation.

•Data Logger. We develop a sliding-window based data logging

protocol, which keeps sufficient trustworthy data for deadline esti-

mation and attack detection even when the detection delay varies.

https://doi.org/10.1145/3489517.3530555
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We implement our detection system and validate it using multi-

ple CPS simulators and a reduced-scale autonomous vehicle testbed.

The results show the efficiency and efficacy of our detection system.

2 PRELIMINARIES AND DESIGN OVERVIEW
This section introduces the system and threat model and presents

an overview of our adaptive sensor attack detection system.

System Model. We consider a CPS model where a physical

system is controlled by a computer program or controller. At each

𝑡𝑡ℎ control step, sensors measure the state of the physical system

and send them to the controller. Based on the sensor measurements,

the controller obtains the state estimate x̄𝑡 of the physical system
and generates control inputs u𝑡 according to its control algorithm.

The control inputs are then sent to actuators who apply u𝑡 to

supervise the physical system at a desired (or reference) state. The

state of a physical system or the system state x𝑡 ∈ X is a vector

of size 𝑛 that represents the number of dimensions of the system

state (e.g., velocity, electric current, pressure, etc.). The control

inputs u𝑡 ∈ U is a vector of size𝑚 that represents the number of

dimensions of the control input (e.g. steering angle, applied voltage,

etc.). Note that U is the control input range that is usually limited

by the actuator’s capability, and for instance, the acceleration of a

vehicle is limited by the capacity of the accelerator.

The dynamics of a physical system obey physics laws and can

be modeled by a set of differential or difference equations. In this

paper, we consider a discrete linear time-invariant (LTI) model,

x𝑡+1 = 𝐴x𝑡 + 𝐵u𝑡 + v𝑡 , (1)

where v𝑡 is uncertainty (such as modeling error and disturbance),

and matrices 𝐴 and 𝐵 are state and input matrix with suitable

dimensions, indicating how future states evolve from the current

state and control input. For ease of presentation, we assume that

the physical system is fully observable (i.e., all 𝑛 dimensions can be

estimated from sensor measurements).

Threat Model. The system state is estimated from sensor mea-

surements. Thus, an attacker can manipulate sensor measurements

to compromise state estimates. The difference between state es-

timate x̄𝑡 and system state x𝑡 denoted by vector e𝑡 ∈ R𝑛 . The
state estimate can be partially or fully affected, i.e., the number

of non-zero dimensions of e𝑡 or 𝑙0 norm of e𝑡 is 0 < | |e𝑡 | |0 < 𝑛,

or | |e𝑡 | |0 = 𝑛. An attacker can compromise state estimates by cor-

rupting the integrity (e.g. transduction attacks) or availability (e.g.

DoS attacks) of sensors. These attacks result in misleading control

inputs that drive the physical system to undesired states and even

cause serious consequences.

Overview of the Attack-Detection Framework.Our adaptive
sensor attack detection framework is illustrated in Fig. 1. It consists

of three components in the shaded box: (1) Adaptive Detector, (2)
Detection Deadline Estimator, and (3) Data Logger. The following
briefly introduces these components and their detailed design will

be presented in Sections 3, 5 and 4, respectively.

First, the Detection Deadline Estimator conservatively calculates

the detection deadline, after which the physical system may reach

unsafe states. Thus, the attack detector should find attacks before

the deadline. Note that the detection deadline may vary over time as

the system state changes and thus the Adaptive Detector needs to

adapt the detection delay accordingly. Second, the Data Logger logs

Actuator Physical System Sensor

Adaptive Detector

Detection Deadline 
Estimator

Data Logger

Controller

Figure 1: Design overview of the real-time adaptive sensor
attack detection system.
state estimates and residuals. At every control period, it predicts

expected state and calculates the residual (or difference) between

the predicted value and the observed value. It records enough data

points for the Adaptive Detector to calculate the cumulative resid-

ual, even when the detection delay varies. Third, based on their

outputs, the Adaptive Detector will track the cumulative residual.

When the average residual in the detection window becomes larger

than a predefined threshold, the detector will raise an alarm to

signal the detection of an attack. Importantly, the detector can dy-

namically adapt its detection delay to meet the detection deadline.

3 DETECTION DEADLINE ESTIMATION
This section presents the design of Detection Deadline Estimator.

We use reachability analysis to conservatively estimate the detec-

tion deadline. The following first defines the safety analysis problem,

then presents how to approximate the reachable set, and finally

shows how to calculate the deadline using the support function.

3.1 Safety Analysis
When applying a sequence of control inputs u0, . . . ,u𝑇−1 ∈ U
to a physical system, the system state evolves according to its

dynamics𝜓 , i.e., x𝑡+1 = 𝜓 (x𝑡 ,u𝑡 ). The sequence of evolving states

is called State Trajectory 𝜉 , where 𝜉𝑖 denotes the 𝑖-th state in the

trajectory. By applying all possible control sequences within 𝑇

control steps, we can have all possible state trajectories Ξ(x0,𝑇 )
as Ξ(x0,𝑇 ) = {𝜉 : 𝜉0 = x0, 𝜉𝑡+1 = 𝜓 (𝜉𝑡 ,u𝑡 )}, where u𝑡 ∈ U,

𝑡 ∈ {0, . . . ,𝑇 − 1}, and x0 is an initial state. Then, the reachable set

R includes all possible system states in Ξ(x0,𝑇 ).
TheUnsafe State Set F is a region within the state space, in which

the physical system is unsafe and may cause serious consequences.

For example, the distance from a vehicle to an obstacle is less than

zero where the unsafe state includes all negative distance values.

The complementary set of F is the safe state set S. To keep the

system safe, the reachable set of a system from a certain initial

state x0 is required not to intersect with the unsafe state set, i.e.,

R∩F = ∅. Unfortunately, it is very expensive to compute the exact

reachable set. Instead, we usually compute an over-approximation

of the reachable set, denoted by
¯R and

¯R ⊇ R. If ¯R ∩ F = ∅,
then we can guarantee that R ∩ F = ∅. Based on this, we define

conservatively safe as Definition 3.1.

Definition 3.1. The system is Conservatively Safe, if the over-
approximation of the reachable set does not intersect with the unsafe
state set F , i.e., ¯R ∩ F = ∅.

3.2 Over-approximation of the Reachable Set
Given the system model by Eq. (1), a state trajectory is affected

by both uncertainty and control input. To calculate the reach-

able set, we need to over-approximate both parts [5]. The over-

approximation uses the ball and box defined as follows.
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Definition 3.2. A unit ball is the closed set of points whose 𝑘-
norm distance is less than or equal to 1 from a fixed central point.
For 𝑛 dimensions and any 𝑘 > 1, the origin-centered unit ball B(𝑘) is

defined as B(𝑘) = {x ∈ R𝑛 : ∥x∥𝑘 = (∑𝑛−1
𝑖=0 |𝑥 (𝑖) |𝑘 )

1

𝑘 ≤ 1}.

Definition 3.3. A box is a set that can be denoted by a product
of intervals, i.e., [𝑥𝑙(1) , 𝑥

𝑢
(1) ] × · · · × [𝑥𝑙(𝑛) , 𝑥

𝑢
(𝑛) ], where 𝑥

𝑙
(𝑖) and 𝑥

𝑢
(𝑖)

are the lower and upper bounds of x’s the 𝑖-th dimension.

Especially, any 2-norm ball (Euclidean ball) can be scaled from a

unit Euclidean ball. The infinity-norm unit ball B(∞) is a box, i.e.,
B(∞) = {x ∈ R𝑛 : ∥x∥∞ = max0≤𝑖<𝑛 |𝑥 (𝑖) | ≤ 1}, where 𝑥 (𝑖) is the
𝑖-th dimension of x. Hence, any box can be transformed from an

infinity-norm unit ball by scaling in each dimension.

3.2.1 Over-approximation of uncertainty. We assume that v𝑡 in

Eq. (1) by is bounded an error 𝜖 > 0 at one control step . Thus, it can

be over-approximated by an origin-centered euclidean ball B𝜖 with

radius 𝜖 . That is, we have x𝑡 ∈ x̃𝑡 ⊕ B𝜖 , where x̃𝑡 = 𝐴x𝑡−1 +𝐵u𝑡−1
and ⊕ denotes the Minkowski sum. The Minkowski sum is defined

as 𝑋 ⊕ 𝑌 = {𝑥 + 𝑦 |𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 } for any set X and Y.

3.2.2 Over-approximation of control input set. Consider the control
input set U = [𝑢 (1) , ..., 𝑢 (𝑚) ]. For the 𝑖-th dimension 𝑢 (𝑖) , it has
the upper and lower bounds denoted as 𝑢𝑢(𝑖) and 𝑢

𝑙
(𝑖) , respectively.

Then, the control input set can be over-approximated by a box

BU with a center c, where 𝑐 (𝑖) = (𝑢𝑢(𝑖) + 𝑢
𝑙
(𝑖) )/2. This box can be

scaled from a unit infinity-norm ball B(∞) with a scaling factor

𝛾𝑖 in the 𝑖-th dimension, where 𝛾𝑖 = (𝑢𝑢(𝑖) − 𝑢𝑙(𝑖) )/2. The box is

expressed by the transformation of the infinity-norm unit ball,

given by BU = c + 𝑄B(∞) , where 𝑄 = diag(𝛾1, · · · , 𝛾𝑚), i.e., a
𝑚 ×𝑚 matrix with {𝛾1, · · · , 𝛾𝑚} in its diagonal.

Note that the uncertainty v𝑡 can be over-approximated by a

Euclidean ball by nature. In CPS, each actuator has its own control

input range or interval. Thus, the control input set can be expressed

by a product of these intervals, which is then a box.

3.2.3 Over-approximation of the Reachable set. Given the over-

approximated control input set BU , the over-approximated uncer-

tainty B𝜖 , and an initial state x0 according to the system model by

Eq. (1), the system state x𝑡 will be bounded by the over-approximation

of reachable set
¯R(x0, 𝑡), given by Eq. (2).

x𝑡 ⊆ 𝐴𝑖 x̄0 ⊕
𝑖−1⊕
𝑗=0

𝐴𝑗𝐵BU ⊕
𝑖⊕

𝑘=0

𝐴𝑘B𝜖 (2)

3.3 Deadline Searching Process
3.3.1 Selection on the initial state x0. First, we calculate the reach-
able set from the latest trustworthy state estimation x̄𝑡−𝑤𝑐−1 that
has just moved outside the detection window, i.e., x0 = x̄𝑡−𝑤𝑐−1.
It correctly reflects the physical state at that time, while state es-

timates within the detection window, i.e., {x̄𝑡−𝑤𝑐
, ..., x̄𝑡 }, are still

questionable. The time point is 𝑡 −𝑤𝑐 − 1, where 𝑡 and𝑤𝑐 are the

current time and window size, as illustrated in Fig. 5. (More details

on data logging are in Section 5.) Second, if we consider some noise

in state estimates, we can use an initial state set containing x0. The
initial set can be bounded by a ball given bounded noise. Then, we

can apply the same reachability analysis as above, too.

Figure 2: Searching Process for the Detection Deadline 𝑡𝑑 .
3.3.2 Deadline searching process. Starting from x0, we compute

the reachable set at each subsequent step until there is an intersec-

tion between the over-approximation of reachable set
¯R(x0, 𝑡) and

the unsafe state set F , or it exceeds the maximum deadline given

beforehand (i.e, the maximum detection window size as in Sec-

tion 4.3). Let say we find the first intersection at the (𝑡𝑑 + 1)-th step,

the system is safe before this step according to the Definition 3.1,

and thus 𝑡𝑑 is regarded as the detection deadline. The detector is

expected to identify an attack within the deadline.

Fig. 2 depicts an example that illustrates the detection deadline

search process for the system state with two dimensions of 𝑥1
and 𝑥2. At 𝑡𝑑 -th step,

¯R(x0, 𝑡𝑑 ) ∩ F = ∅, and at (𝑡𝑑 + 1)-th step,

¯R(x0, 𝑡𝑑 + 1) ∩ F ≠ ∅. Hence, the detection deadline is set to 𝑡𝑑 .

3.4 Computing deadline using support function
According to Eq. (2), we can see that the over-approximation is

difficult to compute because of the operation of the Minkowski sum.

We choose to use the support function method [5] to derive a box

over-approximation of the reachable set
¯R(x0, 𝑡). For a vector l, the

support function of a setS ⊆ R𝑛 is defined as 𝜌S (l) = supx∈S (l𝑇 x).
Then, according to the properties of support function, we can derive

the support function of the reachable set
¯R(x0, 𝑡) using Eq. (3).

𝜌 ¯R = l𝑇 (𝐴𝑡x0) +
𝑡−1∑︁
𝑖=0

𝜌BU ( (𝐴𝑖𝐵)𝑇 l) +
𝑡−1∑︁
𝑖=0

𝜌𝐴𝑖B𝜖 (l) (3)

Based on Eq. (3), we can have the upper and lower bounds of

¯R(x0, 𝑡) in the 𝑖-th dimension, as shown in Eq. (4) and (5), respec-

tively, where l is set to be a column vector whose 𝑖-th entry is 1

and the others are 0.

l𝑇𝐴𝑡x0 +
𝑡−1∑︁
𝑖=0

l𝑇𝐴𝑖𝐵c +
𝑡−1∑︁
𝑖=0

∥ (𝐴𝑖𝐵𝑄)𝑇 l ∥1 +
𝑡−1∑︁
𝑖=0

𝜖 ∥ (𝐴𝑖 )𝑇 l ∥2 (4)

l𝑇𝐴𝑡x0 +
𝑡−1∑︁
𝑖=0

l𝑇𝐴𝑖𝐵c −
𝑡−1∑︁
𝑖=0

∥ (𝐴𝑖𝐵𝑄)𝑇 l ∥1 −
𝑡−1∑︁
𝑖=0

𝜖 ∥ (𝐴𝑖 )𝑇 l ∥2 (5)

Finally, by comparing the upper and lower bounds with the

unsafe state set (i.e., a similar search process as in Fig. 2), we can

know when the reachable set has an intersection with the unsafe

set, and thus determine the detection deadline.

4 ADAPTIVE WINDOW BASED ATTACK
DETECTION

This section presents the design of Adaptive Detector. We enhance

window-based detection to accommodate varying window sizes.

The following first gives the basic window-based detection and then

proposes protocols on adapting the window size or the detection

delay according to the deadline from Detection Deadline Estimator.

4.1 Basic Window Based Detection
This basic detection algorithm tracks the residual at each control

step. The residual z𝑡 is defined as the difference between the pre-

dicted state x̃𝑡 and the state estimate x̄𝑡 , where x̃𝑡 = 𝐴x̄𝑡−1+𝐵u𝑡−1.
Residuals will be provided by the Data Logger.

First, the algorithm will calculate the average residual in the

detection window z𝑎𝑣𝑔𝑡 = 1

𝑤𝑐

∑
𝑖∈[𝑡−𝑤𝑐 ,𝑡 ] |x̃𝑖 − x̄𝑖 |, where 𝑡 is the
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Figure 3: Decreasing the Detection Window Size

Figure 4: Increasing the Detection Window Size
current time and 𝑤𝑐 is the current detection window size. Then,

the algorithm will compare z𝑎𝑣𝑔𝑡 with a threshold 𝝉 . If z𝑎𝑣𝑔𝑡 ⪯ 𝝉 , no
alarmwill be raised and the system is regarded as secure. Otherwise,

an alarm will be raised to signal the detection of an attack.

Note that there are two hyper-parameters in this algorithm - the

threshold 𝝉 and the detection window size. Because we focus on the

timing aspect, dynamically adjusting the threshold is not the focus

of this paper. The focus is to adjust the detection window size on the

fly. To understand the rationale behind this, we need to elucidate

the relationship between the window size and the detection delay.

Since data points that lay outside the detection window are treated

uncompromised, attacked data points are inside the window. Thus,

the window size bounds the detection delay, i.e., the maximum

detection delay is the window size. Further, with a longer detection

delay, a detector tends to have lower false alarm rates but may miss

the detection deadline; and vice versa. This is clearly observed in

our experimental results in Section 6.

4.2 Detection Window Adjustment Protocol
Based on the rationale above, our protocol sets the window size

as the detection deadline, online calculated by Detection Deadline

Estimator. If the deadline decreases, the protocol will shrink the

detection window to meet the timing constraint; otherwise, the

protocol will enlarge the detection window to reduce false alarms.

4.2.1 Decreasing the window size. Fig. 3 shows the case that the
detection window is decreasing. The size of the previous detection

window is indicated as𝑤𝑝 . The green dots represent the state esti-

mates that move outside the previous window, and their detection

results are finalized and trusted to be uncompromised. On the con-

trary, state estimates within the detection window may be attacked,

but not been detected yet. We need to ensure that these data points

do not escape detection when reducing the window size. Thus, the

protocol performs the following steps.

At the current time 𝑡 , the detection window becomes𝑤𝑐 , where

𝑤𝑝 > 𝑤𝑐 . First, we set 𝑤𝑐 = 𝑡𝑑 , and 𝑡𝑑 is the detection deadline

at the current time. Note that the data (marked in grey) within

previous detection window but outside current window (i.e., from

𝑡 − 𝑤𝑝 − 1 to 𝑡 − 𝑤𝑐 − 1) are escaped from the current shorter

detection window. Thus, before the detection for current control

step 𝑡 , the complemental detection runs the detection algorithm

with window size𝑤𝑐 from control step 𝑡 −𝑤𝑝 − 1 +𝑤𝑐 to 𝑡 − 1, as

shown in Fig. 3. By doing this, there will be no data that can escape

from the current shorter detection window without checking.

4.2.2 Increasing the window size. Fig. 4 illustrates the case that the
detection window size is increasing, where the current detection

window𝑤𝑐 is larger than the previous detection window𝑤𝑝 . State

Figure 5: Illustration of the Data Logger.
estimates marked in green have moved outside the previous detec-

tion window, and thus their detection results are finalized. Note

that part of these state estimates re-enter the detection window at

the current time, but no data points escape from the current longer

detection window 𝑤𝑐 . Thus, we can continue the window-based

detection algorithm with a longer detection window directly, and

complemental detection is not needed in this case.

4.3 The Maximum Window Size and False Negatives
We predefine a maximum detection window size𝑤𝑚 . At run time,

the window size will be adjusted in the range of [0,𝑤𝑚]. If the
detection deadline 𝑡𝑑 is greater than the maximum window size

𝑤𝑚 , then the window size will be set as the maximum, i.e.,𝑤𝑐 = 𝑤𝑚 .

Note that as mentioned, this maximum size is also the termination

condition for the deadline searching process if no intersection with

the unsafe set is found in the first𝑤𝑚 steps.

To decide an appropriate maximum detection window size, we

perform offline profiling. The profiling establishes a relationship

between false negatives/positives and the window size. We will

experiment with a long enough range of window size, and cut out

the sub-range with an acceptable false negative rate. This cutting

line can be given by a specific application. For example, as shown in

Fig. 7, to avoid false negative experiments (attacks are not detected),

the maximum window size can be set as 35 control steps; to tolerate

3 false negative experiments out of 100, the maximum window

size can be set as 40 control steps. More details are presented in

Section 6.

Also, note that adjusting the detection window size makes sense

only if attacks can be detected by the window-based detection algo-

rithm. For false negatives, regulating the threshold 𝜏 in Section 4.1

is more desired, but this is not the focus of this paper. Instead, this

paper focuses on the timing aspect, i.e., the detection delay.

5 DATA LOGGING PROTOCOL
This section presents the design of the Data Logger. We adapt a

sliding-window-based logging protocol to record historical residu-

als and state estimates [13]. To keep sufficient data for the other two

components, the sliding-window size is set as that of the maximum

detection window (given in Section 4.3).

The sliding window moves forward as time passes. At each

control step 𝑡 , the protocol buffers, holds, and releases certain data

points. As shown in Fig. 5, the workflow is as follows.

Buffer. Using the current state estimate x̄𝑡 , we first calculate the
residual z𝑡 = |x̃𝑡 − x̄𝑡 |, where x̃𝑡 = 𝐴x̄𝑡−1 + 𝐵u𝑡−1. Then, x̄𝑡 and
z𝑡 are buffered, as shown by the blue dots. These data are within

the current detection window 𝑤𝑐 , and whether they are intact is

still unknown as the detector is still checking them.

Hold. The data that has moved outside the current window is

regarded trustworthy and thus held, as shown by the green dots.

Release. The historical data before 𝑡 −𝑤𝑚 − 1 are outside the

sliding window and no longer need to be used, as shown by the

grey dots. Thus, these data can be released to save storage space.
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(a) Vehicle turning & bias attack (b) Vehicle turning & delay attack (c) Vehicle turning & replay attack

(d) RLC Circuit & bias attack (e) RLC Circuit & delay attack (f) RLC Circuit & replay attack
Figure 6: Comparison of detection results between adaptive window size and fixed window size for vehicle turning and RLC
circuit under three attack scenarios. Blue solid line: actual system state, Grey dashed line: reference state, Red dotted vertical
line: attack start time, Blue dotted vertical line: detection deadline, Orange circle marker: alert raised by adaptive detector,
Purple square marker: alert raised by detector with fixed window size, Diff.:Difference, Volt.:Voltage.

Table 1: Simulation settings. No.: simulator number, 𝛿 : control step size (in seconds), PID: PID control parameters, U: control
input range, 𝜖: uncertainty bound, S: safe state set, 𝝉 : detection threshold.

No. Simulator 𝛿 PID U 𝜖 S 𝝉

1 Aircraft Pitch 0.02 14,0.8,5.7 [−7, 7] 7.8e−3 𝑧 ∈ [[−∞,−∞,−2.5], [∞,∞, 2.5]] [0.012, 0.012, 0.012]
2 Vehicle Turning 0.02 0.5,7,0 [−3, 3] 7.5e−2 𝑧 ∈ [−2, 2] [0.07]
3 Series RLC Circuit 0.02 5,5,0 [−5, 5] 1.7e−2 𝑧 ∈ [[−3.5,−5], [3.5, 5]] [0.04, 0.01]
4 DC Motor Position 0.1 11,0,5 [−20, 20] 1.5e−1 𝑧 ∈ [[−4,−∞,−∞], [4,∞,∞]] [0.118, 0.118, 0.118]
5 Quadrotor 0.1 0.8,0,1 [−2, 2] 1.56e−15 𝑧 ∈ [−5, 5] [0.018, ..., 0.018]

Figure 7: The number of false positive and false negative
experiments changes with different window sizes.

6 EVALUATION
6.1 Simulation Setting and Results
6.1.1 Settings. We develop a simulation tool that can load different

system models to simulate different physical systems. We consider

5 LTI models: aircraft pitch, vehicle turning, series RLC circuit, DC

motor position, and quadrotor, which are used in [4, 8, 13, 14]. The

detailed simulation setting is listed in Table 1.

We consider three sensor attack scenarios: bias, delay, and replay

attack. Bias attack replaces sensor data with arbitrary values. Delay

attack delays sensor measurements sent to the controller for a

certain time period, so that the controller cannot update the current

state estimate in time. Replay attack replaces sensor data with

previously recorded ones.

6.1.2 The impact of different window size. The simulation is per-

formed on the aircraft pitch simulator under a bias attack lasting 15

control stepsize (0.3s). We perform 100 experiments for each win-

dow size from 0 to 100. It is counted as a false positive experiment

if the false positive rate exceeds 10% and counted as a false negative

experiment if the attack is not detected. The number of false posi-

tive and negative experiments is plotted in Fig. 7. The result shows

that the false positive number decreases and false negative number

increases with increasing window size. According to Section 4.3, we

choose a maximum detection window whose false negative number

is acceptable for the application. Take aircraft pitch simulator as

an example, we choose the maximum window size as 40, and the

corresponding false negative number is only 3.

6.1.3 Results of the Adaptive Detector. We test our adaptive de-

tection method under all 15 cases (i.e., all the combinations of 5

simulators and 3 attack scenarios). Fig. 6 shows part of the results

using vehicle turning and RLC circuit simulator under bias, delay,

and replay attacks. In all figures, we can see that our adaptive de-

tector can raise alerts before the detection deadline, i.e., in-time

detection, while the detector with a fixed window size finds attacks

after the deadline, i.e., untimely detection. Note that our adaptive de-

tector may raise some false alarms before real attacks are launched.

This is because our adaptive detector chooses a smaller window

size to catch up with the detection deadline while increasing the

false positives. Note that this situation only occurs when the states

are closer to the unsafe set. In practice, we consider noise in our

experiments, which is also one of the reasons for false positives.

Table 2 shows all false positive and deadline miss numbers out

of 100 simulations for each case. The results indicate that our adap-

tive detector tends to have larger false positive numbers, but with

minimal deadline misses. This is because our detector will choose

a smaller detection window to catch the detection deadline when

the state is close to unsafe states. Note that our adaptive detector

may miss the detection deadline in some cases, for instance, just 3

out of 100 experiments for DC motor under delay attack, because

those attacks have a negligible effect on the physical system.

6.2 Testbed Configuration and Results
6.2.1 Testbed Configuration. Webuild a testbed (Fig. 8a) on a scaled

RC car runing a cruise control task with a PID controller. The

controller reads a magnetic rotation sensor AS5048A and com-

putes the speed data at 20Hz. We perform system identification

and get system model as x𝑡+1 = 𝐴x𝑡 + 𝐵u𝑡 , y𝑡 = 𝐶x𝑡 , where
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Table 2: Comparison of detection false positives and deadline
misses with adaptive window size vs. a fixed window size.
#FP: number of simulations whose false positive rate exceeds
a threshold, #DM: number of simulations who miss deadline.

Simulator Attack Strategy #FP #DM

Aircraft Pitch

Bias

Adaptive 73 0

Fixed 42 96

Delay

Adaptive 3 0

Fixed 2 97

Replay

Adaptive 34 0

Fixed 8 100

Vehicle Turning

Bias

Adaptive 71 0

Fixed 5 34

Delay

Adaptive 13 76

Fixed 0 100

Replay

Adaptive 40 10

Fixed 3 36

Series RLC Circuit

Bias

Adaptive 54 0

Fixed 44 65

Delay

Adaptive 4 0

Fixed 3 73

Replay

Adaptive 13 0

Fixed 5 92

DC Motor Position

Bias

Adaptive 82 0

Fixed 47 59

Delay

Adaptive 3 3

Fixed 3 89

Replay

Adaptive 3 0

Fixed 3 46

Quadrotor

Bias

Adaptive 73 7

Fixed 55 99

Delay

Adaptive 6 0

Fixed 2 87

Replay

Adaptive 6 0

Fixed 2 59

(a) Vehicle Testbed (b) Attack Detection
Figure 8: Attack detection in vehicle testbed.

𝐴 = 8.435e−1, 𝐵 = 7.7919e−4,𝐶 = 3.843402e2. The vehicle runs in

a straight line at a speed of 4𝑚/𝑠 , and at the end of the 79
𝑡ℎ

step,

a bias of +2.5𝑚/𝑠 is added to the speed. The safe speed range is

[2, 10], so safe state range is [2/𝐶, 10/𝐶], i.e. [5.2e−3, 2.6e−2]. The
threshold 𝜏 is set to 3.67e−3. The control input range is 𝑢 ∈ [0, 7.7].

6.2.2 Testbed Results. The testbest result is shown in Fig. 8b, where
the y-axis is actual states x (equals to y/𝐶), and the x-axis is time.

The purple horizontal line marks the boundary between safe and

unsafe states, and the detector should raise an alert before the states

reach the unsafe region. The orange circle is the first alert raised by

our proposed adaptive window-based detection, while the purple

square is the first one raised by a fixed window-based detection

(size=30). We can find our detector alert in the first step after the

attack. However, the fixed window-based detection alerts after the

vehicle reaching the unsafe state, whichmay already cause damages.

Note that our adaptive detector detects the alert in the first step

because the estimator computes the tightest deadline and shrinks

the window size, making the average residual within the window

larger than the threshold.

7 CONCLUSION
In this paper, we propose a real-time adaptive sensor attack detec-

tion system that has three key components. For Adaptive Detector,

we develop a window-based detection algorithm that can dynami-

cally adapt the detection delay and thus false alarms to meet the

detection deadline and improve usability. For Detection Deadline

Estimator, we develop a reachability analysis based technique to

conservatively estimate the detection deadline at run time by com-

puting the reachable set of future potential behaviors of systems.

For Data Logger, we adapt a sliding-window-based data logging

protocol to keep trustworthy data for deadline estimation and also

sufficient data points for attack detection. Finally, we implement our

detection system in multiple CPS simulators and a reduced-scale

autonomous testbed to validate its efficiency and efficacy.
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