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ABSTRACT

Sensor attacks alter sensor readings and spoof Cyber-Physical Sys-
tems (CPS) to perform dangerous actions. Existing detection works
tend to minimize the detection delay and false alarms at the same
time, while there is a clear trade-off between the two metrics. In-
stead, we argue that attack detection should dynamically balance
the two metrics when a physical system is at different states. Along
with this argument, we propose an adaptive sensor attack detection
system that consists of three components - an adaptive detector,
detection deadline estimator, and data logger. It can adapt the de-
tection delay and thus false alarms at run time to meet a varying
detection deadline and improve usability (or false alarms). Finally,
we implement our detection system and validate it using multiple
CPS simulators and a reduced-scale autonomous vehicle testbed.

KEYWORDS
cyber-physical systems, attack detection, detection deadline

ACM Reference Format:

Lin Zhang, Zifan Wang, Mengyu Liu, and Fanxin Kong. 2022. Adaptive
Window-Based Sensor Attack Detection for Cyber-Physical Systems. In
Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC) (DAC
’22), July 10-14, 2022, San Francisco, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3489517.3530555

1 INTRODUCTION

Cyber-Physical Systems (CPS) integrate computing and networking
components with physical processes through sensing and actuator
units. One crucial security risk in CPS is sensor attacks, where an
attacker alters sensor measurements to negatively interfere with
the physical system. When acting on malicious sensor information,
a controller can drive the physical system to unsafe states. In ad-
dition to software and network attacks, transduction attacks have
been emerging to non-invasively affect sensor readings through
manipulating a physical property [6, 12, 15]. For example, an at-
tacker can inject fake GPS signals to guide a yacht off course [7] or
use sound noise to affect gyroscope readings [9].

These new threats have motivated many research efforts on
sensor attack detection. Usually, they detect attacks by identifying
anomalies between observed sensor measurements and predicted
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values [1, 3, 6, 11]. Existing works attempt to minimize the detection
delay and maximize usability at the same time. The detection delay
is the time between the onset of an attack and the detection of it.
Usability refers to the false alarm rate, i.e., a lower rate means better
usability. It is, however, difficult to achieve the above goal due to
the clear trade-off between the two metrics, i.e., greater usability
usually comes with a longer detection delay [2, 10]. Instead, we
propose that attack detection should bias the different metrics when
a CPS runs in different states. For instance, if the current state of a
physical system is close to the unsafe region, lowering the detection
delay is preferable over reducing false alarms; and vice versa.

However, it is challenging to realize this adaptability in attack
detection. First, timing is essential for safety-critical CPS, i.e., detec-
tion of an attack after consequences occur, is just as damaging. For
example, detecting an attack after car accidents is useless. This time
constraint is known as the detection deadline, before which attacks
must be detected. Thus, the detection delay should not exceed the
deadline. Second, it is not trivial to online calculate a detection
deadline, which varies as the physical system state evolves. The
overhead of the calculation should be low; otherwise, the calculated
deadline may be outdated. In addition, a detector with fixed or
unpredictable detection delay is inapplicable to match the varying
deadline. Third, the detection delay should not be greater than the
deadline, but a shorter detection delay is not always favorable. For
example, a detector that raises an alert at every control period can
discover every attack once it occurs, i.e., it has the shortest detection
delay. However, the detector will raise an unmanageable number
of false alarms and thus unacceptable usability. On the contrary,
to determine the occurrence of an attack, a detector can raise an
alert after monitoring multiple control periods. However, this will
increase the detection delay.

To address these challenges, we propose a real-time adaptive
attack detection system that can dynamically adjust detection delay
and thus false alarms according to the varying system state. Our
detection system will have a shorter detection delay and more false
alarms when the detection deadline is stringent; and vice versa. Our
system has three major components (shaded box in Fig. 1), and the
technical contribution for each component is as follows.

e Detection Deadline Estimator. We develop a reachability-based
technique to conservatively estimate the detection deadline on the
fly. The technique finds the vulnerability of a system by computing
the reachable set of future potential behaviors of the system.

o Adaptive Detector. We develop a window-based detection algo-
rithm that can dynamically adapt its detection delay according to
the deadline without missing any data points during the adaptation.

eData Logger. We develop a sliding-window based data logging
protocol, which keeps sufficient trustworthy data for deadline esti-
mation and attack detection even when the detection delay varies.
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We implement our detection system and validate it using multi-
ple CPS simulators and a reduced-scale autonomous vehicle testbed.
The results show the efficiency and efficacy of our detection system.

2 PRELIMINARIES AND DESIGN OVERVIEW

This section introduces the system and threat model and presents
an overview of our adaptive sensor attack detection system.

System Model. We consider a CPS model where a physical
system is controlled by a computer program or controller. At each
tt" control step, sensors measure the state of the physical system
and send them to the controller. Based on the sensor measurements,
the controller obtains the state estimate X; of the physical system
and generates control inputs u; according to its control algorithm.
The control inputs are then sent to actuators who apply u; to
supervise the physical system at a desired (or reference) state. The
state of a physical system or the system state x; € X is a vector
of size n that represents the number of dimensions of the system
state (e.g., velocity, electric current, pressure, etc.). The control
inputs u; € U is a vector of size m that represents the number of
dimensions of the control input (e.g. steering angle, applied voltage,
etc.). Note that U is the control input range that is usually limited
by the actuator’s capability, and for instance, the acceleration of a
vehicle is limited by the capacity of the accelerator.

The dynamics of a physical system obey physics laws and can
be modeled by a set of differential or difference equations. In this
paper, we consider a discrete linear time-invariant (LTT) model,

Xt+1 = Axy + Buy + vy, (1)

where v; is uncertainty (such as modeling error and disturbance),
and matrices A and B are state and input matrix with suitable
dimensions, indicating how future states evolve from the current
state and control input. For ease of presentation, we assume that
the physical system is fully observable (i.e., all n dimensions can be
estimated from sensor measurements).

Threat Model. The system state is estimated from sensor mea-
surements. Thus, an attacker can manipulate sensor measurements
to compromise state estimates. The difference between state es-
timate x; and system state x; denoted by vector e; € R". The
state estimate can be partially or fully affected, i.e., the number
of non-zero dimensions of e; or [y norm of e; is 0 < ||et||o < n,
or ||et||o = n. An attacker can compromise state estimates by cor-
rupting the integrity (e.g. transduction attacks) or availability (e.g.
DoS attacks) of sensors. These attacks result in misleading control
inputs that drive the physical system to undesired states and even
cause serious consequences.

Overview of the Attack-Detection Framework. Our adaptive
sensor attack detection framework is illustrated in Fig. 1. It consists
of three components in the shaded box: (1) Adaptive Detector, (2)
Detection Deadline Estimator, and (3) Data Logger. The following
briefly introduces these components and their detailed design will
be presented in Sections 3, 5 and 4, respectively.

First, the Detection Deadline Estimator conservatively calculates
the detection deadline, after which the physical system may reach
unsafe states. Thus, the attack detector should find attacks before
the deadline. Note that the detection deadline may vary over time as
the system state changes and thus the Adaptive Detector needs to
adapt the detection delay accordingly. Second, the Data Logger logs
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Figure 1: Design overview of the real-time adaptive sensor
attack detection system.

state estimates and residuals. At every control period, it predicts
expected state and calculates the residual (or difference) between
the predicted value and the observed value. It records enough data
points for the Adaptive Detector to calculate the cumulative resid-
ual, even when the detection delay varies. Third, based on their
outputs, the Adaptive Detector will track the cumulative residual.
When the average residual in the detection window becomes larger
than a predefined threshold, the detector will raise an alarm to
signal the detection of an attack. Importantly, the detector can dy-
namically adapt its detection delay to meet the detection deadline.

3 DETECTION DEADLINE ESTIMATION

This section presents the design of Detection Deadline Estimator.
We use reachability analysis to conservatively estimate the detec-
tion deadline. The following first defines the safety analysis problem,
then presents how to approximate the reachable set, and finally
shows how to calculate the deadline using the support function.

3.1 Safety Analysis

When applying a sequence of control inputs uy,...,ur_; € U
to a physical system, the system state evolves according to its
dynamics ¥, i.e., xr+1 = ¥(x¢, uz). The sequence of evolving states
is called State Trajectory &, where &; denotes the i-th state in the
trajectory. By applying all possible control sequences within T
control steps, we can have all possible state trajectories =(xg, T)
as E(x0, T) = {& : & = x0,&41 = Y(&, )}, where wp € U,
t €{0,...,T — 1}, and xy is an initial state. Then, the reachable set
R includes all possible system states in Z(xo, T).

The Unsafe State Set F is a region within the state space, in which
the physical system is unsafe and may cause serious consequences.
For example, the distance from a vehicle to an obstacle is less than
zero where the unsafe state includes all negative distance values.
The complementary set of ¥ is the safe state set S. To keep the
system safe, the reachable set of a system from a certain initial
state xy is required not to intersect with the unsafe state set, i.e.,
RNF = 0. Unfortunately, it is very expensive to compute the exact
reachable set. Instead, we usually compute an over-approximation
of the reachable set, denoted by RandR 2 RIERNF =0,
then we can guarantee that R N ¥ = 0. Based on this, we define
conservatively safe as Definition 3.1.

DEFINITION 3.1. The system is Conservatively Safe, if the over-
approximation of the reachable set does not intersect with the unsafe
state set F, i.e, RNF = 0.

3.2 Over-approximation of the Reachable Set

Given the system model by Eq. (1), a state trajectory is affected
by both uncertainty and control input. To calculate the reach-
able set, we need to over-approximate both parts [5]. The over-
approximation uses the ball and box defined as follows.
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DEFINITION 3.2. A unit ball is the closed set of points whose k-
norm distance is less than or equal to 1 from a fixed central point.
For n dimensions and any k > 1, the origin-centered unit ball By, is

defined as By = {x € R" : || x]lg = (Z;f‘:_ol (i) |k)% <1}

DEFINITION 3.3. A box is a set that can be denoted by a product

; : 1 u . ) u 1 u
of intervals, ie., [x(l),x(l)] X X [x(n),x(n)], where x(l.) andx(l.)
are the lower and upper bounds of x’s the i-th dimension.

Especially, any 2-norm ball (Euclidean ball) can be scaled from a
unit Euclidean ball. The infinity-norm unit ball 8 (c0) IS @ box, i.e.,
B(oo) = {x € R" ¢ [|x|le0 = maxp<i<n |x(;)| < 1}, where x(;) is the
i-th dimension of x. Hence, any box can be transformed from an
infinity-norm unit ball by scaling in each dimension.

3.2.1 Over-approximation of uncertainty. We assume that v; in
Eq. (1) by is bounded an error € > 0 at one control step . Thus, it can
be over-approximated by an origin-centered euclidean ball 8, with
radius €. That is, we have x; € X; ® B¢, where X; = Ax;—1 + Buy_1
and @ denotes the Minkowski sum. The Minkowski sum is defined
asX®Y ={x+y|lx e X,y € Y} for any set X and Y.

3.2.2  Over-approximation of control input set. Consider the control
input set U = [u(q), ..., () ]. For the i-th dimension u;), it has
the upper and lower bounds denoted as u'(‘l.) and uii) , respectively.
Then, the control input set can be over-approximated by a box
Bq, with a center ¢, where ¢(;) = (ul(‘i) + uii))/Z. This box can be
scaled from a unit infinity-norm ball B, with a scaling factor
yi in the i-th dimension, where y; = (u’(‘i) - uéi))/z. The box is
expressed by the transformation of the infinity-norm unit ball,
given by B¢y = ¢+ QB(OO), where Q = diag(y1, - ,ym), L.e, a
m X m matrix with {y1, - -, ym} in its diagonal.

Note that the uncertainty v; can be over-approximated by a
Euclidean ball by nature. In CPS, each actuator has its own control
input range or interval. Thus, the control input set can be expressed
by a product of these intervals, which is then a box.

3.2.3  Over-approximation of the Reachable set. Given the over-
approximated control input set B¢, the over-approximated uncer-
tainty Be, and an initial state x¢ according to the system model by
Eq. (1), the system state x; will be bounded by the over-approximation
of reachable set R (x, t), given by Eq. (2).

i-1 i
x C Az o (P a/BBy o (HA*8. @)
Jj=0 k=0

3.3 Deadline Searching Process

3.3.1 Selection on the initial state x. First, we calculate the reach-
able set from the latest trustworthy state estimation X;_.,,—1 that
has just moved outside the detection window, i.e., xo = X—y,—1.
It correctly reflects the physical state at that time, while state es-
timates within the detection window, i.e., {X;—1y,, ..., X; }, are still
questionable. The time point is t — we — 1, where ¢t and w, are the
current time and window size, as illustrated in Fig. 5. (More details
on data logging are in Section 5.) Second, if we consider some noise
in state estimates, we can use an initial state set containing x¢. The
initial set can be bounded by a ball given bounded noise. Then, we
can apply the same reachability analysis as above, too.
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Figure 2: Se(z)lrching Process for the Detection Deadline t,.

3.3.2 Deadline searching process. Starting from x(, we compute
the reachable set at each subsequent step until there is an intersec-
tion between the over-approximation of reachable set R(xo, t) and
the unsafe state set ¥, or it exceeds the maximum deadline given
beforehand (i.e, the maximum detection window size as in Sec-
tion 4.3). Let say we find the first intersection at the (¢4 + 1)-th step,
the system is safe before this step according to the Definition 3.1,
and thus t; is regarded as the detection deadline. The detector is
expected to identify an attack within the deadline.

Fig. 2 depicts an example that illustrates the detection deadline
search process for the system state with two dimensions of x;
and xs. At ty-th step, R(xo,t7) N F = 0, and at (g + 1)-th step,
R (x0, tg+1) N F # 0. Hence, the detection deadline is set to .

3.4 Computing deadline using support function
According to Eq. (2), we can see that the over-approximation is
difficult to compute because of the operation of the Minkowski sum.
We choose to use the support function method [5] to derive a box
over-approximation of the reachable set R (xo, ). For a vector I, the
support function of a set S C R" is defined as pg(I) = suprS(lTx).
Then, according to the properties of support function, we can derive
the support function of thte feachable set 7?(xto,lt) using Eq. (3).

pr =1 (A" x0) + ) py (ABYT D+ paig (D 3)

Based on Eq. (3), we c.e:n0 have the upper allnod lower bounds of
R(xp,t) in the i-th dimension, as shown in Eq. (4) and (5), respec-
tively, where I is set to be a column vector whose i-th entry is 1
and the others are 0.

-1 =1
TA'xg+ ) 1TA'Be+ Y |(ABO) 11+ ) el (A)TUl, (@)
=1 = =

TAtxo+ ) ITA'Be = ) II(A'BQ) 1l = Y ell(A) T, (5)
Finally, by clagnparing tﬁéo upper and lowé}obounds with the
unsafe state set (i.e., a similar search process as in Fig. 2), we can
know when the reachable set has an intersection with the unsafe

set, and thus determine the detection deadline.

4 ADAPTIVE WINDOW BASED ATTACK
DETECTION

This section presents the design of Adaptive Detector. We enhance
window-based detection to accommodate varying window sizes.
The following first gives the basic window-based detection and then
proposes protocols on adapting the window size or the detection
delay according to the deadline from Detection Deadline Estimator.

4.1 Basic Window Based Detection

This basic detection algorithm tracks the residual at each control
step. The residual z; is defined as the difference between the pre-
dicted state x; and the state estimate x;, where x; = Ax;—1 +Bus_1.
Residuals will be provided by the Data Logger.

First, the algorithm will calculate the average residual in the

. . aov ~ — .
detection window z, J = w% Yie[t—wer] |Xi — *i|, where ¢ is the
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Figure 4: Increasing the Detection Window Size
current time and w, is the current detection window size. Then,
the algorithm will compare z;wg with a threshold . If z;wg <7,no
alarm will be raised and the system is regarded as secure. Otherwise,
an alarm will be raised to signal the detection of an attack.

Note that there are two hyper-parameters in this algorithm - the
threshold 7 and the detection window size. Because we focus on the
timing aspect, dynamically adjusting the threshold is not the focus
of this paper. The focus is to adjust the detection window size on the
fly. To understand the rationale behind this, we need to elucidate
the relationship between the window size and the detection delay.
Since data points that lay outside the detection window are treated
uncompromised, attacked data points are inside the window. Thus,
the window size bounds the detection delay, i.e., the maximum
detection delay is the window size. Further, with a longer detection
delay, a detector tends to have lower false alarm rates but may miss
the detection deadline; and vice versa. This is clearly observed in
our experimental results in Section 6.

4.2 Detection Window Adjustment Protocol

Based on the rationale above, our protocol sets the window size
as the detection deadline, online calculated by Detection Deadline
Estimator. If the deadline decreases, the protocol will shrink the
detection window to meet the timing constraint; otherwise, the
protocol will enlarge the detection window to reduce false alarms.

4.2.1 Decreasing the window size. Fig. 3 shows the case that the
detection window is decreasing. The size of the previous detection
window is indicated as wp. The green dots represent the state esti-
mates that move outside the previous window, and their detection
results are finalized and trusted to be uncompromised. On the con-
trary, state estimates within the detection window may be attacked,
but not been detected yet. We need to ensure that these data points
do not escape detection when reducing the window size. Thus, the
protocol performs the following steps.

At the current time ¢, the detection window becomes w,, where
wp > wc. First, we set we = tg4, and t4 is the detection deadline
at the current time. Note that the data (marked in grey) within
previous detection window but outside current window (i.e., from
t —wp —1tot— we— 1) are escaped from the current shorter
detection window. Thus, before the detection for current control
step ¢, the complemental detection runs the detection algorithm
with window size w, from control step t —wp —1+wc tot — 1, as
shown in Fig. 3. By doing this, there will be no data that can escape
from the current shorter detection window without checking.

4.2.2  Increasing the window size. Fig. 4 illustrates the case that the
detection window size is increasing, where the current detection
window w is larger than the previous detection window w;,. State
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Figure 5: Illustration of the Data Logger.
estimates marked in green have moved outside the previous detec-
tion window, and thus their detection results are finalized. Note
that part of these state estimates re-enter the detection window at
the current time, but no data points escape from the current longer
detection window wc. Thus, we can continue the window-based
detection algorithm with a longer detection window directly, and
complemental detection is not needed in this case.

4.3 The Maximum Window Size and False Negatives

We predefine a maximum detection window size wy,. At run time,
the window size will be adjusted in the range of [0, wy,]. If the
detection deadline t; is greater than the maximum window size
Wm, then the window size will be set as the maximum, i.e., we = wp,.
Note that as mentioned, this maximum size is also the termination
condition for the deadline searching process if no intersection with
the unsafe set is found in the first wy, steps.

To decide an appropriate maximum detection window size, we
perform offline profiling. The profiling establishes a relationship
between false negatives/positives and the window size. We will
experiment with a long enough range of window size, and cut out
the sub-range with an acceptable false negative rate. This cutting
line can be given by a specific application. For example, as shown in
Fig. 7, to avoid false negative experiments (attacks are not detected),
the maximum window size can be set as 35 control steps; to tolerate
3 false negative experiments out of 100, the maximum window
size can be set as 40 control steps. More details are presented in
Section 6.

Also, note that adjusting the detection window size makes sense
only if attacks can be detected by the window-based detection algo-
rithm. For false negatives, regulating the threshold 7 in Section 4.1
is more desired, but this is not the focus of this paper. Instead, this
paper focuses on the timing aspect, i.e., the detection delay.

5 DATA LOGGING PROTOCOL

This section presents the design of the Data Logger. We adapt a
sliding-window-based logging protocol to record historical residu-
als and state estimates [13]. To keep sufficient data for the other two
components, the sliding-window size is set as that of the maximum
detection window (given in Section 4.3).

The sliding window moves forward as time passes. At each
control step ¢, the protocol buffers, holds, and releases certain data
points. As shown in Fig. 5, the workflow is as follows.

Buffer. Using the current state estimate X;, we first calculate the
residual z; = |x; — x¢|, where X; = Ax;_1 + Bu;—1. Then, x; and
z; are buffered, as shown by the blue dots. These data are within
the current detection window w., and whether they are intact is
still unknown as the detector is still checking them.

Hold. The data that has moved outside the current window is
regarded trustworthy and thus held, as shown by the green dots.

Release. The historical data before t — wy, — 1 are outside the
sliding window and no longer need to be used, as shown by the
grey dots. Thus, these data can be released to save storage space.
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Figure 6: Comparison of detection results between adaptive window size and fixed window size for vehicle turning and RLC
circuit under three attack scenarios. Blue solid line: actual system state, Grey dashed line: reference state, Red dotted vertical
line: attack start time, Blue dotted vertical line: detection deadline, Orange circle marker: alert raised by adaptive detector,
Purple square marker: alert raised by detector with fixed window size, Diff.:Difference, Volt.:Voltage.

Table 1: Simulation settings. No.: simulator number, §: control step size (in seconds), PID: PID control parameters, U: control
input range, e: uncertainty bound, S: safe state set, 7: detection threshold.

‘ No. ‘ Simulator H § ‘ PID ‘ U € ‘ S ‘ T ‘
1 Aircraft Pitch 0.02 14,0857 | [-7.7] 7.8=3 | z € [[—00, —00,—2.5], [0, 00,2.5]] | [0.012,0.012,0.012]
2 Vehicle Turning 0.02 0.5,7,0 [-3,3] 7.5e—2 z € [-2,2] [0.07]
eries ircuit .0. ,93, =5, 1.7e— z € [[-3.5-5],]13.55 .04,0.01

3 Series RLC Circui 0.02 5,5,0 5,5 2 3.5,-5],[3 0.0 0

4 DC Motor Position 0.1 11,0,5 [-20,20] | 1.5e-1 z € [[-4, —00, —0], [4, 00, 0] ] [0.118,0.118,0.118]

5 Quadrotor 0.1 0.8,0,1 [=2,2] | 1.56e-15 z € [=5,5] [0.018, ..., 0.018]
% 122 = an example, we choose the maximum window size as 40, and the
£ w0 e corresponding false negative number is only 3.
Q 404 --- False Positive /T TTTTTmoo—oo-o
fn i . . L1 esults of the Adaptive Detector. We test our adaptive de-
5 20] — Felse Negatve Window Size 6.1.3 Results of the Adaptive Detector. We test daptive d
$#

0 20 40 60 80 100

Figure 7: The number of false positive and false negative
experiments changes with different window sizes.

6 EVALUATION
6.1 Simulation Setting and Results

6.1.1  Settings. We develop a simulation tool that can load different
system models to simulate different physical systems. We consider
5 LTI models: aircraft pitch, vehicle turning, series RLC circuit, DC
motor position, and quadrotor, which are used in [4, 8, 13, 14]. The
detailed simulation setting is listed in Table 1.

We consider three sensor attack scenarios: bias, delay, and replay
attack. Bias attack replaces sensor data with arbitrary values. Delay
attack delays sensor measurements sent to the controller for a
certain time period, so that the controller cannot update the current
state estimate in time. Replay attack replaces sensor data with
previously recorded ones.

6.1.2  The impact of different window size. The simulation is per-
formed on the aircraft pitch simulator under a bias attack lasting 15
control stepsize (0.3s). We perform 100 experiments for each win-
dow size from 0 to 100. It is counted as a false positive experiment
if the false positive rate exceeds 10% and counted as a false negative
experiment if the attack is not detected. The number of false posi-
tive and negative experiments is plotted in Fig. 7. The result shows
that the false positive number decreases and false negative number
increases with increasing window size. According to Section 4.3, we
choose a maximum detection window whose false negative number
is acceptable for the application. Take aircraft pitch simulator as

tection method under all 15 cases (i.e., all the combinations of 5
simulators and 3 attack scenarios). Fig. 6 shows part of the results
using vehicle turning and RLC circuit simulator under bias, delay,
and replay attacks. In all figures, we can see that our adaptive de-
tector can raise alerts before the detection deadline, i.e., in-time
detection, while the detector with a fixed window size finds attacks
after the deadline, i.e., untimely detection. Note that our adaptive de-
tector may raise some false alarms before real attacks are launched.
This is because our adaptive detector chooses a smaller window
size to catch up with the detection deadline while increasing the
false positives. Note that this situation only occurs when the states
are closer to the unsafe set. In practice, we consider noise in our
experiments, which is also one of the reasons for false positives.
Table 2 shows all false positive and deadline miss numbers out
of 100 simulations for each case. The results indicate that our adap-
tive detector tends to have larger false positive numbers, but with
minimal deadline misses. This is because our detector will choose
a smaller detection window to catch the detection deadline when
the state is close to unsafe states. Note that our adaptive detector
may miss the detection deadline in some cases, for instance, just 3
out of 100 experiments for DC motor under delay attack, because
those attacks have a negligible effect on the physical system.

6.2 Testbed Configuration and Results

6.2.1 Testbed Configuration. We build a testbed (Fig. 8a) on a scaled
RC car runing a cruise control task with a PID controller. The
controller reads a magnetic rotation sensor AS5048A and com-
putes the speed data at 20Hz. We perform system identification
and get system model as x;41 = Ax; + Bu;,y, = Cx;, where
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Table 2: Comparison of detection false positives and deadline
misses with adaptive window size vs. a fixed window size.
#FP: number of simulations whose false positive rate exceeds
a threshold, #DM: number of simulations who miss deadline.

‘ Simulator ‘ Attack ‘ Strategy ‘ #FP ‘ #DM ‘
. Adaptive 73 0
Bias Fixed 42 96
. . Adaptive 3 0
Aircraft Pitch Delay Fixed 2 97
Adaptive 34 0
Replay I ed 8 100
. Adaptive 71 0
Bias Fixed 5 34
. . Adaptive 13 76
Vehicle Turning Delay Fixed 0 100
Adaptive 40 10
Replay I red 3 36
. Adaptive 54 0
Bias Fixed 44 6
. L Adaptive 4 0
Series RLC Circuit Delay Fixed 3 73
Adaptive 13 0
Replay I ed 5 92
. Adaptive 82 0
Bias Fixed 47 59
- Adaptive 3 3
DC Motor Position Delay Fixed 3 39
Adaptive 3 0
Replay g 3 46
. Adaptive 73 7
Bias Fixed 55 99
Adaptive 6 0
Quadrotor Delay Fixed 2 37
Adaptive 6 0
Replay I ged 2 59
x 0.0157 attack ~deadline
e : ; 1st alarm (adaptive)
®© 0.010 P77 o 1stalarm (fixed)
v : H
g 0.005 %J%fseafe H ]
9] H H
< 0.000

350 375 400 425 450 475 500 525 550

(a) Vehicle Testbed (b) Attack Detection
Figure 8: Attack detection in vehicle testbed.

A =8.435e—1,B = 7.7919e—4, C = 3.843402¢e2. The vehicle runs in
a straight line at a speed of 4m/s, and at the end of the 79" step,
a bias of +2.5m/s is added to the speed. The safe speed range is
[2, 10], so safe state range is [2/C, 10/C], i.e. [5.2e-3, 2.6e—2]. The
threshold 7 is set to 3.67e—3. The control input range is u € [0, 7.7].

6.2.2  Testbed Results. The testbest result is shown in Fig. 8b, where
the y-axis is actual states x (equals to y/C), and the x-axis is time.
The purple horizontal line marks the boundary between safe and
unsafe states, and the detector should raise an alert before the states
reach the unsafe region. The orange circle is the first alert raised by
our proposed adaptive window-based detection, while the purple
square is the first one raised by a fixed window-based detection
(size=30). We can find our detector alert in the first step after the
attack. However, the fixed window-based detection alerts after the
vehicle reaching the unsafe state, which may already cause damages.
Note that our adaptive detector detects the alert in the first step
because the estimator computes the tightest deadline and shrinks

Lin Zhang, Zifan Wang, Mengyu Liu, and Fanxin Kong

the window size, making the average residual within the window
larger than the threshold.

7 CONCLUSION

In this paper, we propose a real-time adaptive sensor attack detec-
tion system that has three key components. For Adaptive Detector,
we develop a window-based detection algorithm that can dynami-
cally adapt the detection delay and thus false alarms to meet the
detection deadline and improve usability. For Detection Deadline
Estimator, we develop a reachability analysis based technique to
conservatively estimate the detection deadline at run time by com-
puting the reachable set of future potential behaviors of systems.
For Data Logger, we adapt a sliding-window-based data logging
protocol to keep trustworthy data for deadline estimation and also
sufficient data points for attack detection. Finally, we implement our
detection system in multiple CPS simulators and a reduced-scale
autonomous testbed to validate its efficiency and efficacy.
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