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Abstract— While H., methods can introduce robustness
against worst-case perturbations, their nominal performance
under conventional stochastic disturbances is often drastically
reduced. Though this fundamental tradeoff between nominal
performance and robustness is known to exist, it has not been
quantitatively characterized. Toward addressing this issue, we
borrow from the increasingly ubiquitous notion of adversar-
ial training from machine learning to construct a class of
controllers which are optimized for disturbances consisting
of mixed stochastic and worst-case components. We find that
this problem admits a stationary optimal controller that has a
simple analytic form closely related to suboptimal 7{ .. solutions.
We then provide a quantitative performance-robustness trade-
off analysis, in which system-theoretic properties such as con-
trollability and stability explicitly manifest in an interpretable
manner. This provides practitioners with general guidance for
determining how much robustness to incorporate based on a
priori system knowledge. We empirically validate our results by
comparing the performance of our controller against standard
baselines, and plotting tradeoff curves.

I. INTRODUCTION

Modern dynamical systems, from mobile robotics to power
plants, require controllers that are simultaneously fast, effi-
cient, and robust. Many control schemes attempt to achieve
these desiderata by combining them into a single objective
function and optimizing it, leading to a natural tradeoff. A
controller optimized for speed and efficiency may perform
poorly in the face of unmodeled phenomena. For instance,
Linear-Quadratic Gaussian (LQG) controllers (a special case
of H controllers) explicitly prioritize nominal performance
by penalizing the expectation of a quadratic function of the
state and input. However, such controllers can be arbitrarily
fragile to small perturbations of the dynamics [1]. Replacing
the LQG objective with one that considers the response of
the system to worst-case dynamic uncertainty and external
disturbances results in robust control methods, such as H
and £; methods [2], [3]. Such controllers are provably
robust, however they tend to be overly conservative.

Toward achieving a balance between the performance of
nominal and robust controllers, various approaches have been
introduced, most notably mixed Hs/H o, methods. However,
the resulting controllers are often complicated to express and
compute [4], and lack a priori quantitative guarantees on how
much nominal performance must be given up in order to
achieve a desired robustness level. Toward addressing these
issues, we take inspiration from the notion of adversarial
robustness from machine learning [5]-[8] and formulate a
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controller synthesis problem that balances performance and
robustness. The goal of adversarial robustness in machine
learning is to minimize the expected error under the presence
of worst-case norm-bounded perturbations to the data, where
the perturbations can depend on the underlying stochasticity
of the problem, such as the data distribution and additive
noise. We consider an analogous adversarially robust state
feedback control problem where we aim to minimize an
expected LQ cost subject to linear dynamics driven by
process noise composed of two components: a zero-mean
stochastic noise term and a norm-bounded adversarial term.
We show that the solution to this problem admits a closed-
form expression in terms of the solution to discrete algebraic
Riccati equations (DAREs), which in turn allows for novel
quantitative performance-robustness tradeoff bounds to be
computed in which system parameters manifest in a natural
and interpretable way.

A. Contributions

Toward analyzing the adversarially robust control problem
we propose, we first show that when viewed through the lens
of dynamic games [9], adversarially robust LQ control relates
to a control problem introduced in [10]. We show that the
optimal solution to the state feedback version of this problem
is given by a central static suboptimal H ., controller, with
suboptimality level v depending on both the stochastic noise
statistics and the budget given to the adversary. Furthermore,
both the worst-case adversary and the corresponding optimal
controller can be computed from the solution of a DARE.

We quantify the performance-robustness tradeoffs of ad-
versarially robust LQ control, both analytically and empir-
ically, and show a clear and interpretable dependence on
underlying system theoretic properties such as controllability
and stability. In particular, we show that the cost gap incurred
by the adversarially robust controller in the nominal setting,
relative to that achieved by the nominal controller, is upper
bounded by O(c2~y~4v~1), where o2 is the covariance of
the additive noise distribution, ~ is the suboptimality level of
the suboptimal H . controller, and v is the smallest singular
value of the controllability gramian. On the other hand, the
cost gap is lower bounded by Q(c2~~*n?), where 7 is
the largest singular value of the controllability gramian for
closed loop system under the nominal LQ controller with
disturbances as the input.! These results quantitatively show
that systems with uniformly good controllability have small

I'The controllability gramian defined by the pair (A + BKy, I), for K,
the optimal LQR controller.
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performance-robustness tradeoffs, while those that have a
highly controllable mode in the nominal closed-loop sys-
tem (when viewing disturbances as inputs) lead to large
performance-robustness tradeoffs. We note that all proofs and
further discussion may be found in [11].

B. Related Work

The mixed stochastic/worst-case problem that we consider
is not the only way to strike a balance between the per-
formance of stochastic and robust control methods. Most
closely related is [10], which considers a similar problem
from a deterministic perspective, in which disturbances are
composed of both a bounded power component, and a
bounded power spectrum component. A set description of
disturbances that also interpolates between Ho and Hoo
approaches is proposed in [12]. The class of all stabilizing
controllers subject to a H, norm constraint is characterized
in [13], while minimizing an Ho objective subject to a H
constraint is addressed in [14], [15]. While conceptually
appealing, these methods often lack a simple closed-form
stationary solution. Other recent work attempts to reduce the
conservatism of robust control through risk aware approaches
[16], [17] or regret-minimization [18]-[20]. None of the
aforementioned methods provide a characterization of the
performance-robustness tradeoffs of the resulting controllers.

Analogous recent work in the machine learning commu-
nity has analyzed performance-robustness tradeoffs in adver-
sarially robust learning, including precise characterizations
of the generalization errors of standard versus adversarially
trained models under various theoretical models [21]-[23],
and “no free lunch” theorems for obtaining adversarially
robust models [24]-[26]. The successful characterization of
such performance-robustness tradeoffs in machine learning
motivates the control objective we consider. However, the
theoretical results from this area are largely intended for
the supervised learning setting and do not immediately
apply to our setting. The existence of performance-robustness
tradeoffs in control is shown in [27], but they are not charac-
terized quantitatively. We end by noting that the extension of
adversarial robustness results in machine learning to various
control problems has recently received attention [28]-[34].

Notation: The Euclidean norm of a vector x is denoted by
||z||. For a matrix A, the spectral norm is denoted || A|| and
the Frobenius norm is denoted || A|| .. The spectral radius of
a square matrix A is denoted p(A). A symmetric, positive
semidefinite (psd) matrix A = A" is denoted A > 0, and
a symmetric positive definite (pd) matrix is denoted A > 0.
Similarly A = B denotes that A— B is positive semidefinite.
A sequence of vectors x; defined for ¢ > 0 will be denoted by
x = {@¢}+>0. The ¢ signal-norm of a sequence is denoted
by (%], = (X450 l|lz¢]|*)!/2. For an autonomous system
Zry1 = Axy and symmetric matrix ), we denote the solution
P to the discrete Lyapunov equation

ATPA-P+Q=0

by dlyap(A4, Q). Similarly, for a controlled system ;1 =
Az + Buy and symmetric matrices @, R of compatible size,

we denote the solution P to the discrete algebraic Riccati
equation

Q+A"PA—-ATPB(B'"PB+R) 'BTPA=0
by DARE(A, B,Q, R).

II. ADVERSARIALLY ROBUST LINEAR-QUADRATIC
CONTROL

Consider a fully observed discrete-time linear-time-
invariant (LTI) system with state disturbances composed of
both stochastic and adversarial components: let z; € R"
be the system state, u; € R™ the input, wy; € R™ and
0; € R™ the stochastic and adversarial components of
the process disturbance, respectively. The initial condition
zo and stochastic component of the process noise w; are
assumed to be i.i.d. zero-mean with covariance matrices
o, X, respectively, and E[wow:] = 0 for all t > 0.
The LTI system is then defined by the following equation:

Ti41 = Al’t + B’U/t + we + 5t~ (1)

We assume that the adversarial perturbation sequence 9 is
causal, i.e., that it can depend only on the states, inputs, and
stochastic noise up to the current timestep. In particular, J;
must be a measureable function of the randomness g, wg.¢.
We let @ = 0 be a weight matrix for the state cost, and
R > 0 be a weight matrix for the input cost. We consider
the infinite horizon objective

T—1
lim sup %EWJO x;Q:cT + Z m:th + u;rRut
T—o0 =0

subject to the dynamics (1). If the adversarial perturbation
is set to zero (i.e., 8 = 0), then the above objective is the
nominal LQR problem. If the stochasticity is set to zero (i.e.,
w = 0,29 = 0), and § are worst-case perturbations with
average power bounded by ¢, the above objective is the Ho
control problem. When both stochastic noise and worst-case
perturbations are present, we define the resulting control task
as the adversarially robust LQR problem. We denote the three
corresponding objectives by NC, RC, and AC respectively:

1
NC(K) :=1i —E T,K
C(K) im sup wazo [V (T, K, Q, R, x)], 2

S.t. Tiy1 = (A —+ BK).’Et —+ wy
RC(K) := limsup 1

T—o0

max V(T,K,Q,R,x),
& causal
1812, <Te )

S.t. Ti41 = (A"‘BK).’Et +5t7 o — 0

AC(K) := limsup lEW-,Io max V(T,K,Q,R,x)|,

Tosoo T & causal
6117, <Te
S.t. Ti41 = (A+BK).’L't —+ wy +6t7 (4)

where V(T,K,Q,R,x) := Zthfol Ty (Q + KTRK)zt +
x7.Qur. The adversarial budget & ||§2 < T is chosen such
that the instance-wise adversarial budget satisfies [|0;]|° < &
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on average.”> We note that we restrict these definitions to
static state feedback control policies u; = Kz, as they are
known to be optimal for NC and RC [2]. We will show, as a
consequence of Lemma 2.1 and Theorem 2.1, that they are in
fact also optimal for AC. In order to ensure that there exists
a stabilizing controller, and that minimizing either NC or
RC provides a stabilizing controller, we make the standard
assumption that (A, B, Q'/?) is stabilizable and detectable
[2]. Under this assumption, there exists a stabilizing state
feedback control law u; = Kx; minimizing NC, where

K=—-(R+B'PB)"'B"PA (5)
P =DARE(A, B,Q, R). (6)

A solution minimizing RC may be found using Theorem
13.3.3 of [35].

The remainder of this section is devoted to finding a
controller minimizing AC. Inspired by minimax dynamic
games [9], we first find a controller which minimizes a soft-
constrained version of the adversarial cost (4):

limsuplE max V(T,Q,R,x,0)|, @)

T—00 & causal

where VI(T,Q,R,x,8) = wx1Qur + Y1 x:(Q +
KTRK)z; — %5 §;. The following lemma provides nec-
essary and sufficient conditions for the existence of a stabi-
lizing controller which minimizes the above objective.

Lemma 2.1: A controller attaining a finite value for ob-
jective (7) exists if and only if there exists a solution to the
following discrete algebraic Riccati equation

0
_¢J> (8)

satisfying 0 X P < 72[ . When the above condition holds,

1) The controller u; = Kz; with K given by
K=—-(R+B"MB)'B"MA,
M =P+ P(y?I - P)"'P.

P = DARE (A, (B 1],Q, []g

©))

satisfies p(A + BK) < 1, and minimizes objective (7).
2) The optimal adversarial perturbation under the controller
u; = Kxy is given by

A= (72I_P)71P3

10

3) The objective value (7) achieved under controller (9) and
adversary (10) is Tr(MX,,).

The solution approach for the above problem follows that
in [9] for minimax games. The finite horizon version of
the problem is solved by defining a convex-concave saddle
point cost-to-go, then recursing backwards in time. The
causality of 4 in the stochastic signals allows the dynamic
programing step to be solved in closed-form. Taking the
limit as the horizon tends to infinity provides the steady state
controller and adversary in Lemma 2.1. It should be noted

2This is equivalent to constraining the power semi-norm of & to be upper-
bounded by +/e.

that in contrast to most adversarially robust machine learning
problems, adversarially robust LQR provides a closed-form
expression for the adversarial perturbation.

We now return our attention to objective (4). We show
(see Appendix B in [11]) via a strong duality and ergodicity
argument that the hard-constrained problem may be solved
by sequentially solving the soft-constrained problem using
Lemma 2.1. Note that in contrast to the solution approach
to minimize RC, dualizing the constraint in AC results in
an optimal dual variable ~(g) that is a random variable.
Therefore, it is nontrivial to exchange the order of the
minimization over the dual variable with the expectation.
We propose Algorithm 1 to minimize the adversarial cost
(4), and Theorem 2.1 establishes its correctness.

Algorithm 1 Computing Adversarially Robust Controller:
AdVLQR(A, B,Q.R,e,vLB,YUB, tol)
1: Input: State matrices A, B, cost matrices @, R, adver-
sary budget € > 0, bounds v.p < yuB, tolerance tol.
2: 1/ Do binary search on vy € [yrB,YuB] to find optimal
adversary with average power € > 0
3: While YuB — VLB = tol:
4 v=(ws+78)/2
5: Compute P, M, K, A at level v via (8)-(10)
6: G =dlyap((A+ BK)TA,AX,A)
7
8
9

If Tr(G(A+ BK)"(I +A)?(A+ BK)
+AY,A) < e (11):
: then yyp =7
10: else yvop =7
11: Output: Adversarially robust LQR controller K, adver-
sary gain A, optimal value of (4) Tr(MY,,) + v%¢.

Theorem 2.1: Suppose (A, B,Q'/?) is stabilizable and
detectable. For dynamics (1), let v, denote the H.,-norm
of the optimal closed-loop system. Given any fixed ¢ > 0,
let P, M, K, A satisfy equations (8)-(10) at level vy > Yoo
and define G := dlyap((A + BK)TA,AS,A). If yup
is sufficiently large such that the disturbance d; defined in
equation (10) satisfies

tlifch[‘stT(St] =

11
Tr(G(A+ BK)" (I + A)?(A+ BK) + AZ,A) < ¢, a

then, under the stated conditions, the output of Algorithm 1
AdvLOR(A, B,Q, R, e, Y0, YuB, tol) satisfies the follow-
ing?:

1) The control policy u; = Kx; minimizes AC(K).

2) The optimal adversarial perturbation in equation (4) under
the optimal policy is §; = A((A+ BK)z; 4+ w;) and
satisfies limy_,oo E[6/ 0;] < e.

3) The minimum value for the adversarial cost (4) is given
by Tr(MX,) + v2e.

We note that in contrast to the certainty equivalent LQR

controller that is independent of the stochastic process noise

3Up to numerical precision due to the tolerance parameter tol.
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statistics, the adversarially robust controller output by Algo-
rithm 1 implicitly depends on the noise statistics through the
optimal choice of ~.

Remark 2.1: The same results used to solve for the op-
timal controller minimizing AC may be adapted to eval-
uate AC(K) under an arbitrary stabilizing controller K.
In particular, observe that the closed loop system and cost
matrices (4’, B',Q', R') = (A+BK,0,(Q+K"RK)/2,0)
satisfy the stabilizability and detectability assumptions. Then
Lemma 2.1 implies that under controller u; = Kz}, equation
(7) evaluates to Tr(MY,), where M = P + P(y*I —
P)"'P, and P = DARE(A + BK,I,Q + K" RK,—~I).
Similarly, Theorem 2.1 tells us that for any ¢ > 0, with
properly selected vy, vrp and tol, AC(K) may be de-
termined via Algorithm 1 as AdvLQR(A + BK,0,Q +
KTRK,O,€,’}/LB,’}/UB,tOl).

III. PERFORMANCE-ROBUSTNESS TRADEOFF BOUNDS

This section presents the tradeoffs that arise in adversarial
control by investigating the interplay between the objectives
(2) and (4), and quantitatively bounds the resulting tradeoffs.

We consider the gap between the nominal and ~-
adversarially robust controllers when applied in the nominal
setting, i.e., we seek to bound the gap NC(K,) — NC(K,),
where K, is the ~y-adversarially robust controller given by
Lemma 2.1, and K, is the LQR controller (5). Let P, and P,
solve the nominal (6) and modified (8) DAREs respectively,
and let M., be given by equation (9).

Given an arbitrary stabilizing linear feedback controller
K, results from [36] and [37] allow us to characterize the
gap in the cost between K and the optimal LQR controller
K, as NC(K) - NC(K,) = Tr(Z(K)(K — K,)"(R +
BTP,B)(K — K,)) where %(K) := dlyap(A+ BK,,)
is the steady state covariance of the closed loop system under
controller K. The following bounds on the gap NC(K,) —
NC(K,) then follow immediately:

Umin(zw)amin(R + BTP*B) ||K"/ - K*H?’
NC(K,) — NC(K,)
IS(K)| ||R+ BTP.B|| | Ky — K3

< 12)
<

We have therefore reduced the task of upper and lower
bounding the cost gap between the ~y-adversarially robust
controller and the nominal LQR controller in the nominal
setting to directly bounding the gap between the two con-
trollers. Recalling that

2 2 . 2
|K, — K2 < |, — K < min{m,n} |, - K12,

we use the following lemma to bound the difference
||Ky — K.|| in terms of the difference between the solutions
to the corresponding adversarial and nominal DARE:s.
Lemma 3.1: (Adapted from Lemma 2 of [36]) Suppose
that fi(u;z) = fu' Ru + 1(Az + Bu)' M(Az + Bu)
and fo(u;z) = Q%UTRU + 5(Az + Bu)" P(Az + Bu)
with M > P. Furthermore, for any z, let u; = K,z =

argmin,, f;(u, ). Then

|BT(M — P)(A+ BK>)||

IR+ BTMB)|
< ||K1 — Ko
_IBT(M — P)(A + BE,)|
- omin(R+ BTPB)

Applying Lemma 3.1 with P = P, and M = M,,
computing upper and lower bounds on the gap (12) reduces
to bounding the difference M., — P,. The upper bound is pre-
sented in Section III-A, and the lower bound in Section III-B.

For the rest of this paper, we assume for simplicity
that >, = crfUI . We also define v, as the minimum
Hoo norm for the closed loop system, i.e., the smallest
value of ~ for which the conditions of Lemma 2.1 hold.
Similarly, we define 7, as the H, norm of the closed loop
system under the nominal LQR controller. Additionally, we
define the ¢-step controllability gramian as W;(A, B) :=
S A'BBT(A)T.If p(A) < 1 we define the control-
lability gramian as Wo. (A, B) := limy_,o We(A4, B).

A. Upper Bound

From the definition (9) of M., we can write || P, — M, || <

12,1
1P = Byl + ey

42, I, which in turn implies

For v > 7 we have P, < P, <

4
M,y = P < |IP = Pyl + 5=, (13)
A P~
and thus our task reduces to bounding || P, — P, ||, the gap
between solutions to the «y-adversarial and nominal DARE:s.

To bound the norm difference of DARE solutions, we
show that the closed-loop dynamics under the adversary d;
can be expressed as perturbations to the nominal system
matrices. From Lemma 2.1, we have that for a noiseless -
adversarial LQR instance, the adversary can be represented

as 0, = A, (Az, + Buy), so the dynamics may be written
xi11 = Az + Bug + 6, = Az, 4+ Buy,

where A := (I + A,)A and B = (I+ A,)B. It is now
possible to bound the gaps ||A — Al||, ||B — BJ| between
the system parameters (A, B) of the nominal system and the
parameters (fl, B) of the adversarially perturbed system in
terms of . Bounds between the system parameters allow
us to leverage existing tools for DARE perturbation analysis
such as those presented in [36]. Before we present the upper
bound, we introduce some notation that arises from the
DARE perturbation bounds. We define the condition number
on the LQR cost as

max{amaX(Q), Umax(R)}
min{omin(Q), omin(R)}

and introduce the constants

T(A,p) = sup{HAkH p ki k> 0}

2
)i
ﬁ::max{l,oo T(A, +P}»
o (A, p)

oo

H(Q7 R) =
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where p > p(A). In short, 7(A, p) uniformly upper bounds
the ratio between powers of the norm of A over p, and 3
upper bounds the effect of the adversary on the perturbed
system matrix A in terms of the nominal system param-
eters. Since p > p(A), these constants are guaranteed to
exist by Gelfand’s formula. Combining an upper bound on
|| Py — P,|| with equations (12) and (13) yields the following
upper bound.

Theorem 3.1: Suppose (A, B,Q'/?) is controllable and
detectable. Let p > p(A) and x(Q, R), 7(4, p), and S be
the constants defined above. Furthermore, let £ be any natural
number 1 < ¢ < n. For v > 0 satisfying

P 2t o 0 (Wil A, B) ™ 27(A, p)?
(1Bl + 1) max{ Al [ B}
we have
NC(K,) — NC(K,)

< 0(1)o2 Yoo 2 554(6-1) || 4 2 (A p)®
< 0% (522 ) meBH Y A+ BRI 7(4,p)

(14 i (W4, B)7V/2)? [Wic (A4 + B, 1)

|7+ 57 P.B|

Jmin(R + BTP*B)Q
As v — oo, the upper bound decays to 0, since the
adversarial controller converges to the nominal controller.
However, the steepness of this cost gap is affected by system
properties such as the minimum singular value of the ¢-step
controllability gramian, where poor controllability causes the
upper bound to increase. We explicitly show the dependence
of the bound on ¢ to highlight the fact that if the nominal
system is controllable quickly—that is, we can choose ¢ < n
such that the minimum singular value of the ¢-step control-
lability gramian is large—then the upper bound improves. On
the other hand, the potential exponential dependence on state
dimension through 3 cannot be relaxed in general; consider
chained-integrator systems as an example, where { = ©(n)
is required for the system to be controllable. We note that
in contrast to the perturbation gap requirements in [36] or
[38], our condition on the perturbation gap via lower bounds
on ~ are much less stringent. The lower bound requirement
on +y arises here solely to guarantee the controllability of the
adversarially perturbed system (/1, B) is on the same order
as that of the nominal system (A, B).

B. Lower Bound

The lower bound that we get from applying Lemma 3.1
is as follows:

| BT (M, — P.)(A+ BK,)||

K,—K,| >
- |BT (M, — P.)|| omin(A + BK,)
- |R + BM, B '

Next, we add and subtract a particular DARE solution to the
M, — P, term in the above bound. Specifically, for v > Y,
we let P, = DARE(A + BK,,I,Q,—~*I), and note that

R(Q R IBII* (IB]l + 1)* | PIJ*.

xTPVx represents the cost of applying controller K, in the
noiseless adversarial setting at level v starting from state x.
The above bound becomes

[ — K|
BT (M, — P, + P, — P,)|| omin(A + BK,)
14
= IR+ BILB| (19
From the definition (9) of M, and the reverse
triangle inequality, we can lower bound the term
L‘BT(MW -P +P, - P*)H in the above equation
y
|BT (P21 = P) " Py + Py — P

15)

e, |

The first term may be lower bounded by expressing 157 — P,
as the solution to a Lyapunov equation, while the second term
may be bounded by leveraging the results of [37] to bound
the cost gap between applying K, and K, in the noiseless
adversarial setting in terms of || K, — K,||. This is shown in
the following lemma.

Lemma 3.2: Under the assumption (A, B,Q'/?) is sta-
bilizable and detectable, and for v > 7., we have the
following bounds:

P,— P, <K, - K.|*|R+ BT M,B]|
-Wao(A+ BK,,T)
and
P,(y*I - P,)"'P, + P, - P,

min P 2
= el (WA + BKL, )
Combined with Equatrir(l)lﬁs (*14) and (15), the above lemma
gives rise to the following theorem. ~ B
Theorem 3.2: Define A, := I+(y?I—P,)~1P,. Suppose
(A, B,Q'/?) is stabilizable and detectable. For v > 7, and

1 ,||BTWeo (A + BE,, I)|

2> min P* o minP*
72 min(Pa) + 50min(Py) IR+ BT M, B

. HBTVVOo (AW(A + BK*),I) H Omin(A + BK*)2’

we have
NC(K,) — NO(K.)

. % < Omin(P.)? )Qamm(RJrBTP*B)

~ 2\ -omn(P)/) |R+BTM,B|
||BTWao(A + BE,, I)|| 0min (A + BE,)>.

The requirement that v > 7, in the above theorem is due to

the fact that the nominal controller must be stabilizing in the
adversarial setting for the bounds to apply. The additional re-

quirement on + is present because the term || BT (P, — ]57)

in (15) is upper bounded in terms of ||K, — K, If 5
becomes too small (meaning ||, — K, || is large), the bound
becomes vacuous.
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Fig. 1. (a) For each value of the system parameter p, the tradeoff curves
are generated by synthesizing adversarially robust controllers for adversarial
levels e ranging from [0, 0.1], and then evaluating both their nominal cost,
and their adversarial cost at level € = 0.1. (b) We plot the nominal vs.
adversarial performance (at level € = 0.1) of the LQR controller and the
adversarially robust controller at level € = 0.1, as the p ranges from 0.3 to
1.2. The value of p increases in the directions of the arrows.

Keeping the nominal system fixed, both the upper and
lower bounds decay at a rate y~%. We note that instead
of the /-step controllability gramian that manifests in the
upper bound, we have instead the system parameter W, (A+
BK,,I), which is the controllability gramian of the closed
loop system under controller K, with disturbances as inputs.
That is, a large HBTWOO(A—I— BK*,I)H implies that the
nominal closed-loop system is quantifiably more controllable
by the disturbance input, hence more susceptible to adver-
sarial disturbances of fixed energy.

To apply the upper and lower bounds to the adversarial
setting with fixed adversarial budget ¢, one may find the
optimal corresponding v via Algorithm 1.

IV. NUMERICAL EXPERIMENTS

We now empirically study the trends suggested by our
adversarially robust controller synthesis and the subsequent
performance-robustness tradeoff bounds.

a) Impact of Controllability: To illustrate the depen-
dence of the tradeoff severity on system controllability,

consider the 2D integrator system defined by

(A5B5Q7R72w)<|:(]j §:|7|:(1):|7I7I7I>a

where we vary controllability via the parameter p > 0. When
p is small, the system has poor controllability, and as p
increases, controllability increases. In Figure 1a, we consider
the tradeoff curves traced out by fixing p, then evaluating
the nominal and adversarial (¢ = 0.1) costs of adversarially
robust controllers with budget e varying between [0, 0.1]. We
observe that as controllability decreases, the tradeoff curves
shift upward and also widen. This corroborates the trend
described in Theorem 3.1, where we show the bound on the
nominal cost gap between adversarially robust and nominal
controllers (i.e. width of the tradeoff curve) grows larger
as controllability decreases. This trend is further illustrated
in Figure 1b, where we plot the nominal and adversarial
(e = 0.1) costs attained by the H2 and adversarially robust
(¢ = 0.1) controllers as a function of p € [0.3,1.2]. We
observe that for small p, the system has poor controllability,
hence the distance between the controller costs is large. As
controllability increases, this gap decreases monotonically.
Note that the costs do not monotonically improve as p
increases after some point, as the amplification of distur-
bances from the integrator outstrips the benefits of better
controllability. Note however that in this regime, the gap
between the nominal and adversarial controllers remains
approximately constant, as predicted by Theorem 3.1.

b) Performance of Adversarially Robust Control: We
compare the performance of the adversarially robust LQR
controller against Hs, Hoo, and mixed Ha/H oo control for
the longitudinal flight control for the linearized Boeing 747
system (see [39] for further details) defined by

0.99 0.03 —-.02 -.32 .01 .99
A— 0.01 0.47 4.7 .00 B —3.44 1.66

02 —-.06 .40 .00 | —-83 44|’

0.01 —-.04 .72 99 —47 .25

with cost matrices ), R = I under different disturbances wy:
@) w, =" N(0, ).
(b) w, set as worst case disturbances with power bounded
by 1.
(©) wy ~ N (sin(0.01¢),1).
(d) wy given by iid. N(0,I) Gaussian noise plus the
worst case adversarial perturbation with budget ¢ =
0.5.
The initial condition is set to 0 in all cases. The optimal
adversarially robust controller is generated by running Al-
gorithm 1 with ¢ = 0.5, Q = [,R = [ and ¥,, = [ and
the mixed Ha/Hoo controller is generated by fixing a Hoo
norm bound of v = 1000, and approximately minimizing
the Ho norm via the approach outlined in [40]. The H o
norm bound v for mixed Hs/H is chosen to achieve
performance similar to the adversarially robust controller
in the adversarial setting. In Figure 2a, we observe that in
the zero-mean Gaussian setting, the Ho controller performs
best as expected; however, we note that the adversarially
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Fig. 2. Simulations of the performance of H2, Hoo, mixed Ha/Hoo, and adversarially robust controllers on a linearized Boeing longitudinal flight

control task. The average running cost at time ¢ is computed as H%l 22:0 xZQa:k + uZRuk.
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Fig. 3.  Simulations of the performance of the Ho, mixed Ho/Hoo

(v = 109), and adversarially robust (¢ = 10~%) controllers on an inverted
pendulum stabilization task. The performance of Hoo is not depicted due
to being out of frame.

robust controller has similar performance. On worst-case
power bounded disturbances in Figure 2b, H., performs
best as expected, and is closely followed by the adversar-
ially robust controller. Interestingly, the adversarially robust
controller outperforms all other controllers on the varying-
mean Gaussian disturbance (Figure 2c), which is an instance
of a disturbance composed of both zero-mean stochastic and
deterministic components. The adversarially robust controller
performs best in the adversarial setting (Figure 2d), as
expected.

¢) Beyond Linear Systems: For our final experiment,
we demonstrate that adversarially robust control can perform
favorably in non-linear systems. We compare the perfor-
mance of the adversarially robust controller versus Hs, Hoo,
and mixed Hy/Hoo controllers on an inverted pendulum
system with the dynamics:

—mgsin(0) — ki + u

é:
ml

)

where we obtain a 2-D state space representation by set-
ting x [0 é]T. In the subsequent experiments, we
set m,k,l = 1, g —9.81, and the sampling time as
dt = 0.02. The various controllers are computed using the

linearized state matrices at the upright equilibrium point.
The disturbance is generated as w; "~ A (0,21), and
the LQR cost matrices are set to (Q I, R I. In
Figure 3, we plot the performance of the various controllers
on the inverted pendulum stabilization task. The adversarial
budget is set to € 10~* for the adversarially robust
controller to achieve approximately maximal performance.
Note that this adversarial budget is quite small, as the true
pendulum behavior is very similar to the linearized system
near the upright equilibrium. Similarly the H ., norm bound
~ for the mixed H2/Hoo controller is chosen to maximize
performance via bisection.

We observe that the adversarially robust and mixed
Ho/Hoo controllers perform similarly despite the adversar-
ially robust controller being simpler to compute and imple-
ment, and notably both perform better than the 2 controller
in this setting, despite the disturbance sequence being i.i.d.
zero-mean Gaussian. This suggests that a small amount
of robustness can impact the performance of a controller
significantly by encompassing model errors, in this case
those arising from using the linearized system to construct
the controllers. At the same time, a fully robust controller
is far too conservative to this end; the H., controller is not
pictured in Figure 3 due to having performance many times
worse than Hs.

V. CONCLUSION

We proposed an adversarially robust LQ control problem,
and demonstrated that the optimal solution to this problem
is given by a central static suboptimal H., controller. An
interesting aspect of this solution is that unlike pure Ho
controllers, the adversarially robust controller depends upon
the noise statistics. Experiments show that the adversarially
robust controller performs similarly to mixed Hs/Hoo con-
trollers on a simple linear system, and can beat out both
Ho and H,, simultaneously on disturbances that involve
both stochastic and deterministic components, or model error
arising from linearization.

We used the adversarially robust control problem as a
means to study performance-robustness tradeoffs in control.
In particular, we derived quantitative upper and lower bounds
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on the performance gap between the nominal controller and
the adversarially robust controller. The bounds show that
systems with uniformly good controllability will have small
performance-robustness tradeoffs, while those with a highly
controllable mode in the closed-loop nominal system (view-
ing disturbances as inputs) will have a large performance-
robustness tradeoff. These trends are corroborated by ex-
periments on a simple linear system by tracing out tradeoff
curves. Directions for future work include the extension of
the problem setting considered here to the output feedback
setting, and considering how other adversarial training tech-
niques can be translated to robust controller synthesis and
analysis.
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