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Abstract— We study stochastic policy gradient methods from
the perspective of control-theoretic limitations. Our main result
is that ill-conditioned linear systems in the sense of Doyle
inevitably lead to noisy gradient estimates. We also give an
example of a class of stable systems in which policy gradient
methods suffer from the curse of dimensionality. Finally, we
show how our results extend to partially observed systems.

I. INTRODUCTION

Reinforcement learning (RL) methods have shown great
empirical success in controlling complex dynamical systems
[1]. While these methods are promising, we have only begun
to understand performance guarantees and fundamental lim-
itations in continuous state and action problems. Providing
such guarantees and understanding such limitations is crucial
to deploying these methods in safety-critical systems. In
this paper, we focus on a particular class of such methods;
namely, we seek to understand fundamental limitations for
policy gradient methods.

Policy gradient methods are a relatively simple class of
algorithms that have been recently analyzed in the context of
the linear quadratic regulator (LQR), [2], [3]. The motivation
for studying policy gradients in the context of LQR stems
from that it serves as an analytically tractable benchmark for
RL in continuous state and action spaces. For instance, by
direct arguments on can show that control-theoretic param-
eters affect the hardness of both offline and online learning
in LQR [4]–[7]. Here, we extend this line of work and show
that the popular policy gradient methods degrade similarly
for systems with poor controllability and observability. To
be precise, we show that ill-conditioned systems lead to
arbitrarily noisy stochastic gradients.

a) Problem Formulation: We are interested in studying
how policy gradient methods applied to the linear system

xt+1 = Axt +But + wt, x0 = 0 t = 0, 1, . . . (1)

are affected by the fundamental limits of control. Above,
xt 2 Rdx , A 2 Rdx⇥dx , ut 2 Rdu and wt 2 Rdx is an
i.i.d. mean zero sequence of Gaussian noise with covariance
matrix ⌃W 2 Rdx⇥dx .

The learning task is to minimize

JS(K) , lim sup
T!1

1

T

T�1X

t=0

EK,S

⇥
x
>
t Qxt + u

>
t Rut

⇤
(2)

subject to the dynamics (1) without access to the model
parameter S = (A,B). In equation (2), EK,S denotes
expectation under the control law K with dynamics S.

In this work, we relate the efficiency of stochastic policy
gradient methods to certain control-theoretic parameters.
Namely, we analyze algorithms of the form

K

V

 K

V

� ↵rKJ(K;S)
V

for some learning rate ↵ 2 R+, and where at each iteration
rKJ(K;S)
V

is estimated using data from the system (1).
Such algorithms have been shown to converge for LQR by
[2]. The purpose of this work is to demonstrate that any
estimate rKJ(K;S)
V

from an (arbitrarily) ill-conditioned
system (1) is (arbitrarily) noisy.

To make this statement rigorous we need to model the
statistical information available to the learner. Here, we
model this as follows: the learner is given access to N 2 N
experiments (x0,n, . . . , xT,n), n 2 [N ] of length T 2 N
and a total input budget of �NT with � 2 R+. More
precisely, the learner is allowed to freely choose ut,n as
a function of past observations (x0,n, . . . , xt,n) and past
trajectories (x0,m, . . . , xT,m),m < n and possible auxiliary
randomization, while being constrained to a total budget

NX

n=1

T�1X

t=0

Eu
>
t,nut,n  �NT. (3)

This formulation allows both open- and closed-loop experi-
ments but normalizes the average input energy to �.

A. Related Work
The first proof that policy gradient methods converge for

LQR is given in [2], which provides nonasymptotic guar-
antees that are polynomial in relevant problem parameters.
Convergence guarantees for more general MDPs and other
versions of LQR are given in [8]–[12]. Extensions to partially
observed systems are considered in [13]–[15]. A popular
alternative approach to policy gradients for LQR is based
on certainty equivalence [16].

Most closely related to our work are [3], [17], [18].
While we give lower bounds valid for any estimator in this
work, [17] analyzes the variance of a particular gradient
estimator known as REINFORCE. Similarly, [3] provides
algorithm specific lower bounds which demonstrate, among
other things, that if R = 0 and B is invertible, then learning
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fails as kBk ! 0. Further, [3] gives a generic performance
lower bound for offline methods which however does not
scale with relevant system-theoretic quantities.

Our work also relates to [4]–[7], which also study fun-
damental limits in learning-enabled control. From a broader
perspective, the present work fits into a line of work that
strives to ascertain the interplay between control-theoretic
performance, stability and robustness notions, and learning
[19]–[23]. While we are mostly interested in offline methods
in this work, analyses of online LQR can be found in the
literature, see [6], [24]–[26] and the references therein.

B. Contribution

We show that policy gradient methods are very much
affected by the limits of control. Our main result ( Theo-
rem 1) demonstrates that state feedback systems operating
near marginal stability suffer from noisy gradients. This
happens for instance if the system has poorly controllable
unstable modes. We also provide an analogue of this result
for partially observed systems (Theorem 2), which we use
to show that systems with bad (small) Markov parameters
also lead to noisy gradients. Compared to previous literature
on this topic [3], [17], [18], our results provide a more fine-
grained theoretical understanding of when and why gradient
methods applied to dynamical systems fail.

C. Preliminaries

A matrix A is stable if ⇢(A) < 1. A matrix K is stabilizing
for the system S = (A,B) if A+BK is a stable matrix. If
K is stabilizing for the system S = (A,B), the closed-loop
controllability gramian

�K,S ,
1X

t=0

(A+BK)t⌃W (A+BK)t,> (4)

is well-defined. The set of all systems S for which there
exists a stabilizing K is denoted by S = Sdx,du , which is an
open subset of Rdx⇥dx+dx⇥du in norm topology. Further, we
define K?(S) as (any element of) K?(S) 2 argminK JS(K).
Moreover, we denote the matrix operator norm (induced
l
2(Rd)! l

2(Rd)) by k · kop.
We also require the following information-theoretic quan-

tities. We define the Kullback-Leibler divergence between
two probability measures P and Q as dKL(P,Q) ,

R
dP
dQdP

and the total variation distance as dTV(P,Q) ,
R
|dP�dQ|.

When P and Q correspond to induced probability measures
from two systems S1 and S2 we abuse notation and write
dKL(S1, S2) = dKL(P,Q) and dTV(S1, S2) = dTV(P,Q) for
divergences between the corresponding parametric families.

It will be convenient to introduce the shorthand at . bt

if there exists a universal constant C such that at  Cbt

for every t � t0 and some t0 2 N. If at . bt and bt . at

we write at ⇣ bt. For an integer N , we also define [N ] ,
{1, . . . , N}.

a) Policy Gradients: We begin by recalling a standard
characterization of the LQR cost (2) for a linear controller
K. A version of the following lemma can also be found in
for instance [2].

Lemma 1: If K is stabilizing for S = (A,B), the LQR
cost can be written as

J(K;S) = trPK⌃W

where PK satisfies the Lyapunov equation

PK = Q+K
>
RK + (A+BK)>PK(A+BK). (5)

Lemma 1 allows us to conveniently characterize the policy
gradient rKJ(K;S).

Lemma 2: Let K be stabilizing for S = (A,B). The
policy gradient rJ(K;S) can be written as

rKJ(K;S) = 2
�
(R+B

>
PKB)K +B

>
PKA

�
�K,S

(6)

where PK satisfies the Lyapunov equation (5) and where
�K,S is given by definition (4).

Combining Lemmas 1 and 2 we see that we are almost in
the same setting as studied in [2]. The difference is mainly
in how information is acquired, since each sample from the
system (1) is noisy and conditionally Gaussian. Compared to
the noise-free random initial condition setting considered in
[2], this simplifies the analysis of the variance of the gradient
estimates since we later rely on the closed form of the KL
divergence for Gaussians of different means.

II. POLICY GRADIENT ESTIMATION LOWER BOUNDS

Let us begin our study of stochastic gradient methods by
the observation that rKJ(K;S) diverges if K does not
stabilize the system (1). Consider for instance the following
two systems

(
S1 : xt+1 = axt + but + wt,

S2 : xt+1 = axt � but + wt.
(7)

If |a| > 1 there exists no linear feedback controller which
stabilizes both S1 and S2 of equation (7). Hence, any
policy gradient which is finite for the first system will be
infinite for the second system and vice versa. Combining
this observation with the two point method (Lemma 7) leads
to the following conclusion.

Proposition 1: For any k 2 R the global minimax com-
plexity of estimating the policy gradient at k is infinite:

inf
rJ
V

sup
(a,b)2R2

E(a,b)

����
d

dk
J(k; (a, b))�rJ

V

���� =1 (8)

where the infimum is taken over all measurable functions of
the data (x0,n, u0,n, . . . , uT�1,n, xT,n), n 2 [N ].

Proposition 1 shows that the global minimax complexity
of estimating gradients is infinite. While this shows that
estimating gradients can be hard, it does not reveal how this
hardness depends on control theoretic parameters.
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A. Local Minimax Complexities
In order to understand what properties of a particular

system makes learning to control hard, we need to consider
local complexity measures. Here, we investigate the (d, ")-
local minimax complexity of estimating gradients. We define
this as

Md(";S,K) , inf
rJ
V

sup
S0:d(S,S0)"

ES0

���rKJ(K;S0)�rJ
V���

op

(9)
for some metric d on the set of stabilizable systems S and
where the infimum is taken over all measurable functions
of the data (x0,n, u0,n, . . . , uT�1,n, xT,n), n 2 [N ]. This
captures a more instance-specific notion of how hard it
is to estimate gradients. Roughly, this complexity measure
corresponds to requiring algorithms to performing well not
just on a nominal system S, but also on small "-perturbations
of that system.

Note further that the definition (9) still leaves open the
question at which K to measure the complexity of estimating
gradients. By equation (6) and Proposition 1 we know that
rKJ(K) can be arbitrarily large when evaluated far from
a stationary point. As this rather reflects poor initialization
than fundamental control-theoretic hardness, we instead seek
to lower bound Md(";S,K) near K?(S). Arguably, any
successful policy gradient algorithm should eventually find
itself near K?(S). Thus, we provide lower bounds on the
gradient estimation error in the vicinity of the stationary
point K?(S). We denote the associated local complexity by
Md(";S) = Md(";S,K?(S)).

a) Constructing Hard Instances: To simplify the eval-
uation of the local minimax complexity (9), we mainly
consider the construction below. Fix a nominal instance S1 =
(A,B) of system (1) with optimal control law K? = K?(S1);
then the perturbation

S2 : xt+1 = A
0
xt +B

0
ut + wt (10)

is tractable to evaluate. Here, A
0 = A � �K? and B

0 =
B+� for some � 2 Rdx⇥du . This perturbation is convenient
since A

0 +B
0
K? = A+BK? for any � and has previously

been used in [6], [25]. In particular, the system quantities
PK?,S and �K?,S are invariant as we vary �. Combining
this observation with the optimality of K? = K?(S1) for
system S1, yields the following simple expression for the
gradient of system (10).

Lemma 3: The policy gradient for S2 = (A0
, B

0) given
by system (10) at K? = K?(S1) is given by

rKJ(K?;S2) = 2�>
PK?,S1(A+BK?)�K?,S1

Proof of Lemma 3. By Lemma 2 the policy gradient is
given by

rKJ(K?;S2)

= 2
�
RK? + (B +�)>PK?,S1(A+BK?)

�
�K?,S1

where we used that A + BK? = A
0 + B

0
K?. On the other

hand

2
�
RK? +B

>
PK?,S1(A+BK?)

�
�K?,S1 = 0

by optimality of K? to S1. The result follows. ⌅
By combining Lemma 3 with Le Cam’s two point method

[27] (provided in the appendix as Lemma 7) we obtain a
generic estimation lower bound for policy gradients evaluated
in the vicinity of the optimum K?.

Theorem 1: Consider two systems S1 = (A,B) and
S2(�) = (A0

, B
0) with A

0 = A��K? and B
0 = B+�. Let

Md(";S1) = Md(";S1,K?(S1)) and K? = K?(S1), then

Md(";S1)

� sup
d(S1,S2(�))"

���>
PK?,S1(A+BK?)�K?,S1

��
op

⇥
 
1�

r
1

2
dKL(S1, S2(�))

!
.

(11)

In other words, the local complexity of estimating
gradients can be lower bounded by the maximum of���>

PK?,S1(A+BK)�K?,S1

��
op

, optimized over � and
subject to this leading to small differences in the output of
systems S1 and S2.

Proof of Theorem 1. Define the loss function L(dec, S) ,
krKJ(K;S)� deckop, where the decision dec is a place-
holder variable for the gradient estimate. For any two systems
S1 and S2 we have that

L(dec, S1) + L(dec, S2)

= krKJ(K?;S1)� deckop + krKJ(K?;S2)� deckop
� krKJ(K?;S1)�rKJ(K?;S2)kop

by the triangle inequality. Invoking Lemma 3 we thus see
that for the choice S1 = (A,B) and S2 = (A0

, B
0) with

A
0 = A��K? and B

0 = B +� we have

L(dec, S1) + L(dec, S2) (12)
�
��2�>

PK?,S1(A+BK?)�K?,S1

��
op

(13)

for any � 2 Rdx⇥du . Combining equation (12) with
Lemma 7 it follows that

M(", S1) �
���>

PK?,S1(A+BK?)�K?,S1

��
op

⇥ (1� dTV(S1, S2))

�
���>

PK?,S1(A+BK?)�K?,S1

��
op

⇥
 
1�

r
1

2
dKL(S1, S2)

!

where the second inequality is an application of Pinsker’s
inequality. ⌅

At this point, we note that the right hand side of inequality
(11) is large for systems operating near marginal stability.
When A+BK? ! 1 both PK?,S and �K?,S tend to infinity.
To better understand the practical implications of this, we
now turn to interpreting Theorem 1 by instantiating it for
three special cases: scalar systems, over-actuated systems and
integrator-like systems.

B. Consequences of Theorem 1
a) Scalar Systems: The bound in Theorem 1 is agnostic

to the experiment used to generate the dataset, which is
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simply reflected in the quantity
⇣
1�

q
1
2dKL(S1, S2(�))

⌘
.

Let us interpret Theorem 1 by a simple scalar example. To
this end, consider the system

s1 : xt+1 = axt + but + wt (14)

with a, b 2 R, which is open-loop unstable |a| > 1. Let s2
be given by the perturbation s2 = (a0, b0) = (a��k?, b+�)
with � 2 R. The divergence dKL(s1, s2) satisfies

dKL(s1, s2) =
NX

n=1

T�1X

t=0

Es1
1

2
(k?�xt +�ut)

2 (Lemma 8)

 �2
NX

n=1

T�1X

t=0

Es1

�
u
2
t + k

2
?x

2
t

�

 �2
NT (k2?�k?,s1 + �) (by (3))

=
1

2
(15)

if �2 = 1
2NT (k2

?�k?,s1+�) . Plugging inequality (15) into
inequality (11), we conclude that

Md1 ("N,T , s1)

& 1p
NT (� + k2?�k?,s1)

|Pk?,s1(a+ bk?)�k?,s1 | (16)

with "N,T ⇣ max(k?,1)p
NT (�+k2

?�k?,s1 )
and where d1(s1, s2) =

max(|a � a
0|, |b � b

0|). In particular as |b| ! 0, one may
verify that the right hand side of the expression (16) tends
to infinity. In other words, as controllability (of unstable
modes) is lost, policy gradients become arbitrarily noisy. This
is verified via simulations in the appendix (Figure 1) using
both a least squares certainty equivalent approach and a 0-th
order method (see [2, Algorithm 1]).

b) Multivariate Systems: If we assume that K has a left
nullspace, the bound in Theorem 1 becomes tractable to eval-
uate since we are free to select � such that �K = 0, which
simplifies some calculations. Intuitively, these instances are
hard to distinguish between because controllers with left
nullspaces lead to identifiability issues regarding the B-
matrix [5].

Corollary 1: For any � such that �K? = 0 and k�kop 
1 we have that

Md1 ("N,T , S1)

& 1p
�NT

���>
PK?,S1(A+BK?)�K?,S1

��
op

for any "N,T & 1/
p
NT and where d1(S1, S2) =

max(kA�A
0kop, kB �B

0kop).
Proof of Corollary 1. Fix " > 0. By Lemma 8 the two

systems S1 = (A,B) and S2(N,T ) = (A0
N,T , B

0
N,T ) with

A
0 = A � "p

�NT
�K? = A and B

0 = B + "p
�NT

�
satisfy dKL(S1, S2(N,T )) = O(1). The result follows by
Theorem 1. ⌅

In other words, the complexity of estimating gradients can
be asymptotically lower bounded at the central limit theorem
scale

p
NT by the part of PK?,S1(A + BK?)�K?,S1 that

cannot be identified by closed loop experiments using K?.
It so happens that this complexity measure is very similar
to that dictating regret lower bounds in adaptive LQR [5],
[6]. In the sequel, we exploit this to show that the gradient
variance can grow exponentially with the system dimension
in the worse case by leveraging certain Riccati calculations
due to [7].

c) Policy Gradients and the Curse of Dimensionality:
Let us now show that variance of policy gradient estimates
can suffer from exponential complexity in the dimension.
The proof of this fact relies on a construction due to [7].
Namely, we consider a system consisting of two decoupled
subsystems S1 = (A,B) of the form:

xt+1 =

2

666666664

0 0 0 . . . 0 0
0 ⇢ 2 0 0
...

. . .
...

. . . 0
0 0 0 ⇢ 2
0 0 0 . . . 0 ⇢

3

777777775

| {z }
=A

xt +

2

666664

1 0
0 0
...

...
0 0
0 1

3

777775

| {z }
=B

ut + wt

(17)
with ⇢ 2 (0, 1), Q = Idx and R = I2. We also define the
subsystem

A0 =

2

666666664

⇢ 2 0 . . . 0 0
0 ⇢ 2 0 0
...

. . .
...

. . . 0
0 0 0 ⇢ 2
0 0 0 . . . 0 ⇢

3

777777775

, B0 =

2

666664

0
0
...
0
1

3

777775
(18)

with Q0 = Idx�1 and R0 = 1 and where A0 2
R(dx�1)⇥(dx�1) and B0 2 Rdx�1. Note that A0 is a stable
matrix since |⇢| < 1. In the notation of Theorem 1, we

let � =


0 0
�1 0

�
, so that S2 consists of two weakly

coupled subsystems, with coupling induced by �1 (recall
S2 = (A0

, B
0) = (A��K,B +�)).

Denote further by P0,? the solution to the Lyapunov
equation (5) for the subsystem (18) with K0 = K?,0. Note
also that P0,? satisfies the discrete algebraic Riccati equation
for the tuple (A0, B0, Q0, R0). With these preliminaries
established, we now recall the following two lemmas from
[7, Appendix E].

Lemma 4: We have:

k�>
1 P0(A0 +B0K?,0)kop �

✓
1

2
+ o(1)

◆
(B0

0P0B0 +R0),

where the term o(1) tends to 0 as dx tends to infinity.
Lemma 5 (Riccati matrix can grow exponentially): For

system (18) we have:

B
>
0 P0,?B0 +R0 � 22dx�4 + 1.

Combining Corollary 1 with Lemmas 4 and 5 we arrive
at the following conclusion:
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Proposition 2: For the system S given in equation (17)
we have that

Md1 ("T , S) &
4dx

p
�NT

(19)

for dx and NT sufficiently large.
In other words, there are classes of stable systems for which
the policy gradient suffers from exponential complexity in
the state dimension.

III. EXTENSION TO PARTIALLY OBSERVED SYSTEMS

We now demonstrate that our lower bound approach
extends to partially observed systems of the form

xt+1 = Axt +But + wt, x0 = 0 t = 0, 1, . . .

yt = Cxt + vt
(20)

in which A and B are as in system (1), C 2 Rdy⇥dx and both
wt and vt are i.i.d. normal with mean zero and covariance
⌃W ,⌃V . We denote partially observed systems of the form
(20) by G = (A,B,C). For system (20) one typically seeks
to learn dynamic controllers of the form (see e.g. [13])

⇠t+1 = Adyn⇠t +Bdynyt, ⇠0 = 0 t = 0, 1, . . .

ut = K⇠t
(21)

parametrized by the linear system Kdyn = (Adyn, Bdyn,K).
The objective, as before is to minimize the cost

JG(Kdyn) , lim sup
T!1

1

T

T�1X

t=0

EKdyn,G

⇥
x
>
t Qxt + u

>
t Rut

⇤

(22)

but this time subject to process and controller dynamics (20)-
(21).

a) Fully Observed Reformulation: To establish a hard-
ness result, it suffices to focus on the difficulty of estimating
gradients with respect to the output matrix of the controller
(21), K. We will exploit this by reducing the system (20)-
(21) when evaluated near the optimum of JS (22) to a
fully observed system. Namely, at the optimum Kdyn,? =
argmin JS(Kdyn) the dynamics of ⇠t in equation (21) are
given by the Kalman filter ⇠t = x̂t, allowing us to write

x̂t+1 = Ax̂t +But + ⌫t

⌫t ⇠ N(0,⌃t)
(23)

which has the same input-output behavior as system (20)
and where the sequence of innovations {⌫t} is independent.
More precisely, the covariance ⌃t of ⌫t is given by

⌃t = Lt(CFt|t�1C
> + ⌃V )L

>
t (24)

where Ft|t�1 satisfies the filter Riccati recursion (see e.g.
[28])

Ft+1|t = ⌃W +AFt|t�1A
>

� Ft|t�1C
>(CFt|t�1C

> + ⌃V )
�1

CFt|t�1 (25)

and the filter gain Lt is given by

Lt = Ft|t�1C
>(CFt|t�1C

> + ⌃V )
�1

. (26)

We now consider the cost J(Kdyn) (22) evaluated at the
optimal filter (23) and with variable K. With some abuse
of notation, we denote this quantity J(K;G) where ut is
given by ut = Kx̂t, and x̂t is defined by the Kalman
filter (23). We shall call the quantity J(K;G) the restricted
cost function, and note that it has almost the exact same
form as the fully observed cost (2). With these preliminaries
established, the following lemma is straightforward to verify
using Lemmas 1 and 2 (and justifies the abuse of notation
J(K;G) and K?(G)).

Lemma 6: Consider a partially observed system G =
(A,B,C) of the form (20). Then the restricted cost function
satisfies

J(K;G) = trPK⌃⌫,G + trQ(I � LGC)

where LG and ⌃⌫,G are the steady state quantities cor-
responding to recursions (25) and (26) respectively and
where PK as before is given by the Lyapunov equation (5).
Moreover, the policy gradient is given by

rKJ(K;G) = 2
�
(R+B

>
PKB)K +B

>
PKA

�
�K,⌫,G

(27)

where

�K,⌫,G ,
1X

t=0

(A+BK)t⌃⌫,G(A+BK)t,>. (28)

In other words, near the optimal controller Kdyn,? the
gradient with respect to the filter gain K has the same form
as in the state-feedback setting (1). However, we stress at
this point that neither the realization of the system (20)
nor the realization of the controller (21) is unique. To
remedy this, we will later verify in a scalar setting that
the perfomance limitations outlined here are invariant under
similarity transformation (see equation (33)).

b) Recovering Theorem 1: In the partially observed
setting, we keep the exploration budget constraint (3) but
the observation model is necessarily different. Namely, we
assume that the learner instead has access to input-output
data of the form (y0,n, u0,n, . . . , uT�1,n, yT,n), n 2 [N ].

In the partially observed setting, we thus define the anal-
ogous local minimax complexity as

Md(";G,K)

, inf
rJ
V

sup
G0:d(G,G0)"

EG0

���rKJ(K;G0)�rJ
V���

op

(29)

where the infimum is taken over all measurable func-
tions of the data (y0,n, u0,n, . . . , uT�1,n, yT,n), n 2 [N ],
rKJ(K;G) is given by equation (27) and d again is a
metric on system parameters G = (A,B,C). We further
set Md(";G) , Md(";G,K?(G)).

Equipped with the definition (29) and Lemma 6 the proof
of the following result follows similarly to that of Theorem 1.

Theorem 2: Consider two systems G1 = (A,B,C) and
G2(�) = (A0

, B
0
, C

0) with A
0 = A��K?, B0 = B+� and

C
0 = C. Then the local minimax complexity of estimating
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gradients (29) is lower bounded as

Md(";G1)

� sup
d(G1,G2(�))"

���>
PK?,G1(A+BK)�K?,⌫,G1

��
op

⇥
 
1�

r
1

2
dKL(G1, G2(�))

!
. (30)

Above dKL(G1, G2(�)) is the divergence between
the probability measures over input-output data
(y0,n, u0,n, . . . , uT�1,n, yT,n), n 2 [N ] when the true
model is G1 or G2 respectively.

By the data-processing inequality, the lower bound (30)
can be brought onto the exact same form as the lower bound
(30). Namely, we observe that1

dKL(G1, G2(�))  dKL(S1, S2(�))

where dKL(S1, S2(�)) is a slight overload of notation for
the divergence between state-input data
(x0,n, u0,n, . . . , uT�1,n, xT,n), n 2 [N ] between models G1

and G2. In other words, all the results of Section II apply
with �K?,S1 defined by equation (4) exchanged for �K?,⌫,G1

defined in equation (28) and ⌃w exchanged for ⌃t given by
equation (24). While this is true for a fixed parametrization
G = (A,B,C), one may wonder whether the lower-bound
relies on fundamental system-theoretic quantities or is simply
a consequence of poor parametric choice for computing
gradients. In the next example we show that the lower
bound (30) captures control-theoretic limitations that are
independent of the state-space representation (20).

c) Bad Markov Parameters Imply Noisy Gradients:
Consider the almost scalar system g1 = (a,B, c) given by

xt+1 = axt +
⇥
b 0

⇤
ut + wt

yt = cxt + vt
(31)

defined consistently with system (20), but specifically
a, b, c 2 R and Q = ⌃V = ⌃W = 1 and R = I2. Note that
the maximum singular values of the first Markov parameter
of g1 is equal to the product m = cb and that this is m

is invariant under similarity transformation. We consider the
two systems g1 = (a,B, c) and g2 = (a,B(�), c) and where
B(�) =

⇥
b �

⇤
. Observe that the optimal policy to system

(31) is of the form K? =
⇥
k? 0

⇤
and that the gramians

PK?,⌫,g1 and �K?,g1 are scalar and equal to PK?,⌫,g1 =
Pk?,⌫,g1 and �K?,g1 = �k?,g1 respectively. In other words,
the second input has no effect on the system (31), but as well
shall see, g2 is very sensitive to perturbations � whenever
the largest singular value of the Markov parameter m = |cb|
is small.

If we denote by dKL(s1, s2) the KL divergence between
scalar input-state trajectories drawn from g1 and g2, we have

1To see this, simply observe that (y0, . . . , yT ) is a stochastic function
of (x0,n, u0,n, . . . , uT�1,n, xT,n).

by Lemma 8 that

dKL(s1, s2) =
NX

n=1

T�1X

t=0

Eg1
1

2
(�ut)

2 (Lemma 8)

 1

2
�2

NX

n=1

T�1X

t=0

Eg1u
2
t

 1

2
�2

NT� (by (3))

=
1

2

✓
if �2 =

1

NT�

◆
.

Invoking Theorem 2 this implies the local minimax lower
bound

Md1("N,T ; g1) �
1

2
p
NT�

Pk?,⌫,g1(a+ bk?)�k?,⌫,g1

(32)
where "N,T ⇣ 1/

p
NT . Inequality (32) in itself is an

instance specific lower bound for scalar partially observed
systems of the form (31). Further, the inequality implies that
if the Markov parameter |m| = |cb| is small, estimating
gradients is always hard. Namely, we make the following
observations2:

• Pk?,⌫,g1 tends to infinity at rate 1/b2 as b tends to 0.
Moreover, Pk?,g1 is always lower-bounded by 1.

• The large and small c asymptotics of ⌃k?,⌫,g1 are
proportional to 1/c2

• The factor |a+ bk?| tends to 0 no faster than 1/b2 and
tends to min(1, |a|) as b! 0 (and |a| is invariant under
similarity transform).

Combining these observations, we see that as the system in-
variant |m| = |cb| tends to zero, gradients become arbitrarily
noisy; the lower bound (32) tends to infinity. In other words,
we have established that

lim inf
|cb|!0

Md("N,T ; g1) =1. (33)

Thus, we obtain an RL analogue to the well-known fact
that reparametrization cannot help controlling a partially
observed system as any gain in observability is offset by
a proportional loss in controllability and vice versa.

IV. DISCUSSION

In this work we showed that estimating policy gradients
can become arbitrarily hard due to known control-theoretic
fundamental limitations [29] by leveraging the classic two
point method due to Le Cam [27]. For instance, we showed
with system (31) that a partially observed system with small
Markov parameters necessarily has noisy policy gradients
and that this holds independently of the parametrization. Our
bounds also show that learning controllers that are close
to marginal stability can be hard. This is similar to what
has already been observed for adaptive LQR/LQG in [6].
Leveraging results from [7] we further show that estimating
policy gradients can suffer from exponential complexity in

2To verify these claims, observe that the scalar quantities Pk?,⌫,g1 , k?
and ⌃k?,⌫,g1 have closed form solutions.
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the system dimension. From a broader perspective, these
results work toward elucidating when learning to control is
feasible and when it is not.
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APPENDIX

a) Proofs for the Preliminary Results: Proof of
Lemma 1. For T 2 N and law ut = Kxt we have

T�1X

t=0

x
>
t Qxt + u

>
t Rut =

T�1X

t=0

x
>
t (Q+K

>
RK)xt

=
T�1X

t=0

tr
⇥
(Q+K

>
RK)xtx

>
t

⇤
.

(34)
Recall �K =

P1
t=0(A + BK)t⌃W (A + BK)t,> so that

Extx
>
t = �K + o(1), where o(1) tends to 0 as t tends to

infinity. Hence, by averaging and taking limits we see that

J(K)

= tr
⇥
(Q+K

>
RK)�K

⇤

= tr

"
(Q+K

>
RK)

1X

t=0

(A+BK)t⌃W (A+BK)t,>
#

= tr

 1X

t=0

⇥
(A+BK)t,>(Q+K

>
RK)(A+BK)t

⇤
⌃W

!
.

(35)
The result follows since (A+BK) is stable by hypothesis.
⌅

Proof of Lemma 2. Fix a controller K. By Lemma 1 the
average cost of the system (1), J(K), is the same as the
total cost of the deterministic system x̃t+1 = Ax̃t + Bũt
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with x̃0 ⇠ N(0,⌃W ):

JS(K) = EK,S

1X

t=0

x̃
>
t Qx̃t + ũtRut.

The result now follows by Lemma 1 of [2]. ⌅
b) Information-Theoretic Lower Bounds: Intuitively,

estimating a function f(A,B) while only having access to
samples from the unknown system (1) becomes hard if there
are parameter variations A

0 and B
0 such that the behavior of

x
0
t+1 = A

0
x
0
t+B

0
u
0
t+wt is very close to that of system (1)

while the difference between f(A,B) and f(A0
, B

0) is large.
This can be formalized by the Le Cam’s two-point method:

Lemma 7 (Le Cam’s Two Point Method): Fix two sets
M and D. Let L : M⇥D ! R+ be any loss function and
suppose that S1, S2 2M satisfy L(S1, dec) +L(S2, dec) �
�, 8dec 2 D. Then

inf
K

sup
S2S

ESL(S,K) � �

2
(1� dTV(PS1 , PS2)).

In other words, if for any decision the average loss is large,
then a decision-maker that cannot distinguish between these
two instances will suffer large loss on average, and therefore
also in the worst case.

Proof of Lemma 7. We lower-bound the supremum over
M by an expectation over the two-point mixture distribution
supported on S1 and S2 as follows:

inf
dec

sup
S2S̄

ESL(S, dec) � inf
dec

ESL(S1, dec) +ES2L(S2, dec)

2

=
1

2
inf
dec

 Z
L(S1, dec(x))PS1(dx)

+

Z
L(S2, dec(x))PS2(dx)

!

� �

2

✓Z
min(PS1(dx), PS2(dx))

◆

=
�

2
(1� dTV(PS1 , PS2))

as per requirement. ⌅
Since dTV 

q
1
2dKL by Pinsker’s inequality, the follow-

ing result is convenient to state.
Lemma 8: Let S0 = (A0, B0) and S1 = (A1, B1) and

denote by P1 and P2 the induced probability measures over
samples (x0, . . . , xT ) satisfying the recursion (1) with A =
Ai, B = Bi, i = 0, 1. Then

dKL(P1, P2) =
T�1X

t=0

1

2
E1k(A0 �A1)xt + (B0 �B1)utk2⌃�1

W

where E1 denotes integration with respect to P1 and the
norm k · k⌃�1

W
is the Mahalanobis norm with kernel ⌃�1

W .
Proof of Lemma 8. Each random variable xt is condition-

ally Gaussian given (x0, . . . , xt�1) so that the KL divergence
is given by half the expected square difference in conditional
mean. The result follows by straighforward computation and
the chain rule. See for instance [30, Chapter 8]. ⌅

Fig. 1: Gradient estimate spread as a function of b for the
scalar system (14). Notice that poor controllability (small b),
leads to noisy gradients. The vertical axes show the stan-
dard deviation of

���rKJ(K;S)� [rKJ

���
op

across multiple
trajectories.

c) Simulation: In Figure 1 we numerically verify the
claims made for scalar systems in Section II-B with a =
1, �w = 1 and variable b. For the first plot, we use
trajectories of length T = 100 and compute the least
squares certainty equivalent (plug-in) gradient estimate using
a single trajectory. The error is then averaged over N = 100
trajectories. For the second plot, we also use trajectories
of length T = 100. However, we use N = 10000 many
trajectories divided into batches, with each batch containing
100 trajectories. Each batch is then used to compute a 0-th
order gradient estimate (see [2, Algorithm 1]). The second
plot shows the estimator error averaged over these batches.
Notice that for either estimator, the performance diverges in
the low-controllability regime b ⇡ 0.
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