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Abstract— Designing distributed optimal controllers subject
to communication constraints is a difficult problem unless struc-
tural assumptions are imposed on the underlying dynamics and
information exchange structure, e.g., sparsity, delay, or spatial
invariance. In this paper, we borrow ideas from graph signal
processing and define and analyze a class of Graph Symmetric
Systems (GSSs), which are systems that are symmetric with
respect to an underlying graph topology. We show that for
linear quadratic problems subject to dynamics defined by a
GSS, the optimal centralized controller is given by a novel class
of graph filters with transfer function valued filter taps and
can be implemented via distributed message passing. We then
propose several methods for approximating the optimal cen-
tralized graph filter by a distributed controller only requiring
communication with a small subset of neighboring subsystems.
We further provide stability and suboptimality guarantees for
the resulting distributed controllers. Finally, we empirically
demonstrate that our approach allows for a principled tradeoff
between communication cost and performance while guarantee-
ing stability. Our results can be viewed as a first step towards
bridging the fields of distributed optimal control and graph
signal processing.

I. INTRODUCTION

Computing a distributed optimal controller in which sub-
controllers have access to subsets of global system infor-
mation is in general a computationally intractable problem.
Indeed, even when restricted to quadratic costs, Gaussian
noise, and linear dynamics, the resulting optimal controller
can be nonlinear and difficult to compute [1]. Nevertheless,
significant progress has been made in distributed optimal
controller synthesis over the past two decades by identifying
structural assumptions on the underlying dynamics and infor-
mation exchange structure such that the resulting distributed
controller synthesis problem is convex.

One such structural assumption that has been shown to
lead to tractable distributed optimal control problems is
spatial invariance [2] (and other closely related notions of
symmetry [3]). Such systems are invariant under subsys-
tem permutations, and have been shown to have optimal
centralized controllers that are approximately distributed. In
particular, this allows for distributed controllers that enjoy
stability and near-optimality guarantees to be computed by
appropriately truncating the centralized controller.
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Contributions: In this paper, inspired by results from
graph signal processing, we introduce the notion of Graph
Symmetric Systems (GSSs), which are systems that are
symmetric with respect to an underlying graph topology
(formalized in §II-A). We show that for such systems, the re-
sulting Linear Quadratic (LQ) centralized optimal controller
admits an efficient message passing implementation in the
form of a novel class of graph filters defined by transfer
function filter taps. We subsequently propose and analyze
two complementary approaches to computing near-optimal
distributed controllers by truncating the centralized optimal
controller subject to stability constraints. By leveraging tools
from robust System Level Synthesis (SLS) [4], [S], we show
that these truncation algorithms can be solved via convex
optimization, and that the resulting distributed controllers
enjoy sub-optimality guarantees relative to the centralized
optimal controller. These results constitute an important first
step towards bridging the complementary, but traditionally
disparate, fields of distributed optimal control and graph
signal processing.

Related work: An alternative structural assumption for
tractable distributed optimal control of linear systems can
be specified in terms of the sparsity and delay patterns of
the control system. In particular, it is possible to charac-
terize conditions on the sparsity and delay patterns of the
information exchanged between subcontrollers relative to the
propagation of signals through sparse and delayed distributed
plants such that distributed optimal control is tractable. The
seminal paper [6] introduced the notion of quadratic invari-
ance,! which built upon and generalized funnel causality [7],
showed that so long as subcontrollers could communicate as
quickly as control signals propagated through the plant, then
the resulting distributed optimal control problem could be
solved via convex optimization. This convex parameteriza-
tion of sparse and delayed controllers has since been further
generalized in the System Level Synthesis (SLS) [5] and
Input-Output Parameterization (IOP) [8] frameworks, which
allow for even richer classes of sparsity and delay patterns
to be imposed on distributed controllers.

A related class of distributed controllers are those based
on Graph Neural Networks (GNNs). GNNs can be viewed
as graph filters followed by pointwise nonlinear activation
functions [9], and among other favorable properties, enjoy
stability to graph perturbations [10]. While recent use of
GNNs for distributed control has shown promise [11]-[13],

'We note that spatially invariant systems, as defined in [2], also satisfy
quadratic invariance. We show in Appendix B that graph symmetric sys-
tems and controllers lead to optimal control problems satisfying quadratic
invariance.
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such results currently lack strong guarantees of stability.
We believe the results in this paper are a first step towards
addressing this gap in the literature, by explicitly connecting
graph filters and distributed optimal controllers. The direct
relationship between graph filters and GNNs suggests that
understanding the former will give insight in the effects of
the latter.

Notation: We use upper- and lower-case letters such as A
and z to denote matrices and vectors respectively, although
lower-case letters might also be used for scalars or functions
(the distinction will be apparent from the context). For both
upper- and lower-case letters, we use boldface such as A
and ¢ to denote transfer matrices or vector/scalar transfer
functions.

II. THE LINEAR QUADRATIC REGULATOR PROBLEM FOR
GRAPH SYMMETRIC SYSTEMS

Consider a discrete-time linear time-invariant (LTI) system
composed of N interconnected scalar subsystems, each with
state z;(t) € R, control input u;(t) € R and which evolves
under the dynamics

Z Aja;(t) + Z Biju;(t)

for suitable matrices A;;, B;; descrlblng the interaction be-
tween subsystems. Here w;(t) is an i.i.d. zero-mean noise.
We can compactly express the dynamics of the full system
in terms of the joint states z(t) = [z1(t),...,zn(¢)]" and
joint control actions wu(t) = [uy(t),...,un ()] as

xz(t+1) = Az(t) + Bu(t) + w(t), )

where (A, B) are defined such that the global dynamics (2)
are consistent with the subsystem dynamics (1).

Our goal is to find a (potentially time-varying) state-
feedback controller K; that minimizes the cost

J({z()} {u(t)}) =
1
Jim tZEw Qa(t) +

where u(t) = K(z(t)) and @ > 0,R > 0 are known
symmetric N x N matrices. The Linear Quadratic Regulator
(LQR) problem is then given by

mlén J{z®)} {u®)}) s tou®) =Ki(z(t). @

In the centralized setting where each subsystem has access
to the global state, it is well-known that the controller that
solves (4) is a linear static controller u(t) = K*xz(t) where
K* = —(R+B"PB) " 'B" PA and P is the unique solution
to the discrete-time algebraic Ricatti equation:

P=ATPA—ATPB(R+BTPB) 'BTPA+Q. (5

i(t41) )+ wi(t), (D)

u(t) Ru(t)]  (3)

In this work, we consider a distributed variant of (4) where
each subsystem can only exchange information with a small
subset of subsystems. Specifically, this communication con-
straint is encoded as a graph G = {V,€}, where V =

{v1,...,vn} is the set of N components (nodes) and where
E CV x V is the set of the corresponding interconnections
(edges). It is assumed that the graph is undirected, i.e.
(vi,vj) € € if and only if (v;,v;) € £. As described in the
introduction, general information exchange constraints can
lead to non-convex optimal control problems [1]. However,
as we show later, under suitable graph symmetry assump-
tions on the dynamics matrices A, B and the cost matrices
@, R, the optimal centralized controller admits a distributed
message passing implementation allowing for a principled
tradeoff between communication complexity and controller
performance.

In the rest of this section, we borrow ideas from graph
signal processing [14] and introduce the notion of graph
symmetric systems. First, we introduce a convenient way to
define operations that respect the underlying communication
graph structure via the graph matrix description (GMD)
S € RV*N_ The matrix S is such that the (i, ;)" entry is
zero whenever there is no connection between components
Vi and Vs, i.e. [S]” = 0 if ¢ 7é j and (vi,vj) ¢ E.
Note that, since the graph is undirected, the matrix S is
symmetric. Therefore, it has an eigedecomposition in terms
of an orthonormal basis of eigenvectors S = VAgV " where
As € RV*N is a diagonal matrix with elements A\g; € R
such that Sv; = Agv; for v; € RN being the i column
of V. We now introduce the notion of a graph symmetric
system.

Definition 1 (Graph Symmetric System). Given a GMD
S = VAgVT for a graph G, a linear system (2) is graph
symmetric with respect to G if the dynamics matrices A, B
are simultaneously diagonalized by V/, i.e.,

A=VAVT | B=VAVT, (6)
where A 4, Ap are diagonal.

Note that Definition 1 does not require the dynamics
to be sparse. In fact, matrices A and B of the form in
Definition 1 can be arbitrarily dense, i.e., the evolution of
a subsystem state x;(t+ 1) can depend on subsystems that ¢
cannot directly communicate with [15]. This is distinct from
sparsity/delay constraints used in [5], [6], [8], and encodes
a different notion of symmetry than that exploited in the
distributed control of spatially invariant systems [2].

By well-known results in graph signal processing [14],
simultaneous diagonalizability of the system matrices (A, B)
and the GMD S implies? that they can be written as matrix
polynomials of S of degrees at most N — 1,

N—-1 N-1
A=>"haxS* , B=> hpiSt. (D)

k=0 =0
Matrices that can be expressed in this matrix polynomial
forms are called graph filters [16] and the coefficients
ha.,hp i are referred to as the filter weights or filter taps.

2Under the assumption that S corresponds to a finite graph and has all
distinct eigenvalues. On a high level, the result follows directly from the
Cayley-Hamilton theorem.
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We now give a message-passing interpretation of graph
symmetric systems. First, it can be seen from the sparsity
pattern of the GMD S that the output of Sx(t) can be
computed entirely as a linear combination of the states in
nodes 1 hop away in G. To see this, consider the operation
Sz(t) whose i entry yields

[Sz(t)]; = Z

j:(vjavi)e“:

(S5 (t)];- (8)

More generally, when considering polynomials, it is observed
that S*z(t) is equivalent to exchanging k times information
with one-hop neighbors. Therefore, if the system matrix A
and the control matrix B are polynomials of S, then the
evolution of the system can be computed entirely by means
of exchanges with neighboring nodes. Hence, the system dy-
namics can be viewed as implementing distributed message
passing [9]. Examples of such linear, distributed systems,
include both discrete-time and continuous-time diffusions,
solutions to the heat equation, among many others, see [15]
and references therein.

For the rest of the paper, we also assume that the cost
matrices for the LQR problem (4) can also be simultaneously
diagonalized with the dynamics matrices. Formally, we make
the following assumption.

Assumption 1. The system (2) defines a graph symmetric
system with respect to a fixed GMD S, and the cost matrices
(Q, R) defining the LQR problem (4) are graph symmetric
with respect to .S, i.e., they are simultaneously diagonalized
by the ortho-bases V' satisfying S = VAgV . In particular

Q=VAQVT | R=VARrV',

where Ag, Ar are symmetric.

III. OPTIMAL DISTRIBUTED LINEAR CONTROLLER VIA
SYSTEM LEVEL SYNTHESIS

SLS provides a convex parameterization of achievable
closed-loop system responses [5], [17], which can be lever-
aged to show that the optimal controller for graph symmetric
systems under Assumption 1 can be written as a novel class
of graph filters defined by transfer function valued filter taps.

A. Background: System-Level Synthesis
As noted in §4 of [S], we can compactly write the system
dynamics (2) in the frequency domain as

(21 — A)x = Bu+w,

where x = >,° )z~ "x(t) is the signal z(t) in the z-domain,
and idem for u and w. For a (dynamic) linear state-feedback
controller u = Kx, it follows immediately that

x = (2 — A— BK) 'w =: ®,(2)w,

u=K(2I - A— BK) 'w = &,(2)w, @

where ®,(2) € CV*Y and ®,(2) € CV*V are system
responses that map the disturbance w to state x and control
input u, respectively. The following SLS theorem states that

all achievable responses lie in an affine subspace of strictly
proper stable rational transfer functions %R'Hoo.

Theorem 1. [5, Thm. 4.1] For the LTI system evolving under
the dynamics (2) and control policy u = Kx, the following
statements are true:

1) The affine subspace defined by

@,

[z2I-A -B| [<I>u

] =1, ®,,®,¢c 1’R?—loo
z

(10)
parameterizes all system responses from w to (X, u) as
defined in (9), achievable by an internally stabilizing
state feedback controller K.

2) For any transfer matrices ®,, ®,, satisfiying (10), the
controller K = ®,® ! is internally stabilizing and
achieves the desired system response in (9).

For disturbance w(t) N (0,I), one can recast the
optimization problem (4) in terms of system responses ®,
and ®,, as
2

2
minimize HQW%H n HR1/2<I>u
(I’:mq)u Hz 'Hz (11)
s.t. constraint (10).

With a slight abuse of notation, we define J(®,, ®,,) to be
the LQR cost achieved by @, and ®,, in the objective of (11)
and J(K) as the cost (3) achieved by applying controller K.

B. SLS for Graph Symmetric Systems

We now proceed to show that under Assumption 1, the
optimal system response for a graph symmetric system that
solves the LQR problem (11) can be written as a graph filter.

Theorem 2. Given a GMD S = VAsVT, consider an
instance of the LQOR problem (11) where the underlying
system and cost satisfy Assumption 1. Then, there exists
a global optimum (®%, ®) where both ®} and P} are
diagonalizable by V, i.e.,

O =VAV', & =VAV',
where A and A}, are diagonal transfer matrices. Hence,
the optimal controller K* = (®X)(®%)~! can also be
diagonalized by V.
Proof. See Appendix. [

Remark 1. Note that the elements defined by the diagonal
responses AX, A% are fransfer functions [AL]:i(2), [AL]ii(2).
Thus the resulting graph filter taps are transfer functions as
well, i.e., a transfer function ®(z) that is simultaneously
diagonalizable with the matrix S' can be written as:

N-1

B(z) = > Pp(2)S". (12)
k=0

The main implication of Theorem 2 is that the optimal

linear state-feedback controller for graph symmetric systems

under Assumption 1 is a graph filter and can thus be imple-

mented via distributed message passing. We note, however,
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that the above result implies that the resulting optimal system
response ®* := (&%, ®7) could be dense, as SV is dense
if S defines a connected graph. This can be undesirable in
practice, as it requires N — 1 communication exchanges with
one-hop neighbors, potentially causing significant delays if
the size N of the graph is large. In the next section, we
leverage a robust variant of the SLS parameterization given
in Theorem 1 to restrict the optimal system responses to only
the first F' < N — 1 filter taps while guaranteeing stability
and near optimal performance.

We end this section by noting that in the graph signal
processing literature [14], a controller of the form of (12)
is known as a linear, shift-invariant (LSI) graph filter, and
is analogous to an LTI filter. Note that S®*x = $*Sx,
hence the name. In particular, Equation (12) is a spatially
finite impulse response (FIR) graph filter [16] that is com-
pletely characterized by a finite set of N filter taps that
can be conveniently described by a collection of transfer
functions ¢* = [@},...,dN_1]T € RY. We emphasize
that the transfer functions themselves are not restricted to be
temporally FIR. Spatially FIR graph filters are also known
as convolutional graph filters [9] due to their sum-and-shift
nature, understanding that the effect of the operation Sx is to
shift the signal around the graph (thus, oftentimes, the GMD
S is referred to as the graph shift operator). Furthermore,
spatially FIR graph filters satisfy the convolution theorem
that indicates that a convolution in the vertex domain can
be computed by means of an elementwise multiplication in
the spectrum domain [14]. Finally, in the context of finite
graphs, it is observed that the space of FIR graph filters of
the form (12), characterized by N filter taps, is equivalent to
the space of spatially infinite impulse response (IIR) graph
filters as well as autoregressive, moving average (ARMA)
graph filters [18].

IV. LOCALIZED APPROXIMATIONS TO THE OPTIMAL
DISTRIBUTED LINEAR CONTROLLER

In this section, we discuss several methods to approximate
the optimal dense system response in the form of (12) with
one that is localized and uses F' < N filter taps. We start
with a projection method based on graph filter design. We
then present a robust SLS formulation of the approximation
problem that guarantees the stability of the resulting localized
controller. Finally, we show how these two can be combined
into a robust projection method that also ensures stability.
In the following, we define ®* := (®7, ®7 ), and recall that
®* can be written as a graph filter (12) defined by transfer
function filter taps ¢%(z), & = 0,...,N — 1. We further
recall that each transfer function filter tap ¢ (z) admits
the following expansion in terms of its Markov parameters:

bi(2) = 2275, 2 [l
A. Naive Projection

We propose an approach inspired by the graph signal
processing literature, wherein we exploit the graph filter

structure of the optimal system responses [16]. More specifi-
cally, we project the optimal system responses ®* onto graph

filters of order F' in the Hy norm by solving the following
optimization problem

m£n||¢—¢*||;2. (13)
Here ¢ = [¢(2),...,¢p_1(2)]T € CF collects the F'
transfer function filter taps defining ® := ZkF;Ol o (2)SF. If
we further restrict each transfer function filter tap ¢ (2) to be
FIR of order n, i.e., if we write ¢, (z) = >, 2 "¢y i], then
this reduces to solving the following unconstrained quadratic
program

n F-1 N-1
min > okli)St =Y rlils! (14)
(20N el | s 1=0 P

Proposition 3 (Approximating filter taps). If the eigenvalues
{\i} of the GMD S are all distinct, then the filter taps that
solve (13) are given by

Orli] = Prli] + exli] (15)

where € is the error vector computed as

N 4, N
elj] = (ZAZ'F)‘;I—F> (ZAiF}\;I—(NfF))dﬁVfF[j]
i=1 =1

(16)
with Xip := [1, A\, A2, ..., AF 71 € RE is the collection of
the first F' powers of \i, Ayn—F) = [)\f,...,)\évfl] €

RN=F is the collection of the remaining powers and

oN_rli] == [o%li], ..., o _11i] € RN=F collects the tail
N — F optimal filter taps.

Proof. 1t follows from using the convexity of (14), matrix
calculus and properties of Vandermonde matrices. O

Prop. 3 determines in closed-form how to compute the
filter of order F' that best approximates the optimal linear
distributed controller in the 5 norm. It also shows that each
filter tap transfer function ¢, (z) is obtained as the optimal
tap ¢} (z) with an added corrective term that accounts for
the N — F' taps that could not be included.

This approach is easy to implement computationally, as it
only requires solving a least squares problem to minimize the
projection cost. However, the resulting controller cannot be
guaranteed to be stabilizing. As we show later via numerical
simulation, approximations with a small number of filter taps
F' are often unstable. This motivates an approach that takes
into account the stability of the resulting controller.

B. Localized Approximations via Robust SLS

Robust SLS [4], [5] offers a systematic way to reason
about approximate system responses, i.e., system responses
that do not exactly satisfy the achievability constraint (10).
In particular, as shown in the following result, robust SLS
allows for an explicit characterization of the effects of using
approximate system responses for controller design.
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Theorem 4 (Corollary 4.4 of [5]). Let (®,,®,,A) be a
solution to
P,

:I—4 —B [cbu

1
:| :I+A, q)m(I)uefR,HOO'
z

a7
Then if ||All3.. < 1 the controller K = ®,® ! stabilizes
the system (2), and the actual system response that is
achieved is given by

- [2] o=

We leverage this result to provide an upper-bound on the
amount of truncation that can be applied to ®* without
destabilizing the system.

Corollary 5. Let (®,,®,,A) be a solution to (17) and
assume that ||All,, < 1. Then the controller K = ®,®,!
achieves an LOR cost (11) J that can be bounded as

1 Ql/? 0 ,I,x
0w fa

S -
L—[lAfl.,
Proof. First, we note that by Theorem 4, the system re-

sponses (®,, ®,,) achieved by K are given by

EJ _ [iz] (I+A)

Thus, the cost achieved by the controller K is bounded by
J(K) = J(®,, D)

= ’HQ;/Q R?/g] [iﬂ (I+A)™"

J(K)

»

Ho

_ QY2 0 ] [®,
<[l +a) 1“%‘ [ 0 RV2) |2,
1 QY2 0 ] [®,
T 1Al 0 RY?||®, |

where we used Cauchy-Schwarz in the first inequality and
the small gain theorem and the fact that ||Afl,, < 1in the
last step.

Corollary 5 offers a way to synthesize stable truncated sys-
tem responses. Specifically, to synthesize a system response
that uses only F' < N — 1 filter taps while guaranteeing
both stability and performance, we propose the following
optimization problem:

L 1 Q72 0 ] [®,
Jrmmize |90 ] (3] s
P,
st. [:I—A —B] [szl—i—A,

A, <7

F-1
B.(2) = 3 6,1(2)8", bou(2) € SR,
k=0

F-1
1
@u(Z) = Z ¢u,k(2)5k7 ¢u,k(’z) € ;RHO@
k—
’ (18b)

By Corollary 5, the solution to (18) defines a controller
that is stabilizing. We further show in the next result that
it enjoys guaranteed suboptimality bounds relative to the
optimal controller defined by ®*. We first introduce the
following notation: for a system response of the form ® =
Zgz_ol ¢1.(2)S*, we define the F-truncation Pp(®) and the
F-tail Pp, (®) as

F-1 N-1
Pp(®):= 3" ¢(2)S*, Pri(®):= > y(2)S".
k=0 k=F

Theorem 6. Let (®,,®,,7) be the optimal solution to
the robust SLS problem (18). Let (®},®7) be the optimal
solution to the untruncated SLS problem (11). Suppose that

[A 5y, = (2] = A)Pp1(®7) = BPpi(®3)lly, < 1.
Then, the controller K = ‘i’u'i;l is stabilizing and

1

J(K) <
L= [[A*]l,

(J(@7, @)+
J(Pru(®2), Pru(®1)))  (19)

Proof. By the constraints (18b) and Theorem 4, we im-
mediately have that K is stabilizing. To show the given
suboptimality bound, we first note that there exist some
such that (Pr(®%), Pr(®%),) is a feasible solution to the
robust optimization problem (18). To see this, observe that

-4 5] [ (3]
et ) [B] < -a -y [f7e12)]

=1- A",

where the last step follows from the achievability of the
optimal response (@}, @) and the definition of A*. Thus,
(Pr(®7), Pr(®7), [[A*[,,_ ) is a feasible solution with our
assumption that [[A*[[;, < 1. Denote the robust SLS
objective (18) as J(®,,®,,~). By the optimality of the
solution (<i>x, >, %), we have that

J(®0,8,,7) < J(D}, 9}, A5, )
1 QY2 0 Pp(®%)
0  RYZ?| |Pp(®})

<
1—[[Aa*]h,

where we applied Corollary 5 in the second inequality. The

desired result follows then from the fact that

ied) - o] - )

and an application of the triangle inequality. O

H ’
Ha

This optimization problem is jointly quasi-convex and
can be solved efficiently using bisection. Further, feasibility
provides a stability certificate in the form of [|A[l,, < 1.
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C. Robust Projection

Lastly, we can combine the robustness constraints used
in robust SLS with the signal-processing-based projection
method. Specifically, we solve the following optimization
problem

minimize |® — &*||3,
(}m;‘}ufye((hl) 2

st. (D, Py,) satisfy constraint (18Db).

(20)

We note that solving this problem does not give an upper
bound on the cost of the resulting controller, but the ro-
bustness constraint ensures that the resulting controller is
stabilizing.

D. Implementation

We end this section by detailing practical implementation
details for optimization problems (18) and (20). First, we
note that computationally, one cannot directly optimize for
the IIR system responses as is written in (18), (20). In
practice, we use an FIR approximation of the strictly proper
transfer functions ¢, (z) and ¢,,(2), i.e., ¢(z) is parameter-
ized as

$(=) =3 =gl
i=1

for some given FIR order n. As shown in [5], the sub-
optimality incurred by such an FIR approximation decays
exponentially in the horizon n.

The H.-norm constraints on the (also FIR) transfer
matrix A can then be enforced via semidefinite programming
(see Theorem 5.8 in [19]), potentially introducing a nontrivial
computational burden. However, we note that one can replace
the Ho-norm constraint in optimization problems (18) and
(20) with any induced norm constraint. A particularly appeal-
ing option is the ¢; — ¢; induced norm (which defines the
L1-norm of the transpose system), as this norm decomposes
columnwise. As shown in [5], [17], the resulting robustness
constraints are linear and embarrassingly parallelizable. We
defer this extension to future work.

V. NUMERICAL EXPERIMENTS

We show that our approach offers a principled way to trade
off performance and communication complexity through
numerical experiments. We also demonstrate the importance
of the robustness constraints in synthesizing stable distributed
controllers and compare the performance of robust SLS
and projection-based methods on synthesizing localized con-
trollers. All code needed to reproduce the examples found
in this section is available at https://github.com/
unstable-zeros/graph-symmetric-systems.

A. Setup

In the following experiments, we consider the distributed
linear quadratic regulator (LQR) problem (4) over N = 10
scalar subsystems. We generate the GMD S and dynamic
matrices A and B using a process similar to that in [11]. To
generate a problem instance, we start by creating the com-
munication network G by randomly sampling N numbers

{u;}¥.; ~ U[0,1], and creating a bi-directional link between
v; and each of its 3 nearest points as defined by the topology
on the interval [0, 1] under the metric d(v;,v;) = |u; — u;|.
We then take S to be a symmetric matrix that shares the
sparsity pattern of the Laplacian of G, with its entry values
sampled independently from A(0,1). The GMD S is then
normalized to have a spectral radius of 1. We generate the
dynamics matrices A and B to share the same eigenvectors
as S, and sample their eigenvalues i.i.d. from the standard
normal distribution — hence both A and B are symmetric
matrices. We take the cost matrices ) = R = Iy. For
both of the following experiments, we randomly generate
50 problem instances using this process. We end by noting
that G generated this way have, on average, a diameter of
5.92 hops.

For the implementation of the optimization problems, we
approximate the transfer functions ¢(z) with an FIR horizon
of n = 10. Further, for the robust SLS problem (18), instead
of using bisection to determine the best value of ~, we fix
~v = 0.98, as empirically the value of v does not significantly
affect the cost achieved by the controllers.

Percentage of Stable Responses
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Fig. 1. The percentage of synthesized F-hop controllers that are stabilizing
using naive projection and robust SLS-based synthesis across 50 random
trials. The dashed red line denotes the average graph diameter of systems.

B. Importance of Stability Constraints

In this experiment, we demonstrate the importance of the
robust SLS-based stability constraints in synthesizing stable
distributed controllers. We vary the number of allowed filter
taps and apply both the naive projection (13) and robust SLS
(20) methods to 50 randomly generated problem instances.
For the naive projection method, we report the percentage
of resulting controllers that are stable. For robust SLS, we
report the percentage of optimization problems (18) being
feasible, as feasible solutions optimization problem (18)
are guaranteed to be stabilizing. The results are shown in
Figure 1.

First, we observe that as expected, a higher number of
filter taps result in a higher probability of synthesizing stable
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responses for both methods. However, the naive projection
method has nonzero probability of resulting in an unstable
controllers even with a large number of filter taps i.e.,
even when the projection error between the stable optimal
system responses and the projected responses is small. On the
other hand, the percentage of stable solutions resulting from
the robust SLS problem increases monotonically with the
number of filter taps, which is expected for a principled way
of synthesizing stable controllers. Robust SLS also generally
achieves a higher percentage of certifiably stable responses
than that of naive projection, except for in the extremely
sparse case of ' = 3. This suggests that the robust constraint
might be too restrictive for synthesizing extremely sparse
responses. Combined with the low computation cost of naive
projection, this suggests a potential benefit of applying both
methods in the sparse regime.

Performance vs. Truncation
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Fig. 2. Cost achieved by F'-hop controllers across 50 randomly generated
systems. Solid lines denote the median cost achieved by each method, and
the shaded regions show the 25-th and 75-th percentile of the costs.

C. Truncation Performance

In this experiment, we compare the performance of robust
SLS and robust projection for different filter tap numbers
F on the same 50 randomly generated problem instances.
We show the median (solid lines), 25-th and 75-th percentile
(shaded regions) of the costs achieved by both methods in
Figure 2.

First, we note that the median costs decreases monoton-
ically for both methods as the number of hops increase.
This shows that that the optimization problems can leverage
the increase in expressivity of the graph filters to achieve
better performance, which matches our intuition. Second,
we note that the robust SLS-based method achieves a lower
cost than robust Projection over for all numbers of filter taps
considered. We also note that to the left of 4 hops, the upper
boundary of the shaded region, which represents the 75-th
percentile of the cost, is infinite, indicating that at least 25%
of the robust synthesis problems are infeasible. This again
suggests a need to develop more flexible methods in the
sparse regime.

VI. CONCLUSION

In this works, we introduced the notion of graph sym-
metric systems and showed that for linear quadratic prob-
lems, the optimal system response for graph symmetric
systems can be written as (potentially dense) graph fil-
ters. We then proposed three methods to approximate the
optimal responses with localized responses and validated
their performance in numerical simulation. Directions of
future work include relaxing the GSS constraints, applying
the results on £; norm to enable distributed computation,
and understanding how this can better inform GNN-based
controllers with nonlinear activation functions.
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APPENDIX

A. Proof for Theorem 2

We show that for any optimal system response ®;, @
of the optimization problem (11) that is not diagonalizable
with V, i.e.,

T T
A =V'®V, A=V &V
are not diagonal, we can construct a simultaneously diago-

nalizable system response ®/,, ®/, that is equally optimal. In
particular, we construct such a system response as follows:

® =VAVT & =VA VT 1)
Ay i= [Andij i=J
A/ i = [ xlt] , A/ i = wlit] .
[Asliy {0, 0.w. [Auliy {O 0.W.
(22)

We first show that ®/, ®/ are feasible solutions of (11).
From the achievability condition on ®},®”, we have that
(2] — A)®* — B®!, = I. (23)

Using the simultaneous diagonalizability of A and B, we
have

V(I —A)VTVAVT — VARV VAV =1

= (2] —AA)AL —ApAi=1. (24
Since the matrices (2 — A4), Ap and I are diagonal, we
have

(ZI—AA)A; —ABA; = diag (ZI—AA)A; _ABA; = I,

(25)
where diag[M] projects a matrix M onto its diagonal ele-
ments. Therefore, ®/,, ®! is also feasible.

Now, we show that ®/,, ®/ gives a cost at least as good as
that of ®}, ®7. By the simultaneous diagonalizability of the
matrices (Q and R, and the fact that the H5-norm is invariant
under unitary transformations, we have that

2

+ HR1/2¢,/ 2
Hy v

HQ1/2¢,/

Ho
1/2 1/2
HVAQ/ VTVA;VTHH2+HVAR VTVA’UVT‘

Denoting the i-th eigenvalue of Q and R with Ag i, Ar,
respectively, we have the inequality
2 2

A1/2A’ HA1/2A,
H Q T Hs + R u

Hy

2 2
= i llALillsy, + Y Ari ALl
i i
(27)
2 2
< Z Aq.i lI[AZ]jill5, + Z)\R,i (A% ]5ill3,
%, 4,3

2

:’ ,
Ho

which follows from the definition of A/, and A/, in equation
(22). Reversing the steps in (26), we see that ®! P/
achieves a cost at least as good as that of ®7, ®%. We can
thus conclude that there always exists an optimal simultane-
ously diagonalizable system response to the LQR problem
(11). The controller K’ = (®!)(®’,)~! is thus optimal and
simultaneously diagonalizable by V.

2
1/2 5 % 1/2 5 «
AY2A; 7{2+HAR A%

B. GSS and Controllers Satisfy Quadratic Invariance

Here we show that optimal control problems over graph
symmetric systems and controllers satisfy quadratic invari-
ance [6]. Before proceeding, we remark that the analysis of
LQR optimal control problem over GSSs does not require
quadratic invariance. In particular, in Theorem 2 we analyze
the unconstrained optimal control problem and show that
the resulting unconstrained optimal controller satisfies a
corresponding notion of graph symmetry. However, in the
interest of completeness, we show that if such a constraint
were imposed on the controller during synthesis, the resulting
problem satisfies quadratic invariance.

To that end, the corresponding constrained controller syn-
thesis problem can be stated as
J(K)

min%nize
subject to K stabilizes system (2)
Kes
where S := {S € RH | S is diagonalizable by V'}.
Denoting the plant input-output transfer function as
G(z) = (2 — A)7'B,

we have the following proposition.
Proposition 7. The set of graph symmetric controllers S

is quadratically invariant under G if system (2) is graph
symmetric.

Proof. The proof follows directly from the definition of
quadratic invariance (see [6, Def. 2]) by straightforward
calculation. First, we note that

G(2) = V(2 — Aa) *AVT

is diagonalizable by V. For any controller K € S, it then
follows immediately that

Ho KGK e S
= H AgQ A, ? 4 H A}%/Q A 2 ) as the product of simultaneously diagonalizable matrices is
Ho Ho (26) also simultaneously diagonalizable, proving the claim. [
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