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Abstract—In conventional particle beam microscopy, knowl-
edge of the beam current is essential for accurate micrograph
formation and sample milling. This generally necessitates offline
calibration of the instrument. In this work, we establish that
beam current can be estimated online, from the same secondary
electron count data that is used to form micrographs. Our meth-
ods depend on the recently introduced time-resolved measure-
ment concept, which combines multiple short measurements at a
single pixel and has previously been shown to partially mitigate
the effect of beam current variation on micrograph accuracy.
We analyze the problem of jointly estimating beam current and
secondary electron yield using the Cramér-Rao bound. Joint
estimators operating at a single pixel and estimators that exploit
models for inter-pixel correlation and Markov beam current vari-
ation are proposed and tested on synthetic microscopy data. Our
estimates of secondary electron yield that incorporate explicit
beam current estimation beat state-of-the-art methods, resulting
in micrograph accuracy nearly indistinguishable from what is
obtained with perfect beam current knowledge. Our novel beam
current estimation could help improve milling outcomes, prevent
sample damage, and enable online instrument diagnostics.

Index Terms—electron microscopy, estimation theory, Fisher
information, gallium ion beam, helium ion beam, neon ion
beam, Neyman Type A distribution, Poisson processes, Touchard
polynomials.

I. INTRODUCTION

ARTICLE beam microscopes image samples by detecting

the secondary electrons (SEs) expelled from the sample
by an incident beam of charged particles. Scanning electron
microscopes (SEM) employ an electron beam while newer
focused ion beam (FIB) microscopes use a beam composed
of heavier ions, such as helium, neon, or gallium. FIB micro-
scopes tend to have higher SE yield, larger depth of field, and
finer resolution [1]-[3]. Due to the heavier incident particles,
these instruments are also often used to perform milling. Image
quality and milling accuracy depend heavily on the ability

This work was supported in part by a Draper Fellowship, a Boston
University Clare Boothe Luce Scholar Award, and by the US National Science
Foundation under Grant No. 1815896.

S. W. Seidel is with the Department of Electrical and Computer En-
gineering, Boston University, Boston, MA 02215 USA and is a Draper
Scholar with Charles Stark Draper Laboratory, Cambridge, MA 02139 USA
(sseidel@bu.edu).

L. Watkins, M. Peng, and V. K. Goyal are with the Department of Electrical
and Computer Engineering, Boston University, Boston, MA 02215 USA
(luisaw @bu.edu; mxpeng@bu.edu; v.goyal @ieee.org).

A. Agarwal was with the Department of Electrical and Computer Engi-
neering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(akshayag @mit.edu).

C. Yu is with Charles Stark Draper Laboratory, Cambridge, MA 02139
USA (cyu@draper.com).

(b) Micrograph resulting from
beam current in (a)

(d) Micrograph resulting from
beam current in (c)

(c) Beam current incident on
sample in Neon beam system

Fig. 1: Synthetic examples of stripe artifacts in simple models for
helium and neon beam microscopes. A helium beam current is
continuous-valued and slowly varying; a neon beam current has
discrete jumps between known values. In (a) and (c), the displayed
dose parameter A is the mean number of incident ions per pixel during
one pixel dwell time which is a scaling of the beam current using
the ion charge and dwell time.

to maintain a stable beam current. However, contamination
within the instrument [4], or age of the source tip, may
cause the beam intensity to fluctuate away from the desired
setting. When the beam is raster scanned across a sample,
these fluctuations give rise to horizontal stripe artifacts in
the micrograph. Figure la shows the beam current incident
on a horizontally raster-scanned sample when the beam has
slow, smooth intensity variation as often seen in SEM and
helium ion microscope (HIM) systems [5]. Figure 1b depicts
the corresponding stripe artifacts that arise when a micrograph
is formed under the incorrect assumption of constant beam cur-
rent. Neon beam microscopes have been less widely adopted
because of difficulties in maintaining a stable beam current.
Here, the beam current can be modeled as toggling between
known values [6], [7], as shown in Figure 1c. The resulting
artifacts are shown in Figure 1d. Real-time knowledge of the



beam current could prevent these artifacts, provide the operator
an indicator of instrument fitness, and enable the instrument
to adjust dwell time to improve milling outcomes and avoid
sample damage.

Since existing particle beam microscopes do not measure
or estimate beam current, algorithms have been developed
to remove stripe content from micrographs post facto. For
example, in [5], [8], [9], low-frequency image content is
removed, with [9] also including total variation denoising.
Several algorithms [10]-[12] have also been developed to
reduce the ‘curtaining’ effect that arises due to variations
in an ion beam’s milling rate. Unlike the stripe artifacts
shown in Figures 1b and 1d, which arise when the image
formation algorithm incorrectly assumes a constant beam
current, curtaining stripes accurately reflect grooves made in
the underlying sample during milling.

In this paper, we establish that beam current can be accu-
rately estimated online, from the same SE count data used to
form a micrograph, without the use of a calibrated sample.
This may seem to be like estimating two quantities from a
single noisy measurement. While that would be impossible
without additional assumptions, here we take advantage of the
time-resolved (TR) measurement concept introduced in [13].
TR measurement divides the dwell time into n shorter sub-
acquisitions and can be implemented without changes to the
instrument. It enables estimation of the number of incident
particles despite the variability in the numbers of SEs gen-
erated by the incident particles. This was previously shown
to improve micrograph accuracy [13], [14] and to provide a
natural robustness to imperfectly known beam current [15],
[16]. Another use of multiple short measurements is to reduce
blurring due to sample drift [17]. In this work, we go beyond
robustness to explicitly estimate the beam current. In addition
to improving the accuracy of the estimated SE yield (i.e.,
producing a better micrograph), this is of interest for control of
sample damage, milling accuracy, and instrument diagnostics.

A. Main Contributions

o An analysis of the joint estimation problem. The Cramér—
Rao bound (CRB) for joint estimation of SE yield and
beam current from TR measurement is derived and used
to show that under certain conditions, joint estimation is
vanishingly more challenging than estimation of SE yield
alone.

o Demonstration of joint estimation of SE yield and beam
current at a single pixel. Proposed estimators are evalu-
ated on synthetic data and compared to the CRB.

o Joint estimation algorithms that exploit models for beam
current variation and inter-pixel correlation. Causal and
non-causal joint estimators are proposed to exploit contin-
uous and discrete Markov models for beam current, and
for the continuous case total variation regularization of SE
yield is also incorporated. Tested on synthetic microscopy
data, the SE yield estimates are shown to beat state of
the art methods, and beam current estimates are shown
to closely match the ground truth.

o Numerical methods for Neyman Type A distributions.
Expressions and approximations for derivatives of the
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Neyman Type A negative log likelihood in terms of
Touchard polynomials are given.

B. Outline

In Section II, we summarize microscope abstractions, mea-
surement models, and basic analyses from [14, Sect. II]. In
Section III, we use the Cramér—Rao bound to explore the
feasibility of joint estimation. Then, joint estimation at a single
pixel is demonstrated in Section I'V. At the time scale of pixel-
to-pixel scanning, beam current does not vary arbitrarily. Thus,
we develop methods to exploit simple Markov models for the
beam current. In Section V, motivated by electron and helium
ion beams, we consider joint estimation for continuous-valued
smoothly varying beam current. In Section VI, motivated by
neon ion beams [6], [7], we consider joint estimation where
beam current is known to flip back and forth between two
known values. Section VII provides concluding comments on
the promise of joint estimation in particle beam microscopy.

II. MEASUREMENT MODELS AND BASELINE ESTIMATORS

In this section, we describe our measurement model for the
particle beam microscope, assuming direct SE detection; see
[14, Sect. II] for additional details. Though not yet common
in commercial hardware, direct SE detection provides higher
signal-to-noise ratio than employing scintillators and photo-
multiplier tubes [18]-[21]. The advantages of time-resolved
sensing do not depend on direct SE detection, as demonstrated
experimentally in [13]. Although our model describes both
electron- and ion-beam microscopy, we will refer to incident
particles as ions.

A. Conventional Measurement

The incident ion beam may be accurately modeled as a
Poisson process [22]. So, at a single pixel with dwell time £,
the number of incident ions M is a Poisson random variable
with mean A = At, where A is rate of incident ions per unit
time. Dose is conventionally defined as the number of incident
ions per unit area. Since the absolute spatial and temporal
scales are not important in our abstractions or methods, we
will refer to A\ colloquially as the dose and—especially to
emphasize when it is unknown and potentially varying—as the
beam current." The number of detected SEs expelled by the
ith incident ion is also modeled as a Poisson random variable:
X; ~ Poisson(n). We refer to 7 as the sample SE yield at that
pixel. As discussed in [23], detector quantum efficiency can
be nearly 1. To relate the emitted SE rates to the detected SE
rates, one may scale by the inverse of the detector efficiency.

The goal in forming a micrograph is to show how 7 varies
from pixel to pixel. The number of incident ions M is not
directly observed,; it is at best inferred from the detected SEs.

At each pixel, a conventional microscope measures the sum
of all SEs over the dwell time: ¥ = Zﬁl X;. Modeled in

I'The true beam current is proportional to \: ip = gA = g\/t, where g
is the elementary electron charge.
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this way, Y is a Neyman Type A compound Poisson random
variable with probability mass function (PMF) given by

e Y = (Ae”")MmY
P S A) = =0,1,...
Y(ya , ) y| Tnzo m! Yy [ 5

6]

with mean
E[Y]= . 2

The conventional estimate for 7 assumes A is known and
operates independently at each pixel:

~baseline Y
ey, ) = 3)

When ) is assumed to be constant, but actually varies in time,
the conventional estimate (3) gives rise to prominent stripe
artifacts like the ones shown in Figures 1b and 1d.

B. Continuous-Time Time-Resolved Measurement

The continuous-time (CT) measurement model is an ideal-
ization of an FIB microscope first introduced in [14]. It allows
us to study the limits of TR measurement. Here, we imagine
that we have direct detection of SEs with perfect temporal
precision of each SE burst. In our model, some incident ions
result in no detected SEs because P(X; = 0) is nonzero. There
is no observed difference between the lack of an incident ion
and an incident ion resulting in no detected SEs. Thus, the CT
measurement is

{Ma (T17X1)a (T27X2)a . (T]uaX )} “)
where M is the number of incident ions that result in at least
one SE, T is the time of the ith such incident ion, and X is
the corresponding SE counts. The probability of an incident
ion yielding at least one SE is 1 — e™", so we have M ~
Poisson(A(1 — e~ ")) with PMF

_ A1 —e-m)™
Pyl 0.0) = exp(-A(1 - ) PEZEDT
m = 0,1,.... The X;s are independent and identically
distributed with PMF
. e nf .
PrlUin) =1—=5 o =L ©

which is the zero-truncation of the Poisson(n) distribution.
Several estimators of 7 from a CT measurement when A
is known were studied in [14]. Here, we are interested in the
assumed dose X\ not necessarily being equal to the dose A. The
CT maximum likelihood (ML) estimate evaluated using the
assumed dose A is the unique root of the following equation:

5 Y
ACTIA _ = (7)

C. Discrete-Time Time-Resolved Measurement

The discrete-time (DT) measurement model assumes the
per-pixel dwell time ¢ is split into n sub-acquisitions of equal
duration. Each sub-acquisition then has the same distribution
as a conventional measurement with dose \/n. A key observa-
tion of this paper is that the n-length DT measurement vector

contains rich information about both the dose A and SE yield
7. Imagine short sub-acquisitions with dose \/n small enough
that observing more than one incident ion per sub-acquisition
is unlikely. In this case, with large enough 7, the number of
sub-acquisitions where the number of observed SEs is strictly
positive is roughly equal to the number of incident ions.

In this work, we will use subscript k& for pixel index, so
pixel £ has beam current A\, and SE yield 7; vectors 17 and
A contain the values of 1 and A for each of the p pixels in
a sample. The vector y € RP" gathers measurements across
all pixels, with the vector of n time-resolved measurements at
the kth pixel given by y; = [y,(c ),y,(f), e y,(cn)]. Since the
entries in yy are independent, their joint PMF is

Py, (Y& M, Ak

)~ I1ev (v mede/n) . ®)

i=1

where Py (-; -,-) is given by (1). Under assumed dose ), the
DT ML estimator finds the value of 7y, separately at each
sample pixel, that maximizes the likelihood in (8):

i, x>—argmaxHPy(yk /). ©)

Mk

In this work, we use TR data to estimate both A and 7. When

oracle knowledge of the dose A is assumed while estimating
A

7, the estimate is denoted 7, nk

III. FEASIBILITY OF JOINT ESTIMATION OF SE YIELD
AND BEAM CURRENT

A single conventional measurement Y combines SE yield n
and beam current ) inseparably, as suggested by (2). However,
in this section, we show that using time-resolved data, joint
estimation of 7 and A\ becomes possible. In Section III-A we
derive CT and DT CRBs for the joint estimation problem. In
Section III-B, we discuss the challenge of joint estimation at
low-n pixels.

A. Cramér—Rao Bound

The CRB provides a lower bound for the variance of an
unbiased estimator of our unknown parameter 6 = [, A]. In
this section we derive the CRB for joint estimation of 7 and
A under both CT and DT measurement models and use them
to explore the feasibility and challenge of joint estimation.

1) Continuous-Time Cramér—Rao Bound: With a CT mea-
surement (4), the entries of the Fisher information (FI) matrix
are given by

791, =E
[ ]173 801

06,

[<8longTX(m t,Z;m, A))

77%1- (10)

As shown in [14, Sect. III-B], the FI about 7 in the CTTR
measurement is

(1, Al = A (}7 - ) . (an



The FI about A in the CTTR measurement is
267), 5 < E[J\Aﬂ Iz, (Nm) +Zgp(xsm)

(

D T, (12)

where (a) follows from the application of the chain rule
for FI, the fact that the conditional distribution of 7T} given
M has no dependence on 7, and the independence of

{M X1, Xo, ... X4z} and (b) from the fact that Pg (j; 1)
is not a function of A and thus Ig (A;m) = 0. It follows that
—~ 2
OlogP —(M; A\, n)
CT M 3 7Ny .
[I ]272 = IM(A;n) = < 3 ) A
g 2 e~ AA—e"M\(1 = e~
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1—e™m
= . 13
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The cross terms in the the FI matrix are
2912 = 2920

. <8logPM(]\7; A, n)) <8logP

oA

io (-a-eme ) (5

‘7:
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Thus, the full CT FI matrix is
1_ .- -n
7ot A (n € ) € : (15)
e " T(1—em)

When one parameter is to be estimated and the other is given,
the CT CRB is given by

-1
opx = CRBY (n|)) = [Z€7],4] " = 1 (1 — e”> ,

Ry = CRBY"(Aln) = [Zonlae) ' = et

When both 1 and A are unknown, the CT CRB for each
parameter is computed by inverting Zc:

B 1—e™"
072] > CRBCT(H) = [[ICT} 1]1,1 = 3(1 —e ) — Xe=n’
K (17a)
A1 —ne"
o} > CRBYT(A) = [[I97]71],, = § —(e—ﬂ)mi ni—"'
(17b)

Note that the CRBs when both parameters are unknown (17)
may be written in terms of the CRBs for that same parameter
when the other parameter is known (16):

CRBcr(n) = a(n) CRBer(n|A),
CRBcr(A) = a(n) CRBer(Aln),

(18a)
(18b)

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

102

ST

100 L L L L
0 1 2 3 4 5 6

Fig. 2: Factor from (19) by which the CRB for joint estimation of 7
and A exceeds that of estimating one parameter with the other given.

where
1—(1L+n)e " +ne

R

The factor «(n), which is plotted in Figure 2, represents the
added challenge of the joint estimation problem compared to
estimating one parameter given the other. When 1 > 2, as
is typical for FIB microscopy, «(n) ~ 1, and furthermore
lim,) 00 a(n) = 1; i.e., asymptotically, jointly estimating both
parameters is no more challenging. When 7 is low, M becomes
a less suitable proxy for, and contains less information about,
the number of incident ions M.

2) Discrete-Time Cramér—Rao Bound: The Fisher informa-
tion matrix about unknown parameter ¢ in n time resolved
measurements, each with a per sub-acquisition dose of A/n is
given by

[IDT (777 A; n)]i,j

AlogPy (y; n, 2) \ [ OlogPy (y; m, 2)
26, a6,
nf: (310gPy y; 1, A/ﬂ))
y=0

19)

=nE

n,A,n]

OlogP TN, A
o8Py WA/ b A ). 20)
20,
As derived in [13],
dlogPy (y; 0, A/n) _y  Py(y+1Lin,A/n)y+1 o1

an . Py(ymA/n)
and similarly, the derivative with respect to A is
dlogPy (y; 7, A/n) 1 Py(y+Lin,A/n)y+11
X o Py(ymA /) o X
(22)

Substituting (21) and (22) into (20) and truncating the series
appropriately enables numerical approximation of the FI ma-
trix. CRBs are then analogous to (16) and (17).

B. The Challenge of Low SE Yield Samples

In Section III-A, we showed that as 7 gets smaller, jointly
estimating n and A becomes increasingly more difficult than
estimation of 77 or A\ alone. Figure 3 further illustrates the
challenge of lower 1 samples. Here we plot the normalized
continuous-time CRBs for 77 and A as functions of the total
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Fig. 3: Normalized CRBs as functions of A for several values of 7. As
7 decreases, the dose A required to achieve any fixed desired relative
error increases.

dose . Different colored curves denote different 7 values.
Note that the intersection of each curve with a horizontal line
indicates the dose A required to achieve the corresponding
normalized CRB. For example, in order for the normalized
standard deviation to be lower bounded by 107!, a dose on
the order of 102 is required when 1 = 4; when 7 = 0.25, a
dose of nearly 10? is required.

In Section IV, we study joint estimation of 1 and A at
a single pixel. Although we show that this is possible, as
demonstrated in Figure 3, even pixels with large 1 require
a large dose to form high-quality estimates. In Sections V
and VI, we exploit inter-pixel correlations of both 1 and A to
enable high-quality joint estimation at moderate doses.

IV. JOINT ESTIMATION AT A SINGLE PIXEL

In this section, we derive CT and DT ML estimates for n
and A using only measurements acquired at a single pixel. In
Section IV-C, we evaluate the performance of these estimators
and compare to the CRBs derived in Section III-A.

A. Continuous-Time Time-Resolved ML Estimation

__Recall the continuous-time measurement model in (4). The
X variables are independent, so using (6), the joint distribu-
tion of the SE count vector (conditioned on M = m) is

7 e m 77J'1+j2+“'+jm
HP (i m) = —n N )
1-e JiJ2 - Jme

6_77

_ y
c(l—e‘") s

where the simplification comes from identifying the sum as the
total SE count y and replacing the product of factorials with an
unspecified constant because this is immaterial to estimation
of n and A. Combining (5) and (23), the relevant likelihood is

(23)

Py (M, y[n,A)

(AAL—em)™
m!

= cexp(—A(1 — e M)\ 1Y,

=cexp(—A(l—e™))

where m! has been absorbed into the constant ¢ because this
is immaterial to estimation of 7 and A. Omitting the constant,

—log P71 (m,y|n,A) = A(1—e~")—mlog \A+nm—ylogn.
(25
Taking derivatives of —logP 1 (m,y|n, \) gives
0 m
—~ = Q1—-e")—— 26
0 ~
gl = ATt Y. 27)
Setting these to zero to find the joint ML estimate gives that
7T is the root of
Ui Y
—_ == 28
1—exp(—n) m %)
which then can be substituted to give
ACT = # (29)
1 — exp(=°T)’

These values can be justified heuristically without the ML
property. Since m/(1 — exp(—n)) is a good proxy for the
number of incident ions, (28) sets 7T to be the number
of detected SEs y divided by this estimate for the number
of incident ions. In [14], this was called the continuous-time
Lambert quotient mode estimator, and it was shown to differ
from the ML estimate of 7 with A known.

Note that when at most a single SE is observed in response
to each of the incident ions (i.e., X; = 1 for all ), we have
y = m, so the right side of (28) equals 1. The left side of (28)
approaches 1 as 7 approaches 0; thus, we assign 7T = 0,
and substituting in (29) gives ACT = 0. We address this
singularity by placing a reasonable upper bound A, .x on
our estimate for A\. The smallest nonzero estimate we can
obtain for 7 is then 1/Apax. Requiring a large dose to be
able to accurately estimate a small value of n at a single
pixel is consistent with the normalized CRBs in Figure 3a.
This limitation is one motivation for our use of inter-pixel
correlations in Sections V and VI

B. Discrete-Time Time-Resolved ML Estimation

At the kth pixel, we acquire a vector y;, of n time-resolved
measurements with joint PMF given in (8). The corresponding
joint ML estimate is

@ ART) = argmax Py, (ye: e M)
M Ak
= argmin [—log Py, (yx 5 s, Ar)] -
M Ak
The objective function in (30) is a sum of n terms, each a
logarithm of the Neyman Type A PMF in (1). While difficult to
work with analytically, since the decision variable is only two-
dimensional and the objective function is smooth, numerical
evaluation of (30) is not difficult. The numerical experiments
in following sections use gradient descent methods based on
derivatives (58a) and (61a) derived in the appendix.

Similar to the CT case in Section IV-A, observing at most
a single SE per sub-acquisition creates a singularity whereby
(30) gives (7PT,APT) = (0,00). In practice, we can again
place a reasonable upper bound Ay.x on our A estimate and
then estimate 7 accordingly.

(30)
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Fig. 4: Normalized RMSE and bias as functions of 7 for single-pixel estimators with A = 200 and, in discrete-time cases, A/n = 0.1. In
panels (a) and (c), the normalized square roots of the Cramér—Rao bounds are plotted for reference.
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Fig. 5: RMSE and bias as functions of n for single-pixel estimators with A = 200 and 7 = 5.

C. Estimator Performance

In Figure 4, we plot the root mean-squared error (RMSE)
and bias for our estimators, both normalized by the true
parameter value, as functions of 7. We compare existing
methods for estimating 7, which require knowledge of the
dose, with our new methods for jointly estimating 1 and A:

o CT|X: ﬁ,STM is the CT estimate in (7), evaluated using

oracular knowledge of the dose (5\ =)\).

o DT|A: ﬁ,?TIA is the DT estimate in (9), evaluated using

oracular kngwledge of the dose (5\ =N).

o CT: (YT, A7) is the CT joint estimate from (28) and

29)

o DT: (P™, APT) is the DT joint estimate from (30).

We also plot the normalized square roots of the corresponding
CRBs: CRB(CT) of (17), CRB(CT|\) of (16a), as well as
CRB(DT) and CRB(DT|A) computed as described in Sec-
tion III-A2. As predicted by the CRBs derived in Section III-A,
our joint estimators and the estimators of 1 when A is given
achieve similar performance at higher 7. In fact, Figures 4a
and 4c both show a very close match of all estimators to
their corresponding CRBs, with the (biased) DT estimate of A
slightly outperforming the CRB. With A = 200 as used here,
the normalized RMSEs of both 7) and \ get very large as 7 gets
smaller, especially when A is not given, motivating our use of
inter-pixel correlations in Sections V and VI. The RMSE and
bias of 7) and A are generally smaller for CT methods, with
very small bias of 77 and A for all estimators.

Figure 5 shows estimator RMSE (along with the square root
of the CRBs) and bias as functions of the number of sub-

acquisitions n for fixed total dose A = 200 and SE yield
1 = 5. Note that when n gets large, DT performance converges
to the CT asymptote. At \/n = 0.1, a value attainable by
current hardware and used in the DT experiments that follow
in Section V-G, DT estimator RMSE is close to the CT limit.
Figures 5a and 5b show that joint estimation and estimation of
7 given A are similarly difficult when n is sufficiently large. In
Figure 5a we observe that at larger n, RMSE([#»P7) approaches
the CRB. The RMSE of AP™ dips below the CRB (Figure 5¢c)
at certain lower values of n, which may be explained by the
non-negligible bias shown in Figure 5d.

V. EXPLOITING A SMOOTHLY VARYING BEAM CURRENT

Section IV demonstrated that joint estimation of 7 and
A is possible at a single pixel through time-resolved mea-
surement. However, as shown in Figure 3 and discussed
in Section IV-A, high-fidelity estimates may require a large
dose, especially at low-n pixels. In this section, we use a
simple model for smoothly varying beam current—meant to
be representative of electron and helium ion beams—to form
high-quality estimates of both 7 and A at moderate doses. To
meet a variety of use cases, we propose both causal and non-
causal algorithms, each with and without total variation (TV)
regularization on 7). Note that TV regularization is just one
effective example; our techniques may be extended to apply
other regularization techniques. In the interests of brevity
and relevance to contemporary instruments, we consider only
discrete-time measurements.
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A. An Autoregressive Model for Beam Current

We model beam current as a first-order Gaussian autore-
gressive process:

Ak = Tk +alg—1 +c, 3D

where a is the correlation coefficient for neighboring pixels in
a row and all z;, ~ N(0,02) variables are independent. The
mean and variance of the beam current are

2
¢ Ye 32

1 a 1—a2

This de_scribes an incident beam with slow, unknown variations
about A, which may be the intended beam current setting.

and

A=E[)\] o3 =

B. Causal Estimation

We seek causal estimates, 75 and Xkc, of n;, and \ at the
kth pixel, given only the measurement vector at that pixel
Y, = yi and A\;p_;. Although \;_; is not perfectly known,
we assume it is approximately equal to our estimate of the
beam current formed at the last pixel: A\y_1 =~ )\%71. Inspired
by (31), we use the prior

M| oot ~ N (XS | + ¢, 02) 33)
and formulate a MAP estimate:
(@A) = arg max f (1, A | yr)
Nk sk
= argmax Py, (Yx; 7k, Ae) f( Ak | Ae—1)
Nk Ak
= arg min [* log Py, (Y& 5 ks Ak)
Nk s Ak
1 ~
5z @+ G

where Py, (-; -, ) is the joint PMF given in (8). In practice,
we introduce a tuning parameter S¢:

(7S, A$) = arg min [—log Py, (Y& ; ks Ak)
Nk Ak

+Bc( — (@A$_, + ). (35)

At each new pixel, (35) is solved using gradient descent. At
the first pixel, indexed by k = 1, we solve (35) using A§ = \.

C. Causal Estimation with Total Variation Regularization

Total variation regularization on 17 may be added to the cost
function in (35) to exploit the fact that microscopy images
are often piecewise smooth. Our new TV-regularized causal
estimate of 7 (and the corresponding estimate of A) minimize
the following cost function:

(ﬁgTv7ngv) = arg min [— logPv, (¥ ; Mk, Ak)
My Ak
+ Bc (A — (adk—1 + €)% + grv(me)]
(36)

where grv (1) is a TV cost term. In the causal, raster-scanned
scenario, the neighboring pixels that have already been visited

are those to the left and above the current pixel. Thus, our TV
cost term is given by

grv(n) = Buln — m| + Bvln — 0y, (37)

where 7, and 7, are 1 values already estimated (and assumed
known) at the vertically and horizontally adjacent pixels. Pa-
rameters [y, and 3, may be tuned to promote more horizontal
or vertical smoothness.

We solve (36) using proximal gradient methods. The prox-
imal operator for the term in (37) is

1
DrOX, ., (2) = axgmin 3 2 = allg + e = 1| + Bl = .
(e}

(38)
When 7, < 7, holds, the minimization in (38) gives
T+ Pn+ By, itz <mm—Bn— By
-r_ﬁh_ﬂva ifm>"7v+5h+6v§
prox,. (z) = T —Pnt Py, fmn+pPn—pB<w
grv < 77v+ﬂh75v;
T, if |x —nn + By| < Bn;
Tivs lf |x_nv_5v| Sﬁva
(39
which, when 8, = By = Bcrv,’ reduces to
xr+2Bcrv, if x <nw —2Bcrv;
x —2Bcrv, if x>y +2Bcrv;
prox,. ., (z) = ¢ =, if gy <z <y
Th, if my — 2Bcrv <@ < My;
v, if v S x S v + 2BCTV~
(40)

The case of 7, > 7, is similar. Equation (36) is solved at each
pixel, with 3, = 0 at all pixels in the first row of the image
and B, = 0 for the first column of the image.

D. Non-Causal Estimation

The non-causal estimation algorithm operates on the entire
measurement vector y and estimates 77 and A simultaneously
at all pixels. This formulation allows us to leverage stronger
priors on A, as well as on ) as we show later in Section V-E.
Given (31), A is jointly Gaussian,

al=il,

2
A~NALE), %= linZ 1)

where 1 € RP is a vector of ones. Since all sub-acquisitions
and pixels are conditionally independent, the joint PMF of the
entire measurement vector y is

p n

Py(y A = [T TIPv®”: me. Au/n),

k=11i=1

(42)

2In this paper, we evaluate our algorithm with 8, = 8y = BcTv. However
promoting more similarity between pixels that are vertically adjacent (i.e.,
Bv > Br) might be useful to mitigate horizontal stripe artifacts.



where Py (-; -,-) is the PMF in (1). The MAP estimate for
(n, A, \) is given by

(A, ANC3) = argmax Py (y [0, ) f(A | X)
7,0,

1 - -
= argmin [—log Py (y[n, A) + 5(/\ —AD)TETN (A= AL

7,2,
(43)

As in (35), we introduce a tuning parameter Onc to allow
additional regularization:

(ﬁNC7 XNC, /5\\) = arg min [— log Py (y|m, )
'r],A,S\

+ BncA = A1) TETH A= AL)]. (44)

Note that this formulation does not require knowledge of
the mean beam current but rather estimates A in addition
to i and A. This cost function is differentiable and thus
we solve the minimization using gradient descent methods.
The derivatives of the first term in (44) are derived in the
appendix; the derivative of the second term with respect to A is
proportional to ~*(X — A1). To avoid storing a prohibitively
large matrix, and because X is approximately circulant, we
perform multiplication by 3! in the frequency domain using
the fast Fourier transform.

E. Non-Causal Estimation with Total Variation Regularization

As with our causal estimate, TV regularization may be
added to (44) to promote piecewise smooth estimates of 7:

@YCTV,ANCTY }) = arg min [— log Py (y [n,A)
7,2,
+ Bnc(A = AL TETHA = AL) + ﬁNCTVHn”TV} ;
(45)
where ||n||Tv is given by
Inllry = \/|77i+1,j =i 1>+ Mg+ —mii > (46)

]
and Sncry is a tuning parameter. Equation (45) is solved

with proximal gradient methods using the proximal operator
for (46) given in [24].

F. Operational Considerations

Although all of our proposed algorithms jointly estimate 1
and A, different assumptions are made about the parameters a,
o2 and X in (31). Note that both causal and non-causal algo-
rithms assume knowledge of the correlation a between pixels.
Due to the tuning parameters Sc and Oxc, no assumption is
made about o2, In practice, algorithm performance was found
to not depend heavily on ideal choices of a, ¢, or Onc, as
we will show in Section V-G, Figures 10 and 11. While our
causal algorithms do require knowledge of the mean beam
current )\, the non-causal algorithms estimate \ in addition to
A and 1. When causal operation is warranted but the mean
beam current is not known, the non-causal algorithm could be
run periodically to provide .
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G. Simulated Microscopy Results

1) Data Generation: We evaluate the multi-pixel algo-
rithms proposed in this section on synthetic HIM and SEM
data. Measurements for these two examples were generated
using existing micrographs as ground truth images.® Compared
to SEM, HIM has higher SE yield and can thus produce high-
quality images at lower doses. To be representative of HIM,
we scale the ground truth to n € [2, 8] and use mean dose
A = 20 [25]; for SEM, we use 7 € [0.1, 1] and A = 200 [26].
Beam current time series were produced according to the
Gaussian first-order autoregressive model in (31). In both test
examples, the correlation coefficient for neighboring pixels
in a row is a = 0.999 and the coefficient of variation is
ox/A = 0.2. Data is generated pseudorandomly at each pixel
following the separable joint PMF in (8), where in each case
the nominal sub-acquisition doses is 0.1 (n = 200 for HIM
and n = 2000 for SEM).

2) Methods: We compare nine methods for estimating 7,
some of which also generate an estimate of A:

o baseline: nPacline js the pixel-wise evaluation of (3)

independently at each pixel using the nominal dose M.

« frequency-domain filter (FDF) [5]: Compute the 2D dis-
crete Fourier transform of 7", Let ¢ and u be the
horizontal and vertical frequency indexes. Coefficients
that satisfy both |¢| < w and |u| > h are nulled before
applying the inverse transform to yield 7" T.

o DT|\: PTIN is the pixel-wise ML estimate (9) computed
with true beam current A (provided by an oracle).

o DT|\: PT1% is the pixel-wise ML estimate (9) computed
with nominal beam current .

o linear filter: (p™F, ALF) is the joint estimate computed
with the metlpd of [27].

o causal: (¢, X©) is the joint estimate from (35).

o non-causal: (N, ANC) is the joint estimate from (44).
(This also produces an estimate of the mean beam current
A)

« causal with TV: (°TV, X°TV) is the joint estimate from
(36). R

o non-causal with TV: (pNCTV ANCTV) g the joint esti-
mate from (45). (This also produces an estimate of the
mean beam current \.)

Parameters in the frequency-domain filter, linear filter, and
methods from Sections V-B to V-E are tuned to minimize
RMSE.

3) Results: Figures 6 and 7 show estimated micrographs
7 using all the methods on each setting. The inset images
show error 77 — i for portions of the micrographs. In both
HIM and SEM examples, stripe artifacts are more prominent
in pPaseline (Figures 6f and 7f) than in the TR reconstruction
nPTIN (Figures 6g and 7g), although they both assume the
same knowledge of A. In the higher n FIB example, 7jPT!*
even outperforms 7" T, the frequency-domain filtered version
of pPaseline This effect may be attributed to the natural robust-
ness of TR methods to unknown beam current [15], [16]. Our
oracle TR method 7°T1* (Figures 6b and 7b), which assumes

3 All ground truth images in this work are from the ThermoFisher Scientific
database: https://www.fei.com/image-gallery/
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(f) pPaseline RMSE = 1.1129 (g) #PTIX, RMSE = 0.5097

(h) T, RMSE= 0.9817

v A o o

1) €TV, RMSE = 0.4361

(G) HNCTV RMSE = 0.2296

Fig. 6: HIM example with ground truth 5 € [2, 8], mean dose A = 20 and nominal sub-acquisition dose A\/n = 0.1. The actual dose X is a
Gaussian autoregressive process with correlation coefficent of 0.999 for neighboring pixels in a row and coefficient of variation o /XA = 0.2.
All micrograph images are on the same scale shown in (a), chosen so that no more than 2% of pixels are saturated in any given image.
Inset images show error 7) — m for a subset of the image taken from the top right corner. Tuning parameters are: Sxc = 200, fncrv = 1,

Bc 10, and BcTyv = le — 4. The non-causal estimator found A = 20.41 and the non-causal estimator with TV regularization found

A = 20.29; the beam current empirical mean was 1 Z b1 Ak = 20.34.

HIM Example SEM Example
Method RMSE®#) RMSE(\) | RMSEG#) RMSEQ)
Baseline 1.1129 - 9.72e-2 -
FDF [5] 0.9817 - 6.93e-2 -
DT|A 0.4974 - 5.54e-2 -
DT|A [13] 0.5097 - 8.87e-2 -
Linear filter [27] 0.4985 1.0020 6.63e-2 17.8849
Causal 0.4984 0.9416 5.83e-2 9.4937
Non-causal 0.4979 0.6765 5.68e-2 6.6761
Causal with TV 0.4361 1.0215 5.54e-2 11.7524
Non-causal with 0.2298 0.6681 3.21e-2 5.8292
TV

TABLE I: RMSE results by method for the HIM example in Figure 6
and the SEM example in Figure 7. For the frequency-domain filtering
method, filter parameters were w = 1 and h = 5 for the HIM
example and w = 1 and h = 1 for the SEM example. Our new
joint estimation methods without TV regularization approach the
performance of oracle estimator nDT‘)‘ When TV regularization is
added, our causal and non-causal estimators outperform T

perfect knowledge of the true dose at every pixel, exhibits
no discernible striping. Without TV regularization, our causal
joint estimates 7€ (Figures 6d and 7d) and non-causal joint
estimates )N C (Figures 6e and 7e) exhibit lower RMSE, closer
to our benchmark 7”71}, with slightly more improvement seen
with the non-causal version. Given TV regularization on 7,
both algorithms meet or exceed the performance of P71,
which does not employ any spatial regularization. In fact, in
both examples, nNCTV (Figures 6j and 7j) outperforms the
benchmark nDT"\ approximately by a factor of 2. Table I
summarizes the RMSE results of all n estimation methods
for both HIM and SEM examples.

Beam current estimates AC and ANC are shown in Figure 8
for the HIM example and in Figure 9 for the SEM example.
Both estimates closely match the true beam current. The causal

estimate AC has higher RMSE with a slight lag and more
higher frequency noise. All of our joint estimators outperform
the initial joint estimator 7j“F introduced in [27]. The RMSE
results of different A estimates, for both HIM and SEM
examples, are summarized in Table I.

As previously noted, all of our joint reconstruction algo-
rithms include a tuning parameter (8¢ or fBnc to control
regularization on A) and assume knowledge of correlation
a. In Figure 10, we show that performance of our causal
estimation algorithm is not heavily dependent on ideal choices
of either of these two parameters. Using the data from Fig-
ure 6, Figures 10a and 10b form the joint estimate (7 )\C)
for different values of [S¢, keeping the correlation ﬁxed at
a = 0.999. Figures 10c and 10d fix Sc = 10 and vary the
assumed value of a. We note that different values of S¢ and
a have a negligible effect on the RMSE of nc Although the
value of B¢ and a does effect the RMSE of )\C the RMSE
remains relatively small across a wide range of values, with
larger values of B¢ and a (i.e., promoting more smoothing
of A) as safer choices when the true parameter value is not
known. In Figure 11, we show similar trends for our non-
causal algorithms.

VI. EXPLOITING A DISCRETE MARKOV BEAM CURRENT

In this section, we demonstrate joint estimation when beam
current flips back and forth between two values, as a simple
model for a neon beam microscope. This model is inspired
by the observation in [6] that adhesion of polarized neon
ions to the tip of the neon ion gas-field injection source can
cause discontinuous changes in the beam current. Although the
neon beam microscope could provide a number of functional
advantages over the helium ion microscope [7], it has been
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() HPTIA RMSE= 5.54¢-2  (c) f“F, RMSE= 6.63¢-2 (d) 7€, RMSE=5.83¢-2 (e) TNC, RMSE=5.68¢-2

02

() FjPaseline, RMSE=9.72¢-2  (g) APTIA, RMSE=8.87¢-2 (h) 7" T, RMSE= 6.93e-2 (i) R°TY, RMSE=5.54e-2 (j) NCTV, RMSE =3.21e-2

Fig. 7: SEM example with ground truth 5 € [0.2, 1], mean dose A = 200 and nominal sub-acquisition dose S\/n = 0.1. The actual dose
A is_a Gaussian autoregressive process with correlation coefficent of 0.999 for neighboring pixels in a row and coefficient of variation
ox/XA = 0.2. All micrograph images are on the same scale shown in (a), chosen so that no more than 2% of pixels are saturated in any
given image. Inset images show error 7) — 7 for a subset of the image taken from the bottom middle of the image. Tuning parameters are:
Bnc = 2000, Bnorv = 8, Bc = 100, and Bcrv = 3e — 4. The non-causal estimator found X = 202.75 and the non-causal estimator with
TV regularization found X = 203.69; the beam current empirical mean was % > 1 A =201.80.
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Fig. 8: Beam current estimates for a representative subset of pixels ;:Eﬁ LN gzj N
A -
for the HIM example in Figure 6. . 0.4984 ~
0.95 ol
0.995 0.996 0.997 0.998 0.999 0.995 0.996 0.997 0.998 0.999
a a
~ ~C
(©) RMSEQX®) vs. a (d) RMSE(n™) vs. a

Fig. 10: Performance of causal joint estimation algorithm on data
from Figure 6 for different values of a and [S¢. For (a) and (b)
correlation is fixed at a = 0.999; for (c) and (d), tuning parameter
is fixed at Sc = 10.

less widely adopted because of difficulties maintaining a stable
beam current.

190 190
3000 3500 4000 4500 5000 5500 6000 3000 3500 4000 4500 5000 5500 6000

Pixel index Pixel index A. A Discrete Markov Chain Model for Beam Current

(a) A°, RMSE = 9.4937 (b) ANC, RMSE =6.6761 The beam current in a neon beam microscope may be

Fig. 9: Beam current estimates for a representative subset of pixels ~modeled using a two-state hidden Markov model (HMM). We
for the SEM example in Figure 7. assume a two-state model, and that the nature of the beam
current variation has been well characterized so that the states
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Fig. 11: Performance of non-causal joint estimation algorithm on data
from Figure 6 for different values of a and fBnc. For (a) and (b),
correlation is fixed at a = 0.999; for (c) and (d), tuning parameter
is fixed Snc = 200.

s € {s1, 2} and transition probabilities ¢(s,r) = P(Ax41 =
s|Ar = r) are known. The mean beam current under this
model is denoted \. Based on this model, we propose causal
and non-causal joint estimation algorithms for 7 and A.

B. Causal Estimation

Algorithm 1 describes our causal joint estimator
(pMMC\AMMC) At each pixel, nDTl)‘()\ A) s

used to form an initial estimate of 77;,. As shown in [15]
and [16], as well as in our own results in Section V-G, ?]DTP‘
is actually quite close to the true n value, even when the
beam current is imperfectly known. Thus, we initially assume
that n;, = ﬁET‘/\(;\ = )) and use the Forward algorithm [28],
[29], as described in Algorithm 2, to compute the belief state
Fy(s) of Ax given the measurements from that pixel and all
previous pixels:

Fi(s) :==P(Ar = s|y1)-
We pick XHMMC to be the state that maximizes Fk( ). The
SHMM C T|A

estimate 7);, is produced by recomputing nk , using
A= )\HMMC (Algorithm 1, Line 4). Note that Algorithm 2
operates recursively, requiring knowledge of Fy_1(s) to com-
pute F(s). At the first pixel,

Py, (y1|Ax=s nET'A(A N),

where Py, (-; -,-) is the PMF in (8) and we have assumed

that n,, = DTM(A = )). It follows from the law of total
probability that

P(Yl = Y1|>\1 = S) =

P(Y;=y1) =Y P(Yi=y1|A =5)P(A\ =5),

sEs

where P(A; = s) is the stationary distribution of the hidden
Markov chain. Applying Bayes’s theorem, we find the initial
belief state:

Fi(s) =P(A1 =5|Y1=y1)
_ P(Yi=y1| X1 =5)P(A = 5)

P(Y1=y1)

Algorithm 1 Causal joint estimation when beam current is
modeled as a two-state hidden Markov chain
Input: y, s, q(s,r)Vs,r€s, Fi(s)Vs€s
1: for k=12, 3, ...p] do
2 compute Fj(s) using Algorithm 2
with 7, = 1T A = X) and Yy, =y,
)\HMMC = argmax,c, Fi(s)
TG = 3

ur
: end for

3:

4 pHMMC _
5

6: return 7m

~HMM C )‘HMM C

C. Non-Causal Estimation

Our non-causal joint estimate AJTMMNC selects the state
with the greatest probability given the entire measurement
sequence:

THMM NC
Ak

=argmax P(A; = s|y). 47

sEs

It uses the Forward-backward algorithm [28], [29] to compute
a quantity proportional to P(A; = s|y) for each of the two
possible states. Note that P(Ay = s|y) may be factored as
follows:

PAr =s|y) xP(Ar =5, y)
@ P(Ax =5, Y1k Yitip)
O P(Yit1p | Ak = 5, y1u)P(Ae = 5, y1r)

P(yk+1:p | Ak = S) P()‘k =S, yl:k)7

backward pass

© (48)

forward pass

where (a) follows from splitting the components of y; (b)
from the multiplication rule; and (c) from the conditional
independence of P(yj41:p | A = s) from y1.;,. The final two
factors include a term readily available from the forward pass
of our our causal algorithm: P()\k =s, yl;k) x Fi(s), and a
second term computed in a new recursive backward pass over
the data. This new term,

Bk(S) = P(yk+1:p | >\k = 5)3

may be computed using the following recursive formula mov-
ing backwards over the data sequence:

Z Bryi(s

s’'Es

NPy (Yrt1 [ Arr1 = 5")q(s, 8").

As stipulated by the Forward-backward algorithm, the last
pixel is initialized with B,,(s) = 1 Vs € s. Just as in the causal
algorithm described in Algorithm 1, our non-causal joint
estimation algorithm forms an initial estimate of 7, at each
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Algorithm 2 Forward Algorithm for computing belief state F(s) at kth pixel given 1,

Input: Y, =y, € R", 0, s, q(s,7)Vs,r€s, Fr_1(s)Vs€s

1: Compute P(Aj, = s|all past measurements) =
2: Compute Py, (yi [, A =5) Vs €s
3 P (Yk = yy | all past measurements) =
4: Fk(S)

5. return Fj(s)

Zs 'Es q(s’, S)kal(s/) VseEs

> ses Py (Vi | M1 Ax = 5) P(Ax = 5| all past measurements)
=Py, (& |, Ak = s) P(A, = s]all past measurements) /P (Y},

=y | all past measurements)

pixel using nDTM()\ = \). Assuming 7, ~ T"\()\ =),
the estimate )\HMM NC s formed according to (47), requiring a
forward and backward pass to compute the two terms in (48).

Then, 7 is estimated according to: HIMMNC — ?ISTM(S\ =

AHMM NC)

D. Simulated Microscopy Results

Synthetic measurements were generated using an existing
micrograph as the ground truth image. The beam current time
series was produced according to a two-state Markov chain
model with A € {20, 30} using transition probabilities

P(Ax = 20| Ap_1 = 30) = 0.003,
P(Ax = 30| Ae_1 = 20) = 0.002,

and

resulting in A = 24. At each pixel, the dwell time was divided
into n = 300 sub-acquisitions.

In Figure 12, we compare the RMSE results for the follow-
ing methods:

o baseline: nPaseline js the pixel-wise evaluation of (3)

independently at each pixel using assumed dose M.

o DT|X\: PTI* is the pixel-wise ML estimate (9) computed

with true beam current A (provided by an oracle).

« DT|X: P11 is the pixel-wise ML estimate (9) computed

using assumed dose A = ).

o HMM causal: (ftMMC/ )\HMMC), computed using Al-

gorithm 2.

o HMM non-causal: (7PMMNC , AHMM NC), computed ac-

cording to Section VI-C.
The baseline estimate 7)*5°''"° in Figure 12d exhibits promi-
nent stripe artifacts. Figure 12e shows 7T with stripe
artifacts greatly reduced but still visible. Figures 12¢ and 12f
show results for our causal and non-causal HMM joint estima-
tion algorithms. In both cases, RMSE is further reduced over
7nPTIA, approaching the performance of °TI* in Figure 12b,
with RHMMNC gliohtly outperforming ntMM €,

In Figure 12g, we plot the true beam current time series
A with estimates AHMMC and AHMMNC  Note that both
estimates match the true beam current at the vast majority
of pixels, with an error percentage of 0.89% for the causal
algorithm and 0.21% for the non-causal algorithm. Although
performance is very good with only the causal forward pass,
approximately four times fewer errors occur in the A estimate
when all data is considered.

VII. CONCLUSION

In this work, we explore the estimation of fwo properties
at each pixel of a particle beam micrograph: mean SE yield

n and beam current \. Using the Cramér—Rao bound at a
single pixel, we show the feasibility of joint estimation given
time-resolved measurements. Specifically, we show that at
high 7, joint estimation is only slightly more challenging than
estimating 7 when ) is given. We demonstrate that when the
dose is sufficiently high, joint estimation is possible at even a
single pixel. To perform joint estimation at moderate doses, we
exploit the fact that beam current does not vary arbitrarily. The
algorithms of Section V are motivated by electron and helium
ion beams, where current is smoothly varying. Algorithms in
Section VI are designed for neon beam microscopes, where
beam current is known to jump among known values. Through
tests performed on synthetic microscopy data, we show that
our 1 estimators outperform existing methods and our novel
A estimators closely match the ground truth.

Our innovation not only prevents micrograph artifacts that
arise when the beam current is not perfectly known, but
also provides the operator with new and useful information.
Knowledge of the beam current could save costly instrument
maintenance time, enable on-the-fly instrument control, im-
prove micrographs and milling outcomes, and even further
the proliferation of powerful new instruments like the neon
beam microscope, where maintaining a stable beam current is
a key challenge. The promise of time-resolved sensing extends
beyond online beam current estimation. Although we are
exploiting measurements at the time scale of subacquisitions,
the estimates in this paper are all formed at the (coarser) per-
pixel level. Estimates at the (finer) subacquisition level may
enable partial compensations for drift, sample charging, and
contamination.

APPENDIX

In gradient algorithms, we require methods to evaluate
or approximate derivatives of the logarithm of the PMF
Py(y; n,A) in (1). The y = 0 case is mathematically simple
and also important because many sub-acquisitions result in
no detected SEs. For y > 0, elegant expressions can be
given using Touchard polynomials. With discrete-time data
with sufficiently large n, the relevant sub-acquisition dose is
small, so we also derive approximations that hold for small \.

y =0 Case

By substitution and simplification,

logPy (05 m,A) = —-A(1—e™"). (49)
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Fig. 12: Results from a synthetic neon beam experiment with 1 € [2, 6], n = 300, and A modeled as a two-state hidden Markov chain with

X € {20, 30}.

The derivatives of this for optimization over A or 7 are
d

P\ [—/\(1 - e_”)] = —(1—-e), (50a)
d? _
oF [-A1-e™] = 0, (50b)
%7 [—/\(1 — e_")] = —Xde (50¢)
d2
ppe [A1—e] = Xe " (50d)
Touchard Polynomials
The Touchard polynomials are defined by
= Z S(n, k)z* (51)
k=0

where S(n, k) is a Stirling number of the second kind, i.e.,
the number of partitions of a set of size n into k disjoint non-
empty subsets. Stirling numbers of the second kind can be
used to write

y

my—ZSy, —k:)

where we regard 1/(m — k)! =0 if £ > m [30]. Then

o0

mY b Y rm
2 = (ZS bk >.> ol
m=0 m=0
y 0 m y
= Y S(y.k) k) > S(y, k)ate
k=0 m=0 k=0
= Ty(x)e®. (52)
Now we have
d m? @ e )l
oY ™ = Y ™ T S T (0)e”, (53)
m=0 m=0

where (a) follows from term-by-term differentiation; and (b)
from (52). It is the derivative of the log that will be useful in
what follows:

_ y+1( )

54
y(m) oD

lgz
—o M

which now follows from the chain rule and substitution of (52)
and (53).

From (51), a good approximation to T, (z) for small x can
be obtained by truncating to k& € {0, 1, 2}. While Stirling
numbers of the second kind S(y, k) are not easy to work with
in general, for any y > 1, we have S(y,0) =0, S(y,1) =1,
and S(y,2) = 2Y~! — 1. Therefore, for any y > 1,

T,(z) x4 (207 —1)a? (55a)
T;(!E) 1+ (2Y —2)z, (55b)
for small z.
Derivatives of log likelihood with respect to \
We have
d e Y = (Ae”")"mY
— log
d\ y! = m!
d = (Ae~M)mmy
- 14 —/1 we )
T ee an—:o ml
Tyr1(Ne™ " Tyr1(Ae™
(;) _1+e—1’] y+1( € ) :_1+ y+1( € >7(56)

Ae=T, (Ae™") AT, (Ae=m)



where (a) follows from the chain rule and (54). It follows that

d? e Y i (Ae™M)mmY

N2 log y! m!

m=0

e "y (Ae™)  Tya(Ae™)
AT, (Ne™™) A2T,(Ae™ )
ey 1 (Ae™ )Ty (Ae™")

(AT, (Ae))? '

(57)
Substituting the second-order approximation (55) in (56) and
(57) gives the approximations

d 1+ (2V —1)Ae "

1
s e 3 58
d)\[ J A 1+ (20T —1)re (582)
LAY R [PURS  POPN € D C0  PP
d)\2 - A2 (]_ + (nyl _ 1))\6777)2
Derivatives of log likelihood with respect to 1)
We have
d e Y = (Ae™M)MmY
— 1
dn ©8 y! mZ:o m!
oo
y d (Ae~M)mmY
= — 71 - @z @
0y mz::() m!
w v )\e_"M - Y_ M7 (59)
7 Ae=T,(Ae™ ") n Ty (Ae™m)

where (a) follows from the chain rule and (54). It follows that

d? e AnY i (Ae=M)™mY

dn? log y! m/!

m=0
0 e B0
n? Ty (Ae")
Ty i1 (e T (e )
(T, 0e)?
—% + Xe™"

— e "

« Ty (Ae™NTy(Ae™") = Typa (Ae™") Ty (Ae™)
(T (Ae™m))?

. (60)

Substituting the second-order approximation (55) in (59) and
(60) gives the approximations

d y 142V —1)Ae
Yroi~¥ 61
dn [~] n o 142071 —1)re 1’ (61a)
d? 2V \e ™
o~ L+ - —. (6lb)
dn n? (14 (2v=1 — 1)Ae=n)
ACKNOWLEDGMENT

The authors thank Sangchul Lee and Claude Leibovici for
answers to a Stack Exchange query [30], [31] that were
instrumental to the derivations in the appendix.

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

REFERENCES

B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope:
A new tool for nanoscale microscopy and metrology,” J. Vacuum Sci.
Technol. B, vol. 24, no. 6, pp. 2871-2874, Nov. 2006.

J. Notte and J. Huang, The Helium Ion Microscope. Cham: Springer
International Publishing, 2016, pp. 3-30.

J. Morgan, J. Notte, R. Hill, and B. Ward, “An introduction to the helium
ion microscope,” Microscopy Today, vol. 14, no. 4, pp. 24-31, 2006.
F. F. Rahman, J. A. Notte, R. H. Livengood, and S. Tan, “Observation
of synchronized atomic motions in the field ion microscope,” Ultrami-
croscopy, vol. 126, pp. 10-18, 2013.

A. J. Barlow, J. F. Portoles, N. Sano, and P. J. Cumpson, “Removing
beam current artifacts in helium ion microscopy: A comparison of image
processing techniques,” Microsc. Microanal., vol. 22, no. 5, pp. 939-947,
Oct. 2016.

J. Notte, F. Rahman, S. McVey, S. Tan, and R. Livengood, “The neon gas
field ion source - stability and lifetime,” Microsc. Microanal., vol. 16,
no. S2, p. 28-29, 2010.

F. H. M. Rahman, S. McVey, L. Farkas, J. A. Notte, S. Tan, and R. H.
Livengood, “The prospects of a subnanometer focused neon ion beam,”
Scanning, vol. 34, no. 2, pp. 129-134, 2012.

A. J. Barlow, N. Sano, B. J. Murdoch, J. F. Portoles, P. J. Pigram,
and P. J. Cumpson, “Observing the evolution of regular nanostructured
indium phosphide after gas cluster ion beam etching,” Applied Surface
Science, vol. 459, pp. 678-685, 2018.

J. Schwartz, Y. Jiang, Y. Wang, A. Aiello, P. Bhattacharya, H. Yuan,
Z.Mi, N. Bassim, and R. Hovden, “Removing stripes, scratches, and cur-
taining with nonrecoverable compressed sensing,” Microsc. Microanal.,
vol. 25, no. 3, p. 705-710, 2019.

A. Khalilian-Gourtani, M. Tepper, V. Minden, and D. B. Chklovskii,
“Strip the stripes: Artifact detection and removal for scanning electron
microscopy imaging,” in Proc. IEEE Int. Conf. Acoust., Speech and
Signal Process., 2019, pp. 1060-1064.

S. Liu, L. Sun, J. Gao, and K. Li, “A fast curtain-removal method for
3D FIB-SEM images of heterogeneous minerals,” J. Microscopy, vol.
272, no. 1, pp. 3-11, 2018.

T. Ott, D. Rolddan, C. Redenbach, K. Schladitz, M. Godehardt, and
S. Hohn, “Three-dimensional structural comparison of tantalum glancing
angle deposition thin films by FIB-SEM,” J. Sensors Sensor Syst., vol. 8,
no. 2, pp. 305-315, 2019.

M. Peng, J. Murray-Bruce, K. K. Berggren, and V. K. Goyal, “Source
shot noise mitigation in focused ion beam microscopy by time-resolved
measurement,” Ultramicroscopy, vol. 211, p. 112948, 2020.

M. Peng, J. Murray-Bruce, and V. K. Goyal, “Time-resolved focused ion
beam microscopy: Modeling, estimation methods, and analyses,” IEEE
Trans. Computational Imaging, vol. 7, pp. 547-561, 2021.

L. Watkins, S. W. Seidel, M. Peng, A. Agarwal, C. C. Yu, and V. K.
Goyal, “Robustness of time-resolved measurement to unknown and
variable beam current in particle beam microscopy,” in Proc. IEEE Int.
Conf. Image Process., Anchorage, AK, Sep. 2021, pp. 3487-3491.
——, “Prevention beats removal: Avoiding stripe artifacts from current
variation in particle beam microscopy through time-resolved sensing,”
Microsc. Microanal., vol. 27, no. S1, pp. 422-425, Aug. 2021.

P. Cizmar, A. E. Vladir, and M. T. Postek, “Real-time scanning
charged-particle microscope image composition with correction of drift,”
Microsc. Microanal., vol. 17, no. 2, pp. 302-308, Apr. 2011.

S. Yamada, T. Ito, K. Gouhara, and Y. Uchikawa, “Electron-count
imaging in SEM,” Scanning, vol. 13, no. 2, pp. 165-171, 1991.

L. Jin, A.-C. Milazzo, S. Kleinfelder, S. Li, P. Leblanc, F. Duttweiler,
J. C. Bouwer, S. T. Peltier, M. H. Ellisman, and N.-H. Xuong, “Appli-
cations of direct detection device in transmission electron microscopy,”
J. Structural Biology, vol. 161, no. 3, pp. 352-358, 2008.

G. McMullan, S. Chen, R. Henderson, and A. R. Faruqi, “Detective
quantum efficiency of electron area detectors in electron microscopy,”
Ultramicroscopy, vol. 109, no. 9, pp. 1126-1143, 2009.

A. Agarwal, J. Simonaitis, V. K. Goyal, and K. K. Berggren, “Secondary
electron count imaging in SEM,” arXiv:2111.01862, Nov. 2021.

K. S. Sim, J. T. L. Thong, and J. C. H. Phang, “Effect of shot noise
and secondary emission noise in scanning electron microscope images,”
Scanning, vol. 26, no. 1, pp. 36-40, 2004.

A. Agarwal, J. Simonaitis, and K. K. Berggren, “Image-histogram-based
secondary electron counting to evaluate detective quantum efficiency in
SEM,” Ultramicroscopy, vol. 224, p. 113238, 2021.

A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,” IEEE
Trans. Image Process., vol. 18, no. 11, pp. 2419-2434, 2009.



SEIDEL et al.:

[25]

[26]

[27]

(28]

[29]

[30]

[31]

J. Notte, B. Ward, N. Economou, R. Hill, R. Percival, L. Farkas, and
S. McVey, “An introduction to the helium ion microscope,” in AIP
Conference Proceedings, vol. 931. AIP, 2007, pp. 489-496.

Y. Lin and D. C. Joy, “A new examination of secondary electron yield
data,” Surface Interface Anal., vol. 37, no. 11, pp. 895-900, 2005.

L. Watkins, “Mitigating current variation in particle beam microscopy,”
arXiv:2106.04686, Jun. 2021, B.S. honors thesis in electrical and com-
puter engineering, Boston University.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic functions
of Markov chains,” Annals Math. Stat., vol. 41, no. 1, pp. 164-171,
1970.

L. E. Baum, “An inequality and associated maximization technique in
statistical estimation for probabilistic functions of Markov processes,”
Inequalities, vol. 3, no. 1, pp. 1-8, 1972.

S. Lee, Mathematics Stack Exchange, Jul. 2020,
https://math.stackexchange.com/q/3744576.

C. Leibovici, Mathematics  Stack  Exchange, Jul. 2020,
https://math.stackexchange.com/q/3744557.



	Introduction
	Main Contributions
	Outline

	Measurement Models and Baseline Estimators
	Conventional Measurement
	Continuous-Time Time-Resolved Measurement
	Discrete-Time Time-Resolved Measurement

	Feasibility of Joint Estimation of SE Yield and Beam Current
	Cramér–Rao Bound 
	Continuous-Time Cramér–Rao Bound
	Discrete-Time Cramér–Rao Bound

	The Challenge of Low SE Yield Samples

	Joint Estimation at a Single Pixel
	Continuous-Time Time-Resolved ML Estimation
	Discrete-Time Time-Resolved ML Estimation
	Estimator Performance

	Exploiting a Smoothly Varying Beam Current
	An Autoregressive Model for Beam Current
	Causal Estimation
	Causal Estimation with Total Variation Regularization
	Non-Causal Estimation
	Non-Causal Estimation with Total Variation Regularization
	Operational Considerations
	Simulated Microscopy Results
	Data Generation
	Methods
	Results


	Exploiting a Discrete Markov Beam Current
	A Discrete Markov Chain Model for Beam Current
	Causal Estimation
	Non-Causal Estimation
	Simulated Microscopy Results

	Conclusion
	Appendix
	References



