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Abstract— We present a robust model predictive control
method (MPC) for discrete-time linear time-delayed systems
with state and control input constraints. The system is subject
to both polytopic model uncertainty and additive disturbances.
In the proposed method, a time-varying feedback control policy
is optimized such that the robust satisfaction of all constraints
for the closed-loop system is guaranteed. By encoding the effects
of the delayed states and inputs into the feedback policy, we
solve the robust optimal control problem in MPC using System
Level Synthesis which results in a convex quadratic program
that jointly conducts uncertainty over-approximation and ro-
bust controller synthesis. Notably, the number of variables in
the quadratic program is independent of the delay horizon.
The effectiveness and scalability of our proposed method are
demonstrated numerically.

I. INTRODUCTION

Time-delay systems appear in many applications such
as chemical process control, communication networks, and
aircraft control since they are suitable to model the non-
instantaneous behavior of physical processes and capture the
time needed to transport information. However, controlling
time-delay systems is challenging since time delay can
seriously degrade the performance and induce instability of
the closed-loop system. The control task becomes even more
challenging when state and input constraints are considered,
the system dynamics are uncertain, and process/measurement
noise needs to be taken into account in many real-world
applications.

Robust model predictive control (MPC) is promising to
address the above issues with closed-loop safety (i.e., all
state and control input constraints are satisfied) and stability
guarantees. In robust MPC, at each time instant, a finite-
horizon robust optimal control problem (OCP) is solved to
synthesize a robust control input. There is a rich body of
work in robust MPC for uncertain linear systems without
time delay where different controller parameterization and
robust OCP formulations are proposed, such as linear matrix
inequalities (LMI) [1], tubes [2], state/disturbance feedback
controllers [3], and System Level Synthesis (SLS) [4],
[5]. These methods have distinctive complexity-conservatism
trade-offs and robust MPC remains an active area of research.

Although we can transform a discrete-time delayed system
into a non-delay one through state and input augmenta-
tion [6, Chapter 6], this approach can easily lead to a
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high-dimensional system which is challenging to handle for
any robust MPC method. Due to the difficulty of handling
time delays, available robust MPC methods for discrete-
time delayed systems are as diverse as in the non-delay
case. Indeed, they rely mostly on LMI formulations [7]–[9]
to synthesize a locally stabilizing linear time-invariant state
feedback controller. This approach can be conservative since
it only searches over ellipsoidal robust invariant sets. With a
fixed locally stabilizing controller, the authors in [10], [11]
apply an iterative algorithm to find the polytopic maximal
robust invariant set which can be used as the terminal set in
MPC to guarantee closed-loop stability. However, in these
approaches, the robust OCP is solved conservatively over
open-loop control inputs rather than feedback policies.

Contributions: In this paper, we propose a novel robust
state-feedback controller design for robust MPC of time-
delay systems subject to polytopic model uncertainty and
additive disturbances. Our method is built on robust SLS
MPC [5] for non-delay systems which over-approximates the
perturbations to the nominal dynamics by a surrogate additive
disturbance, but we extend [5] to time-delay systems in a
non-trivial way. Due to the delay, the surrogate disturbance
over-approximation in SLS MPC can be overly conservative
since the state and input delays incur an off-set to the system
perturbations. To address this issue, in this work we design
a time-varying feedback controller that integrates the time-
delay effects to solve the robust OCP. Furthermore, the
proposed method solves a convex quadratic program (QP)
for controller synthesis. Since we do not apply any state
or input augmentation, the number of optimization variables
in the QP is independent of the delay horizon, making our
method scalable to systems with large delay horizons. The
effectiveness and scalability of our method is demonstrated
numerically.

Notation We represent a linear, causal operator R defined
over a horizon of T by the block-lower-triangular matrix

R =

2

6664

R0,0

R1,1 R1,0

...
. . . . . .

RT,T · · · RT,1 RT,0

3

7775
(1)

where Ri,j 2 Rp⇥q is a matrix of compatible dimension. The
set of such matrices is denoted by LT,p⇥q

TV and we will drop
the superscript T, p⇥q when it is clear from the context. We
refer to a block matrix in a block-lower-triangular matrix R
using its superscripts shown in (1). Let R(i, :) denote the i-th
block row of R, and R(:, j) denote the j-th block column of
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R, both indexing from 0. For a vector d 2 Rn, S = diag(d)
denotes a n ⇥ n dimensional diagonal matrix with d being
the diagonal elements. The notation x0:T is shorthand for the
set {x0, · · · , xT }.

II. PROBLEM FORMULATION

Consider the following discrete-time linear system with
time delay:

x(k + 1) =
naX

i=0

Aix(k � i) +
nbX

j=0

Bju(k � j) + w(k) (2)

where x(k) 2 Rnx is the state state, u(k) 2 Rnu is the
control input, w(k) 2 Rnx is the additive disturbance at time
k, and na, nb � 0 denote the horizon of delay in states and
control inputs, respectively. The dynamics (A0:na , B0:nb) of
the time-delay system is uncertain and is represented by

Ai = Âi +�A,i, 0  i  na, Bj = B̂j +�B,j , 0  j  nb,
(3)

where Âi, B̂j denote the nominal dynamics and the model
uncertainty (�A,0:na ,�B,0:nb) belongs to a polytopic set P:

(�A,0:na ,�B,0:nb) 2 P
:= Co{(�1

A,0:na
,�1

B,0:nb
), · · · (�M

A,0:na
,�M

B,0:nb
)}

(4)

where Co denotes the convex hull of M vertices
(�`

A,0:na
,�`

B,0:nb
). The disturbance w(k) is assumed to

be norm-bounded, i.e., w(k) 2 W := {w 2 Rnx |
kwk1  �w}. The initial conditions x(0), · · · , x(�na) and
u(�1), · · · , u(�nb) of system (2) are given. We allow the
model uncertainty parameters (�A,0:na ,�B,0:nb) to be time-
varying as long as they satisfy (4).

Our goal is to design a robust MPC controller for the
time-delay system (2) such that the state and control input
constraints

X = {x 2 Rnx | FXx  bX },
U = {u 2 Rnu | FUx  bU},

(5)

are satisfied robustly for the closed-loop system. The focus
of this paper is on efficiently solving the robust OCP in each
iteration of MPC which is formally stated as follows.

Problem 1: Solve the following finite time constrained
robust OCP with horizon T :

minimize
⇡

JT (x0:T , u0:T�1)

subject to xt+1 =
naX

i=0

(Âi +�A,i)xt�i+

nbX

j=0

(B̂j +�B,j)ut�j + wt,

ut = ⇡t(x�na:t, u�nb:t�1),

xt 2 X , ut 2 U , xT 2 XT ,

8(�A,0:na ,�B,0:nb) 2 P, 8wt 2 W,

t = 0, · · · , T � 1,

x�na:0, u�nb:�1 are known.

(6)

where the search is over robust causal feedback policies
⇡ = ⇡0:t with known delayed states and control inputs
x�na:0, u�nb:�1. The cost function JT (x0:T , u0:T�1) is
application-specific but is assumed convex in its arguments.
The terminal set XT is a polytope given by

XT = {x 2 Rnx | FXT x  bXT } (7)

We assume that X ,U ,XT are compact and contain the origin
in the interior 1.

At time k, robust MPC solves problem (6) with x�i =
x(k � i) and u�j = u(k � j) for 0  i  na, 1  j  nb.
The terminal constraint (7) is often used to guarantee closed-
loop stability of MPC and can be chosen as a robust forward
invariant set for a locally stabilizing controller [10]. For the
robust OCP (6), it is required to choose the horizon T greater
than na and nb in order to fully evaluate the effects of the
predicted control inputs.

For the time-delay system (2), a central problem is how to
handle the effects of delay when solving the robust OCP (6)
with a finite-dimensional, parameterized feedback policy ⇡.
In this work, we design ⇡ as a time-varying feedback policy
which operates on both the states x0:T and the transformed
delayed states x�na:�1 and inputs u�nb:�1 whose values
are known to us. This allows us to over-approximate the
effects of uncertainty in system (2) using SLS with minimal
conservatism while maintaining the convexity of our pro-
posed robust OCP. We provide background on SLS-based
robust MPC developed for non-delay systems in Section III
and present our method for the time-delay system (2) in
Section IV and V.

III. SLS-BASED ROBUST MPC: NON-DELAY CASE

Before we approach the time-delay system, in this section,
we introduce the methodology of robust SLS MPC [5] for
non-delay systems. The main idea of robust SLS MPC is
to over-approximate the effects of model uncertainty and
additive disturbances in the system dynamics by a surrogate
filtered disturbance. Then, by SLS we can jointly search over
robust linear state feedback controllers and uncertainty over-
approximation parameters in the space of closed-loop system
responses by a convex program.

A. Finite-horizon System Level Synthesis

Consider the following linear time-varying (LTV) system

xt+1 = Âtxt + B̂tut + ⌘t, t � 0, (8)

where ⌘t 2 Rnx is the perturbation to the nominal dynamics.
With a slight abuse of notation, in this subsection the
matrices Ât, B̂t denote the nominal dynamics of (8) rather
than the delayed dynamics matrices in (3).

To describe the behavior of the LTV system (8) over a
finite horizon T , we first introduce the following compact

1Our proposed method allows imposing different polyhedral constraints
on xt at different time instants. For example, the terminal constraint XT
can be imposed on xT�na:T rather than on xT only.

6903

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 11,2023 at 16:47:04 UTC from IEEE Xplore.  Restrictions apply. 



notation
x = [x>

0 · · · x>
T ]

>, u = [u>
0 · · · u>

T ]
>,

⌘ = [x>
0 ⌘>0 · · · ⌘>T�1]

>,
(9)

where x,u,⌘ stack the relevant states, control inputs, and
perturbations over horizon T and can be interpreted as finite
horizon signals. Note that the first component of ⌘ is set
as the initial state x0. Then, the system dynamics (8) over
horizon T can be written as

x = ZÂx+ ZB̂u+ ⌘ (10)

where Z 2 LT,nx⇥nx

TV is a block down-shifting operator with
identity matrices filling the first block sub-diagonal and zeros
everywhere else, and

Â = blkdiag(Â0, · · · , ÂT�1, 0),

B̂ = blkdiag(B̂0, · · · , B̂T�1, 0).
(11)

An LTV state feedback controller for system (8) is pa-
rameterized by u = Kx with K 2 LT,nu⇥nx

TV and ut =Pt
i=0 K

t,t�ixi for t = 0, · · · , T � 1. Plugging u = Kx
into (10), the closed-loop dynamics can be described as

x = Z(Â+ B̂K)x+ ⌘ (12)

from which we can derive the mapping from the perturbation
⌘ to the closed-loop states x and inputs u as


x
u

�
=


(I � Z(Â+ B̂K))�1

K(I � Z(Â+ B̂K))�1

�
⌘. (13)

Since Z is a block-down-shifting operator, the matrix inverse
in (13) exists and the mapping is well-defined. The maps
from ⌘ to (x,u) in (13) have a block-lower-triangular struc-
ture (1). We call such maps closed-loop system responses
and denote them by �x 2 LT,nx⇥nx

TV , �u 2 LT,nu⇥nx

TV
following [12] such that


x
u

�
=


�x

�u

�
⌘. (14)

The following theorem characterizes all achievable closed-
loop system responses (�x,�u) for system (8) under an
LTV state feedback controller K.

Theorem 1: [12, Theorem 2.1] Over the horizon t =
0, 1, · · · , T , for the system dynamics (8) with the block-
lower-triangular state feedback control law K 2 LT,nu⇥nx

TV
defining the control action as u = Kx, we have:

1) The affine subspace defined by
⇥
I � ZÂ �ZB̂

⇤ �x

�u

�
= I, �x,�u 2 LTV (15)

parameterizes all possible system responses (14).
2) For any block-lower-triangular matrices {�x,�u} 2

LTV satisfying (15), the controller K = �u��1
x 2

LTV achieves the desired responses (14).
Theorem 1 establishes the equivalence between (�x,�u)
and K through the affine constraint (15), and allows us to
optimize over the system responses (�x,�u) directly in
place of K. In robust SLS MPC [5], the structure of the
robust OCP with the system response parameterization of ⇡
is exploited for uncertainty over-approximation.

B. Uncertainty over-approximation
For systems with model uncertainties, the perturbation

⌘ in (10) is dependent on both the uncertainties and the
controller K to be designed. To show this, note that for a
non-delay LTV system with model uncertainty

xt+1 = Âtxt + B̂tut +�A,txt +�B,tut + wt, (16)

where wt 2 Rnx is an exogenous disturbance process, the
perturbation to the nominal dynamics at time t is given by
⌘t = �A,txt +�B,tut + wt. Let

w = [x>
0 w>

0 · · · w>
T�1]

>, (17)

and
�A = blkdiag(�A,0, · · · ,�A,T�1, 0),

�B = blkdiag(�B,0, · · · ,�B,T�1, 0).
(18)

Then for the uncertain system (16), we have

⌘ = Z
⇥
�A �B

⇤ x
u

�
+w. (19)

By Theorem 1, under a state feedback controller u = Kx,
the value of perturbation ⌘ is uniquely defined by the
following equation

⌘ = Z
⇥
�A �B

⇤ �x

�u

�
⌘ +w, (20)

where the uncertainty parameters (�A,�B ,w) and the
controller (�x,�u) jointly decide the realization of ⌘. In
fact, the value of ⌘ is uniquely given by

⌘ = (I � Z
⇥
�A �B

⇤ �x

�u

�
)�1w, (21)

where the matrix inversion exists due to the block-down-
shifting operator Z.

Being exact, the characterization of ⌘ in (20) is too
complex to use for solving the robust OCP, let alone (21).
In robust SLS MPC, the actual perturbation process ⌘ is
over-approximated by a surrogate additive disturbance ⌃ew
where

ew = [x>
0 w̃>

0 · · · w̃>
T�1]

> (22)

is a virtual disturbance signal with unit norm-bounded
components kw̃tk1  1, and ⌃ 2 LT,nx⇥nx

TV is a filter
that transforms the virtual disturbance signal ew to over-
approximate ⌘ with minimal conservatism.

Example 1 (Norm-ball over-approximation): As an ex-
ample, in [13] the filter ⌃ is parameterized by ⌃ =
blkdiag(I,�1I, · · · ,�T�1I) where �t > 0 such that ⌃ew
represents a sequence of `1 norm-bounded disturbances with
varying radii �t. Under this parameterization, ⌃ew is a valid
over-approximation of the perturbation ⌘ if k⌘tk1  �t for
all possible realizations of uncertainty (�A,t,�B,t) and wt.

When the filtered disturbance ⌃ew can realize all values of
the actual perturbation process ⌘, it suffices to consider the
surrogate uncertain dynamics with only additive disturbances
x = Âx + B̂u + ⌃ew to solve the robust OCP. The over-
approximation procedure for ⌘ under polytopic uncertainty
is shown in [5] where a set of convex constraints on the
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controller and filter parameters are proposed to guarantee
⌃ew is a valid surrogate disturbance. In the next section,
we illustrate the difficulty of applying this uncertainty over-
approximation scheme to time-delay systems (2) and address
it by a novel controller design.

IV. EFFECTS OF TIME DELAY

The aforementioned SLS-based scheme of uncertainty
over-approximation can be overly conservative when applied
on time-delay systems. To see this, we first stack the delayed
states x�na:�1 and inputs u�nb:�1 as

x� = [x>
�na

· · · x>
�1]

>, u� = [u>
�nb

· · · u>
�1]

>. (23)

Note that both x� and u� are known in the robust OCP (6)
and are therefore vectors of constants. The dynamics of the
uncertain time-delay system in (6) over horizon T can be
written as

x = ZÂx+ ZB̂u+ ZÂ�x� + ZB̂�u�
| {z }

d

+

Z�Ax+ Z�Bu+ Z��
Ax

� + Z��
Bu

� +w
| {z }

�

:= ZÂx+ ZB̂u+ d+ �

(24)

where x,u,w defined from (9) and (17) are variables repre-
senting future xt, ut, wt in the prediction horizon. The block
matrices (Â, B̂, Â�, B̂�) for the time-delay system are
given in Appendix A together with their uncertain counter-
parts (�A,�B ,�

�
A,�

�
B). Such block matrices definitions

are used for the rest of the paper 2.
Note that Â, B̂ are block-lower-triangular, and d, � 2

R(T+1)nx defined in (24) capture the effects of delay and
model uncertainty on the states x0:T . The vector d is constant
and represents the known effects of delay on future states x
in an additive manner, while � lumps the uncertainty-induced
perturbation to the nominal dynamics and is dependent on
future states x and inputs u. When na = nb = 0, d,��

A,�
�
B

vanish and (24) recovers the system dynamics with no delay.
In this case, our proposed robust MPC method reduces to [5].

A. Conservative over-approximation due to delay
To apply robust SLS MPC, we need to over-approximate

the perturbation ⌘ (see (10)) to the nominal dynamics by a
surrogate disturbance ⌃ew. For the time-delay system (24),
this indicates treating ⌘ = d + � and bounding ⌘ by the
filtered disturbance ⌃ew. However, this over-approximation
can be conservative since the time-delay effects d and the
uncertainty-induced perturbation � may differ in scale. For
example, with a non-zero delay (x�,u�), the entries in d
can be large while � still remains small when the model
uncertainties (�A,�na:0,�B,�nb:0,�w) are close to zero. In
this case, the time-delay effects d add a non-trivial off-
set to the uncertainty-induced perturbation �, and d + �
requires significantly larger bounding sets than � as shown

2With a slight abuse of notation, Â, B̂,�A,�B were used in Section III
with different definitions. For the rest of the paper, these block matrices refer
to those defined in Appendix A such that (24) holds.

Fig. 1: The `1 norm ball over-approximation (green box at
the origin) of the uncertainty-induced perturbation �t (blue
polytope at the origin) has radius �t, while it becomes �0

t

(see box with dashed line) in order to bound the off-set
perturbation dt + �t due to the time-delay effects dt.

in Figure 1. Motivated by this challenge, we propose a
feedback controller that acts on both the states x and the
time-delay effects d in order to obtain tighter uncertainty
over-approximations.

Remark 1: In robust SLS MPC, the perturbation is chosen
as ⌘ = d + � for the time-delay system (24). In this case,
it is reasonable to over-approximate ⌘ by d + ⌃ew instead
of ⌃ew since d is already known. However, this leads to a
non-convex robust OCP formulation in the system responses
(�x,�u) and the filter ⌃, in which case the terms �xd and
�ud prevent us from convexifying the robust OCP through
change of variables (see Section V-A.1 for details).

B. Feedback controller design
We consider only over-approximating the uncertainty-

induced perturbation � by a filtered disturbance ⌃ew while
handling the known effects of delay d separately. Define

h = (I � ZÂ)�1d, ex = x� h, (25)

and we denote the components in h by h = [h>
0 · · · h>

T ]
>.

It follows from (24) that

ex = ZÂex+ ZB̂u+ �. (26)

Then, we can apply Theorem 1 to system (26) with the
transformed states ex, and obtain that the feedback controller
u = Kex = K(x � h) achieves the following closed-loop
system responses


ex
u

�
=


�x

�u

�
� )


x
u

�
=


�x

�u

�
� +


h
0

�
. (27)

The controller u = K(x� h) applies feedback not only on
the future states x0:T but also on the past states and inputs
encoded in h. By integrating the time-delay effects into the
transformed states ex, the time-delay system (26) now only
contains the uncertainty-induced perturbation � and has the
same representation as the non-delay system (10) which is
amenable to robust SLS MPC.

Importantly, variables ex from (26) and x from (10) rep-
resenting future states over the horizon T have the same
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dimension (T + 1) ⇥ nx which is independent of the delay
horizon na or nb. This means that the optimization variables
introduced in robust SLS MPC for the time-delay system is
the same as in the non-delay case. In the next section, we
present our solution to the robust OCP (6) using the LTV
state-feedback controller u = K(x� h).

V. SLS-BASED TIME-DELAY ROBUST MPC

In this section, we propose a SLS-based robust MPC
method for controlling the uncertain time-delay system (2)
based on u = K(x�h) and the transformed dynamics (26).
As shown in Section III, robust SLS MPC consists of two
steps: a) over-approximating the actual perturbation process
� by a surrogate additive disturbance, and b) synthesizing a
robust controller based on the surrogate uncertain dynamics.

A. Over-approximation of perturbation �

Similar to (20), the value of � for time-delay systems
under the controller u = K(x� h) is uniquely defined by

� = Z�A�x� + Z�Ah+ Z�B�u�+

Z��
Ax

� + Z��
Bu

� +w
(28)

which follows from (24) and (27). Denote the components
in � as � = [x>

0 �>0 · · · �>T�1]
>. The value of � is

jointly decided by the uncertainty and the feedback controller
applied, and is therefore also uncertain. Our goal is to over-
approximate � by a filtered signal ⌃ew where ew is given
in (22) with kw̃tk1  1. In other words, for all possible
values of �, we want to guarantee that there exists ew such
that � = ⌃ew and kw̃tk1  1 for 0  t  T �1. We denote
the unit norm-bounded constraint on w̃t as w̃t 2 Wew =
{w 2 Rnx | kwk1  1}. Since the value of � is uniquely
defined by (28), it is equivalent to showing that

⌃ew = Z�A�x⌃ew + Z�Ah+ Z�B�u⌃ew+

Z��
Ax

� + Z��
Bu

� +w
(29)

is robustly feasible with w̃t 2 Wew for all possible realization
of (�A,0:na ,�B,0:nb) 2 P and wt 2 W . We provide
sufficient conditions for (29) to hold robustly through the
following steps.

1) Change of variable: To avoid non-convexity in our
formulation, we first do the change of variable

e�x = �x⌃, e�u = �u⌃. (30)

Under the condition that ⌃ is invertible, by [13, Theorem 1]
all achievable (e�x, e�u) are directly parameterized by

⇥
I � ZÂ �ZB̂

⇤
"
e�x

e�u

#
= ⌃, e�x, e�u 2 LTV , (31)

where (e�x, e�u) can be interpreted as the system responses
mapping ew to (ex,u) under the controller u = Kex for the
system ex = ZÂex + ZB̂u + ⌃ew. Then, in an optimiza-
tion problem, searching over (�x,�u,⌃) with the affine
constraint (15) is equivalent to searching (e�x, e�u,⌃) with
constraint (31) (see [13, Remark 1] for details).

2) Parameterization of the filter ⌃: The filter ⌃ 2
LT,nx⇥nx

TV has the block-lower-triangular structure (1), but its
diagonal blocks are specially parameterized. We set ⌃0,0 = I
such that the first component of the filtered disturbance ⌃ew
is x0. The other block matrices on the diagonal of ⌃ are
parameterized as ⌃t,0 = diag(qt�1) where qt�1 2 Rnx and
qt�1 > 0 for t = 1, · · · , T . By this parameterization, ⌃t,0

are themselves diagonal matrices with positive entries and
therefore ⌃ is invertible. More importantly, such parameter-
ization allows us to formulate convex sufficient conditions
in (e�x, e�u,⌃) to over-approximate � by ⌃ew as shown in
Section V-A.4.

Example 2 (Hyperrectangle over-approximation): When
the lower-triangular blocks ⌃i,j for j > 0 are enforced zero,
the filtered disturbance ⌃ew with the above parameterization
of ⌃ represents a sequence of disturbances bounded
by hyperrectangles. This provides us more flexibility in
bounding the actual perturbation � than the norm-ball
over-approximation shown in Example 1.

3) Constraint simplification: We now simplify our nota-
tions to represent the equality constraints in (29). Decompose
the filter as ⌃ = ⌃diag +⌃sub where ⌃diag 2 LT

TV is the
block-diagonal matrix that contains the matrices ⌃t,0, t =
0, · · · , T which are on the diagonal of ⌃, and ⌃sub 2 LT

TV
contains the rest lower-triangular blocks. Under the change
of variable (30), we can rewrite the equality constraints in
(29) as

(⌃diag +⌃sub)ew = Z�A
e�u ew + Z�Ah+ Z�B

e�x ew+

Z��
Ax

� + Z��
Bu

� +w.
(32)

Then we group the terms in (32) as

⌃diag ew = (Z�A
e�x + Z�B

e�u �⌃sub)| {z }
C

ew+

Z�Ah+ Z��
Ax

� + Z��
Bu

� +w

(33)

where we define C = Z�A
e�x + Z�B

e�u � ⌃sub and
C 2 LT

TV . Let C0 = C(:, 0) denote the first block column
of C and CT = C(:, 1 : T ) denote the rest block columns.
We have Cew = C0x0 + CT w̃0:T�1 where w̃0:T�1 =
[w̃>

0 · · · w̃>
T�1]

> is the stack of all virtual disturbances.
It follows from (33) that

⌃diag ew = CT w̃0:T�1 +w+

C0x0 + Z�Ah+ Z��
Ax

� + Z��
Bu

�
| {z }

v

:= CT w̃0:T�1 + v +w

(34)

where v as defined above encodes the effects of the initial
condition and the time delay. We observe that once the model
uncertainties (�A,0:na ,�B,0:nb) are fixed, the entries in CT

and v are linear in the design parameters (e�x, e�u,⌃), and
vice versa. Since CT is a truncation of the block-lower-
triangular matrix C, we refer to the matrix blocks in CT

using their indices in C, i.e., by Ct,t�i, and similarly for
⌃diag . By construction, the diagonal blocks of C and the first
component of v are zero. Therefore, we denote the entries
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in v as v = [0 v>1 · · · v>T�1]
> and we have Ct,0 = 0 for

0  t  T .
4) Over-approximation constraints: By writing down the

equality constraints in (34) row-wise and plugging in the
parameterization of ⌃, we have

Ix0 = x0,

diag(q0)w̃0 = v0 + w0,

diag(qt)w̃t =
tX

i=1

Ct+1,iw̃i�1 + vt + wt,

kw̃tk1  1, t = 1, · · · , T � 1.

(35)

Note that vt and Ci,j are in fact functions of the model
uncertainty and the controller. One important feature of (35)
is that the value of w̃t only depends on w̃0:t�1, and this
allows us to synthesize a robust feasible solution to (35)
sequentially as follows.

In (35), the first constraint Ix0 = x0 holds by construction.
The second constraint corresponding to t = 0 holds only if

kdiag(q0)�1(v0 + w0)k1  1, 8kw0k1  �w, (36)

which is equivalent to

|e>i (v0 + w0)|  q0,i, 1  i  nx, 8kw0k1  �w,

,|e>i v0|+ �w  q0,i, 1  i  nx,
(37)

where q0,i denotes the i-th entry of q0, and ei is the i-th
standard basis. Constraint (37) is obtained by the triangle in-
equality and Hölder’s inequality, and guarantees the existence
of w̃⇤

0 2 Wew such that diag(w̃⇤
0) = v0 + w0 for all possible

values of w0. To further robustify the constraint against the
underlying model uncertainty, we note that constraint (37)
is convex in v0, and v is an affine function of the model
uncertainty parameters (�A,0:na ,�B,0:nb) when the system
responses (e�x, e�u) are fixed. Therefore, the left-hand side
(LHS) of (37) is convex in (�A,0:na ,�B,0:nb). Using the
fact that the maximum of a convex function over a polytope
domain is achieved at the polytope vertices [14], we can
tighten constraint (37) as

|e>i v0|+ �w  q0,i, 8(�A,0:na ,�B,0:nb) 2 P
,|e>i v0|+ �w  q0,i, 8(�A,0:na ,�B,0:nb) 2 Vert(P)

(38)
for i = 1, · · · , nx, where Vert(·) denotes the set of vertices
of the polytopic uncertainty set P . Now constraint (38)
guarantees diag(q0)w̃0 = v0 + w0 is robustly feasible with
w̃0 2 Wew for all possible model uncertainty and additive
disturbances. Furthermore, since v is affine in (e�x, e�u,⌃)
when (�A,0:na ,�B,0:nb) are fixed, (38) is convex in the
design parameters (e�x, e�u,⌃).

Now we consider the constraint for t = 1:

diag(q1)w̃1 = C2,1w̃⇤
0 + v1 + w1, (39)

where we have applied the solution w̃⇤
0 synthesized from the

previous step. Although the exact value of w̃⇤
0 depends on

w0 and is unknown, with the information that kw̃⇤
0k1  1,

we can treat w̃⇤
0 as a norm-bounded disturbance. Applying

the same technique, we have that

|e>i v1|+ ke>i C2,1k1 + �w  q1,i, 1  i  nx

i = 1, · · · , nx, 8(�A,0:na ,�B,0:nb) 2 Vert(P)
(40)

guarantees constraint (39) is robustly feasible with w̃1 2
Wew. Repeat this process up to t = T � 1, we have that the
following constraints on CT and v

|e>i v1|+ ke>i C2,1k1 + �w  q1,i,

|e>i vt|+
tX

i=1

ke>i Ct+1,ik1 + �w  qt,i,

8(�A,0:na ,�B,0:nb) 2 Vert(P)

i = 1, · · · , nx, t = 1, · · · , T � 1,

(41)

guarantee that (35) is robustly feasible for the considered
polytopic model uncertainty and additive disturbances, and
⌃ew is a valid over-approximation of the uncertainty-induced
perturbation �. Again, since the model uncertainty parame-
ters are fixed, constraints (41) are convex in (e�x, e�u,⌃).

B. Robust OCP formulation

Under the uncertainty over-approximation constraint (41),
we can apply the surrogate dynamics

ex = ZÂex+ ZB̂u+⌃ew (42)

to solve the robust OCP (6) where ex = x � h. Recall that
the affine constraint (31) parameterizes all achievable system
responses

ex = e�x ew, u = e�u ew (43)

for system (42) under the feedback controller u = Kex =
K(x � h). Next, we apply these relationships to solve the
robust OCP (6) with robust constraint satisfaction guarantees.

Assume that the polyhedral state constraint consists of nX
linear constraints, i.e., X = {x | FX (i, :)x  bX (i), i =
1, · · · , nX }, and denote the set of the linear constraint pa-
rameters as facet(X ) = {(f, b)|f = FX (i, :), b = bX (i), i =
1, · · · , nX }. Then, based on the surrogate uncertain dynam-
ics (42) and the achievable system responses (43), a robust
state constraint in the robust OCP (6) can be written as

f>xt = f>(x̃t + ht)

= f>(�̃t,t
x x0 +

tX

i=1

�̃t,t�i
x w̃i�1 + ht)

 b, 8w̃j 2 Wew, j = 0, · · · , t� 1.

(44)

By applying the Hölder’s inequality to constraint (44) for
0  t  T , we can tighten all the state constraints in the
robust OCP (6) as

f>(�̃t,t
x x0 + ht) +

tX

i=1

kf>�̃t,t�i
x k1  b,

8(f, b) 2 facet(X ), t = 0, · · · , T � 1.

(45)
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Similarly, we tighten the terminal constraint xT 2 XT as

f>(�̃T,T
x x0 + hT ) +

TX

i=1

kf>�̃T,T�i
x k1  b,

8(f, b) 2 facet(XT ),

(46)

and tighten the control input constraints ut 2 U as

f>(�̃t,t
u x0 + ht) +

tX

i=1

kf>�̃t,t�i
u k1  b,

8(f, b) 2 facet(U), t = 0, · · · , T � 1.

(47)

The tightened constraints (45), (46), (47) are convex in
(e�x, e�u). When applied in conjunction with the uncertainty
over-approximation constraint (41), constraints (45), (46),
(47) guarantee that the synthesized controller u = K(x�h)
with K = e�u

e��1
x is feasible for the robust OCP (6). We

formally summarize the proposed method in the following
theorem.

Theorem 2: Consider the following convex OCP:

minimize
e�x,e�u,⌃

JT (e�x(:, 0)x0 + h, e�u(:, 0)x0)

subject to affine constraint (31)
uncertainty over-approximation constraint (41)
tightened constraints (45), (46), (47)
x�na:0, u�nb:�1 are known

(48)
where ⌃ 2 LT,nx⇥nx

TV is parameterized in Section V-A.2, and
the parameters C,v used in constraint (41) are defined in
Section V-A.3. Then, for any feasible solution (e�x, e�u,⌃)
of problem (48), the feedback controller u = K(x � h),
where h is defined in (25) and K = e�u

e��1
x , is feasible for

the robust OCP (6).
The proof of Theorem 2 directly follows from our deriva-

tion of the constraints in problem (48) in this section. In
robust SLS MPC, we apply a nominal quadratic cost function
JT (·) in problem (48) where e�x(:, 0)x0+h and e�u(:, 0)x0

represent the nominal states and control inputs for the surro-
gate dynamical system (42), respectively, by setting w̃t = 0.
Since all constraints in (48) can be formulated as linear
constraints, the robust OCP (48) is a convex QP. We note
that the dimensions of the decision variables (e�x, e�u,⌃)
in (48) are decided by the system dimensions (nx, nu) and
the prediction horizon T while being independent of the
delay horizon (na, nb).

VI. SIMULATION

We test the effectiveness and scalability of the proposed
method through numerical examples. All the simulation is
implemented in MATLAB R2019b with YALMIP [15] and
MOSEK [16] on an Intel i7-6700K CPU.
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Fig. 2: Closed-loop trajectory of the states (left) and control
inputs (right) of the uncertain system (49) under our proposed
robust MPC controller. Additive disturbances are injected.

A. 3D system
We demonstrate our proposed robust MPC method on a

3-dimensional time-delay system from [7]:

x(k + 1) =

2

4
1.0509 0 0
�0.0509 1 0

0.0509↵(k) �0.4↵(k) 1

3

5x(k)+

2

4
0.0218 0 0
�0.0218 0 0

0.0218↵(k) 0 0

3

5x(k � 3) +

2

4
�0.1429

0
0

3

5u(k) + w(k)

(49)
where ↵(k) 2 [1, 1.5915] is a time-varying uncertain parame-
ter. We consider the same control input constraints |u(k)| 
⇡ as in [7], but additionally we consider state constraints
X = {x 2 R3 | |x1|  2

3⇡, |x2|  2⇡, |x3|  15} and
additive disturbances w(k) bounded by kw(k)k1  0.05.

With the initial condition x(0) = [0.5⇡ 0.75⇡ �
5]>, x(�1) = x(�2) = x(�3) = 0, we apply our method
with horizon T = 6 to evolve system (49) in closed-loop. No
terminal constraint is applied in (48), and the cost function
JT is chosen as a quadratic function in the nominal states
and control inputs

JT (x̂0:T , û0:T�1)

=
T�naX

t=0

x̂>
t Qx̂t +

TX

t=T�na+1

x̂>
TQT x̂T +

T�1X

t=0

ûtRût
(50)

where Q = I , R = 0.01 and QT = 100I . In the simulation,
the uncertainty parameter ↵(k) is uniformly sampled from
the interval [1, 1.5915] and w(k) is uniformly sampled from
the box kw(k)k1  0.05 at each time instant. Figure 2
shows that our method guarantees the satisfaction of con-
straints for the closed-loop system in the presence of both
model uncertainty and additive disturbances.

B. Scalability test
We demonstrate the scalability of the proposed method

with respect to the delay horizon on randomly generated
systems in Table I. We fix the state dimension as nx = 2
and input dimension as nu = 1. For a given delay horizon
(na, nb) and prediction horizon T > max(na, nb), we
randomly generate dynamics matrices Ai, 0  i  na and
Bj , 0  j  nb whose entries are independently sampled
from the normal distribution N (0, 0.09). State constraints
X = XT = {x 2 R2 | kxk1  30} and input constraints
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(na, nb, T ) Solver time/s

(8, 4, 13) 0.2052

(16, 8, 21) 0.3404

(24, 12, 29) 0.9372

(32, 16, 37) 1.7020

(40, 20, 45) 2.8175

(na, nb, T ) Solver time/s

(0, 0, 13) 0.1332

(0, 0, 21) 0.2078

(0, 0, 29) 0.3476

(0, 0, 37) 0.4870

(0, 0, 45) 0.8468

TABLE I: Solver time of the robust OCP (48) with different
ranges of delay horizon (na, nb) and prediction horizon
T . For each (na, nb, T ), the average solver time over 20
randomly generated time-delay systems is reported.

U = {u 2 R | |u|  5} are enforced, and the nominal
quadratic cost function (50) with Q = QT = I, R = 1
are considered in the robust OCP (48). Model uncertainty is
introduced as an unknown parameter ↵ 2 [0, 1] such that

�A,i = ↵


�0.1 0
0 0

�
+ (1� ↵)


0.1 0
0 0

�
, i = 0, · · · , na.

The uncertainty on Bj and the additive disturbances are not
considered in this example. Finally, the initial condition is
fixed as x0 = [2.5 � 2.5]> and x�i = 0, u�j = 0 for all
delayed states and inputs.

In Table I, we report the average solver time of the robust
OCP (48) for a range of delay and prediction horizons
(na, nb, T ). The QP (48) is solved by MOSEK [16] on
an Intel i7-6700K CPU. Since we do not use any states
or inputs augmentation, there is no substantial increase in
the solver time of our method as the delay horizon grows
large. Indeed, for (na, nb, T ) = (40, 20, 45), the common
approach that augments the time-delay system as a non-
delay LTI system as shown in [10] gives rise to a system of
(na+1)⇥nx+nb⇥nu = 102 dimension which is challenging
to handle for robust MPC methods with a horizon T = 45.
Compared with the non-delay problem instances (right half
in Table I), our proposed robust SLS MPC approach only
suffers from the increase of number of constraints in the
QP (48) due to non-zero (na, nb) while sharing the same
number of optimization variables.

VII. CONCLUSION

We proposed an SLS-based robust MPC method for uncer-
tain discrete-time linear systems with time delay. Our method
handles the effects of time delay by incorporating them into
the feedback controller design, and leverages SLS to bound
the perturbation induced by the polytopic model uncertainty
and norm-bounded additive disturbances in the dynamics.
Our method solves a convex quadratic program online whose
number of variables is independent of the delay horizon.

APPENDIX

A. Time-delay system representation

The block matrices in the compact representation of the
time-delay system in (24) are explicitly defined below. We

take Â� and Â as an example which gives

Â� =

2

66664

Âna · · · · · · Â1

0 Âna · · · Â2

...
. . .

. . .
...

...
. . . Âna

0 · · · · · · 0

3

77775
2 R(T+1)nx⇥nanx

where 0 2 R(T+1�na)nx⇥nx is a zero matrix, and

Â =

2

6666666664

Â0

...
. . .

Âna

...
. . .

0
. . .

...
. . .

...
. . . Âna · · · Â0

0 · · · 0 · · · · · · 0

3

7777777775

with the dimension Â 2 R(T+1)nx⇥(T+1)nx . The
block matrices B̂, B̂� and the uncertain block matrices
�A,�B ,�

�
A,�

�
B have the same structure with different

different matrices inserted.
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