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Abstract

We present the system size and flavour dependence of the chemical freeze-out temperature (Tch) at vanishing baryo-chemical po-
tential calculated via thermal fits to experimental yields for several multiplicity classes in pp, pPb and PbPb collisions measured
by ALICE. Using the Thermal-FIST Hadron Resonance Gas model package, we compare the quality of fits across various treat-
ments of strangeness conservation under different freeze-out conditions as a function of the charged particle multiplicity density〈
dNch/dη

〉
. Additionally, we examine how the anti-hadron to pion yield ratios of light and strange baryons, as well as the ϕ meson,

evolve within a flavour-dependent model. Through a unique two-temperature chemical freeze-out approach, we show that flavour
dependence of Tch in a Strangeness Canonical Ensemble leads to a natural explanation of strangeness enhancement from small to
large systems at LHC energies without requiring any non-equilibrium particle production at small

〈
dNch/dη

〉
.

Keywords: Strangeness Enhancement, Sequential Flavour Freeze-out, Statistical Hadronization, Hadron Resonance Gas

1. Introduction

Hadronization and chemical freeze-out have been suggested
to coincide at the phase boundary in the Quantum Chromody-
namics (QCD) phase diagram based on results from Statisti-
cal Hadronization Models (SHMs) using particle yields mea-
sured at the Large Hadron Collider (LHC) and the Relativistic
Heavy Ion Collider (RHIC), when compared to pseudo-critical
temperature calculations from temperature dependent contin-
uum extrapolations of the chiral susceptibilities on the lattice
[1, 2, 3, 4, 5]. A point of interest emerges concerning whether
the phase transition from quark to hadron degrees of freedom
occurs at the same temperature for all particle species and/or
quark flavours.

Final state particle yields have been successfully reproduced
by SHMs to nine orders of magnitude over a wide energy range
in high energy collisions of heavy ions [6]. SHMs typically
use experimental hadron yields from central events (0 - 10%)
in relativistic heavy-ion collisions as an anchor for determin-
ing common freeze-out parameters in the QCD phase diagram
– namely, the chemical freeze-out temperature (Tch) and the
baryo-chemical potential (µB) – within a Grand Canonical En-
semble (GCE), where baryon number, electric charge and strangeness
are conserved on average.

The GCE treatment has been shown to inadequately repro-
duce experimental results in a multiplicity-dependent manner
across pp, pPb and PbPb collision systems measured by the
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ALICE Collaboration – particularly where
〈
dNch/dη

〉
≤ 20 [7].

The aforementioned fact is often attributed to the presence of
non-equilibrium strangeness production in the smaller systems
and may be partially remedied by employing a Strangeness Canon-
ical Ensemble (SCE), in which strangeness is explicitly con-
served within a correlation volume VC using a single value of
Tch for all particle species (1CFO). The question arises as to
whether out-of-equilibrium strangeness in small systems pro-
vides an adequate description of the overall production of fi-
nal state (multi)- strange hadrons as measured at LHC energies.
The presence of said disequilibrium, commonly represented by
a non-negligible strangeness saturation parameter (γS) within
the fireball volume of hadronic collisions, is known to diminish
with increasing collision energy [8, 9].

In principle, strangeness equilibration scaling as an inverse
function of collision energy can be equated with an increasing
value of γS. At LHC energies, γS is expected to be asymptotic to
unity [7, 10], i.e. full saturation of strangeness is achieved as a
function of

〈
dNch/dη

〉
. The dominating presence of strangeness

enhancement at ALICE, even in small systems, is evident from
an energy dependent comparison of final state anti-hadron to π+

yields measured by ALICE and STAR [11], where production
of strange baryons is fully saturated for collision energy values
above

√
sNN = 62.4 GeV.

Nevertheless, in order to fully describe the experimental data,
further considerations are made regarding the interplay between
VC, the fireball volume (V), the experimental rapidity window
(∆y) and γS [12, 13]. This letter aims at providing a description
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of strangeness enhancement across all three collision systems
measured by ALICE, assuming full equilibration and saturation
of strangeness is inherently present at LHC energies. Our de-
scription of final state hadron yields within the SHM framework
relies solely on flavour-dependent freeze-out temperatures and
volumes across increasing

〈
dNch/dη

〉
values.

2. Sequential Strangeness Freeze-out

Flavour-dependent freeze-out temperatures in the crossover
region of the QCD phase diagram have been predicted by con-
tinuum extrapolated susceptibilities of single flavour quantum
numbers on the lattice [14, 15]. Flavour specific susceptibility
ratios χ4/χ2, suggested as an observable for directly determin-
ing freeze-out temperatures [16], show a deviation of the lattice
and Hadron Resonance Gas (HRG) model calculations at the
peaks of the lattice data, which occur at flavour-dependent tem-
peratures differing by 15−20 MeV from light to strange quarks
[15]. Similar temperature differences between the light and
strange mesons have also been shown in net-particle fluctua-
tion measurements by the STAR Collaboration [17, 18, 19, 20].
An HRG-based study was also performed in a similar analysis
on both off-diagonal and diagonal second order correlators of
conserved charges [21].

In a previous letter [22], at vanishing µB, we calculated a
light flavour freeze-out temperature TL = 150.2 ± 2.6 MeV and
a strange flavour freeze-out temperature TS = 165.1± 2.7 MeV,
by employing the GCE approach to heavy-ion collisions within
the framework of the Thermal-FIST [23] HRG model package
and varying the particle species included in each thermal fit.

In this letter, we extend this flavour-dependent two chemical
freeze-out (2CFO) temperature approach to pp, pPb and PbPb
collision systems measured by ALICE as a function of increas-
ing
〈
dNch/dη

〉
, rendering a natural explanation of strangeness

enhancement from small to large systems at vanishing µB.

3. Model and Data Preparation

All calculations shown here are performed using the open
source Thermal-FIST thermal model package. In this iteration,
we model an ideal non-interacting gas of hadrons and reso-
nances within both, the GCE and the SCE scenarios, for the
sake of comparison. The analysis is two-fold: to gauge the sen-
sitivity of the chemical freeze-out temperature at vanishing µB

relative to the ensemble of choice, and to employ a 2CFO treat-
ment onto the reigning ensemble.

As the HRG input list, we use the PDG2016+ hadronic spec-
trum [24]. The PDG2016+ hadronic spectrum has been shown
to be an optimized compromise between too few and too many
resonant states when compared to lattice QCD predictions [24];
it includes a total of 738 states (i.e. *, **, *** and **** states
from the 2016 Particle Data Group Data Book [25]).

Yield data for π+, π-, K+, K-, p, p̄, Λ, Λ̄, Ξ−, Ξ̄+, Ω−, Ω̄+,
K0

S, and ϕ for ALICE pp collisions at
√

s = 7.00 TeV [26], pPb
collisions at

√
sNN = 5.02 TeV [27, 28, 29] and PbPb collisions

at
√

sNN = 2.76 TeV [30, 31, 32, 33] across all available mul-
tiplicity classes are included in our analysis – our multiplicity
binning is shown in Table 1. Throughout this entire analysis,
the yields for each particle and its corresponding anti-particle
are assumed to be identical – this methodology is explicitly em-
ployed in the case where the available experimental data only
presents the sum of both particle and anti-particle yields.

Table 1: Available event centralities and corresponding values of charged par-
ticle multiplicity density for ALICE pp collisions at

√
s = 7.00 TeV, pPb colli-

sions at
√

sNN = 5.02 TeV and PbPb collisions at
√

sNN = 2.76 TeV. For the pp
sample, the multiplicity classes are labelled in accordance to their generalized
definitions in [26].

pp at 7.00 TeV
Multiplicity Class Event Centrality ⟨dNch/dη⟩

I-II 17.47± 0.524
III-VI 10.383±0.313
VII-VIII 6.057±0.19
IX-X 2.886±0.135

pPb at 5.02 TeV

45±1
36.2±0.8
30.5±0.7
23.2±0.5
16.1±0.4
9.8±0.2
4.3±0.1

PbPb at 2.76 TeV

0-10% 1447.5±54.5
10-20% 966±37
20-40% 537.5±19
40-60% 205±7.5
60-80% 55.5±3

All throughout, we follow a shorthand notation when naming
our fits to (anti-)particle species (e.g. Ω refers to both Ω− and
Ω̄+, etc.), unless explicitly noted otherwise.

In the GCE configuration, the thermal fits are performed with
Tch (MeV) and V (fm3) as free parameters, fixing µB = 0, and
setting γS and γq to unity in order to ensure a full saturation of
strangeness and electric charge. Systematic HRG-based studies
on the determination of the latter three parameters at top LHC
energies can be found in Refs. [34, 35]. We focus on vary-
ing the particle species included in the fit in order to gauge the
sensitivity of Tch to each fit. The particle species included in
our flavour-dependent temperature fits are πK p, πK pΛΞΩK0

Sϕ

and KΛΞΩK0
Sϕ, hereinafter referred to as “light”, “all” and
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“str a n g e ”, r es p e cti v el y. We c o m p ar e t h e e xtr a ct e d T c h v al u es,

f or t h e li g ht, str a n g e a n d all fits, a n d t h eir c orr es p o n di n g χ 2 /d of

m e as ur es as a f u n cti o n of t h eir d N c h / d η v al u es a cr oss all t hr e e

c ollisi o n s yst e ms. Si n c e t h e k a o n yi el ds h a v e b e e n s h o w n t o

b e i ns e nsiti v e t o t h e fr e e z e- o ut t e m p er at ur e [ 3 6 ], w e i n cl u d e

t h e m i n li g ht fit f or t h e s a k e of h a vi n g s uffi ci e nt d e gr e es of fr e e-

d o m. As a pr o of of c o n c e pt cr oss- c h e c k, w e p erf or m a n i n d e-

p e n d e nt fit r e pl a ci n g t h e k a o n yi el ds wit h ( a nti-) d e ut er o n yi el ds

i n t h e li g ht fit f or t h e m ost c e ntr al ( 0 - 1 0 %) P b P b c ollisi o ns at
√

s N N = 2 .7 6 Te V [ 3 7 ] a n d fi n d n o si g ni fi c a nt diff er e n c e i n t h e

e xtr a ct e d fr e e z e- o ut p ar a m et ers a n d t h e q u alit y of fit – s h o w n

i n Ta bl e 2. N e v ert h el ess, t h e pr es e nt st u d y d o es n ot i m pl e m e nt

t h e af or e m e nti o n e d π p d li g ht fit i n o ur c al c ul ati o ns si n c e e x p er-

i m e nt al yi el ds f or ( a nti-) d e ut er o n yi el ds ar e n ot y et a v ail a bl e f or

all m ulti pli cit y bi ns a cr oss all t hr e e c ollisi o n s yst e ms at A LI C E.

I n t h e S C E c o n fi g ur ati o n, o ur t h er m al fits ar e i nst e a d p er-

f or m e d wit h T c h ( M e V) a n d V (f m3 ) as fr e e p ar a m et ers, k e e pi n g

µ B = 0, V C = V a n d s etti n g γ S a n d γ q t o u nit y. S etti n g V C = V

is d o n e i n or d er t o g u ar a nt e e a l o c al c o ns er v ati o n of str a n g e n ess

wit hi n t h e c al c ul at e d fir e b all v ol u m e p er u nit r a pi dit y. It is

w ort h m e nti o ni n g t h at i n t his m et h o d ol o g y V C m er el y e m pl o ys

a stri ct c o ns er v ati o n of t h e t h e str a n g e n ess q u a nt u m n u m b er a n d

n ot of b ar y o n n u m b er, w hi c h is tr e at e d gr a n d c a n o ni c all y. T his

e m pl o y m e nt of gl o b al c o ns er v ati o n of b ar y o n n u m b er b y o ur

m o d el i n t h e S C E a p pr o a c h c a n b e j usti fi e d b y t h e n et- pr ot o n

fl u ct u ati o n d at a fr o m t h e A LI C E C oll a b or ati o n [ 3 8 ] – ass u m-

i n g u nif or mit y a cr oss all m ulti pli cit y cl ass es at L H C e n er gi es

– i n di c ati n g gl o b al b ar y o n n u m b er c o ns er v ati o n o v er a r a pi dit y

r a n g e si g ni fi c a ntl y l ar g er t h a n u nit y.

T h e i niti al S C E a n al ysis f oll o ws t h e s a m e pr o c e d ur e t h a n t h e

e arl y G C E tri al, h o w e v er, t h e f oll o wi n g pr o c e d ur es ar e n ot p er-

f or m e d f or t h e G C E a p pr o a c h d u e t o t h e d et eri or ati o n of t h e

q u alit y of its fits a cr oss all t hr e e c ollisi o n s yst e ms. A si mil ar

a p pr o a c h w as pr es e nt e d i n [ 3 9 , 4 0 ], wit h a n ot a bl e diff er e n c e i n

t h e m a n n er i n w hi c h t h e pi o n yi el ds w er e c al c ul at e d i n t h e t h er-

m al m o d el. I n o ur c as e, t h e pi o n, a n d all ot h er, yi el ds ar e b as e d

o n e x p eri m e nt al v al u es m e as ur e d o v er a si n gl e u nit of r a pi dit y

ar o u n d mi d-r a pi dit y. A d diti o n all y, R ef. [ 4 1 ] als o pr es e nt e d a n

i n d e p e n d e nt S C E H R G m o d el a n al ysis wit h a n d wit h o ut t h e us e

of S- m atri x c orr e cti o ns. I n t h e c o nt e xt of t h e pr es e nt l ett er, t his

l att er a p pr o a c h is n ot e m pl o y e d.

F or o ur S C E a n al ysis, t h e π K p Λ Ξ Ω K 0
S ϕ yi el ds ar e c al c u-

l at e d b y fi xi n g t h e t e m p er at ur e t o t h e fl a v o ur s p e ci fi c fr e e z e- o ut

t e m p er at ur es at µ B = 0 fr o m o ur ori gi n al st u d y [ 2 2 ], s u c h t h at

T L = 1 5 0 M e V f or π p a n d T S = 1 6 5 M e V f or K Λ Ξ Ω K 0
S ϕ . We

c al c ul at e t h e a nti- h a dr o n t o π + r ati o as a f u n cti o n of d N c h / d η

a n d c o m p ar e o ur r es ults wit h t h e e x p eri m e nt al d at a. T h e c h oi c e

of t h e a nti- h a dr o n t o π + r ati o is m a d e, as i n [1 1 ], i n or d er t o us e

o nl y p arti cl es pr o d u c e d d uri n g t h e e v ol uti o n of t h e fir e b all. T his

all o ws us t o f a cilit at e f ut ur e m ulti pli cit y d e p e n d e nt c o m p ar-

is o ns t o l o w er c ollisi o n e n er g y m e as ur e m e nts, w h er e µ B 0. I n

or d er t o e x pli citl y s h o w t h e t e m p er at ur e d e p e n d e n c e of t h e fir e-

b all v ol u m es, w e c al c ul at e t h e v ol u m es a cr oss all t hr e e s yst e ms

as a f u n cti o n of d N c h / d η wit h t e m p er at ur es fi x e d t o t h e af or e-

m e nti o n e d fl a v o ur s p e ci fi c t e m p er at ur es, as w ell as T = 1 5 8

M e V f or a n o n- fl a v o ur- d e p e n d e nt t e m p er at ur e.

4. R es ults a n d Dis c ussi o n
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Fi g ur e 1: T o p P a n el: Fl a v o ur- d e p e n d e nt T h er m al- FI S T G C E Fits t o Yi el ds

usi n g t h e P D G 2 0 1 6 + h a dr o ni c s p e ctr u m f or A LI C E p p c ollisi o ns at
√

s = 7 .0 0

Te V, p P b c ollisi o ns at
√

s N N = 5 .0 2 Te V a n d P b P b c ollisi o ns at
√

s N N = 2 .7 6

Te V, r es p e cti v el y, s h o w n as as cl os e d cir cl es, o p e n di a m o n ds a n d cl os e d s q u ar es

as a f u n cti o n of d N c h / d η . F or all fits, µ B = 0 a n d γ S = 1, w hil e T c h , a n d V

ar e us e d as fr e e p ar a m et ers. R e d, gr e e n, a n d bl u e p oi nts r e pr es e nt t h e li g ht,

all, a n d str a n g e fits, r es p e cti v el y. B ott o m P a n el: Fl a v o ur- d e p e n d e nt T h er m al-

FI S T S C E Fits t o Yi el ds usi n g t h e P D G 2 0 1 6 + h a dr o ni c s p e ctr u m f or A LI C E

p p c ollisi o ns at
√

s = 7 .0 0 Te V, p P b c ollisi o ns at
√

s N N = 5 .0 2 Te V a n d P b P b

c ollisi o ns at
√

s N N = 2 .7 6 Te V as a f u n cti o n of d N c h / d η . F or all S C E fits,

µ B = 0, γ S = 1 a n d V C = V , w hil e T c h , a n d V ar e us e d as fr e e p ar a m et ers. T h e

b ott o m p a n el f oll o ws t h e s a m e l a b eli n g c o n v e nti o n us e d i n t h e t o p p a n el.

We e xtr a ct fr e e z e- o ut t e m p er at ur es T c h vi a T h er m al- FI S T f or

t h e li g ht, all, a n d str a n g e p arti cl e t h er m al fits a cr oss i n cr e asi n g

d N c h / d η v al u es f or p p, p P b, a n d P b P b c ollisi o n s yst e ms at

A LI C E i n t h e G C E a n d S C E c o n fi g ur ati o ns usi n g e x p eri m e nt al

p arti cl e yi el ds.

T h e t o p p a n el of Fi g ur e 1 s h o ws t h e e xtr a ct e d fr e e z e- o ut t e m-

p er at ur es T c h as a f u n cti o n of d N c h / d η at |η | < 0 .5 f or t h e

t hr e e diff er e nt fits wit hi n t h e G C E tr e at m e nt. T h e p p, p P b, P b P b

p oi nts ar e s h o w n as cl os e d cir cl es, o p e n di a m o n ds a n d cl os e d

s q u ar es, r es p e cti v el y. T h e r e d, gr e e n, a n d bl u e p oi nts p ert ai n

t o t h e e xtr a ct e d T c h v al u es f or t h e li g ht, all, a n d str a n g e fits,

r es p e cti v el y. T h e c ol o ur e d b a n ds r e pr es e nt t h e r et ai n e d u n c er-

t ai nti es fr o m t h e fits o nt o t h e fr e e z e- o ut p ar a m et ers. T h e b ott o m

p a n el of Fi g ur e 1 s h o ws t h e e xtr a ct e d fr e e z e- o ut t e m p er at ur es

T c h as a f u n cti o n of d N c h / d η at |η | < 0 .5 f or t h e t hr e e dif-

f er e nt fits wit hi n t h e S C E tr e at m e nt, f oll o wi n g t h e s a m e l a b el-

i n g c o n v e nti o n as i n t h e t o p p a n el of t h e fi g ur e. Q u alit ati v el y

c o ntr asti n g b ot h t o p a n d b ott o m p a n els, w e o bs er v e a d et eri-

or ati o n of t h e fl a v o ur- d e p e n d e nt 2 C F O a p pr o a c h o c c urri n g i n
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Ta bl e 2: T h er m al- FI S T Gr a n d C a n o ni c al E ns e m bl e Yi el d Fits vi a t h e P D G 2 0 1 6 + h a dr o ni c s p e ctr u m f or t h e m ost c e ntr al ( 0 - 1 0 %) P b P b c ollisi o ns at
√

s N N = 2 .7 6

Te V. T h e t o p p a n el lists o ur pr e vi o us r es ults fr o m R ef. [ 2 2 ] w hilst t h e b ott o m p a n el s h o ws o ur r es ults f or t h e alt er n ati v e li g ht (π p d ), f ull (π p Λ Ξ Ω K 0
S ϕ d ), a n d str a n g e

(K Λ Ξ Ω K 0
S ϕ ) p arti cl e fits, r es p e cti v el y, usi n g t h e ( a nti-) d e ut er o n yi el ds fr o m R ef. [3 7 ]. F or all fits, µ B = 0, w hilst T c h a n d V ar e us e d as fr e e p ar a m et ers.

Fit T c h ( M e V) V ( f m3 ) χ 2 / d o f

π K p 1 4 3. 2 ± 2. 7 9 8 0 3 1. 7 ± 1 2 6 3 5. 6 5 /4

π K p Λ Ξ Ω K 0
S ϕ 1 4 9. 6 ± 1. 7 6 5 7 6 4. 4 ± 6 3 5. 8 2 3. 4 /1 2

K Λ Ξ Ω K 0
S ϕ 1 5 3. 9 ± 2. 3 0 4 3 8 9. 7 ± 6 4 0. 8 1 0. 5 /8

Fit T c h ( M e V) V ( f m3 ) χ 2 / d o f

π p d 1 4 4. 6 ± 2. 3 9 7 9 1 1. 6 ± 1 1 7 7 5. 4 5 /4

π K p Λ Ξ Ω K 0
S ϕ d 1 5 0. 1 ± 1. 6 5 5 6 1 3. 6 ± 5 8 8. 5 2 3. 9 /1 4

K Λ Ξ Ω K 0
S ϕ 1 5 3. 9 ± 2. 3 0 4 3 8 9. 7 ± 6 4 0. 8 1 0. 5 /8
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( m a g e nt a) fits us e d i n t h e all fits of t h e t o p a n d b ott o m p a n els of Fi g ur e 1,

r es p e cti v el y, usi n g t h e P D G 2 0 1 6+ h a dr o ni c s p e ctr u m f or A LI C E p p c ollisi o ns

at
√

s = 7 .0 0 Te V, p P b c ollisi o ns at
√

s N N = 5 .0 2 Te V a n d P b P b c ollisi o ns at
√

s N N = 2 .7 6 Te V as a f u n cti o n of d N c h / d η . B ott o m P a n el: T h er m al- FI S T

∆ (χ 2 /d of) v al u es f or t h e S C E fits us e d i n t h e li g ht ( or a n g e) a n d str a n g e ( p ur pl e)

fits of t h e b ott o m p a n el of Fi g ur e 1 vi a t h e P D G 2 0 1 6 + h a dr o ni c s p e ctr u m f or

A LI C E p p c ollisi o ns at
√

s = 7 .0 0 Te V, p P b c ollisi o ns at
√

s N N = 5 .0 2 Te V

a n d P b P b c ollisi o ns at
√

s N N = 2 .7 6 Te V as a f u n cti o n of d N c h / d η . F or b ot h

t h e t o p a n d b ott o m p a n els, t h e c orr es p o n di n g χ 2 /d of a n d ∆ (χ 2 /d of) v al u es f or

p p, p P b a n d P b P b c ollisi o n s yst e ms ar e r es p e cti v el y s h o w n as as cl os e d cir cl es,

o p e n di a m o n ds a n d cl os e d s q u ar es.

t h e p p a n d p P b s yst e ms w h e n usi n g t h e G C E s c e n ari o, st art-

i n g at v al u es of d N c h / d η < 5 0. T his is n ot t h e c as e i n t h e

S C E tr e at m e nt, w h er e a fl a v o ur- d e p e n d e nt t e m p er at ur e s e p ar a-

ti o n is c o nsist e ntl y pr es e nt as a f u n cti o n of d N c h / d η a cr oss all

t hr e e s yst e ms. It als o is w ort h n oti n g t h at i n t h e gr a n d c a n o n-

i c al li mit, i. e. f or v al u es of d N c h / d η > 5 0, b ot h t h e G C E

a n d S C E tr e at m e nts r e n d er al m ost i d e nti c al T c h v al u es. N e v er-

t h el ess, i n or d er t o q u alit ati v el y diff er e nti at e b et w e e n t h e t w o

tr e at m e nts, w e p erf or m a n i n- d e pt h c o m p aris o n of t h e fit q u al-

it y of t h e af or e m e nti o n e d T c h v al u es as a f u n cti o n of d N c h / d η ,

w hi c h is s e p ar at el y s h o w n i n Fi g ur e 2.

T h e t o p p a n el of Fi g ur e 2 d e pi cts t h e c orr es p o n di n g χ 2 /d of

v al u es f or t h e G C E a n d S C E all fits of t h e t o p a n d b ott o m p a n-

els of Fi g ur e 1, s h o w n i n c y a n a n d m a g e nt a, r es p e cti v el y. T h e

p p, p P b, P b P b p oi nts ar e s h o w n as cl os e d cir cl es, o p e n di a-

m o n ds a n d cl os e d s q u ar es. I n t h e l ar g e s yst e m ( P b P b), w e o b-

s er v e a c o nsist e nt q u alit y of fit f or all m ulti pli cit y cl ass es i n

t h e G C E a n d S C E s c e n ari os, wit h al m ost i d e nti c al v al u es f or

b ot h a p pr o a c h es. H o w e v er, i n t h e G C E c as e, w e o bs er v e a d e-

t eri or ati n g q u alit y of fits i n t h e s m all s yst e ms ( p p a n d p P b),

wit h χ 2 / d of > 5 f or n e arl y all fits t o p p d at a. T his r e n d ers

a n i n c o nsist e nt d es cri pti o n of t e m p er at ur es a cr oss m ulti pli cit y

wit hi n t h e G C E tr e at m e nt of s m all er s yst e ms. I nst e a d, usi n g

t h e S C E a p pr o a c h, w e o bs er v e a c o nsist e nt q u alit y of fit, s p e cif-

i c all y, χ 2 / d of ≲ 5, a cr oss all s m all a n d l ar g e s yst e ms wit h c or-

r es p o n di n g v al u es d N c h / d η ≥ 1 0.

T h e b ott o m p a n el of Fi g ur e 2 s h o ws t h e ∆ (χ 2 /d of) v al u es c or-

r es p o n di n g t o t h e S C E fits p erf or m e d i n t h e li g ht a n d str a n g e

fits fr o m t h e b ott o m p a n el of Fi g ur e 1 – s h o w n i n or a n g e a n d

p ur pl e, r es p e cti v el y. As i n t h e t o p p a n el, t h e p p, p P b, P b P b

p oi nts ar e r es p e cti v el y s h o w n as cl os e d cir cl es, o p e n di a m o n ds

a n d cl os e d s q u ar es. T h e ∆ (χ 2 /d of) v al u es f or t h e or a n g e p oi nts

i n t h e b ott o m p a n el of Fi g ur e 2 ar e c al c ul at e d as t h e diff er e n c e

b et w e e n t h e c orr es p o n di n g χ 2 /d of v al u es of t h e S C E all ( gr e e n)

fits a n d t h e S C E li g ht (r e d) fits fr o m t h e b ott o m p a n el i n Fi g-

ur e 1. Si mil arl y, t h e ∆ (χ 2 /d of) v al u es f or t h e p ur pl e p oi nts i n

t h e b ott o m p a n el of Fi g ur e 2 ar e c al c ul at e d as t h e diff er e n c e b e-
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t w e e n t h e c orr es p o n di n g χ 2 /d of v al u es of t h e S C E all ( gr e e n)

fits a n d t h e S C E str a n g e ( bl u e) fits fr o m t h e b ott o m p a n el i n

Fi g ur e 1. T his pr o c e d ur e is d o n e i n or d er t o e x pli citl y dis cri m-

i n at e b et w e e n n ot a bl e diff er e n c es i n t h e q u alit y of t h e fits w h e n

e m pl o yi n g t h e 2 C F O a p pr o a c h wit hi n t h e S C E, w h er e a n y i m-

pr o v e m e nts of t h e fit q u alit y w o ul d r e n d er ∆ (χ 2 /d of) v al u es a p-

pr o xi m at el y e q u al t o t h e m a g e nt a χ 2 /d of v al u es s h o w n i n t h e

t o p p a n el. C o n v ers el y, a n y ∆ (χ 2 /d of) v al u es b el o w z er o r e fl e ct

a w ors e n e d fit q u alit y. We n ot e t h at f or all t hr e e s yst e ms, a cr oss

all v al u es of d N c h / d η , t h e c al c ul at e d ∆ (χ 2 /d of) v al u es f or b ot h

t h e li g ht ( or a n g e) a n d str a n g e ( p ur pl e) p oi nts g e n er all y f oll o w

t h e s a m e tr e n d as t h e all ( c y a n) p oi nts i n t h e t o p p a n el. Wit h o ut

l oss of g e n er alit y, t his s u g g ests a n o v er all i m pr o v e m e nt of t h e

fits w h e n e m pl o yi n g t h e fl a v o ur- d e p e n d e nt 2 C F O a p pr o a c h i n

t h e S C E tr e at m e nt. T h e pr es e n c e of n e g ati v e ∆ (χ 2 /d of) v al u es

c a n o nl y b e s e e n f or a f e w of t h e li g ht fits a n d c a n b e attri b ut e d

t o a d e cr e asi n g n u m b er of d e gr e es of fr e e d o m, w hi c h c a us es

a n o v er all i n cr e as e i n t h e c al c ul at e d χ 2 /d of. M or e o v er, t h e fi n al

χ 2 /d of v al u es f or t h e fl a v o ur s p e ci fi c fits c a n b e o bt ai n e d b y s u b-

tr a cti n g t h e v al u es i n t h e l o w er p a n el fr o m t h e m a g e nt a p oi nts

i n t h e u p p er p a n el of Fi g ur e 2. O n e c a n t h us o bs er v e a c o nsis-

t e nt q u alit y of fit – s p e ci fi c all y, χ 2 / d of ≲ 5 – f or e a c h of t h e

t hr e e t y p es of fits a cr oss t h e s m all a n d l ar g e s yst e ms wit h c or-

r es p o n di n g v al u es of d N c h / d η ≥ 1 0. We n ot e t h at t h e q u alit y

of fit is c o nsist e nt f or b ot h t h e li g ht a n d str a n g e fits t o a l o w er

c orr es p o n di n g v al u e of d N c h / d η ≥ 5. G e n er all y, t h e χ 2 / d of

v al u es f or t h e li g ht a n d str a n g e fits ar e l o w er t h a n t h os e f or t h e

all fit.

Fi g ur e 3 s h o ws t h e a nti- h a dr o n t o π + r ati o as a f u n cti o n of

d N c h / d η , st arti n g fr o m t h e t o p p a n el d o w n t o t h e b ott o m:

p̄ /π + , Λ̄/ π + , Ξ̄/ π + a n d Ω̄/ π + , r es p e cti v el y. T h e e x p eri m e nt al

p oi nts f or A LI C E p p, p P b a n d b ot h P b P b c ollisi o n s yst e ms ar e

s h o w n as gr e y cl os e d cir cl es, bl a c k o p e n di a m o n ds a n d bl a c k

cl os e d s q u ar es, r es p e cti v el y. T h e p ur pl e o p e n cr oss es i n di c at e

o ur c al c ul at e d 2 C F O a nti- h a dr o n t o π + r ati os wit hi n t h e S C E

fr a m e w or k i n T h er m al- FI S T usi n g t h e fl a v o ur s p e ci fi c t e m p er-

at ur es T L = 1 5 0 M e V f or π + a n d p̄ , a n d T S = 1 6 5 M e V f or

Λ̄ Ξ̄ a n d Ω̄ . T h e c orr es p o n di n g m o d el c al c ul ati o ns of t h e ϕ t o

π + r ati o ar e s h o w n s e p ar at el y i n Fi g ur e 5, k e e pi n g t h e s a m e

p ur pl e cr oss c ol o ur c o n v e nti o n, f or t h e tr a diti o n al tr e at m e nt of

n et-str a n g e n ess of t h e ϕ m es o n of S = 0. F or t his st u d y w e

c h o os e t h e e xtr a p ol at e d c h e mi c al fr e e z e- o ut t e m p er at ur es d e-

t er mi n e d b y t h e s pli n e fits i n o ur pr e vi o us l ett er [2 2 ] f or c e ntr al

( 0 - 1 0 %) P b P b c ollisi o ns at µ B = 0 u nif or ml y a cr oss all c e n-

tr aliti es a n d s yst e m si z es, n a m el y, T L = 1 5 0 M e V a n d T S = 1 6 5

M e V. It is w ort h m e nti o ni n g t h at a n alt er n ati v e us e of T L = 1 4 2

M e V r at h er t h a n 1 5 0 M e V d o es n ot c h a n g e t h e q u alit ati v e r e-

s ults s h o w n i n Fi g ur e 3 – p arti c ul arl y t h e p̄ /π + r ati o pr es e nt e d

i n t h e t o p p a n el. We als o t est t h at usi n g i nst e a d t h e t e m p er a-

t ur es s h o w n i n t h e b ott o m p a n el of Fi g ur e 1 d o es n ot m a k e a

di ff er e n c e i n fi n al st at e p arti cl e yi el d r ati os si n c e a si m ult a n e-
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Fi g ur e 3: 2 C F O S C E T h er m al- FI S T T h er m al M o d el a nti- h a dr o n t o π + yi el d r a-

ti o c al c ul ati o ns vi a t h e P D G 2 0 1 6+ h a dr o ni c s p e ctr u m f or A LI C E p p c ollisi o ns

at
√

s = 7 .0 0 Te V, p P b c ollisi o ns at
√

s N N = 5 .0 2 Te V, a n d P b P b c ollisi o ns

at
√

s N N = 2 .7 6 Te V as a f u n cti o n of d N c h / d η . Fr o m t o p t o b ott o m: p̄ /π + ,

Λ̄/ π + , Ξ̄/ π + , a n d Ω̄/ π + , r es p e cti v el y. A LI C E e x p eri m e nt al p oi nts f or p p, p P b

a n d b ot h P b P b c ollisi o n s yst e ms ar e r es p e cti v el y s h o w n as gr e y cl os e d cir cl es,

bl a c k o p e n di a m o n ds a n d bl a c k cl os e d s q u ar es. P ur pl e o p e n cr oss es d e pi ct t o

o ur c al c ul at e d S C E 2 C F O a nti- h a dr o n t o π + r ati os at v a nis hi n g b ar y o- c h e mi c al

p ot e nti al i n t h e S C E fr a m e w or k b as e d o n t h e fl a v o ur s p e ci fi c t e m p er at ur es e x-

tr a ct e d i n [2 2 ]. F or all c al c ul ati o ns, µ B = 0, γ S = 1 a n d V C = V .

V
 
(
f
m

3
)

A L I C E p p    @  7 . 0 0  T e V   

p P b   @  5 . 0 2  T e V   

P b P b  @  2 . 7 6  T e V  

T S  =  1 6 5  M e V

T S  =  1 5 8  M e V

T L  =  1 5 0  M e V

| η | <  0 . 5
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c h
〈d N

1 0 1 0 2

1 0 4

1 0 3

1 0 2

1 0

T h e r m a l  F I S T :  P D G 2 0 1 6 +

S t r a n g e n e s s  C a n o n i c a l  E n s e m b l e  

µ
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=  0   γ  
S  

=  1      
C

 V  =  V

Fi g ur e 4: T h er m al- FI S T S C E T h er m al M o d el t e m p er at ur e d e p e n d e nt v ol u m e

p er u nit r a pi dit y c al c ul ati o ns vi a t h e P D G 2 0 1 6 + h a dr o ni c s p e ctr u m f or A LI C E

p p c ollisi o ns at
√

s = 7 .0 0 Te V, p P b c ollisi o ns at
√

s N N = 5 .0 2 Te V, a n d P b P b

c ollisi o ns at
√

s N N = 2 .7 6 Te V, r es p e cti v el y s h o w n as as cl os e d cir cl es, o p e n

di a m o n ds a n d cl os e d s q u ar es as a f u n cti o n of d N c h / d η . T h e r e d, gr e e n, a n d

bl u e p oi nts r e pr es e nt o ur v ol u m e c al c ul ati o ns b as e d o n t h e fl a v o ur s p e ci fi c t e m-

p er at ur es e xtr a ct e d i n [ 2 2 ] at 1 5 0 M e V, 1 5 8 M e V a n d 1 6 5 M e V, r es p e cti v el y.

F or all c al c ul ati o ns, µ B = 0, γ S = 1 a n d V C = V .
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o us c h a n g e i n v ol u m e fr o m t h e v al u es s h o w n i n Fi g ur e 4 will

c o m p e ns at e a n y t e m p er at ur e di ff er e n c es.

O ur r es ults s h o w a n e x c ell e nt a gr e e m e nt wit h t h e e x p eri m e n-

t al yi el d r ati os m e as ur e d b y A LI C E a cr oss all t hr e e s yst e ms a n d

ar e c o nsist e nt wit h t h os e s h o w n i n R efs. [ 3 9 , 4 0 , 4 1 ]. At t h es e

hi g h c ollisi o n e n er gi es, str a n g e n ess s e e ms s at ur at e d e v e n i n t h e

s m all est s yst e ms. T h e m ai n di ff er e n c es t o R ef. [ 4 0 ] e m er g e

fr o m t h e f a ct t h at o ur r es ults d o n ot r e q uir e diff er e nt r a pi dit y

wi n d o ws f or pi o ns a n d str a n g e p arti cl es a n d n o a d diti o n al n or-

m ali z ati o n f a ct or is us e d t o r e pr o d u c e t h e e x p eri m e nt al r es ults.

I n o ur a n al ysis, t h e a c c ur at e r e pr es e nt ati o n of fi n al st at e p arti-

cl e yi el ds r eli es s ol el y o n t h e us e of fl a v o ur- d e p e n d e nt t e m p er-

at ur es a n d fir e b all v ol u m es – t h e r el e v a nt v ol u m es as a f u n cti o n

of d N c h / d η as d et er mi n e d b y t h e m o d el ar e s h o w n i n Fi g ur e

4.

L astl y, w e v ar y t h e tr e at m e nt of n et-str a n g e n ess of t h e ϕ m e-

s o n i n o ur m o d el b et w e e n S = 0, S = 1 a n d S = 2 t o g a u g e t h e

s e nsiti vit y of t h e c al c ul at e d yi el ds a n d t o el u ci d at e t h e q u esti o n

of str a n g e n ess e n h a n c e m e nt i n t h e c as e of t h e v e ct or m es o n.

Fi g ur e 5 s h o ws t h e ϕ t o π + r ati o as a f u n cti o n of d N c h / d η ,

f oll o wi n g t h e s a m e l a b eli n g c o n v e nti o n f or e x p eri m e nt al p oi nts

a n d 2 C F O t h er m al m o d el c al c ul ati o ns as Fi g ur e 3, usi n g a v ari-

ati o n of t h e t ot al str a n g e n ess ( S) v al u e wit hi n t h e m o d el f or t h e

ϕ m es o n. T o r eit er at e, t h e π + a n d ϕ v al u es ar e c al c ul at e d at

T L = 1 5 0 M e V a n d T S = 1 6 5 M e V, r es p e cti v el y. F or t h e c o m-

p aris o n t o t h e d at a, w e ar bitr aril y fi x t h e t ot al str a n g e n ess of t h e

ϕ m es o n t o S = 0 ( p ur pl e o p e n cr oss es), S = 1 ( c y a n o p e n

cr oss es) a n d S = 2 ( m a g e nt a o p e n cr oss es), r es p e cti v el y.

| η | <  0 . 5
/ d η 〉L H C

c h
〈d N

1 0 1 0 2 1 0 3

L
S

 
T

φ

0 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

0 . 0 2 5

0 . 0 3

0 . 0 3 5

0 . 0 4
T h e r m a l  F I S T :  P D G 2 0 1 6 +

S t r a n g e n e s s  C a n o n i c a l  E n s e m b l e  ( 2 C F O )  

A L I C E  p p    @  7 . 0 0  T e V  
A L I C E  p P b   @  5 . 0 2  T e V  
A L I C E  P b P b  @  2 . 7 6  T e V  

=  1 5 0  M e V
 L  

=  1 6 5  M e V ,  T S  T

/
π

+ T

φ S t r a n g e n e s s  C o n t e n t

S  =  0

S  =  1

S  =  2

µ
 B

=  0   γ  
S  

=  1      
C

 V  =  V

Fi g ur e 5: 2 C F O S C E T h er m al- FI S T T h er m al M o d el ϕ t o π + yi el d r ati o c al-

c ul ati o ns vi a t h e P D G 2 0 1 6 + h a dr o ni c s p e ctr u m f or A LI C E p p c ollisi o ns at
√

s = 7 .0 0 Te V, p P b c ollisi o ns at
√

s N N = 5 .0 2 Te V, a n d P b P b c ollisi o ns at
√

s N N = 2 .7 6 Te V as a f u n cti o n of ⟨d N c h / d η ⟩. A LI C E e x p eri m e nt al p oi nts f or

p p, p P b, P b P b c ollisi o ns ar e r es p e cti v el y s h o w n i n gr e y as cl os e d cir cl es, o p e n

di a m o n ds, a n d cl os e d s q u ar es. P ur pl e, c y a n a n d m a g e nt a o p e n cr oss es d e pi ct

o ur c al c ul at e d S C E 2 C F O ϕ t o π + r ati os i n t h e S C E fr a m e w or k b as e d o n t h e

fl a v o ur s p e ci fi c fr e e z e- o ut t e m p er at ur es at v a nis hi n g b ar y o- c h e mi c al p ot e nti al

s h o w n i n [ 2 2 ] fi xi n g t h e t ot al str a n g e n ess v al u es f or t h e ϕ m es o n t o S = 0,

S = 1 a n d S = 2, r es p e cti v el y. F or all c al c ul ati o ns, µ B = 0, γ S = 1 a n d

V C = V .

I n t h e c as e of S = 0, t h e c al c ul at e d yi el d r ati os ar e w ell d e-

s cri b e d b y t h e 2 C F O a p pr o a c h o nl y i n t h e l ar g e s yst e ms, f or

⟨d N c h / d η ⟩ > 5 0. O ur m o d el v astl y o v er esti m at es t h e v al u e of

t h e r ati o f or b ot h t h e p p a n d p P b s yst e ms. I n t h e c as e S = 1, w e

s e e a n i m pr o v e m e nt p arti c ul arl y i n t h e s m all er s yst e ms, wit h

o ur c al c ul at e d v al u es al m ost f alli n g wit hi n t h e err ors of t h e e x-

p eri m e nt al d at a f or all m ulti pli cit y bi ns. L astl y, f or t h e c as e

of S = 2, t h e m o d el u n d er esti m at es t h e e x p eri m e nt al yi el d

r ati os f or v al u es of ⟨d N c h / d η ⟩ < 1 0, b ut d o es ot h er wis e q uit e

w ell. O ur r es ults s u g g est t h at f or ϕ pr o d u cti o n i n s m all s ys-

t e ms t h e ϕ s h o ul d n ot b e c o nsi d er e d a S = 0 p arti cl e, b e c a us e

si m pl e fl a v o ur c o ns er v ati o n a n d r e c o m bi n ati o n ar g u m e nts r e-

q uir e m or e t h a n a si n gl e stri n g t o fr a g m e nt t o f or m a n s s̄ st at e.

T h er ef or e, ϕ yi el ds c a n b e m or e a c c ur at el y c al c ul at e d, wit hi n

t h e H R G fr a m e w or k, b y ass u mi n g a n o n- z er o str a n g e n ess c o n-

t e nt f or t h e ϕ - m es o n.

5. C o n cl usi o n

We pr es e nt d et er mi n ati o ns of fr e e z e- o ut t e m p er at ur es T c h f or

t h e li g ht, f ull, a n d str a n g e p arti cl e t h er m al fits a cr oss i n cr e asi n g

d N c h / d η v al u es f or p p, p P b, a n d P b P b c ollisi o n s yst e ms at

A LI C E i n t h e G C E a n d S C E c o n fi g ur ati o ns fr o m e x p eri m e nt al

p arti cl e yi el ds vi a T h er m al- FI S T usi n g t h e P D G 2 0 1 6 + h a dr o ni c

s p e ctr u m. M or e o v er, w e als o s h o w t h er m al m o d el a nti- h a dr o n

t o π + yi el d r ati o c al c ul ati o ns i n t h es e s a m e c ollisi o n s yst e ms

as a f u n cti o n d N c h / d η , wit h p arti c ul ar att e nti o n gi v e n t o t h e

tr e at m e nt of t h e t ot al str a n g e n ess c o nt e nt of t h e ϕ m es o n. I n

t h e s c o p e of t h e Str a n g e n ess C a n o ni c al E ns e m bl e wit hi n t h e

fr a m e w or k of t h e T h er m al- FI S T H R G m o d el p a c k a g e, w e s h o w

a n e x c ell e nt d es cri pti o n of e x p eri m e nt al yi el d r ati os a cr oss all

t hr e e s yst e ms, m e as ur e d b y t h e A LI C E C oll a b or ati o n as a f u n c-

ti o n of d N c h / d η at L H C e n er gi es, w h e n e m pl o yi n g fl a v o ur-

d e p e n d e nt c h e mi c al fr e e z e- o ut t e m p er at ur es u n d er t h e ass u m p-

ti o n of f ull y s at ur at e d str a n g e n ess. O n t h e ot h er h a n d, it s h o ul d

b e n ot e d t h at Gr a n d C a n o ni c al E ns e m bl e c al c ul ati o ns wit h a

si z e a bl e γ S f a ct or [4 2 ], C a n o ni c al E ns e m bl e c al c ul ati o ns wit h

l ar g e c orr el ati o n v ol u m es [1 2 ], a n d a d y n a mi c al c or e- c or o n a

i niti ali z ati o n fr a m e w or k wit h l ar g e n o n- e q uili bri u m c o ntri b u-

ti o ns [4 3 ] als o d es cri b e t h e e x p eri m e nt al d at a, h o w e v er, o ur

a p pr o a c h is t h e o nl y o n e s h o wi n g a c o m m o n p arti cl e pr o d u c-

ti o n a n d fl a v o ur- d e p e n d e nt c h e mi c al fr e e z e- o ut s c e n ari o c o n-

sist e ntl y fr o m t h e s m all est t o t h e l ar g est c ollisi o n s yst e ms at

L H C e n er gi es.

I n c o n cl usi o n, t h e fl a v o ur- d e p e n d e nt ( Tc h ) s e p ar ati o n est a b-

lis h e d i n h e a v y-i o n c ollisi o ns, s e e ms t o pr e v ail als o at l o w ⟨d N c h / d η ⟩

v al u es c orr es p o n di n g t o t h e p p a n d p P b s yst e ms. T his s ust ai n e d

s e p ar ati o n m a y als o b e s e e n as a n i n di c ati o n of Q G P f or m ati o n

i n s m all s yst e ms.
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