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ABSTRACT

Variations in the intensity of the incident beam can cause significant
inaccuracies in microscopes that use focused beams of electrons or
ions. Existing mitigation methods depend on the artifacts having
characteristic spatial structures explained by the raster scan pattern
and temporal correlation of the beam current variations. We show
that recently introduced time-resolved measurement methods cre-
ate robustness to beam current variations that improve significantly
upon existing methods while not depending on separability of arti-
fact structure from underlying image content. These advantages are
illustrated through Monte Carlo simulations representative of both
helium ion microscopy (higher secondary electron yield) and scan-
ning electron microscopy (lower secondary electron yield). Notably,
this demonstrates that when the beam current variation is apprecia-
ble, time-resolved measurements provide a novel benefit in particle
beam microscopy that extends to low secondary electron yields.

Index Terms— Computational imaging, focused ion beam mi-
croscopy, helium ion microscopy, Poisson processes, scanning elec-
tron microscopy.

1. INTRODUCTION

Particle beam microscopes image samples using a focused beam of
charged particles. The helium ion microscope (HIM) offers sev-
eral exciting advantages over other instruments, including high sec-
ondary electron (SE) yield, large depth of field, and sub-nanometer
resolution [1-3]. Like the more prevalent scanning electron micro-
scope (SEM), the quality of the HIM micrograph depends heavily
on the ability of the instrument to maintain a stable beam current.
In practice, the beam emitted by a gas field ion source (GFIS) in
an HIM may vary as a result of contamination [4]. When a sam-
ple is raster scanned row by row, this beam current variation gives
rise to horizontal stripe artifacts in the resulting micrograph, as illus-
trated in the second column of Fig. 3. Furthermore, as the GFIS tip
ages, the beam current may also drop below the manufacturer’s rated
value. An unstable GFIS may be ‘reset’ by baking the source compo-
nents (i.e., heating to extraordinarily high temperatures to drive out
gas contaminants) [2], but this process can cost a laboratory days of
use of an expensive instrument. Thus, a computational remedy for
variable or unknown beam current would be valuable.

A simple existing method to address beam current variation
is so-called ‘line averaging’ or ‘frame averaging, where a line or
frame is scanned repeatedly and the resulting measurements are
averaged [2,5]. This reduces striping artifacts because the beam
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current variations are averaged over multiple visits to each pixel.
However, these methods increase the sensitivity to sample drift,
i.e., motion of the sample between scans, and some collection time
efficiency is lost by the additional beam scanning. A second class
of mitigation techniques applies image processing tools to remove
striped content from the micrograph; for example, in [5, 6], image
content with low horizontal frequency is removed. Because these
methods are designed to remove stripes, they have also been applied
to remove ‘curtaining’ artifacts that arise from variations in an ion
beam’s milling rate [7, 8]. Though undesired, curtaining arises from
accurate representation of the sample. In contrast, beam current arti-
facts are due to the data processing algorithms’ failure to account for
the true beam current; they do not represent the underlying sample.

In this paper, we introduce and evaluate a new approach to miti-
gating beam current variation that depends on neither temporal cor-
relation of the beam current nor on a resulting spatial structure in
the artifacts. We show that insensitivity to beam current is a prop-
erty of an approach to data collection and analysis that was recently
introduced solely to improve estimation of SE yield when the beam
current is known precisely [9]. A typical particle beam microscopy
system raster scans a beam across a sample, measuring the SEs ex-
pelled from the surface in response. At each pixel, over dwell time
t, the total number of SEs generate a single measurement that is
mapped to a grayscale level to form an image of the sample. With
the time-resolved (TR) measurement introduced in [9], the per-pixel
dwell time is divided into n sub-acquisitions of length ¢/n, and the
number of SEs is measured separately for each. Estimators proposed
in [9, 10] combine these n measurements to form higher fidelity im-
ages without having changed the ion dose or the order in which pix-
els are visited. In [11], SE yield estimation from [9] is combined
with estimation of unknown beam current. In this work, we demon-
strate that the techniques in [9] alone are robust to unknown and
variable beam current, even outperforming existing mitigation tech-
niques based on image filtering [5, 6]. Section 2 reviews the con-
cepts of time-resolved sensing introduced in [9]. Section 3 contains
a sensitivity analysis which illustrates the reduced sensitivity of our
methods to error in the assumed beam current. In Section 4, we
use synthetic data to show that in the presence of time-varying beam
current, our methods improve upon existing techniques.

2. MEASUREMENT MODELS AND IMAGE FORMATION

In this section, we present measurement models for particle beam
microscopy with direct detection of SEs. For simplicity, we refer
to incident particles as ions, though the models apply to both SEM
and focused ion beam (FIB) microscopy. While direct detection is
not currently prevalent in commercial SEM and FIB microscopes, it
offers higher signal-to-noise ratio than systems with scintillators and



photomultiplier tubes [12—14]. Direct detection is easier to model,
and the advantages of time-resolved sensing are presumably not de-
pendent on the use of direct detection [10]. Since we do not consider
spatial regularization, we omit any pixel indexing. Where applica-
ble, the dependence of estimators on an assumed beam current pa-
rameter A is emphasized in the notation; all estimators depend on the
measured data, so this is omitted from the notation.

An incident beam is well-modeled as a Poisson process [15], so
at a single pixel, the number of incident ions M over dwell time ¢
is a Poisson random variable with mean A = At, where A is the
rate of incident ions per unit time. The number of SEs expelled by
the 7th incident ion, X;, can also be described as a Poisson random
variable: X; ~ Poisson(n), where mean 7 is the SE yield. The total
number of detected SEs, Y = va i 1 Xi, is the single measurement
conventionally used to produce an estimate of 7. Under this model,
Y is a compound Poisson random variable with the Neyman Type A
distribution and a probability mass function (PMF) given by
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Assuming A is known, the estimator 7Jbasetine (A) = Y/ is unbiased
and has mean-squared error (MSE) (17 + n?) /.

With time-resolved measurement, dwell time ¢ is split into n
sub-acquisitions yielding measurements: Yi, Ya, ..., Y,. Given
short enough sub-acquisitions (i.e., large n), the dose A/n becomes
small enough that observing more than one incident ion in one sub-
acquisition is unlikely. Assuming 7 is large enough that most in-
cident ions result in at least 1 SE, the number of sub-acquisitions
where the number of observed SEs is strictly positive is also roughly
the number of incident ions: M ~ >~7'_, Ly, >0}, Where Liy, 0}
is the indicator function of {Y > 0}. The quotient mode (QM)
estimator proposed in [9] is inspired this insight:
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Although 7jqn is similar to fJbaseline in that the numerator is a sum of
M random variables with mean 7, it generally outperforms 7jpaseline
because its denominator is a better proxy for M. A similar concept
for instruments without direct detection of SEs appears in [16, 17].
When SE yield 7 is low, incident ions will less reliably result
in at least 1 SE. In this case, >.;_; 11y, >0} will be significantly
smaller than the true number of incident ions, leading to a large bias
in jom. The probability of an incident ion expelling at least 1 SE is
1 — e, so if n were known, our estimate of the number incident
ions could be adjusted: (1—e~7)"' 3°7_| 1y, »o0y. Given that 7 is
not known, using this improved estimate for M as the denominator
in (2) results in a transcendental equation, of which the closed form
solution yields the Lambert quotient mode (LQM) estimator:

fiLom = W (—figue” M) + figu, 3

where W (-) is the Lambert W function [18]. Note that (2) and (3)
are computed without any knowledge of .
The joint PMF of the time-resolved measurements is

where Py (-;-, ) is given by (1). We refer to the maximizer over 7 as
the time-resolved maximum likelihood (TRML) estimate 7jrrar, (A).
Since the decision variable is scalar, this optimization may be per-
formed using a grid search.

3. SENSITIVITY TO UNKNOWN BEAM CURRENT

Consider a pixel with true incident dose A, and denote the dose as-
sumed by an estimator by A = A(1 + ¢). When e is nonzero, the
estimator is mismatched, as when the dose varies stochastically or
does not match the instrument setting. In this section, we examine
the bias, variance, and MSE of mismatched estingators‘

The mismatched baseline estimate Npaseline (A) = Y/(A(1 + €))
has mean 7/(1 + ¢€) and variance (n +n?)/[A(1 4 ¢)?]. Tt follows
that its bias is ne/(1 + €) and its MSE is
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The bias, variance, and MSE of 7jbasciine (A) as functions of €
are plotted in Figure 1 along with empirical values for fjqm, TLQM,
and frrwmr(A) for parameters n = 5, A = 20, and n = 200. As
noted earlier, 7Jqm and 7jr.qm do not depend on a dose parameter, so
they have no dependence on €. For the dose used in Figure 1, these
two estimators achieve lower MSE with no knowledge of A than the
baseline estimator does with perfect knowledge. The more complex
estimator 7jrrmr, has some dependence on e, but far less than the
baseline estimator. It has lower MSE than the baseline estimator for
all the considered values of €, but it does become worse than the QM
and LQM estimators at large enough e.

One of the merits of the baseline estimator is its zero bias when
there is no mismatch, combined with variance that vanishes with
increasing dose A. Thus, it could outperform more sophisticated es-
timators at large enough dose A if the other estimators have nonzero
asymptotic bias. Figure 2 illustrates this phenomenon along with the
dominance of bias in the mismatched case. We plot the MSE of each
estimator as a function of total dose A\, maintaining A/n = 0.1 from
Figure 1, considering € {1, 5}, for the cases of e = O and e = 0.2.
(Since QM and LQM estimators do not depend on a dose parameter,
each has only one curve on each graph.) With no mismatch (¢ = 0),
the MSE of the baseline estimator exhibits an exact 1/\ behavior
(slope —1 on this log-log plot), and rrmi follows, with an im-
provement factor of (1 4+ 7)(1 — ne™") as predicted by [10], up to
large \, where the small bias of 7jTrmr eventually dominates. With
mismatch (e = 0.2), bias dominates at much lower values of \; very
large improvements over the baseline estimator are possible. In Fig-
ure 2a, we see the very poor performance of 7jqum for small values
of n (due to bias that inspires the definition of the LQM estimator)
and that j.om can have lower MSE than 7jrrvr with moderate mis-
match and doses that are high but not necessarily unreasonable. The
asymptotes of the QM estimator MSEs in Figure 2 match the square
of the limit as A\ — oo of the expression for bias derived in [10].

4. MICROSCOPY SIMULATIONS

The results in the previous section show that processing of time-
resolved measurements provides the potential for great robustness
to mismatch between an instrument’s beam current setting—which
would presumably be used in any interpretation of the data—and the
actual beam current. We now illustrate this through simulated par-
ticle beam microscopy experiments. Though the TR estimators do
not depend on the beam current fluctuating slowly, we construct our
experiments as such since the state-of-the-art method for compari-
son [5] depends on striping artifacts.

Figure 3 includes five test examples. Synthetic data was pro-
duced using existing micrographs [19-22] as ground truth images.
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Fig. 1: Bias, variance, and MSE of 7] as a function of ¢ when = 5, A = 20, and n = 200.
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Fig. 2: MSE of 7 as a function of total dose A when A/n = 0.1. Note the log—log scale.

In Examples 1, 2, and 3, the images are scaled for ) € [2, 8] to rep-
resent realistic HIM conditions [23]. In Example 4, n € [0.6, 2],
which matches the SE yield in SEM at the maximizing electron
energy, neglecting topographical effects [24]. In Example 5, n €
[0.2, 1] for a more challenging SEM-like setting. Beam current
time series were generated using a Gaussian first-order autoregres-
sive model with parameters selected to achieve a mean dose A. In-
spired by Figure 2, we evaluate fjrrwmr () for the higher i scenarios
(Examples 1, 2, and 3) and fjr.qum for the lower 7 scenarios (Exam-
ples 4 and 5). In each example, we also compute the TRML estimate
as if the true beam current were known: 7oracie = JrrML(A). We
compare our methods to the baseline estimator Maseline as well as to
7rT, a Fourier-domain filtering method that appears to be the state
of the art [5]. In each application of 7jrT, we choose the coefficients
to null to minimize MSE, even though this is not possible in prac-
tice due to lack of access to ground truth. Unlike 7rT, our methods
do not rely on the spatial structure of the artifacts and can remove
artifacts without introducing new ones.

Table 1 summarizes the MSEs of the examples presented in
Figure 3 through a metric we call excess MSE. It refers to the MSE
beyond that of Moracie: MSEexcess (7)) = MSE(7]) — MSE(foracte)-
Excess MSE % normalizes excess MSE by the excess MSE of
Tbaseline- Comparison of excess MSE % values shows that in the
HIM-like settings (Examples 1, 2, and 3), f)rrMr, comes very close

Excess MSE Excess MSE %
Ex. ﬁbaseline ﬁFT ﬁTRML ﬁbaseline ﬁFT ﬁTRML
1 1.4506 0.8572 0.0143 100 59.1 1.0
2 2.0387 0.8875 0.0845 100 435 4.1
3 1.1242  0.7926  0.0265 100 70.5 24
4 0.0484 0.0087 0.0072 100 18.0 149
5 0.0149 0.0039 0.0031 100 26.2 20.8

Table 1: Summary of numerical results.

to oracle performance. In the SEM-like settings (Examples 4 and 5),
the reduction in excess MSE is still substantial.

5. CONCLUSION

Time-resolved measurements have already shown their potential
to mitigate source shot noise in particle beam microscopy in the
idealized setting of known beam current. In this work, we have
demonstrated that these methods create remarkable robustness to
unknown and variable beam current. Our simulations demonstrate
that even with beam current varying 30% from the intended value,
time-resolved methods result in lower image MSE then existing
computational artifact mitigation techniques. These findings sug-
gest computational methods could relax the requirement for a stable
beam current, addressing a major limiting factor in HIM.
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