

British Journal of Ophthalmology

Arterial Hypertension and Retinal Layer Thickness: the Beijing Eye Study

Journal:	<i>British Journal of Ophthalmology</i>
Manuscript ID	bjo-2022-322229.R1
Article Type:	Clinical science
Date Submitted by the Author:	27-Sep-2022
Complete List of Authors:	Xie, Hui; University of Iowa, Department of Electrical and Computer Engineering Pan, Zhe; Beijing Ophthalmology and Visual Sciences Key Laboratory; Peking University Third Hospital, Department of Ophthalmology Xue, Cancan; Peking University Third Hospital, Ophthalmology Chen, Danny; University of Notre Dame, Department of Computer Science and Engineering Jonas, Jost; Heidelberg University, Ruprecht-Karls-University Heidelberg, Seegartenklinik Heidelberg Wu, Xiaodong; Iowa State University Department of Electrical and Computer Engineering Wang, Ya Xing; Beijing Institute of Ophthalmology, Department of Electrical and Computer Engineering
Keywords:	Anatomy, Epidemiology, Retina

SCHOLARONE™
Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our [licence](#).

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which [Creative Commons](#) licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Arterial Hypertension and Retinal Layer Thickness: the Beijing Eye Study

Hui Xie¹, Zhe Pan (MD)^{2,3}, CanCan Xue^{2,3}, Danny Chen⁴, Jost B Jonas (MD)^{2,5,6,7}, Xiaodong Wu^{*1,8}, Ya Xing Wang (MD)^{*2}

(1) Department of Electrical and Computer Engineering, University of Iowa, Iowa City, USA

(2) Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China

(3) Department of Ophthalmology, Peking University Third Hospital, Beijing, China

(4) Department of Computer Science and Engineering, University of Notre Dame, Indiana, USA

(5) Department of Ophthalmology, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany

(6) Institute of Clinical and Scientific Ophthalmology and Acupuncture Jonas & Panda, Heidelberg, Germany

(7) Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland

(8) Department of Radiation Oncology, University of Iowa, Iowa City, USA

Short title: Arterial Hypertension and Retinal Layer Thickness

Key words: Retinal nerve fiber layer; Retinal inner nuclear layer; Arterial hypertension; Blood pressure; Beijing Eye Study

***Correspondence to:** Dr. Ya Xing Wang, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital University of Medical Science, 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, China (Tel: 86-10-58265917. Fax: 86-10-58269930. Email: yaxingw@gmail.com; and Dr. Xiaodong Wu, Department of Electrical and Computer Engineering, University of Iowa, 3318 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242. Email: xiaodong-wu@uiowa.edu.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
6039 **Synopsis**40 Thickness of the retinal nerve fiber layer, ganglion cell layer and photoreceptor outer segment layer in
41 normal eyes was inversely, and thickness of the inner nuclear layer was positively, associated with higher
42 blood pressure.

3 Arterial Hypertension and Retinal Layer Thickness

44 **Abstract**

45 **Purpose:** To investigate relationships between blood pressure and the thickness of single retinal layers in
46 the macula.

47 **Methods:** Participants of the population-based Beijing Eye Study, free of retinal or optic nerve disease,
48 underwent a medical and ophthalmological examinations including optical coherence tomographic
49 examination of the macula. Applying a multiple-surface segmentation solution, the retina was
50 automatically segmented into its various layers.

51 **Results:** The study included 2237 participants (mean age: 61.8 ± 8.4 years; range 50–93 years). Mean
52 thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer, inner
53 nuclear layer (INL), outer plexiform layer, outer nuclear layer/external limiting membrane, ellipsoid zone,
54 photoreceptor outer segments (POS), and retinal pigment epithelium-Bruch membrane was 31.1 ± 2.3 μm ,
55 39.7 ± 3.5 μm , 38.4 ± 3.3 μm , 34.8 ± 2.0 μm , 28.1 ± 3.0 μm , 79.2 ± 7.3 μm , 22.9 ± 0.6 μm , 19.2 ± 3.3 μm , and
56 20.7 ± 1.4 μm , respectively. In multivariable analysis, higher systolic blood pressure (SBP) and diastolic
57 blood pressure (DBP) were associated with thinner GCL and thicker INL, after adjusting for age, sex, and
58 axial length (all $P < 0.0056$). Higher SBP was additionally associated with thinner POS, and higher DBP
59 with thinner RNFL. For an elevation of SBP/DBP by 10 mmHg, the RNFL, GCL, INL, and POS changed
60 by 2 μm , 3 μm , 1.5 μm , and 2 μm , respectively.

61 **Conclusions:** Thickness of RNFL, GCL and POS was inversely, and INL thickness was positively,
62 associated with higher blood pressure, while the thickness of the other retinal layers was not significantly
63 correlated with blood pressure. The findings may be helpful for refinement of the morphometric detection
64 of retinal diseases.

67 **Key Messages**

- 68 • What is already known on this topic: Associations between higher blood pressure and a thinning
69 of the peripapillary retinal nerve fiber layer and macular retinal ganglion cell layer have been
70 reported by previous studies, while a detailed analysis of the associations of the thickness of the
71 various retinal layers with blood pressure has been missing so far.
- 72 • What this study adds: With the strengths of a large sample size, a population-based enrollment,
73 comprehensive adjustment for multiple potential confounders, medical examination-based
74 exclusion of individuals with retinal or optic nerve diseases, application of a newly developed
75 segmentation tool based on deep learning and an interior point method, and measurement of all
76 retinal layers in the macula region, the study revealed that the thickness of the retinal nerve fiber
77 layer, ganglion cell layer and photoreceptor outer segments layer was inversely, and the
78 thickness of the inner nuclear layer was positively, associated with higher blood pressure, while
79 the thickness of the other retinal layers was not significantly correlated with blood pressure.

4 Arterial Hypertension and Retinal Layer Thickness

1
2
3 80 • How this study might affect research, practice or policy: The findings may be helpful for
4 81 refinement of the optical coherence tomography-based morphometric detection of retinal
5 82 diseases, elaboration of the etiology of the effect of arterial hypertension on the various retinal
6 83 layers taken separately, and for the comparison of the effect of arterial hypertension on other
7 84 regions of the central nervous system.

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5 Arterial Hypertension and Retinal Layer Thickness

86 **Introduction**

87 Arterial hypertension is a primary risk factor for cardiovascular disease and mortality, accounting for
88 19.2% of all deaths worldwide.¹ High arterial blood pressure increases peripheral vascular resistance
89 and causes microvascular changes in many organ systems including the brain, heart, kidneys, and eyes,
90 with the eye being the only organ where microvascular changes can directly and noninvasively be
91 visualized.^{2,3} Hypertension alters the ocular circulation including a reduction in the retinal vessel density
92 and subsequently causes a series of ophthalmological disorders such as hypertensive retinopathy,
93 choroidopathy, optic neuropathy, and retinal vessel occlusions.² Ophthalmoscopical signs of
94 hypertensive changes of the retina include flame-shaped or blot-shaped intraretinal hemorrhages, cotton-
95 wool spots as micro-infarcts of the retinal nerve fiber layer, hard exudates, and microaneurysms.⁴⁻⁶

96 Optical coherence tomographic (OCT) examinations of the retina revealed that hypertensive
97 patients without clinically detected hypertensive retinopathy as compared to healthy individuals had a
98 significantly thinner central macula, a reduced peripapillary retinal nerve fiber layer (RNFL), and a thinner
99 ganglion cell-inner plexiform layer (GC-IPL).⁷⁻¹¹ These previous studies examining the effect of blood
100 pressure and arterial hypertension on retinal thickness were focused primarily on the thickness of the
101 whole retina or on the thickness of the GC-IPL and peripapillary RNFL only, while other retinal layers
102 have not been comprehensively investigated in their associations with blood pressure yet. The previous
103 studies were additionally limited by a hospital-based recruitment of the study participants, relatively small
104 study sample sizes, and a relatively small number of additional parameters examined. We therefore
105 evaluated the relationship between the thickness of the single retinal layers with blood
106 pressure/hypertension in the population-based Beijing Eye Study. In association with deep learning, we
107 applied a newly developed system for multiple optimal surface segmentation in retinal OCT images with
108 sub-pixel accuracy for the delineation of the single retinal layers.¹² To avoid a bias by concurrent ocular
109 diseases, we included only those participants who were free of retinal or optic nerve diseases. We
110 additionally assessed a potential association between anti-hypertensive medication and retinal layer
111 thickness.¹³

112 The results may be useful to get more information on the influence of hypertension on the single
113 retinal layers as part of the central nervous system, they may be helpful to define the normative values of
114 the thickness of the single retinal layers in dependence of blood pressure / hypertension, and they may
115 be useful to improve the detection and management of retinal and optic nerve eye diseases.

118 **Methods**

119 The Beijing Eye Study 2011 is a population-based cross-sectional study, carried out in urban and rural
120 districts of Greater Beijing. Eligibility criteria were an age of 50+ years and living in the study regions.^{14,15}
121 All study participants underwent a series of examinations, including an interview with questions about
122 their level of education, family status, history of diseases, smoking and alcohol consumption, physical

6 Arterial Hypertension and Retinal Layer Thickness

1
2
3 123 activity, and cognitive function. Biochemical tests assessed the serum concentration of lipids, glucose,
4 124 glycosylated hemoglobin A1c, high-sensitive C-reactive protein, and creatinine. Body height, weight, and
5 125 the circumferences of neck, waist, and hip were measured. The blood pressure was determined using an
6 126 automatic blood pressure monitor (HM-1000, Omron, Kyoto, Japan), after the participants had rested for
7 127 at least 5 minutes under standardized conditions. We defined and staged arterial hypertension according
8 128 to the criteria published by the American Heart Association.¹⁶ Hypertension was defined by a systolic
9 129 blood pressure (SBP) of ≥ 130 mmHg and/or a diastolic blood pressure (DBP) of ≥ 80 mmHg (and/or a
10 130 history of hypertension or antihypertensive medication).¹⁶ The blood pressure was categorized as
11 131 normal, elevated, stage 1 hypertension, and stage 2 hypertension.
12
13

14 132 Detailed ophthalmological examinations included refractometry and measurement of best
15 133 corrected visual acuity, slit lamp-based biomicroscopic examination of the anterior segment lens, and
16 134 fundus photography of the macula and optic disc (CR6-45NM Camera, Canon Inc., Ota, Tokyo, Japan).
17 135 Using optical low-coherence reflectometry (Lenstar 900® Optical Biometer, Haag-Streit, 3098 Koeniz,
18 136 Switzerland), biometry of the right eyes was performed for measurement of axial length. Intraocular
19 137 pressure was determined using a non-contact tonometer (CT-60 computerized tonometer, Topcon Ltd.,
20 138 Tokyo, Japan). Using spectral-domain OCT (Spectralis OCT; Heidelberg Engineering, Heidelberg,
21 139 Germany), the macular area was scanned by a cube scan mode, compromising 31 continuous horizontal
22 140 B scans. The whole scanning area encompassed $30^\circ \times 25^\circ$ and was centered on the fovea. The image
23 141 penetration resolution was $3.87 \mu\text{m}/\text{pixel}$ (z-resolution). Each scan line included 100 averaged scans.
24
25

26 142 For segmentation of the various retinal layers, we used a multiple-surface OCT segmentation
27 143 algorithm, which had been developed based on a deep learning approach and an interior point
28 144 method.^{12,17} Recent analyses of the algorithm had shown a test error of less than one-pixel size.¹²
29 145 Assessing the retinal surface and 9 intraretinal interfaces, the thickness of nine retinal layers were
30 146 computed as the distance between two adjacent surfaces or interfaces, perpendicular to the retinal
31 147 pigment epithelium-Bruch's membrane (RPE/BM)'s surface (Fig. 1). The nine layers included the RNFL,
32 148 ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer
33 149 (OPL), outer nuclear layer including the external limiting membrane (ONL/ELM), ellipsoid zone (EZ),
34 150 photoreceptor outer segments (POS), and the RPE/BM.¹⁸ The mean thickness of each layer was
35 151 calculated in nine regions defined by the grid of the Early Treatment of Diabetic Retinopathy Study
36 152 (ETDRS).¹⁹
37
38

39 153 From the 3234 participants of the Beijing Eye Study with OCT macular scans, we excluded those
40 154 with glaucoma, non-glaucomatous optic neuropathy, any macular diseases, retinal diseases including
41 155 retinal vein occlusion and diabetic retinopathy, and high myopia defined by an axial length of ≥ 26 mm or a
42 156 refractive error of ≤ -6 diopter. In a next step, we excluded those individuals with intraocular pressure
43 157 readings of > 21 mmHg, a best corrected visual acuity of > 0.20 logMAR (negative logarithm of the minimal
44 158 angle of resolution) (decimal < 0.6), and those individuals with an OCT image quality score of < 20 . In a
45 159 last step, we excluded those participants with image segmentation errors, detected during an interactive
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7 Arterial Hypertension and Retinal Layer Thickness

1
2
3 160 check by an experienced ophthalmologist (ZP). The data obtained on the right eyes were taken for
4 161 statistical analysis.
5

6 162 The statistical analysis was performed using statsmodels package in Python 3 (Python Software
7 163 Foundation Wilmington, DE, USA; <https://www.python.org/>). In the first step of the analysis, the retinal
8 164 layer thickness in each ETDRS grid region was assessed. In a univariable linear regression analysis, we
9 165 examined associations between the retinal layer thickness and other ocular and systemic parameters.
10 166 Applying Bonferroni's method of adjusting for performing multiple statistical analyses, and considering
11 167 that the analysis was conducted for the nine ETDRS regions of each retinal layer, we considered an
12 168 association being statistically significant if the *P*-value was <0.0056 for each measurement in at least two
13 169 adjacent ETDRS grid regions. In a third step, we conducted a multivariable regression analysis, in which
14 170 the dependent variable was the retinal layer thickness in each ETDRS grid region, while the independent
15 171 variables were those parameters which were significantly associated with the retinal thickness
16 172 measurement in the univariable analysis.
17
18
19
20
21
22
23
24
25

175 Results

26 176 The study included 2237 eyes of 2237 participants (968 (43.3%) men) with a mean age of 61.8 ± 8.4 years
27 177 (range: 50-93 years) and a mean axial length of 23.1 ± 0.8 mm (range: 19.0-25.9 mm). The mean systolic
28 178 and diastolic blood pressures were 132 ± 21 mmHg and 73 ± 13 mmHg, respectively, and hypertension was
29 179 detected in 1171 (52.3%) participants. The mean thicknesses of the RNFL, GCL, IPL, INL, OPL,
30 180 ONL/ELM, EZ, POS and RPE/BM were 31.1 ± 2.3 μ m, 39.7 ± 3.5 μ m, 38.4 ± 3.3 μ m, 34.8 ± 2.0 μ m, 28.1 ± 3.0
31 181 μ m, 79.2 ± 7.3 μ m, 22.9 ± 0.6 μ m, 19.2 ± 3.3 μ m, and 20.7 ± 1.4 μ m, respectively (Table 1).
32
33
34

35 182 In univariable linear regression analysis, the thickness of the single retinal layers measured as
36 183 mean in all ETDRS regions was associated with various systemic and ocular parameters (Table 2).
37 184 Similar results were obtained if the thickness of the retinal layers measured separately in the various
38 185 ETDRS grid sectors was taken as dependent parameter (Supplementary Tables 1-3). Using a *P*-value of
39 186 <0.0056 as the criterion of statistical significance for associations of the retinal layer thickness with other
40 187 parameters in at least two adjacent ETDRS grid regions, the parameters of age, sex and axial length
41 188 were related to the thickness of almost all retinal layers, except for the OPL thickness and the RPE/BM
42 189 thickness, which were not significantly correlated with sex. The thickness of the INL, ONL/ELM and POS
43 190 was additionally correlated with the intraocular pressure. The thickness of the INL and RPE/BM was
44 191 associated with the body mass index (Supplementary Tables 1-3)

45 192 In a multivariable analysis, with the retinal layer thickness in the ETDRS field sector as dependent
46 193 variable and all parameters with a significant association with the retinal layer thickness in the ETDRS
47 194 field sector as independent variables, increasing SBP and DBP were associated with a thinning of the
48 195 GCL and a thickening of the INL, with adjustments made for age, sex, and axial length. An increased
49 196 SBP was additionally associated with a thinning of POS, while an increased DBP was additionally
50
51
52
53
54
55
56
57
58
59
60

8 Arterial Hypertension and Retinal Layer Thickness

1
2
3 197 associated with a thinning of RNFL (all $P<0.0056$ in ≥ 2 adjacent ETDRS grids) (Tab 3, 4) (Fig. 2). The
4 198 total retinal thickness was not related with SBP or DBP, when calculated as a whole or in any subfield
5 199 (Table 3, 4).

6
7 200 A heatmap illustrated the magnitude of the associations between SBP/DBP and the related retinal
8 201 layer thickness, in which the association with GCL thickness was most pronounced (Fig. 2). The blood
9 202 pressure-associated GCL thinning was located mainly in the nasal and inferior region of the ETDRS grid,
10 203 with a 3 μm GCL thickness decrease for every 10 mm Hg increase in SBP or DBP. The blood pressure-
11 204 associated INL thickening was notable most in the temporal region and in the parafoveal regions, with a
12 205 1.5 μm INL thickness increase for every 10 mm Hg increase in SBP or DBP. The POS thickness
13 206 decreased by 2 μm for every 10 mm Hg elevation in SBP in the central fovea region, while The RNFL
14 207 thickness decreased by 2.0-2.6 μm for every 10 mm Hg elevation in DBP in the superior and temporal
15 208 region (Tab 3, 4) (Fig. 2).

16
17 209 When participants were categorized into normal blood pressure, elevated blood pressure,
18 210 hypertension stage 1, and hypertension stage 2, the mean thickness of RNFL, GCL, INL and POS in the
19 211 associated regions were calculated, after adjusting for parameters such as age, sex and axial length.
20 212 With increasing blood pressure stage, the GCL and POS got thinner, while the INL got thicker ($P<0.01$).
21 213 The association with a decreasing RNFL thickness was marginally significant ($P=0.051$).

22
23 214 As compared with the hypertensive patients without anti-hypertensive medication, the group with
24 215 anti-hypertensive therapy (786 out of 1171, 67.1%) had a significant lower SBP or DBP (SBP: 135 ± 20
25 216 versus 145 ± 20 mmHg; DBP: 71 ± 13 mmHg versus 79 ± 13 mmHg, both $P<0.001$). The thickness of the
26 217 RNFL, GCL, INL, and POS did not differ significantly ($P>0.05$) between the treated group and the
27 218 untreated group after adjusting for age, sex, and axial length.

219 220 221 Discussion

222 In our population-based study, higher blood pressure was associated in the macular region with a thinner
223 RNFL, GCL, and POS, and with a thicker INL, after adjusting for factors such as age, sex, and axial
224 length. The thickness of the other retinal layers in the macular region were not affected by blood
225 pressure. Although associated with a lower blood pressure, use of anti-hypertensive medication was not
226 related to the thickness of any retinal layer in the multivariable analysis.

227 The finding of a decreased GCL with increased blood pressure agrees with observations made in
228 previous studies. Lim and colleagues found in their clinical study on 84 hypertensive patients and 117
229 healthy controls, that prolonged hypertension was associated with a thinner GC-IPL and decreased
230 retinal blood flow.⁸ Similar results were obtained in another hospital-based study by Lee and associates,
231 who detected a thinner central macula, a thinner macular RNFL, and a thinner GC-IPL in individuals with
232 chronic hypertension, in particular in those with a previous hypertensive retinopathy.⁷ In a prospective,
233 longitudinal study including 49 eyes with hypertension and 56 controls with a follow-up of 4 years,

9 Arterial Hypertension and Retinal Layer Thickness

1
2
3 234 hypertensive patients with well-controlled blood pressure showed a thinning of their GC-IPL as compared
4 235 to normal subjects.⁹ In a population-based multiethnic study on black, Chinese, and Latino Americans
5 236 with healthy eyes, hypertension was associated with a thinner RNFL in a multivariable analysis.²⁰ In
6 237 contrast, in the population-based Singapore Epidemiology of Eye Diseases Study and the Singapore
7 238 Chinese Eye Study, the GC-IPL thickness was not correlated with blood pressure.²¹⁻²³ Discrepancies in
8 239 the results obtained in the various studies might have been due to differences between the studies in the
9 240 outlining of the retinal layers, study designs, composition of the study populations, blood pressure control,
10 241 and types of anti-hypertensive drugs used.

11
12
13 242 Interestingly, the macular RNFL thickness in our study population was found to be correlated only
14 243 with DBP, but not with SBP. The reason might be that the association between higher SBP and thinner
15 244 RNFL did not reach the level of statistical significance as set after Bonferroni's correction by a *P*-value of
16 245 <0.0056 (Table 3). A marginally significant correlation between SBP and RNFL thickness at a
17 246 significance level of *P*<0.05 was found in 4 out of 9 ETDRS sectors.

18
19
20 247 The finding that the higher blood pressure was more strongly associated with a thinning of the
21 248 GCL than with a thinning of the macular RNFL suggests that the effects of hypertension in the macular
22 249 region may more easily be detectable by examining the GCL than by assessment of the macular RNFL.
23 250 A negative correlation between hypertension and thickness of the peripapillary RNFL has been widely
24 251 reported, while associations with the thickness of the macular RNFL have been less frequently explored.
25 252 In hospital-based studies, Pappelis et al. reported that treated hypertensive patients showed a thinner
26 253 macular RNFL when compared with a control group.²⁴ Lee and colleagues also found a decrease in the
27 254 macular RNFL thickness for 18 patients with hypertensive retinopathy who had been followed for more
28 255 than one year.²⁵ In the Singapore Epidemiology of Eye Diseases Study, the RNFL thickness was not
29 256 associated with the presence of hypertension.²³ Our study suggested that a thinning of the GCL as
30 257 compared to thickness changes in other retinal layers was the most pronounced alteration found in
31 258 association with arterial hypertension. It shows the importance of examining the macular GCL thickness.

32
33
34 259 A new observation made in our study was that higher blood pressure was associated with a
35 260 thicker INL. The INL statistically increased in thickness by 1.5 μ m for every 10 mm Hg increase in SBP or
36 261 DBP. The reasons for this association have been unknown yet. Since the OCT images did not reveal
37 262 any intraretinal edema, an internuclear blood pressure-related edema as cause for the association may
38 263 be unlikely. A coincidental statistical significance may also be unlikely since Bonferroni's method was
39 264 applied to correct the results of the statistical analysis for performing multiple statistical comparisons.
40 265 Future studies may therefore focus on the histological and molecular biological basis of the observation of
41 266 a blood pressure-related increase in the INL thickness. Interestingly, the prevalence of arterial
42 267 hypertension was not statistically significantly associated with the INL thickness. It concurs with the
43 268 findings made in the Singapore Epidemiology of Eye Diseases Study in which a significant association
44 269 between INL thickness and prevalence of hypertension was neither found.²³ In that study, an association
45 270 between INL thickness and SBP or DBP was not assessed.

1
2
3 271 In our study population the thickness of the POS layer decreased with higher SBP. It agrees with
4 272 the results of the UK Biobank study, in which higher SBP was related to a thinner INL-RPE layer and a
5 273 thinner ELM-ISOS layer, as measured in 32,923 participants aged 40–69 years.²⁶ The authors discussed
6 274 that higher SBP may lead to the thinning of the photoreceptor-related retinal layers either by intermittently
7 275 reducing the blood flow in the deep capillary plexus, or by changing the choroidal permeability.
8
9

10 276 The finding that the thickness of the single retinal layers did not differ between patients with anti-
11 277 hypertensive medication and untreated hypertensive patients despite a lower blood pressure in the
12 278 treated group may be due to several reasons, including a potentially longer duration of elevated blood
13 279 pressure in the treated group. As in our study population, use of anti-hypertensive medications,
14 280 specifically angiotensin-converting enzyme inhibitors or diuretics, was associated with a thinner RNFL
15 281 and a thinner GC -IPL in the population of the Singapore Epidemiology of Eye Diseases Study,
16 282 independent of the mean blood pressure.¹³
17
18

19 283 Potential limitations of our study should be discussed. First, the exclusion of eyes with poor scan
20 284 quality might have introduced a selection bias. Second, as only Chinese aged 50+ years were included
21 285 into the study population, the findings of the study may not be directly applicable to other age or ethnic
22 286 groups. Third, information on the types of anti-hypertensive medications was not taken into analysis.
23 287 The strengths of our study include its large sample size, a population-based enrollment, and
24 288 comprehensive adjustment for multiple potential confounders, including axial length and systemic
25 289 biochemical parameters. In addition, individuals with retinal or optic nerve diseases were excluded
26 290 according to a standardized methodology rather than by relying on self-reported or medical records,
27 291 hence it was not likely that the association between retinal layer thickness and blood pressure was
28 292 influenced by eye diseases. We used a newly developed segmentation tool based on deep learning and
29 293 an interior point method, which has been shown to have a relatively small segmentation error. And, it is
30 294 the first population-based study specifically examining associations between systemic blood pressure and
31 295 the thickness of the single retinal layers in the macular region.
32
33

34 296 In conclusion, the thickness of the RNFL, GCL and POS in individuals free of retinal and optic
35 297 nerve diseases was inversely correlated with higher blood pressure, while the thickness of the INL was
36 298 positively related to blood pressure. Hypertensive patients with better controlled blood pressure by
37 299 receiving anti-hypertensive medication did not show differences in the thickness of the single retinal
38 300 layers as compared to individuals who did not receive treatment. The findings may be helpful for a
39 301 refinement in the morphometric detection of retinal diseases and they may be useful for the comparison
40 302 with microvascular hypertension-associated changes in other regions of the central nervous system.
41
42

43 303
44 304
45 305 **Metadata**
46 306
47 307

48 a) Funding: National Natural Science Foundation of China (#81570835); Beijing Municipal of Health
49 Reform and Development Project (#2019-4); National Science Foundation of USA (CCF-1733742).
50
51
52
53
54
55
56
57
58
59
60

11 Arterial Hypertension and Retinal Layer Thickness

1
2
3 308 b) Financial Disclosures: None
4 309 c) Author contributions: Study design: HX, ZP, CCX, DC, JBJ, XW, YXW; Examination of participants: HX,
5 310 ZP, CCX, DC, JBJ, XW, YXW; Statistical analysis: HX, ZP, CCX, DC, JBJ, XW, YXW; writing of first draft:
6 311 HX, YXW, JBJ; revision and final approval: HX, ZP, CCX, DC, JBJ, XW, YXW.
7 312 d) Ethics Statement: The study was approved by the Medical Ethic Committee of Beijing Tongren
8 313 Hospital. The Ethics Approval Letter was without reference number, at that time of application.
9 314 Ethics statement:
10 315 e) Other Acknowledgements: None.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Confidential: For Review Only

317 **References**

318 1. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 319 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet*. 320 2020;396(10258):1223-1249.

321 2. Wong TY, Mitchell P. The eye in hypertension. *Lancet*. 2007;369(9559):425-35.

322 3. Zhou B, Perel P, Mensah GA, Ezzati M. Global epidemiology, health burden and effective interventions 323 for elevated blood pressure and hypertension. *Nat Rev Cardiol*. 2021;18(11):785-802.

324 4. Tso MO, Jampol LM. Pathophysiology of hypertensive retinopathy. *Ophthalmology* 1982;89(10):1132- 325 1145.

326 5. Wong TY, Mitchell P. Hypertensive retinopathy. *N Engl J Med* 2004;351(22):2310-2317.

327 6. Konstantinidis L, Guex-Crosier Y. Hypertension and the eye. *Curr Opin Ophthalmol*. 2016;27(6):514- 328 521.

329 7. Lee SH, Lee WH, Lim HB, Jo YJ, Kim JY. Thicknesses of central macular, retinal nerve fiber, and 330 ganglion cell inner plexiform layers in patients with hypertension. *Retina*. 2019;39(9):1810-1818.

331 8. Lim HB, Lee MW, Park JH, Kim K, Jo YJ, Kim JY. Changes in ganglion cell-inner plexiform layer 332 thickness and retinal microvasculature in hypertension: an optical coherence tomography angiography 333 study. *Am J Ophthalmol*. 2019;199:167-176.

334 9. Lee WH, Lee MW, Lim HB, Kim KM, Shin YI, Kim JY. Longitudinal changes in the thickness of the 335 ganglion cell-inner plexiform layer in patients with hypertension: a 4-year prospective observational study. 336 *Acta Ophthalmol*. 2020;98(4):e479-e486.

337 10. Mauschitz MM, Bonnemaijer PWM, Diers K, Rauscher FG, Elze T, Engel C, Loeffler M, Colijn JM, 338 Ikram MA, Vingerling JR, Williams KM, Hammond CJ, Creuzot-Garcher C, Bron AM, Silva R, Nunes S, 339 Delcourt C, Cougnard-Grégoire A, Holz FG, Klaver CCW, Breteler MMB, Finger RP; European Eye 340 Epidemiology (E3) Consortium. Systemic and ocular determinants of peripapillary retinal nerve fiber layer 341 thickness measurements in the European Eye Epidemiology (E3) Population. *Ophthalmology*. 342 2018;125(10):1526-1536.

343 11. Cheung CY, Ikram MK, Chen C, Wong TY. Imaging retina to study dementia and stroke. *Prog Retin 344 Eye Res* 2017;57:89-107.

345 12. Xie H, Pan Z, Zhou L, Zaman FA, Chen DZ, Jonas JB, Xu W, Wang YX, Wu X. Globally optimal OCT 346 surface segmentation using a constrained IPM optimization. *Optics Express*. 2022;30(2):2453-2471.

347 13. Chong RS, Chee ML, Tham YC, Majithia S, Thakur S, Teo ZL, Da Soh Z, Chua J, Tan B, Wong DWK, 348 Schmetterer L, Sabanayagam C, Cheng CY. Association of antihypertensive medication with retinal nerve 349 fiber layer and ganglion cell-inner plexiform layer thickness. *Ophthalmology*. 2021;128(3):393-400.

350 14. Wang YX, Pan Z, Zhao L, You QS, Xu L, Jonas JB. Retinal nerve fiber layer thickness. The Beijing 351 Eye Study 2011. *Plos One*. 2013;8(6)e66763.

352 15. Yan YN, Wang YX, Xu L, Xu J, Wei WB, Jonas JB. Fundus tessellation: prevalence and associated 353 factors The Beijing Eye Study 2011. *Ophthalmology*. 2015;122(9):1873-1880.

13 Arterial Hypertension and Retinal Layer Thickness

1
2
3 354 16. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C et al. 2017
4 355 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection,
5 356 evaluation, and management of high blood pressure in adults: executive summary: a report of the
6 357 American College of Cardiology/American Heart Association task force on clinical practice guidelines.
7 358 Hypertension 2018;71(6):1269-1324
8
9 359 17. Shah A, Zhou L, Abrámoff MD, Wu X. Multiple surface segmentation using convolution neural nets:
10 360 application to retinal layer segmentation in OCT images. *Biomed Opt Express* 2018;9(9):4509-4526.
11
12 361 18. Cuenca N, Ortúñoz-Lizarán I, Pinilla I. Cellular characterization of OCT and outer retinal bands using
13 362 specific immunohistochemistry markers and clinical implications. *Ophthalmology* 2018;125(3):407-422.
14
15 363 19. Writing Committee for the Diabetic Retinopathy Clinical Research Network, Fong DS, Strauber SF,
16 364 Aiello LP, Beck RW, Callanan DG, et al. Comparison of the modified Early Treatment Diabetic
17 365 Retinopathy Study and mild macular grid laser photocoagulation strategies for diabetic macular edema.
18 366 *Arch Ophthalmol* 2007;125(4):469-480.
19
20 367 20. Nousome D, McKean-Cowdin R, Richter GM, Burkemper B, Torres M, Varma R, Jiang X. Retinal
21 368 nerve fiber layer thickness in healthy eyes of Black, Chinese, and Latino Americans: a population-based
22 369 multiethnic study. *Ophthalmology*. 2021;128(7):1005-1015.
23
24 370 21. Tham YC, Chee ML, Dai W, Lim ZW, Majithia S, Siantar R, Thakur S, Rim T, Cheung CY,
25 371 Sabanayagam C, Aung T, Wong TY, Cheng CY. Profiles of ganglion cell-inner plexiform layer thickness in
26 372 a multi-ethnic Asian population: the Singapore Epidemiology of Eye Diseases Study. *Ophthalmology*.
27 373 2020;127(8):1064-1076.
28
29 374 22. Koh VT, Tham YC, Cheung CY, Wong WL, Baskaran M, Saw SM, Wong TY, Aung T. Determinants of
30 375 ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography.
31 376 *Invest Ophthalmol Vis Sci*. 2012;53(9):5853-5859.
32
33 377 23. Chua J, Tham YC, Tan B, Devarajan K, Schwarzhans F, Gan A, Wong D, Cheung CY, Majithia S,
34 378 Thakur S, Fischer G, Vass C, Cheng CY, Schmetterer L. Age-related changes of individual macular
35 379 retinal layers among Asians. *Sci Rep*. 2019;9(1):20352.
36
37 380 24. Pappelis K, Jansonius NM. U-shaped effect of blood pressure on structural OCT metrics and retinal
38 381 perfusion in ophthalmologically healthy subjects. *Invest Ophthalmol Vis Sci*. 2021;62(12):5.
39
40 382 25. Lee HM, Lee WH, Kim KN, Jo YJ, Kim JY. Changes in thickness of central macula and retinal nerve
41 383 fibre layer in severe hypertensive retinopathy: a 1-year longitudinal study. *Acta Ophthalmol*.
42 384 2018;96(3):e386-e392.
43
44 385 26. Chua SYL, Dhillon B, Aslam T, Balaskas K, Yang Q, Keane PA, Tufail A, Reisman C, Foster PJ, Patel
45 386 PJ; UK Biobank Eye and Vision Consortium. Associations with photoreceptor thickness measures in the
46 387 UK Biobank. *Sci Rep* 2019;9(1):19440.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 389 **Table 1.** Thickness of the segmented layers of retina in 9 Early Treatment Diabetic Retinopathy
4 Study (ETDRS) subfields.
5
6 390
7 391

	F	IN	IS	IT	II	ON	OS	OT	OI
RNFL	16.8±2.5	28.9±2.7	35.1±3.3	24.6±2.0	34.4±3.2	39.5±3.8	40.8±4.3	20.9±1.8	39.2±4.3
GCL	28.4±5.2	49.0±5.8	46.0±4.8	43.7±4.9	46.4±4.9	44.9±4.7	33.0±3.4	31.1±3.3	34.3±3.7
IPL	31.1±4.3	38.3±4.5	41.7±4.4	42.5±4.4	41.6±4.4	38.7±3.6	33.6±3.4	43.1±3.9	35.0±3.4
INL	28.3±2.8	38.8±2.4	38.4±2.4	36.9±2.4	38.0±2.3	36.7±2.4	31.6±2.4	33.0±2.2	32.1±2.2
OPL	26.1±3.7	33.5±8.6	29.9±5.5	27.1±2.3	28.3±4.2	31.5±5.7	26.2±3.2	25.2±2.1	25.0±2.7
ONL/ELM	98.9±8.7	84.3±12.5	78.1±9.0	85.3±7.0	83.1±8.2	70.8±9.6	65.2±7.0	73.3±6.2	73.5±6.9
EZ	24.1±0.5	23.0±0.7	22.9±0.7	23.1±0.7	22.8±0.7	22.1±0.7	23.3±1.3	22.5±1.0	22.5±0.9
POS	24.3±3.5	20.9±3.4	19.1±3.6	20.5±3.3	20.6±3.4	17.3±3.7	14.9±4.1	17.3±3.6	18.1±3.8
RPE/BM	19.6±1.7	20.1±1.9	20.5±1.7	19.9±1.8	20.3±1.7	21.1±1.6	22.0±1.3	21.3±1.5	21.3±1.5

22 392
23 393 Data are shown as mean ± standard deviation (μm)

24 394 The ETDRS subfields include fovea (F), inner nasal (IN), inner superior (IS), inner temporal (IT), inner inferior (II),
25 395 outer nasal (ON), outer superior (OS), outer temporal (OT), and outer inferior (OI) subfields.

26 396 RNFL: retinal nerve fiber layer; GC-IPL: ganglion cell-inner plexiform layer; SBP: systolic blood pressure; DBP:
27 397 diastolic blood pressure; RPE/BM: retinal pigment epithelium-Bruch's membrane; GCL: ganglion cell layer; IPL:
28 398 inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL/ELM: outer nuclear layer/external
29 399 limiting membrane; EZ: ellipsoid zone; POS: photoreceptor outer segments.

15 Arterial Hypertension and Retinal Layer Thickness

1
2
3 400 **Table 2.** Association (univariate linear regression) between the average thickness of each layer
4 401 and major systemic and ocular parameters
5
6 402

	RNFL	GCL	IPL	INL	OPL	ONL/ELM	EZ	POS	RPE/BM
Age	1.40E-8 (-0.12**)	3.07E-31 (-0.24**)	4.33E-62 (-0.34**)	1.29E-124 (-0.47**)	6.15E-16 (0.17**)	4.42E-51 (-0.31**)	4.16E-16 (0.17**)	1.65E-103 (-0.43**)	1.78E-109 (0.45**)
Gender	0.134 (-0.03)	0.01 (0.05*)	0.009 (-0.06**)	0.002 (-0.07**)	0.347 (0.02)	2.79E-14 (-0.16**)	3.00E-6 (0.10**)	9.00E-6 (-0.09**)	0.309 (0.02)
Axial Length	1.05E-22 (0.21**)	0.651 (0.01)	0.002 (-0.07**)	4.72E-8 (-0.12**)	6.15E-13 (0.16**)	5.78E-13 (-0.16**)	5.15E-8 (0.12**)	2.68E-7 (-0.11**)	2.08E-12 (0.15**)
IOP	0.499 (0.01)	0.077 (0.04)	0.012 (0.05*)	1.02E-4 (0.08**)	0.359 (-0.02)	0.002 (0.07**)	0.127 (-0.03)	0.001 (0.07**)	0.017 (-0.05*)
Height	5.85E-8 (0.11**)	0.291 (0.02)	5.00E-6 (0.10**)	1.37E-8 (0.12**)	0.256 (-0.02)	4.39E-10 (0.13**)	3.00E-6 (-0.10**)	1.60E-11 (0.14**)	2.27E-4 (-0.08**)
Weight	0.273 (0.02)	0.225 (-0.03)	8.00E-6 (0.09**)	1.45E-9 (0.13**)	0.129 (-0.03)	1.60E-5 (0.09**)	0.001 (-0.07**)	8.00E-6 (0.10**)	2.37E-8 (-0.12**)
BMI	0.020 (-0.05*)	0.047 (-0.04*)	0.035 (0.05*)	0.001 (0.07**)	0.235 (-0.03)	0.368 (0.02)	0.325 (-0.02)	0.493 (0.02)	4.90E-5 (-0.09**)
Waist circumference	0.002 (-0.07**)	4.70E-5 (-0.09**)	0.417 (0.02)	0.122 (0.03)	0.114 (-0.03)	0.345 (0.02)	0.501 (-0.01)	0.492 (-0.02)	0.005 (-0.06**)
Hip circumference	0.039 (-0.04*)	0.187 (-0.03)	0.165 (0.03)	0.002 (0.06**)	0.057 (-0.04)	0.384 (0.02)	0.611 (-0.01)	0.261 (0.02)	4.00E-6 (-0.10**)
SBP	1.56E-4 (-0.08**)	8.70E-7 (-0.10**)	0.91 (-0.002)	0.900 (0.003)	0.411 (0.02)	0.393 (-0.02)	0.024 (0.05*)	5.20E-5 (-0.09**)	0.142 (0.03)
DBP	0.053 (-0.04)	0.66 (-0.01)	1.72E-4 (0.08**)	1.76E-12 (0.15**)	0.003 (-0.06**)	7.61E-8 (0.11**)	0.242 (-0.03)	3.24E-7 (0.11**)	6.42E-11 (-0.14**)
Hypertension	5.60E-5 (-0.09**)	5.60E-5 (-0.12**)	0.069 (-0.04)	1.95E-4 (-0.08**)	0.018 (0.05*)	0.005 (-0.06**)	0.432 (0.02)	8.00E-6 (-0.09**)	0.001 (0.07**)
Glucose	0.515 (0.02)	0.376 (-0.02)	0.525 (0.02)	0.452 (0.02)	0.265 (0.03)	0.010 (-0.06**)	0.005 (-0.07**)	0.012 (-0.06*)	0.004 (0.07**)
Diabetes	0.57 (-0.01)	0.048 (-0.04*)	0.697 (-0.01)	0.207 (-0.03)	0.132 (0.03)	0.044 (-0.04*)	0.029 (-0.05*)	8.90E-5 (-0.08**)	9.00E-6 (0.09**)
Cholesterol	0.874 (-0.004)	0.244 (0.03)	0.780 (-0.01)	0.981 (0.001)	0.577 (-0.01)	0.018 (-0.06*)	0.254 (-0.03)	0.238 (0.03)	0.985 (0)
HDL	0.824 (0.01)	0.134 (0.04)	0.523 (0.02)	0.048 (0.05*)	0.749 (0.01)	0.811 (0.01)	0.759 (0.01)	0.066 (0.05)	0.665 (-0.01)
LDL	0.557 (0.01)	0.104 (0.04)	0.659 (0.01)	0.49 (0.02)	0.232 (-0.03)	0.193 (-0.03)	0.367 (-0.02)	0.108 (0.04)	0.515 (-0.02)

16 Arterial Hypertension and Retinal Layer Thickness

1	TG	0.067 (-0.04)	0.197 (-0.03)	0.229 (-0.03)	0.055 (-0.05)	0.489 (-0.02)	0.045 (-0.05*)	0.213 (-0.03)	0.194 (-0.03)	0.758 (-0.01)
---	----	------------------	------------------	------------------	------------------	------------------	-------------------	------------------	------------------	------------------

403

404 Data are presented as P-value (Correlation coefficient)

405 *Significance at the 0.05 level (2-tailed); **significance at the 0.01 level (2-tailed).

406 RNFL: retinal nerve fiber layer; GC-IPL: ganglion cell-inner plexiform layer; SBP: systolic blood pressure; DBP:

407 diastolic blood pressure; RPE/BM: retinal pigment epithelium-Bruch's membrane; GCL: ganglion cell layer; IPL:

408 inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL/ELM: outer nuclear layer/external

409 limiting membrane; EZ: ellipsoid zone; POS: photoreceptor outer segments.

410 IOP: intraocular pressure; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure;

411 HDL: high density lipoprotein; LDL: low density lipoprotein; TG: triglyceride

17 Arterial Hypertension and Retinal Layer Thickness

1
2
3 413 **Table 3.** Associations (multivariate analysis) between systolic blood pressure and the thickness
4 414 of 9 retinal layers in each Early Treatment Diabetic Retinopathy Study (ETDRS) grid sector,
5 415 with adjustments for age, sex and axial length.
6
7 416

	RNFL	GCL	IPL	INL	OPL	ONL/ELM	EZ	POS	RPE/BM	Total Retina
F	0.835 (-0.01)	0.094 (-0.18)	0.953 (0.01)	0.116 (0.09)	0.736 (-0.03)	0.084 (0.30)	0.028 (0.03)	1.35E-03 (-0.22)	0.589 (-0.02)	0.927 (-0.03)
IN	0.864 (-0.01)	7.55E-03 (-0.33)	5.53E-03 (0.26)	1.12E-03 (0.16)	0.474 (-0.13)	0.301 (0.25)	0.090 (0.03)	5.85E-03 (-0.19)	0.839 (-0.01)	0.908 (0.04)
IS	0.027 (-0.15)	0.030 (-0.22)	0.149 (0.13)	0.031 (0.1)	0.533 (0.07)	0.825 (0.04)	6.53E-03 (0.04)	0.027 (-0.16)	0.763 (-0.01)	0.627 (-0.15)
IT	0.366 (0.04)	0.469 (-0.08)	0.872 (0.01)	5.68E-05 (0.18)	0.020 (0.11)	0.866 (-0.02)	0.215 (0.02)	0.012 (-0.16)	0.536 (-0.02)	0.785 (0.08)
II	0.255 (-0.08)	5.00E-04 (-0.36)	0.087 (0.15)	2.16E-03 (0.13)	0.811 (-0.02)	0.606 (-0.08)	0.045 (0.03)	4.61E-03 (-0.19)	0.460 (-0.02)	0.167 (-0.44)
ON	7.91E-03 (-0.21)	1.11E-03 (-0.31)	0.038 (0.15)	0.136 (0.07)	0.673 (0.05)	0.414 (-0.15)	0.196 (0.02)	0.119 (-0.11)	0.604 (0.02)	0.134 (-0.48)
OS	0.026 (-0.20)	0.198 (-0.09)	0.045 (0.13)	0.139 (0.07)	0.098 (0.11)	0.220 (-0.17)	0.424 (0.02)	0.158 (-0.11)	0.902 (0)	0.397 (-0.25)
OT	0.268 (-0.04)	0.059 (-0.13)	0.510 (0.05)	5.35E-03 (0.11)	3.17E-03 (0.14)	0.100 (-0.21)	0.577 (0.01)	0.308 (-0.07)	0.086 (-0.05)	0.476 (-0.19)
OI	0.029 (-0.20)	3.41E-06 (-0.36)	0.203 (0.08)	0.493 (0.03)	0.613 (0.03)	0.086 (-0.24)	0.073 (0.03)	0.283 (-0.08)	0.096 (-0.05)	0.012 (-0.74)

33 417 The association was corrected by age, gender and axial length.

34 418 Data are presented as P-values (Correlation coefficient).

35 419 A Bonferroni-corrected significance with a P-value <0.0056 was marked in bold.

36 420 RNFL: retinal nerve fiber layer; GC-IPL: ganglion cell-inner plexiform layer; SBP: systolic blood pressure; DBP:

37 421 diastolic blood pressure; RPE/BM: retinal pigment epithelium-Bruch's membrane; GCL: ganglion cell layer; IPL:

38 422 inner plexiform layer; INL: inner nuclear layer;

39 423 The ETDRS subfields include fovea (F), inner nasal (IN), inner superior (IS), inner temporal (IT), inner inferior (II),

40 424 outer nasal (ON), outer superior (OS), outer temporal (OT), and outer inferior (OI) subfields.

1
2
3 425 **Table 4.** Associations (multivariate analysis) between diastolic blood pressure and the thickness
4 426 of 9 retinal layers in each Early Treatment Diabetic Retinopathy Study (ETDRS) grid sector with
5 427 adjustments for age, sex and axial length.
6
7 428

	RNFL	GCL	IPL	INL	OPL	ONL/ELM	EZ	POS	RPE/BM	Total Retina
F	0.218 (-0.06)	0.077 (-0.19)	0.035 (-0.19)	0.757 (0.02)	0.013 (-0.19)	2.38E-03 (0.54)	8.59E-03 (0.03)	0.343 (-0.07)	0.117 (-0.05)	0.634 (-0.17)
IN	0.477 (-0.04)	0.020 (-0.29)	0.257 (0.11)	0.017 (0.12)	0.027 (-0.40)	0.013 (0.61)	0.019 (0.04)	0.814 (-0.02)	0.068 (-0.07)	0.851 (0.06)
IS	3.92E-03 (-0.20)	0.261 (-0.12)	0.799 (0.02)	0.049 (0.09)	0.753 (0.04)	0.369 (0.17)	0.025 (0.03)	0.755 (0.02)	0.078 (-0.06)	0.999 (0.00)
IT	0.432 (0.03)	0.629 (0.05)	0.310 (-0.09)	1.20E-04 (0.17)	9.35E-03 (0.13)	0.926 (0.01)	0.341 (0.01)	0.799 (0.02)	0.052 (-0.07)	0.361 (0.27)
II	0.285 (-0.07)	0.030 (-0.23)	0.795 (0.02)	9.85E-03 (0.11)	0.163 (-0.13)	0.389 (0.14)	0.050 (0.03)	0.830 (-0.01)	0.057 (-0.06)	0.537 (-0.20)
ON	9.01E-04 (-0.26)	2.57E-03 (-0.29)	0.217 (0.09)	0.265 (0.05)	0.452 (-0.09)	0.573 (0.11)	0.289 (0.02)	0.638 (0.03)	0.255 (-0.04)	0.238 (-0.38)
OS	0.015 (-0.22)	0.570 (-0.04)	0.126 (0.10)	0.037 (0.09)	0.201 (0.09)	0.596 (-0.08)	0.855 (0)	0.651 (0.04)	0.063 (-0.05)	0.836 (-0.06)
OT	0.223 (-0.05)	0.600 (-0.04)	0.569 (0.04)	1.27E-03 (0.13)	1.49E-03 (0.15)	0.341 (-0.12)	0.648 (-0.01)	0.145 (0.1)	8.02E-04 (-0.1)	0.695 (0.11)
OI	0.012 (-0.23)	4.97E-04 (-0.27)	0.774 (0.02)	0.328 (0.04)	0.647 (-0.03)	0.763 (-0.04)	0.421 (0.02)	0.350 (0.07)	9.93E-03 (-0.08)	0.092 (-0.50)

429
430 The association was corrected by age, gender and axial length.
431 Data are presented as P-values (Correlation coefficient).
432 A Bonferroni-corrected significance with a P-value <0.0056 was marked in bold.
433 RNFL: retinal nerve fiber layer; GC-IPL: ganglion cell-inner plexiform layer; SBP: systolic blood pressure; DBP:
434 diastolic blood pressure; RPE/BM: retinal pigment epithelium-Bruch's membrane; GCL: ganglion cell layer; IPL:
435 inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL/ELM: outer nuclear layer/external
436 limiting membrane; EZ: ellipsoid zone; POS: photoreceptor outer segments.
437 The ETDRS subfields include fovea (F), inner nasal (IN), inner superior (IS), inner temporal (IT), inner inferior (II),
438 outer nasal (ON), outer superior (OS), outer temporal (OT), and outer inferior (OI) subfields.

19 Arterial Hypertension and Retinal Layer Thickness

1
2
3 440 **Figure 1.** Retinal layer segmentations in an optical coherence tomography B-scan.
4
5 441 Nine layers of the retina were segmented, including the retinal nerve fiber layer (RNFL),
6
7 442 ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer
8
9 443 plexiform layer (OPL), outer nuclear layer/external limiting membrane (ONL/ELM), ellipsoid
10
11 444 zone (EZ), photoreceptor outer segments (POS), and retinal pigment epithelium-Bruch
12
13 445 membrane (RPE/BM).

14
15 446

16 447

17 448 **Figure 2.** Retinal layers associated with systolic or diastolic blood pressure after multivariate
18
19 449 analysis.

20
21 450 The strength of the association between layer thickness in each ETDRS sector and the
22
23 451 systolic/diastolic blood pressure is depicted by the standard correlation coefficient (marked in the
24
25 452 figure) in a multivariate regression analysis, with correcting the effect of age, gender, axial
26
27 453 length and intraocular pressure. Blue and pink represent a positive and a negative relationship,
28
29 454 respectively. A subfield that achieved a significance with a P-value <0.0056 is marked in green,
30
31 455 while a subfield with a P-value <0.05 is marked in orange.

32
33 456 With an increase of systolic blood pressure, the thickness of the ganglion cell layer (GCL) and
34
35 457 the photoreceptor outer segments (POS) decreased and the inner nuclear layer (INL) thickness
36
37 458 increased (upper figure). With an increase of diastolic blood pressure, the thickness of GCL and
38
39 459 retinal nerve fiber layer (RNFL) decreased, and the INL thickness increased (lower figure).

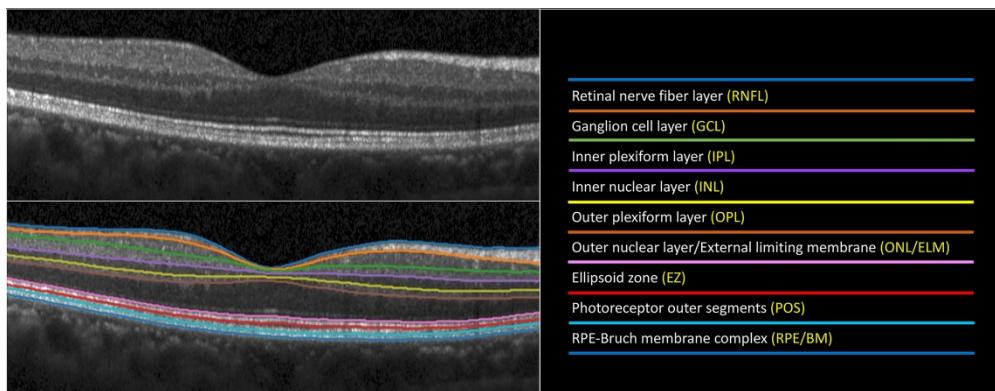


Figure 1. Retinal layer segmentations in an optical coherence tomography B-scan. Nine layers of the retina were segmented, including the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer/external limiting membrane (ONL/ELM), ellipsoid zone (EZ), photoreceptor outer segments (POS), and retinal pigment epithelium-Bruch membrane (RPE/BM).

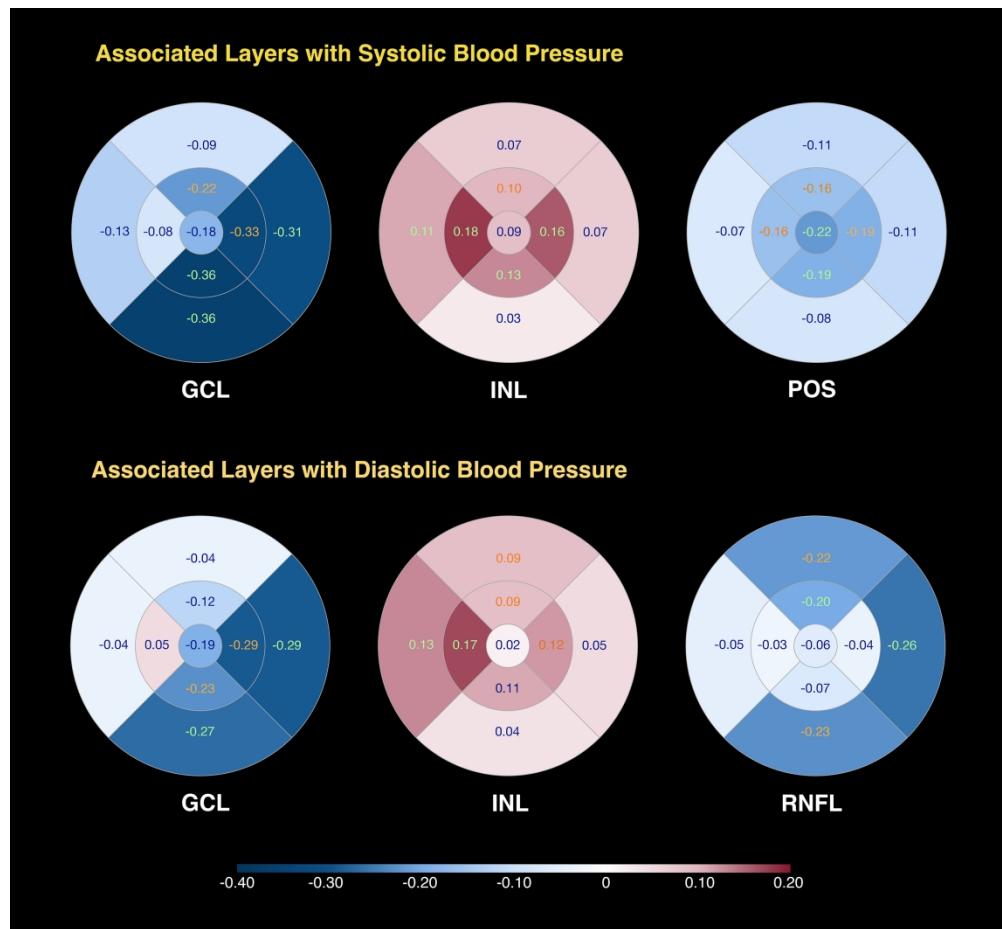


Figure 2. Retinal layers associated with systolic or diastolic blood pressure after multivariate analysis. The strength of the association between layer thickness in each ETDRS sector and the systolic/diastolic blood pressure is depicted by the standard correlation coefficient (marked in the figure) in a multivariate regression analysis, with correcting the effect of age, gender, axial length and intraocular pressure. Blue and pink represent a positive and a negative relationship, respectively. A subfield that achieved a significance with a P -value <0.0056 is marked in green, while a subfield with a P -value <0.05 is marked in orange.

With an increase of systolic blood pressure, the thickness of the ganglion cell layer (GCL) and the photoreceptor outer segments (POS) decreased and the inner nuclear layer (INL) thickness increased (upper figure). With an increase of diastolic blood pressure, the thickness of GCL and retinal nerve fiber layer (RNFL) decreased, and the INL thickness increased (lower figure).

Supplementary Table 1: Association between the thickness of top 3 retinal layers (RNFL, GCL, IPL) in each ETDRS subfield with systematical and ocular parameters in a univariate linear regression

Layer	Univariable	F	IN	IS	IT	II	ON	OS	OT	OI
RNFL	Age	8.24E-02 (0.01)	5.25E-03 (-0.02**)	2.82E-10 (-0.05**)	3.08E-22 (-0.05**)	1.60E-11 (-0.05**)	4.05E-03 (-0.03**)	1.95E-06 (-0.05**)	2.62E-06 (-0.02**)	8.06E-04 (-0.04**)
	Gender	2.99E-29 (-1.18**)	1.01E-08 (-0.65**)	1.33E-06 (-0.67**)	1.69E-01 (-0.11)	8.98E-01 (0.02)	5.74E-02 (-0.30)	7.95E-03 (0.48**)	7.70E-01 (-0.02)	8.43E-11 (1.19**)
	Axial Length	8.60E-31 (0.71**)	1.28E-32 (0.79**)	5.52E-22 (0.78**)	1.08E-03 (0.16**)	1.35E-12 (0.56**)	2.55E-24 (0.95**)	1.01E-05 (0.47**)	1.81E-02 (-0.11*)	1.90E-06 (0.51**)
	IOP	8.76E-01 (0.00)	1.42E-02 (0.06*)	4.41E-02 (0.06*)	1.69E-01 (0.02)	6.97E-01 (0.01)	3.26E-01 (0.03)	6.33E-01 (0.02)	8.38E-01 (-0.00)	5.95E-02 (-0.07)
	Height	9.74E-23 (0.07**)	1.47E-12 (0.05**)	7.08E-15 (0.07**)	6.17E-05 (0.02**)	6.16E-04 (0.03**)	8.41E-07 (0.05**)	9.67E-02 (0.02)	2.75E-02 (0.01*)	2.10E-01 (-0.01)
	Weight	6.88E-05 (0.02**)	1.86E-02 (0.01*)	4.82E-02 (0.01*)	3.92E-04 (0.01**)	5.80E-01 (0.00)	7.15E-01 (-0.00)	8.16E-01 (-0.00)	1.89E-01 (0.00)	1.01E-02 (-0.02*)
	BMI	5.31E-02 (-0.03)	4.42E-02 (-0.03*)	4.99E-03 (-0.05**)	1.37E-01 (0.02)	1.17E-01 (-0.03)	2.12E-04 (-0.08**)	1.68E-01 (-0.03)	9.80E-01 (0.00)	3.39E-02 (-0.05*)
	Waist circumference	1.85E-01 (0.01)	3.54E-01 (-0.01)	1.98E-02 (-0.02*)	6.32E-01 (0.00)	1.00E-02 (-0.02*)	9.89E-05 (-0.03**)	3.93E-04 (-0.03**)	4.09E-01 (-0.00)	1.62E-06 (-0.04**)
	Hip circumference	4.54E-01 (-0.01)	1.50E-01 (-0.01)	8.43E-02 (-0.02)	2.23E-01 (0.01)	1.10E-01 (-0.01)	1.33E-03 (-0.03**)	1.36E-01 (-0.02)	3.00E-01 (-0.01)	2.08E-02 (-0.03*)
	SBP	4.27E-01 (-0.00)	6.43E-02 (-0.01)	4.40E-05 (-0.01**)	3.23E-01 (-0.00)	1.84E-03 (-0.01**)	2.08E-05 (-0.02**)	2.39E-04 (-0.02**)	1.44E-01 (-0.00)	2.26E-04 (-0.02**)
	DBP	5.21E-01 (-0.00)	7.86E-01 (-0.00)	9.80E-02 (-0.01)	1.76E-02 (0.01*)	6.36E-01 (-0.00)	1.32E-03 (-0.02**)	2.03E-02 (-0.02*)	9.21E-01 (-0.00)	1.07E-03 (-0.02**)
	Hypertension	2.58E-02 (-0.24*)	3.68E-03 (-0.33**)	2.39E-05 (-0.58**)	4.86E-03 (-0.23**)	8.53E-05 (-0.53**)	4.18E-04 (-0.56**)	3.65E-03 (-0.52**)	6.11E-02 (-0.14)	7.05E-03 (-0.49**)
	Glucose	8.91E-01 (0.01)	7.29E-01 (0.02)	6.42E-01 (-0.03)	9.28E-02 (0.06)	5.75E-01 (0.03)	7.64E-01 (-0.02)	5.52E-01 (0.04)	4.02E-01 (0.03)	6.69E-01 (0.03)
	Diabetes	4.41E-01 (-0.12)	2.81E-01 (-0.18)	1.12E-01 (-0.33)	9.45E-01 (-0.01)	5.51E-01 (-0.12)	8.84E-01 (-0.03)	8.88E-01 (-0.04)	9.63E-01 (0.01)	8.23E-01 (-0.06)
	Cholesterol	2.17E-02 (-0.14*)	5.22E-01 (-0.04)	2.44E-01 (-0.10)	7.78E-01 (0.01)	6.36E-01 (0.04)	4.72E-01 (-0.07)	2.85E-01 (0.12)	5.77E-01 (0.03)	3.96E-01 (0.09)
	HDL	6.03E-01 (0.08)	1.86E-01 (0.22)	6.25E-01 (-0.10)	3.26E-01 (0.12)	5.24E-01 (0.13)	6.40E-01 (0.11)	4.42E-01 (-0.20)	8.51E-01 (0.02)	6.71E-01 (-0.11)
	LDL	2.53E-01 (-0.08)	7.92E-01 (-0.02)	7.50E-01 (-0.03)	1.29E-01 (0.08)	2.11E-01 (0.11)	6.08E-01 (-0.05)	2.70E-01 (0.13)	2.82E-01 (0.05)	1.68E-01 (0.17)
	TG	2.28E-04 (-0.18**)	1.02E-02 (-0.14*)	1.12E-01 (-0.10)	1.11E-01 (-0.06)	1.16E-01 (-0.10)	4.92E-02 (-0.15*)	4.19E-01 (0.07)	7.50E-01 (-0.01)	4.64E-01 (-0.06)
GCL	Age	8.37E-03 (-0.03**)	6.70E-10 (-0.09**)	7.80E-21 (-0.11**)	9.66E-23 (-0.12**)	2.22E-21 (-0.12**)	1.12E-49 (-0.17**)	4.64E-23 (-0.08**)	3.81E-29 (-0.09**)	2.49E-19 (-0.08**)
	Gender	8.73E-16 (-1.77**)	8.50E-01 (0.05)	6.04E-02 (0.39)	1.12E-01 (0.34)	5.79E-03 (0.58**)	2.60E-08 (1.11**)	1.67E-18 (1.27**)	8.06E-06 (0.63**)	1.08E-08 (0.90**)
	Axial Length	6.17E-26 (1.35**)	2.72E-07 (0.75**)	1.20E-01 (0.19)	5.14E-04 (0.43**)	2.71E-01 (0.14)	1.82E-13 (-0.86**)	7.88E-27 (-0.90**)	4.23E-02 (-0.17*)	1.25E-12 (-0.65**)
	IOP	1.73E-01 (0.06)	1.10E-01 (0.08)	2.79E-02 (0.09*)	1.03E-01 (0.07)	1.09E-01 (0.07)	5.69E-02 (0.07)	9.76E-01 (-0.00)	3.85E-01 (0.02)	7.78E-01 (0.01)
	Height	1.23E-17 (0.12**)	1.58E-02 (0.04*)	2.42E-01 (0.02)	2.42E-02 (0.03*)	5.45E-01 (0.01)	6.04E-03 (-0.03**)	7.32E-10 (-0.06**)	8.49E-01 (-0.00)	2.14E-03 (-0.03**)
	Weight	2.11E-02 (0.02*)	4.63E-01 (-0.01)	2.66E-01 (-0.01)	3.85E-01 (0.01)	4.51E-02 (-0.02*)	3.40E-03 (-0.03**)	1.22E-03 (-0.02**)	9.94E-01 (-0.00)	7.31E-04 (-0.02**)
	BMI	2.69E-03 (-0.09**)	1.42E-02 (-0.08*)	5.14E-02 (-0.05)	6.94E-01 (-0.01)	1.14E-02 (-0.07*)	1.47E-01 (-0.04)	6.64E-01 (0.01)	8.15E-01 (0.00)	1.01E-01 (-0.03)
	Waist circumference	2.36E-01 (-0.01)	2.42E-04 (-0.04**)	1.09E-03 (-0.03**)	8.15E-02 (-0.02)	1.03E-05 (-0.04**)	3.46E-06 (-0.04**)	5.70E-03 (-0.02**)	1.86E-02 (-0.02*)	7.65E-06 (-0.03**)
	Hip circumference	7.37E-02 (-0.03)	1.07E-01 (-0.03)	2.66E-01 (-0.02)	7.23E-01 (0.01)	1.02E-01 (-0.02)	1.28E-01 (-0.02)	8.03E-01 (-0.00)	8.93E-01 (0.00)	1.65E-01 (-0.01)

1	SBP	3.40E-03 (-0.02**)	2.07E-05 (-0.03**)	1.15E-04 (-0.02**)	5.45E-03 (-0.01**)	2.87E-07 (-0.03**)	4.13E-06 (-0.02**)	7.06E-02 (-0.01)	4.41E-04 (-0.01**)	2.05E-07 (-0.02**)
2	DBP	4.20E-01 (-0.01)	1.04E-01 (-0.02)	9.07E-01 (0.00)	1.09E-01 (0.01)	3.36E-01 (-0.01)	6.29E-01 (-0.00)	4.82E-01 (0.00)	3.68E-01 (0.01)	4.22E-02 (-0.01*)
3	Hypertension	1.18E-04 (-0.84**)	7.21E-05 (-0.98**)	4.91E-07 (-1.03**)	2.51E-05 (-0.88**)	1.59E-08 (-1.17**)	1.55E-05 (-0.86**)	2.17E-03 (-0.44**)	8.18E-05 (-0.55**)	4.30E-06 (-0.72**)
4	Glucose	1.82E-01 (-0.12)	2.11E-01 (-0.12)	4.62E-01 (-0.06)	3.90E-01 (-0.07)	2.03E-01 (-0.11)	3.34E-01 (-0.08)	4.22E-01 (0.05)	2.54E-01 (-0.07)	9.18E-01 (-0.01)
5	Diabetes	2.84E-02 (-0.71*)	2.67E-02 (-0.81*)	2.01E-01 (-0.39)	1.81E-02 (-0.73*)	1.12E-01 (-0.49)	1.07E-01 (-0.47)	5.01E-01 (0.14)	1.06E-01 (-0.34)	6.22E-01 (-0.11)
6	Cholesterol	1.00E-01 (-0.22)	1.98E-01 (0.19)	4.47E-01 (0.09)	9.76E-01 (0.00)	4.02E-01 (0.10)	5.45E-02 (0.23)	1.18E-02 (0.22*)	1.70E-01 (0.12)	7.74E-02 (0.17)
7	HDL	8.78E-01 (0.05)	2.03E-01 (0.46)	4.06E-01 (0.25)	6.46E-01 (0.14)	3.67E-02 (0.64*)	1.37E-01 (0.43)	1.36E-02 (0.52*)	7.90E-01 (0.06)	9.19E-02 (0.39)
8	LDL	4.97E-01 (-0.10)	9.35E-02 (0.27)	1.96E-01 (0.17)	4.84E-01 (0.10)	3.56E-01 (0.13)	4.21E-02 (0.27*)	1.62E-02 (0.23*)	1.47E-01 (0.14)	5.68E-02 (0.20)
9	TG	1.35E-02 (-0.25*)	1.03E-01 (-0.19)	4.54E-01 (-0.07)	5.41E-01 (-0.06)	2.04E-01 (-0.12)	4.87E-01 (-0.06)	8.55E-01 (-0.01)	5.18E-01 (0.04)	3.79E-01 (-0.07)
10	IPL	Age	1.48E-06 (-0.05**)	1.11E-26 (-0.12**)	3.77E-47 (-0.16**)	2.30E-26 (-0.12**)	1.79E-50 (-0.16**)	1.63E-54 (-0.14**)	7.63E-84 (-0.16**)	6.76E-50 (-0.14**)
11		Gender	1.71E-19 (-1.62**)	5.20E-05 (-0.78**)	7.11E-01 (-0.07)	4.13E-07 (-0.95**)	7.97E-01 (0.05)	4.48E-01 (-0.12)	1.30E-03 (0.46**)	4.37E-04 (-0.59**)
12		Axial Length	6.59E-09 (0.62**)	1.27E-02 (0.28*)	9.26E-05 (-0.43**)	5.40E-04 (-0.38**)	4.83E-02 (-0.22*)	1.22E-01 (-0.14)	2.05E-24 (-0.84**)	1.38E-21 (-0.93**)
13		IOP	1.93E-01 (0.05)	3.07E-02 (0.08*)	5.66E-02 (0.07)	1.94E-02 (0.09*)	5.59E-02 (0.07)	1.22E-02 (0.08*)	6.34E-02 (0.05)	7.36E-03 (0.09**)
14		Height	2.60E-19 (0.10**)	9.21E-09 (0.07**)	4.64E-03 (0.03**)	8.77E-09 (0.07**)	5.36E-02 (0.02)	6.74E-03 (0.03**)	7.18E-01 (-0.00)	4.37E-05 (0.04**)
15		Weight	6.10E-06 (0.04**)	1.65E-05 (0.04**)	4.99E-04 (0.03**)	5.44E-04 (0.03**)	1.33E-03 (0.03**)	1.61E-03 (0.02**)	5.32E-04 (0.02**)	2.91E-04 (0.03**)
16		BMI	4.31E-01 (-0.02)	2.45E-01 (0.03)	3.33E-02 (0.05*)	8.34E-01 (0.01)	2.02E-02 (0.06*)	5.44E-02 (0.04)	2.24E-05 (0.08**)	1.28E-01 (0.03)
17		Waist circumference	3.90E-01 (0.01)	1.28E-01 (0.01)	7.54E-01 (0.00)	7.27E-01 (-0.00)	5.71E-01 (0.01)	5.40E-01 (0.00)	2.74E-01 (0.01)	8.95E-01 (0.00)
18		Hip circumference	3.06E-01 (-0.01)	3.96E-01 (0.01)	1.54E-01 (0.02)	9.10E-01 (-0.00)	7.30E-02 (0.02)	2.72E-01 (0.01)	1.56E-03 (0.03**)	3.98E-01 (0.01)
19		SBP	3.58E-01 (-0.00)	3.65E-01 (0.00)	7.80E-01 (-0.00)	4.98E-01 (-0.00)	6.82E-01 (-0.00)	8.73E-01 (-0.00)	9.41E-01 (0.00)	9.00E-01 (-0.00)
20		DBP	8.48E-01 (-0.00)	7.59E-04 (0.03**)	1.81E-03 (0.02**)	4.32E-02 (0.02*)	3.32E-03 (0.02**)	4.79E-05 (0.03**)	6.09E-07 (0.03**)	7.84E-06 (0.03**)
21		Hypertension	3.08E-01 (-0.18)	2.03E-01 (-0.24)	9.34E-02 (-0.31)	9.90E-02 (-0.31)	3.86E-01 (-0.16)	1.38E-02 (-0.38*)	1.26E-01 (-0.22)	1.79E-02 (-0.39*)
22		Glucose	4.30E-01 (0.06)	8.27E-01 (0.02)	8.49E-01 (0.01)	6.66E-01 (-0.03)	5.75E-01 (0.04)	9.99E-01 (-0.00)	9.71E-01 (-0.00)	6.03E-01 (0.03)
23		Diabetes	8.88E-01 (-0.04)	7.21E-01 (-0.10)	3.81E-01 (-0.24)	7.39E-01 (-0.09)	6.41E-01 (-0.13)	4.35E-01 (-0.18)	4.41E-01 (-0.16)	7.06E-01 (-0.09)
24		Cholesterol	1.87E-02 (-0.25*)	3.55E-01 (-0.11)	7.86E-01 (0.03)	5.39E-01 (-0.07)	7.86E-01 (-0.03)	2.78E-01 (0.10)	2.96E-01 (0.09)	5.61E-01 (-0.06)
25		HDL	7.87E-01 (-0.07)	6.44E-01 (-0.13)	2.99E-01 (0.28)	3.84E-01 (0.24)	6.81E-01 (-0.11)	5.12E-01 (0.15)	1.30E-01 (0.32)	1.45E-01 (0.35)
26		LDL	5.35E-02 (-0.23)	6.66E-01 (-0.05)	4.77E-01 (0.09)	9.12E-01 (-0.01)	5.60E-01 (0.07)	1.19E-01 (0.16)	1.29E-01 (0.14)	8.36E-01 (0.02)
27		TG	8.99E-02 (-0.14)	8.36E-01 (-0.02)	3.23E-01 (-0.09)	1.64E-01 (-0.12)	4.89E-01 (-0.06)	8.59E-01 (-0.01)	7.58E-01 (-0.02)	3.83E-02 (-0.16*)
28										2.81E-01 (-0.07)

Data are presented as P-value (Correlation coefficient)

*significant at the 0.05 level (2-tailed); **significant at the 0.01 level (2-tailed).

IOP: intraocular pressure; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL: high density lipoprotein; LDL: low density lipoprotein; TG: triglyceride

Supplementary Table 2: Association between the thickness of middle 3 retinal layers (INL, OPL, ONL/ELM) in each ETDRS subfield with systematical and ocular parameters in a univariate linear regression

Layer	Univariable	F	IN	IS	IT	II	ON	OS	OT	OI
INL	Age	4.47E-14 (-0.05**)	9.37E-48 (-0.08**)	1.56E-105 (-0.13**)	2.35E-102 (-0.12**)	3.20E-114 (-0.12**)	8.86E-119 (-0.13**)	1.51E-102 (-0.12**)	3.09E-118 (-0.12**)	1.88E-116 (-0.12**)
	Gender	5.19E-38 (-1.53**)	1.26E-07 (-0.53**)	5.40E-03 (-0.29**)	3.42E-08 (-0.55**)	5.79E-02 (-0.18)	5.63E-02 (0.19)	2.40E-06 (0.48**)	6.27E-02 (-0.17)	1.82E-03 (0.30**)
	Axial Length	1.65E-12 (0.50**)	5.15E-01 (0.04)	3.82E-05 (-0.25**)	2.39E-03 (-0.18**)	1.93E-06 (-0.27**)	4.82E-23 (-0.58**)	1.55E-40 (-0.78**)	1.49E-20 (-0.50**)	5.99E-27 (-0.60**)
	IOP	8.12E-03 (0.06**)	4.22E-06 (0.09**)	3.28E-04 (0.07**)	1.88E-04 (0.07**)	5.20E-05 (0.08**)	1.00E-03 (0.06**)	1.20E-01 (0.03)	2.09E-04 (0.07**)	1.43E-02 (0.05*)
	Height	1.57E-35 (0.09**)	5.36E-12 (0.04**)	7.38E-08 (0.04**)	1.58E-16 (0.05**)	5.61E-06 (0.03**)	7.43E-01 (0.00)	8.11E-02 (-0.01)	2.38E-06 (0.03**)	6.04E-01 (-0.00)
	Weight	1.60E-11 (0.04**)	3.86E-07 (0.02**)	6.95E-09 (0.03**)	7.02E-15 (0.03**)	1.10E-08 (0.02**)	5.34E-02 (0.01)	2.73E-02 (0.01*)	5.87E-11 (0.03**)	2.08E-02 (0.01*)
	BMI	6.71E-01 (-0.01)	2.01E-01 (0.02)	1.36E-03 (0.04**)	3.88E-04 (0.05**)	2.82E-04 (0.05**)	3.00E-02 (0.03*)	1.25E-04 (0.05**)	7.96E-06 (0.05**)	1.62E-03 (0.04**)
	Waist circumference	3.53E-02 (0.01*)	3.79E-01 (0.00)	1.71E-01 (0.01)	6.61E-03 (0.01**)	6.91E-02 (0.01)	4.35E-01 (-0.00)	7.03E-01 (0.00)	1.59E-02 (0.01*)	8.99E-01 (-0.00)
	Hip circumference	7.05E-01 (0.00)	2.12E-01 (0.01)	7.62E-03 (0.02**)	1.74E-04 (0.03**)	1.83E-04 (0.02**)	1.57E-01 (0.01)	3.86E-03 (0.02**)	2.91E-05 (0.03**)	3.81E-03 (0.02**)
	SBP	9.03E-01 (0.00)	2.92E-01 (0.00)	5.54E-01 (-0.00)	2.78E-01 (0.00)	9.22E-01 (0.00)	3.74E-01 (-0.00)	6.88E-01 (-0.00)	7.17E-01 (0.00)	1.32E-01 (-0.00)
	DBP	2.26E-03 (0.01**)	3.83E-08 (0.02**)	6.14E-10 (0.03**)	4.77E-16 (0.03**)	1.50E-11 (0.03**)	9.00E-08 (0.02**)	8.45E-09 (0.02**)	1.37E-14 (0.03**)	3.95E-07 (0.02**)
	Hypertension	1.46E-02 (-0.29*)	7.51E-03 (-0.27**)	2.65E-05 (-0.43**)	4.67E-04 (-0.35**)	1.20E-03 (-0.31**)	8.14E-05 (-0.39**)	2.94E-03 (-0.30**)	5.34E-03 (-0.25**)	2.92E-03 (-0.28**)
	Glucose	5.79E-01 (0.03)	2.92E-01 (0.04)	5.24E-01 (0.03)	9.09E-01 (0.00)	4.57E-01 (0.03)	8.70E-01 (-0.01)	3.74E-01 (0.04)	6.85E-01 (0.01)	8.77E-01 (0.01)
	Diabetes	2.47E-01 (-0.21)	9.92E-02 (-0.24)	1.87E-01 (-0.20)	8.22E-02 (-0.26)	1.91E-01 (-0.19)	1.56E-01 (-0.21)	8.46E-01 (-0.03)	4.24E-01 (-0.11)	2.40E-01 (-0.17)
	Cholesterol	4.50E-03 (-0.20**)	7.88E-01 (-0.02)	8.86E-01 (0.01)	6.80E-01 (-0.02)	8.53E-01 (-0.01)	2.19E-01 (0.07)	1.49E-01 (0.09)	8.80E-01 (-0.01)	3.45E-01 (0.05)
	HDL	5.12E-01 (0.12)	6.99E-02 (0.27)	1.26E-01 (0.23)	3.14E-02 (0.31*)	9.94E-02 (0.23)	5.00E-02 (0.28*)	2.19E-02 (0.34*)	1.13E-01 (0.21)	1.24E-01 (0.21)
	LDL	3.34E-02 (-0.17*)	9.48E-01 (0.00)	4.71E-01 (0.05)	6.79E-01 (0.03)	5.45E-01 (0.04)	1.81E-01 (0.09)	1.22E-01 (0.10)	5.67E-01 (0.03)	1.14E-01 (0.10)
	TG	6.26E-03 (-0.15**)	4.95E-02 (-0.09*)	1.24E-01 (-0.07)	2.51E-02 (-0.10*)	5.26E-02 (-0.09)	5.00E-01 (-0.03)	7.32E-01 (-0.02)	1.46E-01 (-0.06)	2.41E-01 (-0.05)
OPL	Age	6.56E-29 (0.10**)	1.85E-27 (0.23**)	2.04E-08 (0.08**)	8.16E-01 (-0.00)	4.19E-04 (0.04**)	1.11E-15 (0.11**)	4.06E-01 (0.01)	1.97E-02 (-0.01*)	2.39E-01 (-0.01)
	Gender	1.10E-02 (-0.40*)	3.72E-02 (0.77*)	6.04E-03 (0.64**)	1.71E-04 (-0.36**)	3.38E-01 (-0.17)	3.34E-01 (0.23)	3.17E-04 (0.49**)	2.17E-01 (-0.11)	6.19E-01 (0.06)
	Axial Length	4.45E-29 (1.03**)	1.85E-17 (1.82**)	4.59E-02 (0.27*)	2.55E-04 (0.21**)	5.00E-09 (0.62**)	1.23E-12 (1.00**)	7.68E-02 (-0.14)	3.73E-01 (0.05)	3.43E-03 (0.20**)
	IOP	6.12E-01 (-0.02)	3.66E-01 (-0.07)	2.59E-01 (-0.05)	9.00E-01 (0.00)	9.61E-01 (0.00)	3.22E-01 (-0.05)	1.10E-01 (-0.04)	8.95E-01 (0.00)	5.82E-01 (0.01)
	Height	1.58E-01 (0.01)	6.60E-02 (-0.04)	8.55E-05 (-0.06**)	1.13E-03 (0.02**)	3.84E-01 (0.01)	4.70E-01 (-0.01)	2.24E-04 (-0.03**)	6.83E-02 (0.01)	7.31E-01 (0.00)
	Weight	1.04E-01 (-0.01)	3.57E-03 (-0.05**)	8.90E-04 (-0.03**)	8.24E-04 (0.01**)	8.11E-01 (0.00)	2.26E-01 (-0.01)	8.67E-02 (-0.01)	6.00E-04 (0.01**)	1.91E-01 (0.01)
	BMI	2.54E-03 (-0.06**)	1.68E-02 (-0.12*)	1.83E-01 (-0.04)	8.61E-02 (0.02)	7.36E-01 (-0.01)	2.64E-01 (-0.04)	6.94E-01 (0.01)	6.88E-03 (0.03**)	1.92E-01 (0.02)
	Waist circumference	5.44E-02 (-0.01)	4.58E-03 (-0.05**)	5.03E-02 (-0.02)	1.44E-02 (0.01*)	2.88E-01 (-0.01)	1.42E-01 (-0.02)	7.23E-01 (-0.00)	3.21E-03 (0.01**)	8.18E-01 (0.00)
	Hip circumference	1.59E-03 (-0.03**)	1.16E-03 (-0.08**)	1.53E-02 (-0.04*)	1.99E-02 (0.02*)	8.02E-01 (-0.00)	3.42E-02 (-0.03*)	5.60E-01 (-0.01)	1.72E-03 (0.02**)	9.68E-02 (0.01)

1	SBP	9.76E-01 (0.00)	7.61E-01 (-0.00)	3.07E-01 (0.01)	4.90E-02 (0.00*)	6.68E-01 (-0.00)	5.48E-01 (0.00)	7.83E-02 (0.01)	1.31E-02 (0.01*)	9.01E-01 (-0.00)	
2	OPL	DBP	1.58E-06 (-0.03**)	4.79E-07 (-0.07**)	1.93E-01 (-0.01)	4.35E-03 (0.01**)	2.04E-02 (-0.02*)	3.85E-03 (-0.03**)	5.08E-01 (0.00)	2.92E-04 (0.01**)	
3		Hypertension	1.48E-01 (0.23)	4.92E-03 (1.02**)	1.81E-01 (0.31)	9.79E-01 (0.00)	9.12E-01 (0.02)	2.17E-03 (0.73**)	1.50E-01 (0.19)	2.65E-01 (0.10)	
4		Glucose	3.52E-01 (0.06)	5.54E-01 (-0.08)	1.49E-01 (0.13)	8.74E-01 (0.01)	8.04E-01 (-0.02)	9.92E-01 (-0.00)	2.34E-02 (0.12*)	7.42E-01 (0.01)	
5		Diabetes	3.18E-01 (0.23)	7.28E-01 (0.19)	1.16E-01 (0.54)	4.42E-01 (0.11)	2.64E-01 (0.30)	2.70E-01 (0.39)	5.58E-02 (0.38)	2.28E-01 (0.16)	
6		Cholesterol	6.07E-02 (-0.17)	6.66E-01 (-0.09)	2.04E-01 (0.17)	4.35E-01 (-0.05)	1.99E-01 (-0.14)	5.41E-01 (-0.08)	2.42E-01 (0.09)	4.84E-01 (-0.04)	
7		HDL	8.55E-01 (-0.04)	6.32E-01 (-0.24)	1.60E-01 (0.47)	1.34E-01 (0.21)	5.51E-01 (-0.16)	3.89E-01 (-0.29)	1.18E-01 (0.31)	1.34E-01 (0.20)	
8		LDL	1.57E-02 (-0.24*)	1.85E-01 (-0.30)	6.28E-01 (0.07)	7.88E-01 (-0.02)	1.79E-01 (-0.16)	1.78E-01 (-0.20)	6.28E-01 (0.04)	8.82E-01 (-0.01)	
9		TG	1.88E-01 (-0.09)	7.91E-01 (0.04)	5.41E-01 (-0.07)	7.78E-03 (-0.12**)	7.21E-01 (-0.03)	5.35E-01 (0.07)	8.04E-01 (-0.02)	2.46E-02 (-0.10*)	
10											
11	ONL/ELM	Age	2.36E-36 (-0.27**)	1.07E-51 (-0.46**)	5.26E-34 (-0.27**)	4.18E-21 (-0.16**)	4.60E-43 (-0.28**)	5.21E-54 (-0.36**)	2.09E-37 (-0.22**)	2.09E-26 (-0.16**)	
12		Gender	2.94E-15 (-2.92**)	1.69E-12 (-3.74**)	2.54E-11 (-2.56**)	7.06E-13 (-2.14**)	1.28E-08 (-1.97**)	3.94E-08 (-2.24**)	7.15E-10 (-1.82**)	1.77E-15 (-2.10**)	3.48E-09 (-1.74**)
13		Axial Length	6.96E-09 (-1.26**)	3.29E-16 (-2.53**)	1.82E-08 (-1.27**)	1.98E-04 (-0.65**)	3.48E-13 (-1.48**)	2.34E-18 (-2.08**)	4.75E-09 (-1.02**)	8.43E-06 (-0.69**)	4.93E-15 (-1.34**)
14		IOP	1.81E-02 (0.17*)	1.85E-02 (0.25*)	6.61E-03 (0.21**)	1.09E-03 (0.19**)	1.04E-02 (0.18*)	4.58E-03 (0.23**)	3.11E-03 (0.17**)	8.45E-04 (0.17**)	3.01E-03 (0.17**)
15		Height	2.74E-10 (0.15**)	4.77E-08 (0.18**)	2.32E-10 (0.15**)	3.47E-09 (0.11**)	8.01E-07 (0.11**)	3.17E-05 (0.11**)	2.28E-07 (0.10**)	4.11E-10 (0.11**)	2.72E-06 (0.09**)
16		Weight	7.52E-06 (0.07**)	2.76E-06 (0.11**)	1.11E-06 (0.08**)	1.56E-03 (0.04**)	1.27E-03 (0.05**)	1.44E-03 (0.06**)	5.65E-04 (0.04**)	1.67E-03 (0.04**)	7.41E-03 (0.03**)
17		BMI	2.72E-01 (0.05)	4.99E-02 (0.14*)	1.43E-01 (0.07)	7.72E-01 (-0.01)	6.60E-01 (0.02)	3.04E-01 (0.06)	5.83E-01 (0.02)	6.10E-01 (-0.02)	9.47E-01 (-0.00)
18		Waist circumference	1.57E-01 (0.03)	1.53E-02 (0.06*)	1.18E-01 (0.03)	4.99E-01 (-0.01)	7.40E-01 (0.01)	3.56E-01 (0.02)	6.69E-01 (0.01)	3.84E-01 (-0.01)	8.73E-01 (-0.00)
19		Hip circumference	3.01E-01 (0.03)	2.25E-02 (0.08*)	6.88E-02 (0.05)	2.79E-01 (-0.02)	8.81E-01 (0.00)	1.83E-01 (0.04)	3.64E-01 (0.02)	2.93E-01 (-0.02)	7.77E-01 (-0.01)
20		SBP	3.40E-01 (0.01)	8.43E-01 (0.00)	6.49E-01 (-0.00)	5.22E-01 (-0.00)	2.29E-01 (-0.01)	1.27E-01 (-0.02)	6.00E-02 (-0.01)	4.14E-02 (-0.01*)	2.13E-02 (-0.02*)
21		DBP	1.52E-11 (0.10**)	2.54E-11 (0.14**)	6.50E-06 (0.07**)	1.28E-03 (0.04**)	2.38E-06 (0.07**)	1.48E-06 (0.08**)	1.21E-03 (0.04**)	8.09E-03 (0.03**)	1.12E-04 (0.05**)
22		Hypertension	1.19E-01 (-0.58)	2.68E-03 (-1.59**)	3.48E-02 (-0.81*)	2.34E-01 (-0.35)	4.44E-02 (-0.69*)	2.05E-04 (-1.50**)	4.75E-03 (-0.83**)	1.39E-02 (-0.65*)	2.01E-03 (-0.90**)
23		Glucose	1.56E-05 (-0.63**)	1.14E-01 (-0.32)	1.08E-02 (-0.39*)	1.77E-02 (-0.29*)	9.43E-02 (-0.23)	1.34E-01 (-0.24)	3.40E-02 (-0.25*)	4.74E-02 (-0.21*)	2.02E-01 (-0.15)
24		Diabetes	1.77E-03 (-1.71**)	9.91E-02 (-1.29)	6.97E-02 (-1.03)	1.40E-01 (-0.65)	8.37E-02 (-0.88)	4.62E-02 (-1.20*)	7.70E-02 (-0.77)	1.28E-01 (-0.59)	9.91E-02 (-0.71)
25		Cholesterol	6.45E-03 (-0.59**)	8.38E-02 (-0.52)	1.03E-02 (-0.59*)	1.22E-03 (-0.58**)	3.49E-02 (-0.44*)	2.04E-01 (-0.30)	4.45E-02 (-0.36*)	3.41E-03 (-0.47**)	1.85E-01 (-0.23)
26		HDL	8.94E-01 (0.07)	6.22E-01 (0.37)	8.01E-01 (-0.14)	5.89E-01 (-0.24)	7.02E-01 (0.19)	3.72E-01 (0.52)	5.87E-01 (0.24)	8.75E-01 (-0.06)	4.02E-01 (0.36)
27		LDL	7.64E-02 (-0.42)	5.84E-01 (-0.18)	1.34E-01 (-0.38)	6.31E-03 (-0.54**)	1.78E-01 (-0.31)	8.72E-01 (-0.04)	3.14E-01 (-0.20)	2.09E-02 (-0.41*)	5.04E-01 (-0.13)
28		TG	7.80E-02 (-0.30)	8.28E-02 (-0.41)	1.75E-01 (-0.24)	1.67E-01 (-0.19)	4.83E-02 (-0.32*)	3.60E-02 (-0.39*)	4.50E-02 (-0.28*)	5.97E-02 (-0.24)	4.24E-02 (-0.28*)

Data are presented as P-value (Correlation coefficient)

*significant at the 0.05 level (2-tailed); **significant at the 0.01 level (2-tailed).

IOP: intraocular pressure; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure;

HDL: high density lipoprotein; LDL: low density lipoprotein; TG: triglyceride

Supplementary Table 3: Association between the thickness of bottom 3 retinal layers (EZ, POS, RPE/BM) in each ETDRS subfield with systematical and ocular parameters in a univariate linear regression

Layer	Univariable	F	IN	IS	IT	II	ON	OS	OT	OI
EZ	Age	6.09E-13 (-0.01**)	1.28E-07 (-0.01**)	6.28E-09 (0.01**)	5.39E-02 (0.00)	3.33E-02 (0.00*)	4.94E-05 (0.01**)	2.68E-26 (0.03**)	5.28E-33 (0.03**)	4.37E-47 (0.03**)
	Gender	7.04E-03 (0.06**)	2.33E-02 (-0.07*)	1.17E-03 (0.10**)	4.45E-01 (-0.02)	2.30E-01 (0.03)	2.05E-05 (0.13**)	1.89E-11 (0.38**)	1.20E-04 (0.16**)	2.15E-09 (0.24**)
	Axial Length	7.53E-01 (-0.00)	1.64E-01 (-0.03)	1.13E-02 (0.04*)	1.10E-05 (0.08**)	1.30E-01 (0.02)	1.74E-03 (0.06**)	3.09E-11 (0.22**)	3.85E-15 (0.19**)	9.23E-08 (0.13**)
	IOP	8.29E-02 (0.01)	1.36E-01 (0.01)	1.63E-01 (-0.01)	7.00E-01 (0.00)	9.99E-01 (-0.00)	4.40E-01 (-0.00)	6.44E-03 (-0.03**)	5.80E-02 (-0.02)	2.06E-03 (-0.02**)
	Height	2.52E-01 (-0.00)	1.05E-01 (0.00)	1.37E-04 (-0.01**)	8.01E-01 (0.00)	3.94E-02 (-0.00*)	2.56E-03 (-0.01**)	1.43E-09 (-0.02**)	3.50E-05 (-0.01**)	2.30E-10 (-0.02**)
	Weight	2.94E-01 (0.00)	9.72E-02 (0.00)	1.93E-01 (-0.00)	1.75E-01 (0.00)	5.72E-01 (0.00)	6.57E-03 (-0.00**)	6.49E-10 (-0.02**)	7.58E-06 (-0.01**)	5.19E-08 (-0.01**)
	BMI	3.65E-02 (0.01*)	3.92E-01 (0.00)	3.16E-01 (0.00)	2.44E-01 (0.00)	5.67E-02 (0.01)	2.47E-01 (-0.00)	2.99E-03 (-0.02**)	1.00E-02 (-0.01*)	2.79E-02 (-0.01*)
	Waist circumference	3.58E-01 (0.00)	8.08E-02 (0.00)	2.67E-01 (0.00)	1.76E-01 (0.00)	1.53E-02 (0.00*)	5.88E-01 (-0.00)	8.08E-04 (-0.01**)	3.04E-02 (-0.00*)	1.06E-01 (-0.00)
	Hip circumference	1.44E-02 (0.00*)	7.07E-02 (0.00)	1.76E-01 (0.00)	5.48E-01 (0.00)	9.00E-02 (0.00)	8.77E-01 (-0.00)	1.05E-02 (-0.01*)	2.30E-02 (-0.01*)	6.18E-02 (-0.01)
	SBP	3.76E-01 (0.00)	2.43E-01 (0.00)	2.93E-03 (0.00**)	3.41E-01 (0.00)	4.52E-02 (0.00*)	2.39E-01 (0.00)	3.03E-01 (0.00)	3.06E-01 (0.00)	6.66E-03 (0.00**)
	DBP	7.38E-04 (0.00**)	2.20E-04 (0.00**)	6.99E-01 (0.00)	7.47E-01 (0.00)	2.28E-01 (0.00)	5.09E-01 (-0.00)	8.18E-04 (-0.01**)	1.41E-04 (-0.01**)	1.43E-03 (-0.01**)
	Hypertension	1.97E-01 (-0.03)	2.38E-01 (-0.04)	2.20E-01 (0.04)	3.61E-01 (0.03)	2.03E-01 (0.04)	3.21E-01 (-0.03)	8.50E-01 (0.01)	1.30E-01 (0.06)	2.07E-02 (0.09*)
	Glucose	3.37E-07 (-0.05**)	5.68E-05 (-0.05**)	5.15E-03 (-0.03**)	6.54E-05 (-0.05**)	2.92E-04 (-0.04**)	6.74E-02 (-0.02)	8.82E-01 (-0.00)	5.96E-01 (-0.01)	8.09E-01 (-0.00)
	Diabetes	2.71E-05 (-0.14**)	7.31E-04 (-0.15**)	8.82E-02 (-0.07)	2.21E-03 (-0.13**)	1.42E-03 (-0.13**)	3.45E-02 (-0.10*)	7.72E-01 (-0.02)	9.24E-01 (-0.01)	4.85E-01 (0.04)
	Cholesterol	6.28E-02 (0.03)	3.09E-01 (-0.02)	7.84E-01 (-0.00)	1.42E-02 (-0.04*)	3.19E-03 (-0.05**)	4.76E-01 (-0.01)	6.78E-01 (0.01)	2.77E-01 (-0.03)	3.98E-01 (-0.02)
	HDL	2.69E-01 (0.04)	4.72E-01 (0.03)	8.91E-01 (0.01)	1.42E-01 (-0.06)	3.26E-01 (-0.04)	1.15E-01 (0.07)	3.72E-01 (0.07)	9.04E-01 (-0.01)	9.49E-01 (-0.00)
	LDL	9.72E-02 (0.03)	8.15E-01 (-0.00)	6.70E-01 (0.01)	3.73E-02 (-0.04*)	1.23E-02 (-0.05*)	7.76E-01 (-0.01)	8.95E-01 (0.00)	2.73E-01 (-0.03)	2.54E-01 (-0.03)
	TG	7.51E-01 (0.00)	6.64E-02 (-0.03)	2.24E-01 (-0.02)	5.94E-01 (-0.01)	6.62E-01 (-0.01)	3.44E-02 (-0.03*)	6.07E-01 (-0.01)	2.23E-01 (-0.02)	8.00E-01 (-0.00)
POS	Age	4.49E-84 (-0.16**)	3.41E-75 (-0.15**)	6.11E-81 (-0.17**)	9.86E-87 (-0.16**)	5.02E-99 (-0.17**)	7.02E-82 (-0.17**)	1.25E-73 (-0.18**)	5.27E-87 (-0.17**)	1.21E-102 (-0.20**)
	Gender	1.70E-02 (0.36*)	7.10E-03 (-0.40**)	7.45E-05 (-0.61**)	2.83E-02 (-0.31*)	1.25E-03 (-0.48**)	2.28E-11 (-1.04**)	4.57E-11 (-1.14**)	5.03E-09 (-0.89**)	3.89E-11 (-1.08**)
	Axial Length	6.61E-07 (-0.44**)	1.26E-09 (-0.52**)	2.01E-08 (-0.50**)	4.97E-07 (-0.42**)	1.06E-06 (-0.42**)	1.20E-08 (-0.52**)	1.54E-08 (-0.57**)	1.13E-06 (-0.44**)	1.21E-04 (-0.37**)
	IOP	6.73E-03 (0.08**)	9.95E-03 (0.07**)	1.57E-03 (0.10**)	2.90E-03 (0.08**)	2.53E-03 (0.09**)	6.19E-04 (0.11**)	1.18E-03 (0.11**)	1.60E-03 (0.09**)	2.57E-04 (0.12**)
	Height	7.03E-02 (0.02)	3.19E-06 (0.04**)	1.14E-09 (0.06**)	6.79E-07 (0.04**)	4.33E-09 (0.05**)	3.70E-14 (0.08**)	3.62E-14 (0.08**)	8.07E-15 (0.08**)	6.58E-17 (0.09**)
	Weight	7.58E-01 (0.00)	3.42E-02 (0.01*)	4.20E-05 (0.03**)	3.00E-03 (0.02**)	1.92E-04 (0.02**)	1.78E-06 (0.03**)	4.72E-09 (0.04**)	1.31E-09 (0.04**)	5.26E-10 (0.04**)
	BMI	3.90E-01 (-0.02)	5.41E-01 (-0.01)	5.32E-01 (0.01)	9.23E-01 (0.00)	6.68E-01 (0.01)	6.13E-01 (0.01)	1.08E-01 (0.04)	6.75E-02 (0.04)	9.32E-02 (0.04)
	Waist circumference	6.31E-05 (-0.03**)	2.41E-02 (-0.02*)	4.96E-01 (-0.01)	5.57E-02 (-0.01)	2.22E-01 (-0.01)	9.28E-01 (0.00)	1.70E-01 (0.01)	3.33E-01 (0.01)	2.39E-01 (0.01)
	Hip circumference	9.89E-01 (0.00)	9.14E-01 (-0.00)	3.03E-01 (0.01)	8.38E-01 (0.00)	4.10E-01 (0.01)	4.58E-01 (0.01)	4.67E-02 (0.02*)	2.97E-02 (0.02*)	3.41E-02 (0.02*)

1	SBP	1.52E-07 (-0.02**)	2.53E-05 (-0.02**)	1.54E-04 (-0.01**)	1.40E-05 (-0.02**)	2.23E-06 (-0.02**)	2.57E-03 (-0.01**)	5.60E-03 (-0.01**)	5.21E-03 (-0.01**)	1.63E-03 (-0.01**)
2	POS	DBP	1.32E-02 (0.02*)	1.07E-04 (0.02**)	3.51E-06 (0.03**)	1.33E-05 (0.02**)	1.63E-05 (0.03**)	1.58E-07 (0.03**)	4.40E-07 (0.04**)	2.03E-09 (0.04**)
3		Hypertension	1.40E-05 (-0.64**)	1.20E-05 (-0.64**)	4.61E-05 (-0.62**)	1.70E-05 (-0.60**)	2.14E-06 (-0.69**)	1.60E-04 (-0.59**)	6.31E-04 (-0.59**)	1.40E-04 (-0.58**)
4		Glucose	4.00E-03 (-0.17**)	5.45E-02 (-0.11)	1.70E-02 (-0.14*)	3.61E-03 (-0.16**)	5.34E-03 (-0.16**)	1.87E-01 (-0.08)	1.07E-01 (-0.11)	6.34E-03 (-0.16**)
5		Diabetes	9.77E-05 (-0.85**)	7.07E-04 (-0.73**)	2.77E-03 (-0.68**)	5.06E-05 (-0.84**)	5.70E-06 (-0.98**)	3.79E-03 (-0.67**)	1.68E-02 (-0.61*)	8.06E-05 (-0.88**)
6		Cholesterol	6.04E-04 (0.30**)	9.51E-02 (0.14)	5.28E-01 (0.06)	7.90E-02 (0.14)	1.48E-01 (0.12)	9.00E-01 (0.01)	9.45E-01 (-0.01)	8.04E-01 (0.02)
7		HDL	1.08E-02 (0.54*)	2.95E-02 (0.45*)	7.99E-02 (0.38)	4.23E-02 (0.41*)	6.42E-02 (0.39)	2.16E-01 (0.27)	2.55E-01 (0.28)	2.68E-01 (0.24)
8		LDL	1.10E-03 (0.31**)	6.55E-02 (0.17)	2.82E-01 (0.11)	3.96E-02 (0.19*)	6.77E-02 (0.17)	6.58E-01 (0.04)	6.12E-01 (0.06)	3.48E-01 (0.09)
9		TG	6.41E-01 (-0.03)	2.30E-01 (-0.08)	1.32E-01 (-0.10)	3.21E-01 (-0.06)	2.16E-01 (-0.08)	2.51E-01 (-0.08)	1.93E-01 (-0.10)	1.88E-01 (-0.09)
10		Age	1.90E-115 (0.09**)	5.24E-74 (0.08**)	1.87E-79 (0.08**)	4.12E-102 (0.09**)	2.11E-91 (0.08**)	4.33E-58 (0.06**)	4.85E-62 (0.05**)	6.62E-88 (0.07**)
11	RPE/BM	Gender	6.63E-02 (-0.13)	1.65E-01 (0.11)	1.04E-01 (0.12)	5.23E-01 (-0.05)	8.54E-01 (-0.01)	1.55E-02 (0.16*)	4.38E-02 (0.11*)	1.26E-01 (0.10)
12		Axial Length	4.16E-10 (0.27**)	7.66E-14 (0.35**)	8.32E-11 (0.28**)	5.13E-10 (0.27**)	5.35E-12 (0.29**)	6.29E-16 (0.32**)	4.26E-13 (0.23**)	1.79E-09 (0.23**)
13		IOP	4.60E-02 (-0.03*)	2.06E-02 (-0.04*)	3.45E-02 (-0.03*)	4.95E-02 (-0.03*)	4.11E-02 (-0.03*)	1.32E-02 (-0.03*)	3.19E-02 (-0.02*)	9.02E-02 (-0.02)
14		Height	8.95E-02 (-0.01)	1.78E-03 (-0.02**)	2.04E-04 (-0.02**)	1.27E-02 (-0.01*)	1.66E-02 (-0.01*)	2.62E-04 (-0.02**)	1.53E-04 (-0.01**)	2.81E-05 (-0.02**)
15		Weight	1.27E-03 (-0.01**)	4.77E-04 (-0.01**)	1.32E-07 (-0.02**)	1.65E-06 (-0.02**)	5.25E-06 (-0.01**)	6.67E-05 (-0.01**)	1.67E-08 (-0.01**)	1.07E-11 (-0.02**)
16		BMI	7.54E-03 (-0.03**)	3.67E-02 (-0.02*)	2.78E-04 (-0.03**)	1.02E-04 (-0.04**)	1.57E-04 (-0.04**)	2.28E-02 (-0.02*)	7.85E-05 (-0.03**)	4.19E-07 (-0.04**)
17		Waist circumference	5.34E-01 (-0.00)	1.81E-01 (-0.01)	1.19E-02 (-0.01*)	3.92E-02 (-0.01*)	1.01E-02 (-0.01*)	6.59E-02 (-0.01)	7.75E-04 (-0.01**)	3.16E-05 (-0.01**)
18		Hip circumference	3.65E-04 (-0.02**)	2.30E-03 (-0.02**)	2.50E-05 (-0.02**)	7.62E-05 (-0.02**)	4.86E-05 (-0.02**)	9.64E-03 (-0.01**)	7.43E-06 (-0.02**)	2.53E-08 (-0.02**)
19		SBP	3.27E-02 (0.00*)	1.54E-01 (0.00)	1.21E-01 (0.00)	7.08E-02 (0.00)	1.56E-01 (0.00)	1.03E-01 (0.00)	2.05E-01 (0.00)	6.15E-01 (0.00)
20		DBP	6.50E-08 (-0.02**)	2.06E-08 (-0.02**)	2.08E-08 (-0.02**)	9.57E-09 (-0.02**)	1.43E-08 (-0.02**)	1.06E-06 (-0.01**)	4.19E-08 (-0.01**)	1.17E-12 (-0.02**)
21		Hypertension	5.91E-05 (0.29**)	1.59E-03 (0.25**)	4.04E-03 (0.21**)	1.36E-03 (0.24**)	1.21E-03 (0.23**)	2.41E-02 (0.15*)	2.44E-02 (0.12*)	3.85E-02 (0.13*)
22		Glucose	3.58E-02 (0.06*)	1.52E-01 (0.04)	8.92E-03 (0.07**)	1.81E-03 (0.09**)	6.06E-03 (0.08**)	3.41E-01 (0.03)	2.98E-02 (0.05*)	1.14E-03 (0.08**)
23		Diabetes	3.80E-05 (0.44**)	1.76E-03 (0.37**)	2.99E-03 (0.32**)	6.38E-06 (0.50**)	8.66E-07 (0.52**)	2.23E-03 (0.30**)	2.33E-03 (0.25**)	1.10E-06 (0.46**)
24		Cholesterol	2.15E-01 (-0.05)	8.70E-01 (-0.01)	7.93E-01 (0.01)	5.00E-01 (-0.03)	8.84E-01 (0.01)	6.57E-01 (0.02)	5.32E-01 (0.02)	4.82E-01 (0.03)
25		HDL	4.45E-01 (-0.08)	4.84E-01 (-0.08)	6.39E-01 (-0.05)	8.94E-01 (-0.01)	5.62E-01 (-0.06)	9.91E-01 (-0.00)	7.84E-01 (-0.02)	9.26E-01 (0.01)
26		LDL	1.56E-01 (-0.07)	5.29E-01 (-0.03)	7.04E-01 (-0.02)	2.35E-01 (-0.06)	6.76E-01 (-0.02)	8.09E-01 (-0.01)	9.52E-01 (-0.00)	8.91E-01 (-0.01)
27		TG	2.59E-01 (-0.04)	8.16E-01 (-0.01)	9.80E-01 (-0.00)	2.81E-01 (-0.04)	8.67E-01 (-0.01)	9.88E-01 (-0.01)	8.43E-01 (-0.01)	9.05E-01 (-0.00)
28		SBP	3.27E-02 (0.00*)	1.54E-01 (0.00)	1.21E-01 (0.00)	7.08E-02 (0.00)	1.56E-01 (0.00)	1.03E-01 (0.00)	2.05E-01 (0.00)	6.15E-01 (0.00)
29		DBP	6.50E-08 (-0.02**)	2.06E-08 (-0.02**)	2.08E-08 (-0.02**)	9.57E-09 (-0.02**)	1.43E-08 (-0.02**)	1.06E-06 (-0.01**)	4.19E-08 (-0.01**)	1.17E-12 (-0.02**)
30		Hypertension	5.91E-05 (0.29**)	1.59E-03 (0.25**)	4.04E-03 (0.21**)	1.36E-03 (0.24**)	1.21E-03 (0.23**)	2.41E-02 (0.15*)	2.44E-02 (0.12*)	3.85E-02 (0.13*)
31		Glucose	3.58E-02 (0.06*)	1.52E-01 (0.04)	8.92E-03 (0.07**)	1.81E-03 (0.09**)	6.06E-03 (0.08**)	3.41E-01 (0.03)	2.98E-02 (0.05*)	1.14E-03 (0.08**)
32		Diabetes	3.80E-05 (0.44**)	1.76E-03 (0.37**)	2.99E-03 (0.32**)	6.38E-06 (0.50**)	8.66E-07 (0.52**)	2.23E-03 (0.30**)	2.33E-03 (0.25**)	1.10E-06 (0.46**)
33		Cholesterol	2.15E-01 (-0.05)	8.70E-01 (-0.01)	7.93E-01 (0.01)	5.00E-01 (-0.03)	8.84E-01 (0.01)	6.57E-01 (0.02)	5.32E-01 (0.02)	4.82E-01 (0.03)
34		HDL	4.45E-01 (-0.08)	4.84E-01 (-0.08)	6.39E-01 (-0.05)	8.94E-01 (-0.01)	5.62E-01 (-0.06)	9.91E-01 (-0.00)	7.84E-01 (-0.02)	9.26E-01 (0.01)
35		LDL	1.56E-01 (-0.07)	5.29E-01 (-0.03)	7.04E-01 (-0.02)	2.35E-01 (-0.06)	6.76E-01 (-0.02)	8.09E-01 (-0.01)	9.52E-01 (-0.00)	8.91E-01 (-0.01)
36		TG	2.59E-01 (-0.04)	8.16E-01 (-0.01)	9.80E-01 (-0.00)	2.81E-01 (-0.04)	8.67E-01 (-0.01)	9.88E-01 (-0.01)	8.43E-01 (-0.01)	9.05E-01 (-0.00)
37		SBP	3.27E-02 (0.00*)	1.54E-01 (0.00)	1.21E-01 (0.00)	7.08E-02 (0.00)	1.56E-01 (0.00)	1.03E-01 (0.00)	2.05E-01 (0.00)	6.15E-01 (0.00)
38		DBP	6.50E-08 (-0.02**)	2.06E-08 (-0.02**)	2.08E-08 (-0.02**)	9.57E-09 (-0.02**)	1.43E-08 (-0.02**)	1.06E-06 (-0.01**)	4.19E-08 (-0.01**)	1.17E-12 (-0.02**)
39		Hypertension	5.91E-05 (0.29**)	1.59E-03 (0.25**)	4.04E-03 (0.21**)	1.36E-03 (0.24**)	1.21E-03 (0.23**)	2.41E-02 (0.15*)	2.44E-02 (0.12*)	3.85E-02 (0.13*)
40		Glucose	3.58E-02 (0.06*)	1.52E-01 (0.04)	8.92E-03 (0.07**)	1.81E-03 (0.09**)	6.06E-03 (0.08**)	3.41E-01 (0.03)	2.98E-02 (0.05*)	1.14E-03 (0.08**)
41		Diabetes	3.80E-05 (0.44**)	1.76E-03 (0.37**)	2.99E-03 (0.32**)	6.38E-06 (0.50**)	8.66E-07 (0.52**)	2.23E-03 (0.30**)	2.33E-03 (0.25**)	1.10E-06 (0.46**)
42		Cholesterol	2.15E-01 (-0.05)	8.70E-01 (-0.01)	7.93E-01 (0.01)	5.00E-01 (-0.03)	8.84E-01 (0.01)	6.57E-01 (0.02)	5.32E-01 (0.02)	4.82E-01 (0.03)
43		HDL	4.45E-01 (-0.08)	4.84E-01 (-0.08)	6.39E-01 (-0.05)	8.94E-01 (-0.01)	5.62E-01 (-0.06)	9.91E-01 (-0.00)	7.84E-01 (-0.02)	9.26E-01 (0.01)
44		LDL	1.56E-01 (-0.07)	5.29E-01 (-0.03)	7.04E-01 (-0.02)	2.35E-01 (-0.06)	6.76E-01 (-0.02)	8.09E-01 (-0.01)	9.52E-01 (-0.00)	8.91E-01 (-0.01)
45		TG	2.59E-01 (-0.04)	8.16E-01 (-0.01)	9.80E-01 (-0.00)	2.81E-01 (-0.04)	8.67E-01 (-0.01)	9.88E-01 (-0.01)	8.43E-01 (-0.01)	9.05E-01 (-0.00)
46		SBP	3.27E-02 (0.00*)	1.54E-01 (0.00)	1.21E-01 (0.00)	7.08E-02 (0.00)	1.56E-01 (0.00)	1.03E-01 (0.00)	2.05E-01 (0.00)	6.15E-01 (0.00)
47		DBP	6.50E-08 (-0.02**)	2.06E-08 (-0.02**)	2.08E-08 (-0.02**)	9.57E-09 (-0.02**)	1.43E-08 (-0.02**)	1.06E-06 (-0.01**)	4.19E-08 (-0.01**)	1.17E-12 (-0.02**)
48		Hypertension	5.91E-05 (0.29**)	1.59E-03 (0.25**)	4.04E-03 (0.21**)	1.36E-03 (0.24**)	1.21E-03 (0.23**)	2.41E-02 (0.15*)	2.44E-02 (0.12*)	3.85E-02 (0.13*)
49		Glucose	3.58E-02 (0.06*)	1.52E-01 (0.04)	8.92E-03 (0.07**)	1.81E-03 (0.09**)	6.06E-03 (0.08**)	3.41E-01 (0.03)	2.98E-02 (0.05*)	1.14E-03 (0.08**)
50		Diabetes	3.80E-05 (0.44**)	1.76E-03 (0.37**)	2.99E-03 (0.32**)	6.38E-06 (0.50**)	8.66E-07 (0.52**)	2.23E-03 (0.30**)	2.33E-03 (0.25**)	1.10E-06 (0.46**)
51		Cholesterol	2.15E-01 (-0.05)	8.70E-01 (-0.01)	7.93E-01 (0.01)	5.00E-01 (-0.03)	8.84E-01 (0.01)	6.57E-01 (0.02)	5.32E-01 (0.02)	4.82E-01 (0.03)
52		HDL	4.45E-01 (-0.08)	4.84E-01 (-0.08)	6.39E-01 (-0.05)	8.94E-01 (-0.01)	5.62E-01 (-0.06)	9.91E-01 (-0.00)	7.84E-01 (-0.02)	9.26E-01 (0.01)
53		LDL	1.56E-01 (-0.07)	5.29E-01 (-0.03)	7.04E-01 (-0.02)	2.35E-01 (-0.06)	6.76E-01 (-0.02)	8.09E-01 (-0.01)	9.52E-01 (-0.00)	8.91E-01 (-0.01)
54		TG	2.59E-01 (-0.04)	8.16E-01 (-0.01)	9.80E-01 (-0.00)	2.81E-01 (-0.04)	8.67E-01 (-0.01)	9.88E-01 (-0.01)	8.43E-01 (-0.01)	9.05E-01 (-0.00)
55		SBP	3.27E-02 (0.00*)	1.54E-01 (0.00)	1.21E-01 (0.00)	7.08E-02 (0.00)	1.56E-01 (0.00)	1.03E-01 (0.00)	2.05E-01 (0.00)	6.15E-01 (0.00)
56		DBP	6.50E-08 (-0.02**)	2.06E-08 (-0.02**)	2.08E-08 (-0.02**)	9.57E-09 (-0.02**)	1.43E-08 (-0.02**)	1.06E-06 (-0.01**)	4.19E-08 (-0.01**	