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Abstract: Segmentation of multiple surfaces in optical coherence tomography (OCT) images
is a challenging problem, further complicated by the frequent presence of weak boundaries,
varying layer thicknesses, and mutual influence between adjacent surfaces. The traditional
graph-based optimal surface segmentation method has proven its effectiveness with its ability to
capture various surface priors in a uniform graph model. However, its efficacy heavily relies
on handcrafted features that are used to define the surface cost for the “goodness” of a surface.
Recently, deep learning (DL) is emerging as a powerful tool for medical image segmentation
thanks to its superior feature learning capability. Unfortunately, due to the scarcity of training data
in medical imaging, it is nontrivial for DL networks to implicitly learn the global structure of the
target surfaces, including surface interactions. This study proposes to parameterize the surface
cost functions in the graph model and leverage DL to learn those parameters. The multiple optimal
surfaces are then simultaneously detected by minimizing the total surface cost while explicitly
enforcing the mutual surface interaction constraints. The optimization problem is solved by the
primal-dual interior-point method (IPM), which can be implemented by a layer of neural networks,
enabling efficient end-to-end training of the whole network. Experiments on spectral-domain
optical coherence tomography (SD-OCT) retinal layer segmentation demonstrated promising
segmentation results with sub-pixel accuracy.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Automated surface segmentation with high accuracy for retina optical coherence tomography
(OCT) is a clinical necessity in many diagnostic and treatment tasks of ophthalmic diseases.
Examples include quantification of retinal layer morphology and thickness in glaucoma, age-
related macular degeneration, diabetic macular edema, and using it for treatment decisions with
retinal OCT [1,2]. In retina OCT imaging, the layered surfaces that need to be identified appear
in mutual interactions. These surfaces are “coupled” in a way that their topology and relative
positions are usually known already (at least in a general sense), and the distances between them
are within some specific ranges. Incorporating these surface-interrelations into the segmentation
can further improve its accuracy and robustness, especially when insufficient image-derived
information is available for defining some object boundaries or surfaces. Such insufficiency can
be remedied by using clues from other related boundaries or surfaces. Simultaneous optimal
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detection of multiple coupled surfaces thus yields superior results compared to the single-surface
detection approaches [3].

Many retina OCT segmentation methods have been proposed in past years. Garvin et al. first
introduced the graph-based optimal surface segmentation method [3] to surface segmentation in
retinal OCT [4,5], which was further developed by incorporating various a priori knowledge
reflecting anatomic and imaging information [6–9]. The methods can model the interacting
retinal surfaces in a complex multi-layered graph, enabling simultaneous segmentation of all
desired 3D surfaces in a single optimization process with guaranteed global optimality. Chiu et al.
modeled the retinal layer segmentation in OCT as computing shortest paths in a directed acyclic
graph for each B-scan [10]. Due to its computational efficiency, the shortest-path-based method
has attracted much attention for retinal OCT segmentation [11–13]. All these methods work best
in 2D while lacking the capability of making use of the contextual information between B-scans.
Other known OCT surface segmentation approaches include level set [14–18], probabilistic
global shape model [19], and random forest classifier [20,21]. Each of these traditional methods
has its own strength. They all share a common drawback that is their dependence on handcrafted
features.

Armed with superior data representation learning capacity, deep learning (DL) methods are
emerging as powerful alternatives to traditional segmentation algorithms for many medical
image segmentation tasks [22,23]. Both fully convolutional networks (FCN) [24,25] and U-Net
[26–28] have been utilized for retinal layer segmentation in OCT images. All these methods
model the segmentation problems as a pixel-wise classification problem, in which each pixel
is labeled as one of the retinal layers or background. As such, the retinal layering topology
cannot be guaranteed with those methods, neither the continuity and smoothness of the retinal
surfaces can be ensured. Especially, due to the scarcity of training data in medical imaging, it
is nontrivial for DL networks to implicitly learn those global structures of the target surfaces.
To address these limitations, the graph-based method [10] was used as post-processing for the
deep learning models to enforce surface monotonicity and smoothness [29,30]. Pekala et al.
utilized a dense-blocked FCN with Gaussian regression as postprocessing for multiple OCT
surface segmentation [31]. In this scheme, feature learning is, in fact, disconnected from the
graph model; the learned features thus may not be truly appropriated for the model. Shah et
al. [32] first formulated the retinal OCT surface segmentation as a regression problem using
an FCN followed by fully connected layers to directly extract the layered multiple surfaces
simultaneously from OCT. The direct surface segmentation encodes the monotonicity prior of
each surface (i.e., each surface intersects every A-scan of the OCT image exactly once) within
the deep network by column-wise regression. He et al. further extended the deep regression idea
with fully differentiable soft-argmax operations to generate surface positions followed by ReLU
operations to guarantee the surface order in their fully convolutional regression network (FCRN)
[33]. Their method has been demonstrated to achieve state-of-the-art results for multiple surface
segmentation in retinal OCT. Though being able to achieve highly accurate structured surfaces,
unlike model-based approaches, the FCRN method is more prone to be affected by outlier images
with bad quality or artifacts with limited training data [33]. Furthermore, the ReLU topology
guarantee module in the FCRN method just updates the surfaces with ReLU operations from top
to bottom to correct the surface order, which may propagate the errors in the upper surfaces to
the lower surfaces.

This study proposes to unify the powerful feature learning capability of DL with the successful
graph-based surface segmentation model in a single deep neural network for end-to-end training
to achieve globally optimal segmentation of multiple interacting surfaces; the surface order is
explicitly enforced with linear constraints to the objective function of the segmentation problem.
In the proposed segmentation framework, the surface costs are parameterized, and the DL
network is leveraged to learn the model from the training data to determine the parameters for the
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input image. The multi-surface inference by minimizing the total surface cost while satisfying
the surface order constraints is realized by the primal-dual Interior-Point Method (IPM) for
constrained convex optimization. It can be implemented by a layer of neural networks with
efficient backward propagation of gradients with virtually no additional cost [34]. Thus, the DL
network for surface cost parameterization can be seamlessly integrated with the multi-surface
inference to achieve the end-to-end training with a global optimization guarantee.

2. Methods

2.1. Problem formulation

Let I(X, Y , Z) of size X×Y×Z be a given 3-D volumetric image, as oriented in Fig. 1. For each
(x, y) pair (x = 0, 1, . . . , X − 1 and y = 0, 1, . . . , Y − 1), the voxel subset {I(x, y, z)|0 ≤ z<Z}
forms a column parallel to the z-axis, denoted by q(x, y). The optimizing target is to find N>1
most possible terrain-like surfaces S = {S0, S1, . . . , SN−1}, where N depends different application
contexts and is decided by domain experts. Each surface intersects every column q(x, y) at exactly
one location point zi, where i = 0, 1, 2, . . . , N − 1.

Fig. 1. Terrain-like surfaces Si and Sj intersect each q(x, y)-column exactly one time, and
adjacent surfaces do not interfere with each other.

In the graph-based surface segmentation model [3,6,8], each voxel I(x, y, z) is associated with
an on-surface cost ci(x, y, z) for each sought surface location zi at column q(x, y) crossing with
surface Si, which is inversely related to the likelihood that the desired surface location zi contains
the voxel, and is computed based on handcrafted image features. The surface cost of Si is the
total on-surface costs of all voxels on Si. The on-surface cost function ci(x, y, z) for the column
q(x, y) can be an arbitrary function in the graph model. However, an ideal cost function ci(x, y, z)
should express a certain type of convexity: as the aim is to minimize the surface cost, ci(x, y, z)
should be low at the surface location; while the distance increases from the surface location along
the column q(x, y), the cost should increase accordingly. This study proposes to leverage DL
networks to learn a Gaussian distribution G(µi(q),σi(q)) to model the on-surface cost function
ci(x, y, zi) for each column q(x, y), that is, ci(x, y, zi) = (zi−µi)2

2σ2
i

. Thus, the surface cost of zi is
parameterized with (µi,σi).

For multiple surfaces segmentation without adjacent surfaces interferences in OCT application
context, a surface interacting constraint is added to every column q(x, y) for each pair of the
sought adjacent surface locations zi and zi+1. For each q(x, y), zi+1(q) − zi(q) ≤ 0 indicates that zi
is always on the top of zi+1. The multi-surface segmentation is formulated as an optimization
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problem, where the parameterized surface costs are derived using deep CNNs:

S∗ = argmin
S

N−1∑︂
i=0

∑︂
I(x,y,zi)∈Si

ci(x, y, zi) |(µi,σi)

s.t. zi+1(q) − zi(q) ≤ 0, i = 0, 1, . . . , N − 2,∀q(x, y).
(1)

2.2. Surface segmentation network

As shown in Fig. 2, The proposed segmentation network consists of two integrative components:
One aims to learn the surface cost parameterization (µ,σ) in Eq. (1); the other strikes to solve
the optimal surface interference by optimizing Eq. (1) with the IPM optimization module. Thus,
the whole network can then be trained in an end-to-end fashion and outputs globally optimal
solutions for the multiple surface segmentation.

Fig. 2. Illustration of the network architecture of the proposed multiple surface segmentation.
The surface cost is parameterized with (µ⃗, σ⃗), which models the Gaussian distribution of the
surface locations along each image column. IPM Optimization indicates primal-dual Interior-
Point Method for constrained convex optimization. Weighed DivLoss is an image-gradient
weighted divergence loss. GT denotes ground truth.

Surface Cost Parameterization. This study utilizes U-net [35] as the backbone for surface
feature extraction. The input of the U-net consists of five channels – the original image, the
directional gradients of the original image along the x- and z- directions, and the magnitude
and direction of the image gradient. The implemented U-net has seven layers with a filter size
of 24 at the first layer and with long skip connections between the corresponding blocks of its
encoder and decoder. Each block has three convolution layers with a residual connection [36].
The output feature maps of the U-net module are then fed into a segmentation head (Fig. 2) which
is implemented with three-layer convolutions followed by a 1 × 1 convolution and softmax along
every image column for each surface to obtain the probability maps for the N surfaces. Note that
each sought surface Si intersects every image column exactly once at location zi.

As in He et al.’s methods [33,37], for each surface location zi, based on the surface location
probability pi(z) on every image column q(x, y) from the segmentation head, the expected surface
location µi =

∑︁Z−1
z=0 zpi(z). The surface location distribution of zi on column q is modeled with a

Gaussian Gi(µi,σi), with

σ2
i =

Z−1∑︂
z=0

pi(z)(z − µi)2, (2)

where
∑︁Z−1

z=0 pi(z) = 1.0 by the softmax operation on each image column.
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The surface cost
∑︁
I(x,y,z)∈Si ci(x, y, zi) |(µi,σi) of each surface location zi is parameterized with

(µi,σi), such that ∑︂
I(x,y,zi)∈Si

ci(x, y, zi) |(µi,σi) =
∑︂

I(x,y,zi)∈Si

(zi − µi)2
2σ2

i
. (3)

Globally optimal multiple surface inference. Given the surface cost parameterization (µ⃗, σ⃗),
the inference of optimal multiple surfaces can be solved by optimizing Eq. (1), which is a
constrained convex optimization problem. To achieve end-to-end training, the optimization
inference needs to be able to provide gradient backward propagation, which impedes the use
of traditional convex optimization techniques in deep learning. This study exploits the OptNet
technique [34] to integrate a primal-dual interior-point method (IPM) for solving Eq. (1) as an
individual layer in the surface segmentation network (Fig. 2). Based on Amos and Kolter’s
theorem [34], with a full differential technology, the residual equation r⃗(z⃗∗, λ⃗) = 0⃗ derived from
the Karush-Kuhn-Tucker conditions, with the hidden parameters (µ⃗, σ⃗) in the residual equation,
where λ⃗ is the Lagrangian variable and z⃗∗ is optimized N-surface locations, can be converted into
a full differential equation. Then deduce the gradients of dL

dµ⃗ and dL
dQ for backward propagation,

where L is the training loss of the whole deep learning network and Q is a diagonal matrix
with Q = Diag[ 1

σ2
0
, 1
σ2

1
, . . . , 1

σ2
N−1
]. The deduction details of the matrix formulas for forwarding

optimization and backward gradients are in Appendix A. The IPM method is a 2nd order Newton
method with matrix inversions. In the OCT surface segmentation, it typically needs less than 10
iterations to converge, which supports high-epoch training for the proposed deep model.

2.3. Network training strategy

Multiple loss functions are introduced to focus on the training of different modules in the proposed
multiple-surface segmentation network (Fig. 2). In the segmentation head, the softmax operations
are performed on each image column to obtain the probability of each voxel that would be on a
specific surface.

To encourage the segmentation head to output reasonable probability maps, a novel image-
gradient weighted divergence loss LDiv is utilized for training. It inherits from the Kullback–Leibler
divergence loss KLDloss, which measures how one probability distribution is different from a
reference one. Observing that layered surfaces appear on locations with high image gradients,
this study thus proposes to make use of image gradients as weighted coefficients for KLDloss
to highlight the probability differences on those surface locations, which provides attention
mechanism [38] for the segmentation network. The proposed LDiv for any image column q is
calculated, as follows.

LDiv =
∑︂
i∈q

wigi∥ log
gi

pi
∥,

where gi is the Gaussian probability of pixel i on the column q, which is computed by using the
ground truth surface location as the mean and a fixed standard deviation σ for each pixel i on
the column q; the standard deviation σ is 4 − 6% of the B-scan height in pixel to allow possible
oscillation of surface locations; pi is the network-output probability of pixel i, and wi ∈ W is the
magnitude of the gradient of the original image I at pixel i. The standard deviation of ground
truth distribution gi is related with Z, the height of A-scan. Bigger Z, bigger standard deviation
of gi. The magnitude W of the image gradient is computed with W = 1 + α∥∇(I)∥, where α is an
experimental constant to balance the effect of gradient to the weight of LDiv. The LDiv loss is
used to ensure that the network-output probability map p be well aligned with the ground truth
Gaussian probability map g, especially on those pixels with a large image gradient.

In addition to using an L1 loss, denoted as L1, to measure the difference between the predicted
surface and ground truth, a smoothness loss, Lsmooth, is introduced to regularize the smoothness
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and mutual interaction of the sought surfaces. More precisely, Lsmooth in Eq. (5) below is the
total sum of the mean-squared-errors (MSEs) of the surface location changes between any two
adjacent image columns while compared to the corresponding ground truth, plus the total sum of
the MSEs of predicted layer thickness on all columns while compared to the ground truth of the
layer thickness.

Lsmooth =
1

N · (X − 1)
N−1∑︂
n=0

X−2∑︂
x=0
((µn,x − µn,x+1) − (sn,x − sn,x+1))2

+
1

(N − 1) · X
N−2∑︂
n=0

X−1∑︂
x=0
((µn+1,x − µn,x) − (sn+1,x − sn,x))2,

(4)

where N is the number of surfaces, X is the number of A-scans in one B-scan, µ is predicted
surface locations, and s is ground truth surface locations.

The whole network loss L = LDiv + Lsmooth + wL1, where w is a coefficient used to alleviate
the effect of weak gradients while the prediction is close to the ground truth. Thus, it enables
the network to put more weight on the L1 loss among all three loss functions as our goal is to
minimize the error between the predicted surfaces and the ground truth.

3. Experiments

The proposed method was validated on two SD-OCT datasets for segmenting N = 9 retinal
surfaces. All experiments of this study experiencedly chose the weight of L1 loss w = 10 for
all different application data sets. Ablation experiments were also performed to examine the
contribution of each component in the proposed segmentation network.

3.1. Beijing Eye Study OCT dataset

47 participants were randomly selected from all OD eyes of the population-based Beijing Eye
Study 2011 (BES) [39,40], in which 3468 participants aged 50+ years were enrolled. All
participants have scans on the macula and optic nerve head by SD-OCT (Heidelberg Engineering,
Inc., Germany) with a pixel resolution of 3.87 µm in the height (z-axis) direction. Each volume
has scans consisting of 31 single lines on the 30◦ × 30◦ field centered on the macula. The
horizontal area of the scan was reduced to 20° centered on the macula to remove the optic disc
region. Nine boundary surfaces in Table 1 of all 47 OCT volumes (Fig. 3) were first delineated
by OCT-Explorer 3.8 [41], a graph-search based ophthalmic image analysis software [5,42], and
then were manually corrected by an experienced ophthalmologist.

Table 1. The definition of nine surfaces of BES OCT dataset.

Abbreviation Full Name

ILM internal limiting membrane

RNFL-GCL the surface between retinal nerve fiber layer and ganglion cell layer

IPL-INL the surface between inner plexiform layer and inner nuclear layer

INL-OPL the surface between inner nuclear layer and outer plexiform layer

OPL-ONL the surface between outer plexiform layer and outer nuclear layer

MZ-EZ the surface between myoid zone and ellipsoid zone of inner segments of photoreceptors

IS-OS the inner/outer photoreceptor segments junction

IB_RPE the inner boundary of the retinal pigment epithelium

OB_RPE the outer boundary of the retinal pigment epithelium

This experiment used a fixed σ = 20 in pixels to generate the ground truth for the Gaussian
distribution of surface location on each image column. The Gaussian and salt & pepper noise were
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Fig. 3. Simultaneous segmentation of 9 intraretinal surfaces in an SD-OCT image of BES
OCT dataset.

added for data augmentation. We expect that adding speckle-noise would be further improving
data augmentation. 10-fold cross-validation was performed to evaluate our method: 8 folds for
training, 1 fold for validation, and 1 fold for testing. The mean absolute surface distance errors
(MASD) for each sought surface over the testing results on all 47 scans are shown in Table 2.
Sample segmentation results are illustrated in Fig. 3. Compared to OCT-Explorer [41], Table 2
shows that our method significantly improves the segmentation accuracy indicated by the MASD
errors and the robustness indicated by the standard deviations.

Table 2. Mean Absolute Surface Distance error ± standard deviation (in µm) evaluated on the BES
dataset for segmenting 9 retinal surfaces with mean of 10-fold cross validation over all test folds.

The OCT-Explorer [41] is based on the graph search method. Penetration resolution is
3.87µm/pixel.

ILM RNFL-GCL IPL-INL INL-OPL OPL-ONL MZ-EZ IS-OS IB_RPE OB_RPE Average

OCT-Explorer 1.79±4.34 3.58±4.75 2.92±4.77 2.54±4.77 2.73±4.72 1.79±4.74 8.61±5.35 1.82±4.72 1.78±4.72 3.06±5.15

Our Method 0.98±0.09 2.98±0.41 2.59±0.47 2.38±0.43 2.70±0.65 1.43±0.49 2.82±0.70 1.53±0.28 1.21±0.19 2.07±0.91

The experiments were performed on an Nvidia Titan X GP102 GPU server with 12GB GPU
memory. For the network training, An Adam optimizer was used, with an initial learning rate of
0.01 and without weight decay. We reduced the learning rate on plateaus with patience 20 and
used the batch size of 4 to train the proposed network. It took 17.5 hours and 302 epochs to get
convergence. In the inference phase, the proposed model took 3.8 seconds on average to segment
9 surfaces for a 3D OCT volume consisting of 31 B-scans, each with 496×512 pixels.

3.2. Public JHU OCT MS dataset

The public JHU retinal OCT MS dataset [43] includes 35 human retina scans acquired on a
Heidelberg Spectralis SD-OCT system, of which 14 are healthy controls (HC) and 21 have a
diagnosis of multiple sclerosis (MS). Each patient has 49 B-scans with pixel size 496×1024,
and nine ground truth surfaces on each B-scan. The z-axial resolution in each A-scan is 3.87
µm/pixel. The original images were manually delineated with 21 control points on each surface,
and then a cubic interpolation was performed on each B-scan to obtain the ground truth by a
Matlab script [33,37]. Each B-scan was cropped to keep the center 128 rows to form a 128×1024
image.
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In this experiment, the proposed segmentation model was trained on the last 6 HC and last 9
MS subjects according to the order of their IDs and tested on the other 20 subjects, which is the
same experimental configuration as in He et al.’s [33,37]. A fixed σ = 8 in pixels was used to
generate a Gaussian probability map. The Gaussian and salt & pepper noise were used for data
augmentation. The MASD errors for the proposed and He et al.’s methods are shown in Table 3.
Our method improved the segmentation accuracy for 6 out of 9 surfaces as well as the average
segmentation error over all nine surfaces. Compared to He et al.’s method, the proposed method
also achieved improved standard deviations, which demonstrated the robustness of our method.
Sample segmentation results are illustrated in Fig. 4.
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Table 3. Mean Absolute Surface Distance error ± standard deviation (in µm) evaluated
on JHU OCT MS Data test set for the delineation of 9 surfaces, comparing AURA
toolkit [20], R-Net [44], ReLayNet [26], SP (shortest path) [33], FCRN [33] and our
proposed method. The first 5 experimental results are directly from Table 1 of He et
al.’s work [33]. Numbers in bold are the best in that row. Penetration resolution is
3.87`m/pixel.

Methods AURA R-Net ReLayNet SP FCRN OurMethod

ILM 2.37±0.36 2.38±0.36 3.17±0.61 2.70±0.39 2.41±0.40 2.32±0.27

RNFL-GCL 3.09±0.64 3.10±0.55 3.75±0.84 3.38±0.68 2.96±0.71 3.07±0.68

IPL-INL 3.43±0.53 2.89±0.42 3.42±0.45 3.11±0.34 2.87±0.46 2.86±0.33

INL-OPL 3.25±0.48 3.15±0.56 3.65±0.34 3.58±0.32 3.19±0.53 3.24±0.60

OPL-ONL 2.96±0.55 2.76±0.59 3.28±0.63 3.07±0.53 2.72±0.61 2.73±0.57

ELM 2.69±0.44 2.65±0.66 3.04±0.43 2.86±0.41 2.65±0.73 2.63±0.51

IS-OS 2.07±0.81 2.10±0.75 2.73±0.45 2.45±0.31 2.01±0.57 1.97±0.57

OS-RPE 3.77±0.94 3.81±1.17 4.22±1.48 4.10±1.42 3.55±1.02 3.35±0.83

BM 2.89±2.18 3.71±2.27 3.09±1.35 3.23±1.36 3.10±2.02 2.88±1.63

Overall 2.95±1.04 2.95±1.10 3.37±0.92 3.16±0.88 2.83±0.99 2.78±0.85

Ground Truth

Our Prediction

Fig. 4. Simultaneous segmentation of 9 intraretinal surfaces in an SD-OCT image of
JHU OCT dataset.
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IS-OS 2.07±0.81 2.10±0.75 2.73±0.45 2.45±0.31 2.01±0.57 1.97±0.57

OS-RPE 3.77±0.94 3.81±1.17 4.22±1.48 4.10±1.42 3.55±1.02 3.35±0.83

BM 2.89±2.18 3.71±2.27 3.09±1.35 3.23±1.36 3.10±2.02 2.88±1.63

Overall 2.95±1.04 2.95±1.10 3.37±0.92 3.16±0.88 2.83±0.99 2.78±0.85

3.3. Ablation experiments

To examine the contribution of each major component in the proposed segmentation network, an
ablation study was conducted to compare the performances of its major components, denoted as
follows – (1) using a surface smoothness loss Lsmooth; (2) using additional four image gradient
channels as input; (3) using weighted KLD loss Ldiv; (4) using the IPM module.

The ablation experiments were conducted on the JHU OCT MS data. Each ablation experiment
only removed one of those four components from the proposed network and assessed its
segmentation performance. All the ablation experiments used the same sets of training, validation,
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and test data. The more the MASD error increases, the more important the corresponding
component is.

The ablation experimental results are shown in Table 4, and the visualization samples are
illustrated in Fig. 5. This study observed that the use of weighted KLD Loss, as well as the
use of image gradients as additional input channels, leads to a big boost to the segmentation
performance of the proposed model. The use of the surface smoothness loss and the IPM module
also yield reasonable improvement on segmentation accuracy. From the visualization examples
in Fig. 5, the use of the smoothness loss especially helps to obtain smoother surfaces. Without the
IPM module, the network cannot guarantee the correct surface order, as demonstrated in Fig. 5.
Our method achieved higher accuracy in 7 out of 9 surfaces than the method without using the
IPM module (NoIPM). For the two surfaces RNFL-GCL and INL-OPL, NoIPM obtained slightly
higher accuracy. It is possible due to the matrix inverse computation in the IPM optimization as
this study used pseudo-inverse, which may yield inaccurate gradient optimization directions in
singular matrix cases.

         Ground Truth                           No Smoothness Loss                  With Smoothness Loss

         Ground Truth                            One Channel Input                     Five Channel Input

         Ground Truth                            KL Divergence Loss               Weighted Divergence Loss

         Ground Truth                                      No IPM                                       With IPM

Fig. 5. Sample segmentations on JHU OCT MS data for 4 ablation experiments. All
images are cropped from A-scan 400 to 600 in JHU OCT MS test set. They show that
smoothness loss, input gradient channels, and weighted divergence loss improved the
smoothness of surfaces, and IPM module guarantees the surface order.

Fig. 5. Sample segmentations on JHU OCT MS data for 4 ablation experiments. All images
are cropped from A-scan 400 to 600 in JHU OCT MS test set. They show that smoothness
loss, input gradient channels, and weighted divergence loss improved the smoothness of
surfaces, and IPM module guarantees the surface order.
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Table 4. Mean Absolute Surface Distance error ± StdDev (µm) of ablation experiments on JHU
OCT MS Data test set.

Methods NoSmoothnessLoss(1) OneChannelInput(2) KLDivLoss(3) NoIPM(4) OurMethod

ILM 2.44±0.38 2.42±0.36 2.50±0.48 2.36±0.38 2.32±0.27

RNFL-GCL 3.12±0.64 3.25±0.84 3.24±0.89 2.89±0.66 3.07±0.68

IPL-INL 3.00±0.46 3.03±0.43 3.02±0.43 2.86±0.44 2.86±0.33

INL-OPL 3.25±0.58 3.27±0.43 3.25±0.49 3.07±0.45 3.24±0.60

OPL-ONL 2.82±0.53 2.88±0.71 3.26±0.80 2.78±0.61 2.73±0.57

ELM 2.64±0.81 2.67±0.58 2.62±0.74 2.67±0.61 2.63±0.51

IS-OS 2.01±0.81 1.95±0.71 2.02±0.61 2.08±1.00 1.97±0.57

OS-RPE 3.40±0.71 3.45±0.83 3.64±0.82 3.62±0.98 3.35±0.83

BM 2.83±1.80 2.90±1.88 2.96±1.32 3.12±2.28 2.88±1.63

Overall 2.83±0.92 2.87±0.96 2.94±0.89 2.83±1.06 2.78±0.85

4. Discussion and conclusion

This study proposes a novel method of using deep neural networks for multiple interacting surface
segmentation from retina OCT. The proposed method seamlessly integrates the graph-based
surface segmentation model into a deep network for end-to-end learning to achieve globally
optimal surface segmentation. The graph-based surface segmentation model is parameterized,
which enables to make use of the powerful feature learning capability of DL to automatically
learn the model parameters. A constrained IPM convex optimization module, which can be
implemented by layers of neural networks with efficient backward propagation of gradients, is
then used to solve the inference optimization problem of graph-based surface segmentation.
Thus, the global optimality of multiple interacting surface segmentation can be achieved while
subject to the surface topology constraints. This is in contrast to He et al.’s FCRN method [33],
in which, though surface topology can be guaranteed, the surface updates by ReLU operations
for that purpose may compromise segmentation accuracy. In addition, The proposed method
with the integration of the graph-based surface segmentation model into the deep network is
more robust to the outlier images with bad quality or artifacts, as demonstrated by smaller error
standard deviations in the experiments. The newly introduced weighted KLD loss based on the
image gradients provides a certain attention mechanism for the network to focus on specific
feature learning for retina surfaces, further improving segmentation accuracy.

There are also limitations to the proposed work. The proposed segmentation method was
implemented in our experiments for segmenting each 2D B-scan individually, which does not
make use of the contextual information between B-scans. This may cause the breaking of the
surface smoothness constraints across B-scans, though the order of those segmented surfaces is
still maintained. This problem can be solved by extending our network using 3D convolutional
filters or leveraging adjacent B-scan information within the network. The current constraint
Az⃗ ≤ 0⃗ in the proposed model is merely a surface ordering constraint. In practice, the thickness
range of each retinal layer may be well known. These thickness priors can be effectively
incorporated into our proposed model by introducing additional constraints. For example, for
each column q(x, y), we can enforce δij(q) ≤ Si(q) − Sj(q) ≤ ∆ij(q), where δij(q) and ∆ij(q) are
two specified minimum and maximum distances between surfaces Si and Sj, respectively, with
Si on top of Sj, and S(q) denotes the surface location of S on column q(x, y). In this way, the
parameters δij(q) and ∆ij(q) specify the thickness range of the layer bounded by the surfaces Si
and Sj. The IPM optimization is ready to handle those layer thickness constraints. We can also
go a step further to develop a deep CNN network to learn those thickness parameters from data.



Research Article Vol. 30, No. 2 / 17 Jan 2022 / Optics Express 2463

In summary, a novel DL framework for segmenting multiple interacting surfaces in retina OCT
is proposed with end-to-end training. The globally optimal solutions are achieved by seamlessly
integrating two DL components: one for surface cost parameterization with a Gaussian model
and the other for solving the inference optimization of the graph-based surface segmentation
model while explicitly enforcing the surface mutual interaction constraints. The method has the
potential to be adapted for other structured terrain-like surface segmentation problems in medical
imaging.

Appendix. IPM optimization

In this appendix, we describe the derivations of the forward and backward propagations of the
IPM optimization. The forward propagation algorithm used the standard IPM (interior-point
method) algorithm [45], and the backward propagation algorithm used the full differential idea
of OptNet [34].

Because the optimization model in Eq. (1) only considers the surface interaction along each
A-scan, in experiments, we implemented the model parallel for all columns in batched 2D images.
Multi-surfaces in a 2-D image can be viewed as a series of smooth curves. A feasible surface
intersects with each image column (along z-axis) exactly once. We implemented the math
optimization model for each column q(x, y) along z-axis, and parallelized these models on GPU
for all the columns q(x, y) in batched 2D input images.

Notations: We use bold characters to represent matrices, and use hat arrows to represent
vectors. We use Diag[a0, a1, a2, . . . , aN−1] to represent a diagonal matrix of size N × N with a0,
a1, a2,. . . , and aN−1 as its diagonal elements. We use vector z⃗ = [z0, z1, . . . , zN−1]T to denote N
surfaces along a column q(x, y), and use similar conventions for vectors µ⃗ and σ⃗.

Before we proceed, we use Az⃗ ≤ 0⃗ to compactly represent the constraints zi+1(q) − zi(q) ≤ 0
expressing all 2-adjacent-surface relations in the context of z-axis pointing downward, where the
matrix A ∈ R(N−1)×N is given as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · 0
. . . . . .

0 · · · 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

The implemented column model makes sure the locations of the final surfaces z⃗ satisfy surface
order constraints, while trying to achieve minimal deviations of z⃗ from initial prediction µ⃗ under
confidence index σ⃗. Therefore, a constrained optimization column model in matrix form can be
formulated as follows:

z⃗∗ = argmin
z⃗

1
2
(z⃗ − µ⃗)TQ(z⃗ − µ⃗), (6a)

s.t. Az⃗ ≤ 0⃗, (6b)

where z⃗ = [z0, z1, . . . , zN−1]T , µ⃗ = [µ0, µ1, . . . , µN−1]T , Q = Diag[ 1
σ2

0
, 1
σ2

1
, . . . , 1

σ2
N−1
], and z⃗∗

expresses the final optimized solution in each image column.

A.1. IPM forward optimization

In order to solve the above constrained convex optimization problem Eq. (6a) with the constraint
Az⃗ ≤ 0⃗, we first convert it to its Lagrangian form:

L(z⃗, λ⃗) = 1
2
(z⃗ − µ⃗)TQ(z⃗ − µ⃗) + λ⃗TAz⃗, (7)
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where λ⃗ ∈ RN−1.
Because the primal problem in Eq. (6a) is convex, the KKT conditions are sufficient for the

points to be primal and dual optimal [45]. Its corresponding perturbed KKT conditions are given
as follows:

Stationarity: Q(z⃗∗ − µ⃗) + AT λ⃗∗ = 0⃗ (8)

Perturbed complementary slackness condition: − Diag(λ⃗∗)Az⃗∗ =
1⃗
t

(9)

Primal feasibility: Az⃗∗ ≤ 0⃗ (10)

Dual feasibility: λ⃗∗ ≥ 0⃗, (11)

where t is a perturbed slackness scalar and t>0, and 1⃗ ∈ RN−1 in Eq. (9). Bigger t means smaller
dual gap between original model Eq. (6) and the Lagrangian formula (7) L(z⃗, λ⃗) [45]; and vectors
z⃗∗ and λ⃗∗ indicate the optimal solution for the Lagrangian L(z⃗, λ⃗). Equations (8) and (9) give
very important relations between z⃗∗ and Q, and between z⃗∗ and µ⃗, which can be utilized in the
backward propagation of the big deep learning optimization when z⃗∗ and λ⃗∗ are the final optimal
solutions.

A residual equation of Eq. (8) and (9) is further constructed as follows:

r⃗t(z⃗, λ⃗) =
⎡⎢⎢⎢⎢⎣
Q(z⃗ − µ⃗) + AT λ⃗

−Diag(λ⃗)Az⃗ − 1⃗
t

⎤⎥⎥⎥⎥⎦ (12)

where r⃗t(z⃗, λ⃗) ∈ R2N−1. When r⃗t(z⃗, λ⃗) = 0⃗, z⃗ and λ⃗ get their optimal solutions z⃗ = z⃗∗, λ⃗ = λ⃗∗.
Using the Newton iteration method to find the root of r⃗t(z⃗, λ⃗) = 0⃗, we can get the iterative

optimization formula in the small IPM forward optimization as follows:⎡⎢⎢⎢⎢⎣
z⃗

λ⃗

⎤⎥⎥⎥⎥⎦ ←
⎡⎢⎢⎢⎢⎣
z⃗

λ⃗

⎤⎥⎥⎥⎥⎦ − α
⎡⎢⎢⎢⎢⎣

Q AT

−Diag(λ⃗)A −Diag(Az⃗)

⎤⎥⎥⎥⎥⎦
−1

r⃗t(z⃗, λ⃗), (13)

where α>0 is an iterative step length. And let

J =
⎡⎢⎢⎢⎢⎣

Q AT

−Diag(λ⃗)A −Diag(Az⃗)

⎤⎥⎥⎥⎥⎦ , (14)

where J ∈ R(2N−1)×(2N−1) is the Jacobian matrix of r⃗t(z⃗, λ⃗) with respect to [z⃗, λ⃗]. After the IPM
forward iteration ends, J−1 will be saved for reuse in backward propagation of big deep learning
optimization, which saves expensive inverse computation of matrix of a size of R(2N−1)×(2N−1).

Therefore, the IPM iterative formula (13) can be further expressed as:⎡⎢⎢⎢⎢⎣
z⃗

λ⃗

⎤⎥⎥⎥⎥⎦ ←
⎡⎢⎢⎢⎢⎣
z⃗

λ⃗

⎤⎥⎥⎥⎥⎦ − αJ−1r⃗t(z⃗, λ⃗) =
⎡⎢⎢⎢⎢⎣
z⃗

λ⃗

⎤⎥⎥⎥⎥⎦ + α
⎡⎢⎢⎢⎢⎣
△z⃗

△λ⃗

⎤⎥⎥⎥⎥⎦ , (15)

where △z⃗ and △z⃗ represent the improving directions of z⃗ and λ⃗, and
⎡⎢⎢⎢⎢⎣
△z⃗

△λ⃗

⎤⎥⎥⎥⎥⎦ = −J−1r⃗t(z⃗, λ⃗).

Newton’s iterative method guarantees a stationary solution, but it does not guarantee the
feasibility of the solution [45]. Another core idea of IPM in finding an optimal solution is to
start from an interior feasible point, use the Newton method to find iterative improving direction,
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and then uses linear search to find a proper step to make sure a new iterative point is still in
the feasible domain and at the same time reduces the norm of residual r⃗t(z⃗, λ⃗). Therefore, in
each step of the linear search process, the IPM forward algorithm needs to make sure Eqs. (10)
and (11) hold. The detailed algorithm of the forward IPM iteration is illustrated in Algorithm

1.

Algorithm 1: IPM Forward Propagation

Input : µ⃗, λ⃗>0⃗, Q, A, 1>β1>0, 1>β2>0, β3>1, ϵ>0
Output : z⃗∗, J−1

z⃗ = LIS(µ⃗);
N = length(z⃗);
while True do

z⃗0 = z⃗;
λ⃗0 = λ⃗;
t = − β3(N−1)

(Az⃗)T λ⃗ ;

r⃗0t(z⃗, λ⃗) =
[︃

Q(z⃗−µ⃗)+AT λ⃗

−Diag(λ⃗)Az⃗− 1⃗
t

]︃
;

J =
[︂

Q AT

−Diag(λ⃗)A −Diag(Az⃗)

]︂
;[︂

△z⃗
△λ⃗

]︂
= −J−1r⃗0t;

α = min(1, min(−λi/△λi |△λi < 0));
z⃗ = z⃗0 + α△z⃗;
while Az⃗>0⃗ do
α = αβ1;
z⃗ = z⃗0 + α△z⃗;

end
while ∥r⃗t(z⃗, λ⃗)∥>(1 − β2α)∥r⃗0t∥ do
α = αβ1;
z⃗ = z⃗0 + α△z⃗;
λ⃗ = λ⃗0 + α△λ⃗;

end
if ∥r⃗t∥<ϵ , then break;

end
return z⃗ and J−1

As the Newton iterative method requires an initial point near its final goal root, in Algorithm
1 a parallel LIS (Largest Increasing Sub-sequence algorithm) is used to find most matching
initial surface locations from the initial prediction µ⃗, and then fills the non-largest increasing
sub-sequence points with its neighbor value to make the initial z⃗ feasible. As the dual gap
between original cost function and Lagrangian is less than N−1

t , and t = −(Az⃗)T λ⃗ deduced
from the perturbed complementary slackness Eq. (9), this algorithm gradually enlarges t by
using t = − β3(N−1)

(Az⃗)T λ⃗ , β3>1 to reduce dual gap, in order to get more accurate optimal solution

to original cost function. In order to avoid λ⃗ = λ⃗ + α△λ⃗<0 when △λi<0, we choose α =
min(1, min(−λi/△λi |△λi<0)) to make sure 1⃗ ≥ λ⃗ ≥ 0⃗.
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A.2. IPM backward propagation

When the IPM forward optimization converges, we have r⃗t(z⃗∗, λ⃗∗) = 0⃗. Its matrix form is given
as follows:

r⃗t(z⃗∗, λ⃗∗) =
⎡⎢⎢⎢⎢⎣
Q(z⃗∗ − µ⃗) + AT λ⃗∗

−Diag(λ⃗∗)Az⃗∗ − 1⃗
t

⎤⎥⎥⎥⎥⎦ = 0⃗. (16)

Using total differential on the above equation with respect to variables Q, z⃗∗, λ⃗∗, and µ⃗ gives:⎡⎢⎢⎢⎢⎣
Q AT

−Diag(λ⃗∗)A −Diag(Az⃗∗)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
dz⃗∗

dλ⃗∗

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
−dQ(z⃗∗ − µ⃗) + Qd µ⃗

0⃗

⎤⎥⎥⎥⎥⎦ . (17)

Using formula (14) to replace the left-most matrix above with J, we have

J
⎡⎢⎢⎢⎢⎣
dz⃗∗

dλ⃗∗

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
−dQ(z⃗∗ − µ⃗) + Qd µ⃗

0⃗

⎤⎥⎥⎥⎥⎦ . (18)

In the backward propagation of the big deep learning optimization, the backward input to the
IPM optimization module is dL

dz⃗∗ ∈ RN , where L represents the loss in the deep learning network.
Let us define two vectors d⃗z ∈ RN and d⃗λ ∈ RN−1 as follows (Note: d⃗z ≠ dz⃗∗, and d⃗λ ≠ dλ⃗∗ ):⎡⎢⎢⎢⎢⎣

d⃗z

d⃗λ

⎤⎥⎥⎥⎥⎦ = −J−T
⎡⎢⎢⎢⎢⎣

dL
dz⃗∗

0⃗

⎤⎥⎥⎥⎥⎦ . (19)

Transposing the above equation gives[︂
( dL

dz⃗∗ )T , 0⃗T
]︂

J−1 = −
[︂
d⃗z

T
, d⃗λ

T
]︂

. (20)

This Eq. (20) will be used in the following backward gradient computation to cancel J and
introduce dL

dz⃗∗ at the same time. Now we are ready to compute dL
dµ⃗ and dL

dQ .
Compute dL

dµ⃗ : On the right side of full differential Eq. (18), we set dQ = 0, try to derive a
Jacobian matrix dz⃗∗

dµ⃗ , and then apply chain rule to compute dL
dµ⃗ . The detailed derivations are given

as follows, where superscripts like M × N etc. represent dimensions of matrices, subscripts like i
express the index of a component, I is the identity matrix, and M = N − 1.

Because dQ = 0, we have

J
⎡⎢⎢⎢⎢⎣
dz⃗∗

dλ⃗∗

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
Qd µ⃗

0⃗M×1

⎤⎥⎥⎥⎥⎦ , (21)

which leads to

J
⎡⎢⎢⎢⎢⎣

dz⃗∗
dµ⃗
dλ⃗∗
dµ⃗

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
QN×N

0M×N

⎤⎥⎥⎥⎥⎦ . (22)

Multiplying both sides of the equation above with Eq. (20), we get

[︂
( dL

dz⃗∗ )T , 0⃗T
]︂

J−1J
⎡⎢⎢⎢⎢⎣

dz⃗∗
dµ⃗
dλ⃗∗
dµ⃗

⎤⎥⎥⎥⎥⎦ = −
[︂
d⃗z

T
, d⃗λ

T
]︂ ⎡⎢⎢⎢⎢⎣

QN×N

0M×N

⎤⎥⎥⎥⎥⎦ . (23)
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After matrix multiplications, we have

( dL
dz⃗∗
)T dz⃗∗

d µ⃗
= −d⃗z

T
Q, (24)

which is equivalent to

( dL
d µ⃗
)T = −d⃗z

T
Q. (25)

Namely,
dL
d µ⃗
= −QT d⃗z. (26)

Compute dL
dQ : On the right side of full differential Eq. (18), we set d µ⃗ = 0⃗, try to derive

dz⃗∗
dQ , and then apply chain rule to compute dL

dQ . We first decompose Q ∈ RN×N into N rows that
Q = [q⃗0, q⃗1, q⃗2, . . . , q⃗N−1]T , where each row is a row vector q⃗T

i ∈ R1×N , i = 0, 1, 2, . . . , N − 1.
The detailed derivations are given as follows.

Because d µ⃗ = 0⃗, we have

J
⎡⎢⎢⎢⎢⎣
dz⃗∗

dλ⃗∗

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
−dQ(z⃗∗ − µ⃗)

0⃗M×1

⎤⎥⎥⎥⎥⎦ . (27)

Replacing dQ with its decomposing form above gives

J
⎡⎢⎢⎢⎢⎣
dz⃗∗

dλ⃗∗

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dq⃗T
0

dq⃗T
1

dq⃗T
2

...

dq⃗T
N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(z⃗∗ − µ⃗)

0⃗M×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

In order to get partial differential with respect to q⃗i ∈ RN , we let dq⃗j = 0⃗ where j ≠ i, getting

J
⎡⎢⎢⎢⎢⎣
dz⃗∗

dλ⃗∗

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0⃗T

0⃗T

...

dq⃗T
i

...

0⃗T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

(z⃗∗ − µ⃗)

0⃗M×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)
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Computing the multiplication of the vector (z⃗∗ − µ⃗) gives

J
⎡⎢⎢⎢⎢⎣
dz⃗∗

dλ⃗∗

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

−(z⃗∗ − µ⃗)Tdq⃗i
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×1

0⃗M×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

Moving the dq⃗i to the left side of the equation above gives

J
⎡⎢⎢⎢⎢⎣

dz⃗∗
dq⃗i

dλ⃗∗
dq⃗i

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0⃗T

0⃗T

...

−(z⃗∗ − µ⃗)T
...

0⃗T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

0M×N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

Multiplying both sides of the equation above with Eq. (20), we get

[︂
( dL

dz⃗∗ )T , 0⃗T
]︂

J−1J
⎡⎢⎢⎢⎢⎣

dz⃗∗
dq⃗i

dλ⃗∗
dq⃗i

⎤⎥⎥⎥⎥⎦ = −
[︂
d⃗z

T
, d⃗λ

T
]︂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0⃗T

0⃗T

...

−(z⃗∗ − µ⃗)T
...

0⃗T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

0M×N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

After matrix multiplications in both sides of the above equation, we have

( dL
dz⃗∗
)T dz⃗∗

dq⃗i
= (d⃗z)i(z⃗∗ − µ⃗)T . (33)

With chain rule of backward propagation, we have
dL
dq⃗T

i
= (d⃗z)i(z⃗∗ − µ⃗)T . (34)
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Now, combining all row vectors dL
dq⃗T

i
∈ R1×N of dQ gives

dL
dQ = Diag(d⃗z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(z⃗∗ − µ⃗)T

(z⃗∗ − µ⃗)T
...

(z⃗∗ − µ⃗)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

. (35)

Equations (26) and (35) are the desired backward propagation loss gradient with respect
to Q and µ⃗ in the big deep learning optimization. Therefore, the backward propagation al-
gorithm for the IPM module in the big deep learning optimization is illustrated in Algorithm

2.

Algorithm 2: IPM Backward Propagation Algorithm
Input : dL

dz⃗∗ , J−1, z⃗∗, Q, µ⃗
Output : dL

dQ , dL
dµ⃗[︂

d⃗z

d⃗λ

]︂
= −J−T

[︂ dL
dz⃗∗
0⃗

]︂
;

dL
dQ = Diag(d⃗z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(z⃗∗ − µ⃗)T

(z⃗∗ − µ⃗)T
...

(z⃗∗ − µ⃗)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

;

dL
dµ⃗ = −QT d⃗z

This study used PyTorch [46] 1.8 in implementing this IPM forward and backward propagation
algorithm exploiting batch-parallel GPU computations on Ubuntu Linux. In our experiments,
seven IPM iterations can achieve enough accuracy such that the L2 norm of residual ∥r⃗∥2 ≤ 0.01,
with β1 = 0.5, β2 = 0.055, β3 = 10.0 and ϵ = 0.01 for Algorithm 1. This study used
pseudo-inverse to replace normal inverse in computing J−1 when J is a singular matrix.
Funding. National Science Foundation (CCF-1733742, ECCS-2000425).
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