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A B S T R A C T

Knee cartilage and bone segmentation is critical for physicians to analyze and diagnose articular damage
and knee osteoarthritis (OA). Deep learning (DL) methods for medical image segmentation have largely
outperformed traditional methods, but they often need large amounts of annotated data for model training,
which is very costly and time-consuming for medical experts, especially on 3D images. In this paper, we
report a new knee cartilage and bone segmentation framework, KCB-Net, for 3D MR images based on sparse
annotation. KCB-Net selects a small subset of slices from 3D images for annotation, and seeks to bridge the
performance gap between sparse annotation and full annotation. Specifically, it first identifies a subset of the
most effective and representative slices with an unsupervised scheme; it then trains an ensemble model using
the annotated slices; next, it self-trains the model using 3D images containing pseudo-labels generated by the
ensemble method and improved by a bi-directional hierarchical earth mover’s distance (bi-HEMD) algorithm;
finally, it fine-tunes the segmentation results using the primal–dual Internal Point Method (IPM). Experiments
on four 3D MR knee joint datasets (the SKI10 dataset, OAI ZIB dataset, Iowa dataset, and iMorphics dataset)
show that our new framework outperforms state-of-the-art methods on full annotation, and yields high quality
results for small annotation ratios even as low as 10%.
1. Introduction

Osteoarthritis (OA) is a prevalent chronic disease caused by the
damage and degeneration of cartilages. It is estimated that 20% of
Americans may suffer from various levels of OA by 2030. Magnetic
resonance imaging (MRI) has become a common technique for studying
and assessing changes within the knee joint, including cartilages and
bones. Fig. 1 illustrates the anatomical structure of the knee joint.

Considering the knee joint anatomy, the femoral cartilage (FC),
tibial cartilage (TC), patellar cartilage (PC), and menisci (M) are the
main tissues affecting the knee joint health. To quantitatively measure
the thickness of the knee cartilages and identify the bone–cartilage
interface, accurate cartilage and bone segmentation is needed.

To capture the detailed structure of the knee anatomy, 3D MR
images are commonly scanned at high in-plane resolution. However,
labeling 3D MR images is very time-consuming.

In this paper, we propose a new framework, KCB-Net, for segment-
ing knee cartilages and bones in 3D MR images with sparse annotation.

∗ Corresponding author.
E-mail address: dchen@nd.edu (D.Z. Chen).

We first encode each 2D slice in an unlabeled training set of 3D images
into a feature vector in an unsupervised manner. Second, a subset of
the most representative slices (based on a given annotation ratio) for
the training set is selected for experts to label. Third, we train three 2D
modules using the selected labeled slices. Fourth, preliminary pseudo-
labels of the training set are generated by the trained 2D modules,
which are further used to train a 3D module. Fifth, we ensemble the
three 2D modules and one 3D module, and generate pseud-labels of
the entire training set, which are used to re-train the four modules
and the 3D ensemble model for a few iterations. The feature maps
generated by the ensemble model are post-processed to produce the
final segmentation results.

We conduct experiments on four 3D MR knee joint datasets (the
SKI10 dataset, OAI ZIB dataset, Iowa dataset, and iMorphics dataset;
see Section 4). Our experiments show that with full annotation, our
new KCB-Net framework outperforms state-of-the-art full annotation
methods, and with sparse annotations, KCB-Net yields high quality
results even with very sparse annotation ratios (e.g., 10%).
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Fig. 1. Knee joint. (a) Anatomy of the knee joint (adopted from Paley Orthopedic
Spine Institute (2018)). (b)–(d) Sagittal, coronal, and transverse MR image planes,

showing the femur bone (FB), femoral cartilage (FC), tibia bone (TB), tibial cartilage
(TC), patella bone (PB), patellar cartilage (PC), and meniscus (M).

2. Related work

Automated and semi-automated methods for knee joint segmenta-
tion have been investigated for several decades. Shape models, graph
optimization approaches, and deep learning (DL) methods exhibited
high performance in recent years. 3D graph based methods are well
suited for knee cartilage segmentation. Yin et al. (2010) proposed a
layered optimal graph image segmentation for multiple objects and
surfaces (LOGISMOS) framework to simultaneously segment multiple
interacting surfaces of objects by incorporating multiple spatial inter-
relationships of surfaces in a D-dimensional graph. Kashyap et al.
(2017) extended the LOGISMOS framework to simultaneously segment
D knee objects for multiple follow-up visits of the same patient —
ffectively performing optimal 4D (3D + time) segmentation. Xie et al.
2022) proposed a primal–dual Internal Point Method (IPM) to first
earn the parameters of the surface cost functions for the LOGIS-
OS algorithm and then solve an optimization problem for the final
egmentation.
Several deep convolutional neural network (CNN) approaches

howed close-to-human level performance. Liu et al. (2018) proposed
fully automatic musculoskeletal tissue segmentation method that

ntegrates CNN and 3D simplex deformable approaches to improve the
ccuracy and efficiency. Ambellan et al. (2019) combined the strengths
of statistical shape models and CNN to successfully segment knee
bones/cartilages. Tan et al. (2019) proposed a method to first extract
the regions of interest (ROIs) for three cartilage areas and then fuse
the three ROIs to generate fine-grained segmentation results. Couteaux
et al. (2019) presented an approach to localize and segment knee
enisci and classify MRI slices based on tears in anterior and posterior
enisci and their orientations using Mask R-CNN (He et al., 2017).
Zheng et al. (2019) proposed a 3D segmentation method that en-

sembles three 2D models and one 3D model (called base-learners).
It first trains the base-learners using labeled data, and ensembles the
base-learners by training a meta-learner (Yu et al., 2017). It then re-
trains the base-learners and meta-learner with pseudo-labels to obtain
a 3D segmentation model. However, such base-learners still rely on
fully annotated 3D data. Zheng et al. (2020b) further proposed a sparse
annotation strategy to select the most representative 2D slices for
2

annotation. It first encodes each slice into a low-dimensional vector,
and prioritizes the slices based on their representativeness in a set of 3D
images. Next, three 2D modules and one 3D module (a 3D FCN Çiçek
et al., 2016) are trained, and pseudo-labels of the unlabeled data are
generated using the base-learners. A Y-shape DenseVoxNet (Yu et al.,
2017) is used to train a meta-learner, which ensembles the 2D and 3D
modules. Zheng et al. (2020a) then extended this sparse annotation
strategy, and designed a K-head FCN to compute the pseudo-label
uncertainty of each slice and rule out highly uncertain pixels in the
subsequent training process.

3. Method

3.1. Overview

Our KCB-Net combines and extends previously reported ensemble
learning (Zheng et al., 2019) and sparse annotation (Zheng et al.,
2020b) methods for 3D segmentation. Fig. 2 shows its main steps.

(1) Representative slice selection: As in Zheng et al. (2020b), each 2D
slice in every major orientation red(i.e., axial, coronal, or sagittal) in the
entire set 𝑊 of 3D training images is encoded as a low-dimensional
latent vector, and all slices are prioritized by their representativeness.
The top-ranked 𝑘 slices are selected as the ones, in which to perform
expert annotations.

(2) Base-learner training and pseudo-label generation: As in Zheng
et al. (2019), three 2D modules, one for each axial, sagittal, or coronal
orientations, are trained on the selected and annotated slices. Once
2D modules are trained, pseudo-labels are assigned to all remaining
un-annotated slices in 𝑊 and a 3D module is trained. 𝐾-UNet mecha-
nism (Chen et al., 2016) is newly used to extract multi-scale features.
Each module extracts information across different scales to support
fine-scale feature extraction. Instead of using sparse 3D FCN (Çiçek
et al., 2016) as in Zheng et al. (2020b), we utilize 3D Attention
UNet (Oktay et al., 2018), which uses labels of the expert-annotated
slices and pseudo-labels of all the un-annotated slices.

As in Guo et al. (2021), an edge-aware branch is added to the 3D
module to increase the weights of cartilage and bone surface locations.
To explore the appearance consistency among consecutive slices and
further improve the quality of the pseudo-labels generated, the H-EMD
method (Liang et al., 2022) is newly enhanced by incorporating a
bi-directional hierarchical earth mover’s distance (bi-HEMD) when gen-
erating pseudo-labels of the un-annotated slices. Our bi-HEMD method
first produces object candidates by applying multiple threshold values
on the probability maps, and then selects object instances by minimiz-
ing the earth mover’s distance based on a reference set of the object
instances.

(3) Ensembling and self-training : Following the pseudo-label gener-
ation, 2D and 3D modules are ensembled by training a 3D Y-shape
DenseVoxNet (Zheng et al., 2019) as a meta-learner using the original
input images and pseudo-labels, which learns the target object seg-
mentation from the labels/pseudo-labels. The output of the ensemble
model is utilized to iteratively re-train the modules in Step (2) and the
ensemble model in Step (3), repeated until convergence.

(4) Post-processing : We newly add a post-processing step exploiting
the task-specific characteristics that knee bones and cartilages are
anatomically adjacent with one other. A fine-tuning network (Xie et al.,
2022) that incorporates the surface interrelationships between adjacent
bones and cartilages is trained by taking the probability maps generated
in Step (3) as input and the pseudo-labels as the learning targets. The
fine-tuning network is optimized using the IPM algorithm (Xie et al.,
2022).



Medical Image Analysis 82 (2022) 102574Y. Peng et al.

𝑥

w
p
o
p
e

w
e
5
i
w
a

3

o

Fig. 2. The pipeline of our proposed KCB-Net framework.
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3.2. Representative slice selection

Identifying a small-enough set of the most representative 2D slices
for annotation that subsequently facilitates the segmentation method
training is critical for the success of our proposed approach. This section
presents our slice selection scheme, called representative annotation
(RA).

Medical experts often annotate a 3D image by choosing one orthog-
onal plane (axial, coronal, or sagittal) and labeling the corresponding
slices one by one. It may, however, be beneficial to annotate 2D slices
along each of the three orthogonal planes. Fig. 3 illustrates the slice
selection method.

3.2.1. Slice representation
For a specified annotation ratio (e.g., 10% of all slices), to select the

most representative slices to label, we first need to efficiently represent
the slices. Medical image slices can commonly be represented as latent
feature vectors of a much smaller size compared to the original 2D
image matrix. By comparing slices using their latent vectors, not only
can we reduce the computation cost but also extract their most useful
information.

We utilize an auto-encoder as the representation extractor for the
slices in our 3D training image set 𝑊 , which learns efficient fea-
tures in an unsupervised manner and conducts a lossy compression
in the encoding process. It learns to store relevant information and
disregard noise. This auto-encoder consists of two parts: An encoder
produces a compressed knowledge representation 𝑥 for an input image
(or slice) 𝐼 ; a decoder takes the representation 𝑥 as input and outputs
̂ as a reconstruction of the original image. The entire auto-encoder
model is optimized by minimizing the sum of the reconstruction error
(𝑥, 𝑥̂), which measures the differences between the original image and
the reconstruction produced, and a regularization term for alleviating
overfitting. This can be formulated as:

𝜙∗, 𝜓∗ = argmin
𝜙,𝜓

((𝑥, 𝑥̂) + 𝜆1 ×
𝑀
∑

𝑖=1
𝑤2
𝑖 ), (1)

here  is the reconstruction loss between 𝑥 and 𝑥̂, 𝜆1 is a scaling
arameter for the regularization term ∑𝑀

𝑖=1𝑤
2
𝑖 to adjust the trade-

ff between the sensitivity to the input and overfitting, 𝑤𝑖 is the 𝑖th
arameter of the auto-encoder, and 𝜙 and 𝜓 are the parameters of the
ncoder and decoder, respectively.
To facilitate a fast training and convergence of the auto-encoder,

e use a ResNet-101 (He et al., 2016) pre-trained on ImageNet (Deng
t al., 2009) as the encoder backbone. A light-weight decoder (ResNet-
0 He et al., 2016) is added to map the latent vectors to the original
nput space. Since slices along each orthogonal plane will be selected,
e train the auto-encoder using all the slices of the 3D training set 𝑊
long the three orthogonal planes.

.2.2. Prioritizing the slices
After training the auto-encoder, we measure the representativeness

f each slice in the 3D training image set 𝑊 as in Zheng et al. (2020b).
First, we feed a 2D slice 𝐼 to the encoder, and take the generated latent
vector 𝑓 as the representation of the slice 𝐼 . Second, we define and
compute the similarity between two slices 𝐼𝑖 and 𝐼𝑗 as 𝑆𝑖𝑚(𝐼𝑖, 𝐼𝑗 ) =
𝑐𝑜𝑠𝑖𝑛𝑒(𝑓𝑖, 𝑓𝑗 ), where 𝑓𝑖 and 𝑓𝑗 are the latent vectors of 𝐼𝑖 and 𝐼𝑗
respectively, and 𝑐𝑜𝑠𝑖𝑛𝑒 denotes cosine similarity.
3

Fig. 3. Illustrating the representative slice selection method. 𝐿𝑚𝑠𝑒 denotes the mean
square error.

Next, a subset 𝑆 of slices is selected from all the slices 𝑆(𝑊 )
f the set 𝑊 (for an annotation ratio or a given size of 𝑆). The
representativeness of 𝑆 with respect to 𝑊 is defined as:

𝐹 (𝑆,𝑊 ) =
∑

𝐼∈𝑆(𝑊 )
max
𝐼𝑠∈𝑆

(𝑆𝑖𝑚(𝐼𝑠, 𝐼)). (2)

Finding an optimal slice subset 𝑆 was formulated as a maximum
cover problem in Zheng et al. (2020b), which is NP-hard, and a
polynomial time approximation solution was obtained using a greedy
method. Suppose a subset 𝑆′ is the most representative for the images
in 𝑊 . The next choice (if needed) is a slice 𝐼∗ in the remaining slice
set 𝑆(𝑊 ) − 𝑆′ that maximally increases the representativeness of the
new subset 𝑆′ ∪ {𝐼∗}, i.e.,

𝐼∗ = arg max
𝐼∈(𝑆(𝑊 )−𝑆′)

(𝐹 (𝑆′ ∪ {𝐼},𝑊 ) − 𝐹 (𝑆′,𝑊 )). (3)

This selection process puts all the slices in 𝑊 in decreasing order
based on their representativeness. The slices with better representative-
ness have higher priorities for annotation.

3.3. Base-learner training and pseudo-label generation

After the representative slice selection, the selected slices are la-
beled by experts, which we denote as 𝑆𝐿 = {𝑆𝑙1 , 𝑆𝑙2 ,… , 𝑆𝑙𝑁 }, where
𝑙𝑁 is the number of slices selected.

Our 2D module follows the structure of 𝐾CBAC-Net (Gu et al.,
2021), since it outperforms other state-of-the-art 2D segmentation net-
works (e.g., UNet++ Zhou et al., 2018, TransUNet Chen et al., 2021,
tc.) on our datasets in the experiments. This 2D module is a sequence
f 𝐾 complete bipartite networks with asymmetric convolutions, which
xploits multi-scale features and enhances the capability of standard
onvolution on extracting discriminative features. A bipartite network
tructure (Chen et al., 2017), 𝐾-UNet scheme (Chen et al., 2016),
symmetric convolutions (Ding et al., 2019), and deep supervision (Lee
t al., 2015) are integrated into this module.
A 2D segmentation model can have a relatively large receptive

ield, but it does not utilize the interactions between consecutive slices
ell, which may result in spatial slice-to-slice inconsistency. Hence,
e follow the ensemble method in Zheng et al. (2019) and train a 3D
odule, which produces smoother 3D results.
We choose 3D Attention UNet (Oktay et al., 2018) as the backbone

or our 3D module, since it outperforms other well-known 3D segmen-
ation networks (e.g., 3D U-Net Çiçek et al., 2016, DenseVoxNet Yu
t al., 2017, TransUNet 3D Chen et al., 2021, UNet++ 3D Zhou et al.,
018, etc.) on our datasets in the experiments.
Similar to our 2D modules, we apply the 𝐾-UNet design (Chen et al.,

016) and build a 3D 𝐾-AttentionUNet as our 3D module to exploit
D multi-scale features. In our 3D module of 3D 𝐾-AttentionUNet, the
oarse features extracted by one AttentionUNet submodule are fed to
he next AttentionUNet submodule to obtain fine-grained features.
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For knee joint segmentation, the bone and cartilage boundaries
are often more important than other areas, since they usually serve
as the main criteria to measure whether and/or how much a carti-
lage is damaged. Hence, we add an edge-aware regulation to our 3D
𝐾-AttentionUNet to force the network to focus more on the object
boundary areas. Fig. 4 shows the structure of our edge-aware 3D
-AttentionUNet. The edge gate 𝐹𝐿𝜌𝐺 is defined as:

𝐹𝐿𝜌𝐺(𝐼) = 𝑘𝐺 ∗ 𝜌(𝑘𝐿 ∗ 𝐼), (4)

where 𝑘𝐺 and 𝑘𝐿 represent the Gaussian smoothing kernel and Lapla-
cian kernel respectively, ∗ denotes convolution, and 𝜌 is an activation
function.

The loss function of our 3D module is defined as:

 = 𝐿𝑟𝑒𝑔𝑖𝑜𝑛 + 𝜆2𝐿𝑒𝑑𝑔𝑒, (5)

where 𝐿𝑟𝑒𝑔𝑖𝑜𝑛 and 𝐿𝑒𝑑𝑔𝑒 are the cross entropy losses of the region
branch and edge branch respectively, and 𝜆2 is a scaling parameter to
regularize the edge branch.

We first train our three 2D segmentation modules using the selected
labeled slices for each of the three orthogonal planes, and generate
the probability maps of the unlabeled slices using the three trained
2D modules. We then train our 3D edge-aware 𝐾-AttentionUNet using
the 3D images in 𝑊 that contain both the labeled slices and unlabeled
slices that are now ‘‘labeled’’. Specifically, the pseudo-labels produced
by the three 2D modules are first improved by the bi-HEMD algorithm
in Section 3.4. Then, the probability maps attained by the three 2D
modules are averaged to generate the pseudo-labels used for training
our 3D module. These four trained segmentation modules generate
their pseudo-labels respectively for all the unlabeled slices. For sim-
plicity, we average the results of these four modules as the probability
map for each 3D image in 𝑊 .

.4. Bi-directional hierarchical earth mover’s distance

After training our three 2D modules, probability maps of all the
nlabeled slices in 𝑊 are obtained. One observation on the 3D knee
mages is that the appearances of bones and cartilages between consec-
tive slices are often similar in size and shape. Exploring such appear-
nce similarity can help improve the pseudo-label quality. Hence, we
pply the hierarchical earth mover’s distance (H-EMD) method (Liang
t al., 2022) that uses many threshold values of the probability map
or each unannotated slice and exploits the appearance consistency
etween consecutive slices to optimize the pseudo-labels.
The H-EMD method (Liang et al., 2022) takes two key steps. (i)

andidate instance generation: For a set of 𝑣 threshold values, {𝑡ℎ}𝑣ℎ=1,
rom the probability map of a slice 𝑆𝑖 in a 3D image, produce a set 𝐼𝐶𝑖
f possible object instance candidates. These object candidates can be
rganized into a forest structure 𝐹𝑖. Also, a reference set 𝑅𝑖−1 of object
nstances is built on the slice 𝑆𝑖−1 (obtained iteratively). (ii) Candidate
nstance selection: For each pair of an instance candidate in 𝐹𝑖 and a
eference instance in 𝑅𝑖−1, compute their matching score as the cosine
istance between their instance feature vectors. The goal is to maximize
he sum of the weighted matching scores between the candidate set 𝐼𝐶𝑖
nd reference set 𝑅𝑖−1 to select the ‘‘best’’ object instances for the slice
𝑖. This can be solved by integer linear programming. For a dataset
ith 𝑛 different classes, a feature vector for each instance candidate is
efined as (𝑥, 𝑦, 𝑧, 𝑣1,… , 𝑣𝑛), whose first three items are the coordinates
f its center pixel and the last 𝑛 items are for an 𝑛-D one-hot vector
enoting the category of the instance.
Rather than using the Euclidean distance as in Liang et al. (2022),

ur method applies cosine distance, since our vectors contain two
ifferent types of information, which make the 𝐿2 distance unsuitable
o measure the differences between these vectors.
Similar to the bi-directional RNN in Chen et al. (2016), we perform

he H-EMD process in two opposite directions (bi-HEMD). That is, for
4

ny two labeled slices 𝑆𝑖 and 𝑆𝑗 in a 3D image, 𝑖 < 𝑗, we apply H-EMD r
long the direction of 𝑆𝑖+1, 𝑆𝑖+2,… , 𝑆𝑗−1, and along 𝑆𝑗−1, 𝑆𝑗−2,… , 𝑆𝑖+1.
ith the bi-HEMD process, the pseudo-labels generated by the 2D
odules are improved, which are then used to train the 3D module
n Section 3.3.

.5. Tuning the final 3D model using pseudo-labels

We now have three 2D 𝐾-FCNs and one 3D 𝐾-FCN trained with
abeled or pseudo-labeled slices along the axial, coronal, and sagittal
lanes. Next, we produce the probability maps of each 3D image 𝑀
n 𝑊 using these four FCN modules, denoted as 𝑚𝑎𝑥𝑖𝑎𝑙 , 𝑚𝑐𝑜𝑟𝑜𝑛𝑎𝑙 , 𝑚𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙,
nd 𝑚3𝐷, respectively. These probability maps are averaged, and the
esults are used to train our 3D meta-learner. This meta-learner is a
-shaped 𝐾-DenseVoxNet (Yu et al., 2017) that is aware of the raw
mages and their pseudo-labels so as to ease overfitting. Fig. 5 shows
ur meta-learner.
After training our 3D meta-learner, we apply the self-training strat-

gy in Zheng et al. (2019) to further improve the model performance. In
his self-training process, the segmentation results of the meta-learner
re regarded as pseudo ‘‘ground truth’’ of the unlabeled slices, which
re used to re-train the 2D/3D base-learners (the three 2D base-learners
re re-trained with the ‘‘labeled’’ slices along the three orthogonal
lanes). Note that the base-learners are first trained in the step of
ection 3.3. Here, we apply the SGD optimizer and a smaller learning
ate to ensure the robustness and convergence of the entire training
rocess. The loss function 𝐿𝐶𝐸 of the 3D meta-learner (see Fig. 5) is
efined as the cross-entropy between the predictions and input pseudo-
abels. The base-learners are re-trained, and generate four versions of
seudo-labels for each 3D image in 𝑊 , which are averaged and used to
rain the meta-learner again. We repeat this self-training process for a
ew iterations, until the meta-learner performance no longer improves,
iving rise to our final 3D model.

.6. Post-processing using IPM

Instead of applying the softmax function to the final probability
aps, we further perform some post-processing to fine-tune the proba-
ility maps. One observation is that the surfaces of bones and cartilages
re mutually ‘‘coupled’’ in some areas, within which the topology
nd relative positions of the bones and cartilages are known and
he distances between them are within specific ranges. Furthermore,
hysicians care more about the ‘‘coupled’’ areas since osteoarthritis
s usually caused by damages of the knee cartilages in such areas.
hus, we apply the IPM method (Xie et al., 2022) by incorporating
he surface interrelationships between the bones and cartilages into
he segmentation process to further improve the segmentation perfor-
ance. An advantage of the IPM method over traditional graph based
ethods is that it parameterizes the surface cost functions in the graph
odel and leverages DL to learn the parameters rather than relying on
and-crafted features.
Instead of using ground truth to train the surface segmentation

etwork of IPM (Xie et al., 2022), we use the pseudo-labels generated
y our meta-learner to optimize this network in the first iteration.
fterwards, the pseudo-labels are updated by IPM and used to re-
rain the network. Such operations are repeated several times until
onvergence. The details of the above training process are shown in
ig. 7 (Xie et al., 2022).
Since the bone and cartilage surfaces are not terrain-like, we need

o first unfold the knee joint into seven parts following the practice
n Zhou et al. (2019), i.e., the front, back, top, center, bottom, left and
ight parts, respectively, as shown in Fig. 6.
Specifically, for the center part (see Fig. 6(d)), we replace U-Net

sed in the original IPM method (Xie et al., 2022) with the probability
aps generated by our final fine-tuned ensemble model. Finally, we
atch its 6 junction areas (i.e., the junction areas between center and
ront, center and back, center and top, center and bottom, center
nd left, and center and right), and average the center area and its
orresponding junction areas processed by IPM to smooth the final

esults.
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Fig. 4. The structure of our 3D 𝐾-AttentionUNet with edge-aware branches (𝐾 = 2). A dashed red box denotes a 3D AttentionUNet block.
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Fig. 5. The structure of our meta-learner.

Fig. 6. Illustrating the seven unfolded parts of the knee joint. The corresponding parts
in the sagittal view are: (a) front; (b) back; (c) top; (d) center; (e) bottom; (f) left; (g)
right.

4. Experiments and analysis

To demonstrate the capabilities of our KCB-Net approach, its perfor-
mance was compared with state-of-the-art knee segmentation methods
using full annotations as well as compared with two state-of-the-art
slice selection strategies: equal-interval annotation (EIA) and random
slice selection (RSS). Furthermore, the effect of each component in our
KCB-Net framework was assessed and the robustness of the method was
quantified for different sparse annotation ratios.

4.1. Datasets and implementation details

Our experiments use four 3D MR knee joint datasets, the SKI10
dataset, OAI ZIB dataset, Iowa dataset, and iMorphics dataset, which
we describe below.
The SKI10 Dataset. This dataset contains 60 3D MR images for train-
ing, 40 for validation, and 50 for testing, from the MICCAI SKI10
challenge. The images were from the surgical planning program of
Biomet, Inc., and were annotated by experts. It only covers the time-
point of baseline. Four compartments were annotated: femural bone
(FB), femural cartilage (FC), tibia bone (TB), and tibia cartilage (TC).
More details of this dataset can be found in Heimann et al. (2010).
The OAI dataset. Three sub-datasets, the OAI ZIB dataset, iMorphics
dataset, and Iowa dataset, from the OAI dataset are used to evaluate the
performance of our KCB-Net. The images of these three sub-datasets
5

were from the Osteoarthritis Initiative database (OAI, http://www.
oai.ucsf.edu/). (1) The OAI ZIB dataset consists of 507 3D MR im-
ages annotated by experts of the Zuse Institute Berlin. It only covers
the time-point of baseline. The details of this dataset are depicted
in Ambellan et al. (2019). (2) The iMorphics dataset (Bowes et al.,
015), available directly from the OAI database, includes 176 3D MR
nee images acquired with 3T Siemens MAGNETOM Trio scanners and
uadrature transmit–receive knee coils (USA Instruments, Aurora, OH,
SA). The annotated compartments are femoral cartilage (FC), tibia
artilage (TC), patellar cartilage (PC), and menisci (M). It covers the
ime-point of baseline and 12 month follow-up. (3) The Iowa dataset,
University of Iowa annotated portion of the OAI dataset that was
irst segmented by the LOGISMOS method (Kashyap et al., 2017) and
he automatic segmentations were then corrected by the just-enough-
nteraction (JEI) approach in 4D (3D + time) (Zhang et al., 2020). The
owa dataset consists of 1462 double echo steady state (DESS) 3D MR
mages from 248 subjects. Four compartments were annotated: femur
one (FB), femoral cartilage (FC), tibia bone (TB), and tibial cartilage
TC). Different time-points were covered by this dataset: some subjects
ere covered with baseline and 12 month follow-up, and some were
overed with baseline, 12, 24, 30, 36, 48, 72, and 96 month follow-ups.
We implemented all the tested networks using PyTorch (Paszke

t al., 2019). For our auto-encoder, ResNet-101 (He et al., 2016) is
sed as the backbone of its encoder and ResNet-50 (He et al., 2016)
s the backbone of its decoder. The encoder is initialized with a model
re-trained on ImageNet (Deng et al., 2009). All the other parameters
re initialized as in He et al. (2016), and 𝜆1 in Eq. (1) is set to

5𝑒−5. The network was optimized using the Adam optimizer (learning
rate = 1𝑒 − 4, 𝛽1 = 0.9, 𝛽2 = 0.999). The 3D images were first
cropped so as to remove the background clearly outside of the knee
area. Each slice or 3D image was normalized to zero mean and unit
standard variance. In the data augmentation for 3D model training,
starting points are randomly selected in a 3D image, and a patch of
size 80 × 192 × 160 is cropped at each starting point, making sure that
the cropped patch locates completely inside the 3D image. Afterwards,
common spatial transforms (e.g., rotation, scaling, and mirroring) are
applied. In 2D model training, each slice is augmented with common
spatial transforms.

We set 𝐾 = 2 for the 𝐾CBAC-Net and 3D 𝐾-AttentionUNet with
edge-aware branches (for larger 𝐾, the model costs increase largely but
the accuracy improves little Chen et al., 2016). We use mean square
error as the auto-encoder’s loss. We set the parameter of the edge
regularizer in the edge-aware 3D 𝐾-AttentionUNet as 𝜆2 = 1𝑒 − 4 (see
Eq. (5)).

4.2. Evaluation metrics

The following evaluation metrics are used in our experiments and
comparisons.

http://www.oai.ucsf.edu/
http://www.oai.ucsf.edu/
http://www.oai.ucsf.edu/
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4.2.1. Dice similarity coefficient
Dice similarity coefficient (DSC) is calculated as:

𝐷𝑆𝐶 =
2 × 𝑉 (𝐺𝑇 ∩ 𝑃𝑟𝑒𝑑)
𝑉 (𝐺𝑇 ) + 𝑉 (𝑃𝑟𝑒𝑑)

, (6)

here 𝐺𝑇 is the ground truth, 𝑃𝑟𝑒𝑑 is the prediction, and 𝑉 (𝑋) denotes
he volume of a 3D object 𝑋.

.2.2. Average symmetric surface distance
Average symmetric surface distance (ASSD) focuses on the absolute

istances between surfaces of the segmented objects and their ground
ruths, calculated as:

𝑆𝑆𝐷 = 1
𝑛𝜕𝐴 + 𝑛𝜕𝐵

(
∑

𝑎∈𝜕𝐴
𝑑(𝑎, 𝜕𝐵) +

∑

𝑏∈𝜕𝐵
𝑑(𝑏, 𝜕𝐴)), (7)

here 𝜕𝐴 and 𝜕𝐵 denote the surfaces of objects 𝐴 and 𝐵 respectively,
𝜕𝐴 and 𝑛𝜕𝐵 denote the numbers of voxels on 𝜕𝐴 and 𝜕𝐵 respectively,
nd 𝑑(𝑥, 𝜕𝑆) denotes the nearest Euclidean distance of a point 𝑥 to a
urface 𝜕𝑆.

.2.3. Root Mean Square symmetric surface distance
Root Mean Square symmetric surface Distance (RMSD) is a variation

f ASSD, except that all the distances are squared first and the root is
onducted for the average value. RMSD is computed as:

𝑀𝑆𝐷 =
√

1
𝑛𝜕𝐴 + 𝑛𝜕𝐵

(
∑

𝑎∈𝜕𝐴
𝑑(𝑎, 𝜕𝐵)2 +

∑

𝑏∈𝜕𝐵
𝑑(𝑏, 𝜕𝐴)2), (8)

in which all the terms are defined as in Eq. (7). In RMSD, a larger
deviation is penalized stronger. This metric is used for comparison with
previous methods on the SKI10 dataset.

4.2.4. Volume overlap error
The volume overlap error (VOE) between the GT and Pred is calcu-

lated as:

𝑉 𝑂𝐸 = 1 −
𝑉 (𝐺𝑇 ∩ 𝑃𝑟𝑒𝑑)
𝑉 (𝐺𝑇 ∪ 𝑃𝑟𝑒𝑑)

. (9)

A smaller value of VOE means a better segmentation, with 0 for
erfect segmentation and 1 for no overlap of GT and Pred at all. This
etric is used for comparison with previous methods on the SKI10
ataset.

.2.5. Volume difference
The volume difference (VD) between the GT and Pred is calculated

s:

𝐷 =
𝑉 (𝑃𝑟𝑒𝑑) − 𝑉 (𝐺𝑇 )

𝑉 (𝐺𝑇 )
. (10)

VD is used in the scoring of cartilages on the SKI10 dataset. It approx-
imately indicates the deviation from the average cartilage thickness
when the evaluation is limited on the respective ROIs.
6

w

4.3. Experimental results with full annotation

To evaluate the effectiveness of our approach, we compare the
performance of KCB-Net with the following recent methods on the
SKI10 dataset and ZIB dataset with full annotation. (i) CNN-SSM:
integrating CNN with a statistical shape model (Ambellan et al., 2019).
ii) The ensemble method (Zheng et al., 2020b). (iii) UNet++ 3D (Zhou
t al., 2018). (iv) Attention UNet 3D (Oktay et al., 2018). (v) TransUNet
3D (Chen et al., 2021). For fair comparison, we follow the dataset
split strategy in Ambellan et al. (2019) and use the evaluation metrics
in Heimann et al. (2010).

Tables 1 and 2 present the performance comparisons of our KCB-
et with the other methods trained on the SKI10 dataset and OAI
IB dataset with full annotation, respectively. From Table 1, one can
ee that our KCB-Net outperforms the best-known method, CNN-SSM,
n all the metrics except the ASSD on femoral bone and tibial bone.
ur overall score on the SKI10 dataset is higher by 1.94 than that of
NN-SSM.
To further examine the robustness of our KCB-Net, five-fold cross

alidation is conducted on the four datasets. Note that for the SKI10
ataset, some of the utilized evaluation metrics require the ROIs of the
emur and tibial areas, which are not available in some cases; thus,
e compare KCB-Net in the commonly used DSC and ASSD metrics
ith the other methods. We split a whole dataset in the ratio of 7:1:2,
orresponding to training, validation, and testing, for each fold on the
our datasets using stratification by subject IDs. The final results are
he averages of the five folds, which are given in Tables 3, 4, 5, and 6,
espectively. As Tables 3 and 4 show, our approach achieves the best
esults on the SKI10 and OAI ZIB datasets.
Table 5 shows the performance comparison of our KCB-Net and the

ther methods trained on the fully annotated Iowa dataset. The Iowa
ataset was used for comparison with the following known methods.
i) 4D LOGISMOS (Kashyap et al., 2017): utilizing a hierarchical set of
andom forest classifiers to learn the cartilage appearance and simul-
aneously segment multiple interacting surfaces of objects based on an
lgorithmic incorporation of multiple spatial interrelationships in an
-dimensional graph. (ii) CML (Tan et al., 2019): detecting the regions
f interest and fusing the cartilages by a fusion layer. Since we could
ot access the source code of the original method, we implemented
he approach and applied it to the Iowa dataset. The hyper-parameters
e.g., the number of filters, down-samplings, and up-samplings) used in
ur implementation are the same as presented in the original paper. We
xperimented with both the 2D and 3D versions of CML, which showed
hat the 2D version yielded better results on the Iowa dataset. (iii)
he ensemble learning method (Zheng et al., 2020b): Ensembling four
D/3D FCNs and self-training with fully labeled 3D data. (iv) UNet++
D (Zhou et al., 2018). (v) Attention UNet 3D (Oktay et al., 2018). (vi)
ransUNet 3D (Chen et al., 2021).
From Table 5, one can see that our KCB-Net outperforms

OGISMOS-4D on both the femoral and tibial cartilage segmentations.
CB-Net also outperforms the ensemble method (Zheng et al., 2020b),
hich demonstrates that the 𝐾CBAC-Net based 2D modules, 𝐾-UNet
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Table 1
Comparison with state-of-the-art methods using full annotation on the SKI10 dataset following the data split in Ambellan et al. (2019) and evaluation metrics used in Heimann
et al. (2010). Paired t-test values indicate the significance status of the improved performance of our method vs. the ensemble method (Zheng et al., 2020b).

Femoral bone Femoral cartilage Tibial bone Tibial cartilage Overall score

ASSD (mm) RSSD (mm) VOE (%) VD (%) ASSD (mm) RSSD (mm) VOE (%) VD (%)

CNN-SSM (Ambellan
et al., 2019)a

0.430 ± 0.130 0.740 ± 0.270 20.99 ± 5.08 7.18 ± 10.51 0.350 ± 0.070 0.590 ± 0.190 19.06 ± 5.18 4.29 ± 12.34 74.00 ± 7.70

UNet++ 3D (Zhou
et al., 2018)

0.541 ± 0.096 0.694 ± 0.252 20.86 ± 5.01 3.90 ± 11.79 0.521 ± 0.164 0.672 ± 0.448 20.07 ± 5.62 5.35 ± 12.35 72.03 ± 8.29

TransUNet 3D (Chen
et al., 2021)

0.538 ± 0.072 0.680 ± 0.196 21.36 ± 5.02 5.42 ± 10.31 0.517 ± 0.152 0.654 ± 0.418 20.01 ± 5.44 6.04 ± 12.68 72.20 ± 8.60

Attention UNet 3D
(Oktay et al., 2018)

0.519 ± 0.083 0.690 ± 0.454 18.77 ± 4.74 1.36 ± 9.69 0.519 ± 0.259 0.664 ± 0.648 18.14 ± 4.87 6.19 ± 11.21 74.54 ± 6.50

Ensemble method
(Zheng et al., 2020b)

0.689 ± 0.858 0.732 ± 0.871 18.47 ± 4.75 4.71 ± 9.73 0.508 ± 0.200 0.640 ± 0.533 18.19 ± 5.11 3.00 ± 11.15 73.82 ± 9.51

Our KCB-Net method 0.498 ± 0.053 0.579 ± 0.104 18.66 ± 4.54 −1.06 ± 9.20 0.504 ± 0.240 0.516 ± 0.602 17.60 ± 4.65 0.92 ± 10.73 75.94 ± 6.08
𝑝-value 0.016 0.011 0.621 0.033 0.547 ≪0.001 0.041 ≪0.001 0.001

aMarks the row in which the results are from the original paper.
Table 2
Comparison with state-of-the-art methods using full annotation on the OAI ZIB dataset following the data split in Ambellan et al. (2019). Paired t-test values indicate the significance
status of the improved performance of our method vs. the ensemble method (Zheng et al., 2020b).

Femoral bone Femoral cartilage Tibial bone Tibial cartilage

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

CNN-SSM (Ambellan
et al., 2019)a

98.60 ± 0.30 0.170 ± 0.050 89.90 ± 3.60 0.160 ± 0.070 98.50 ± 0.33 0.180 ± 0.060 85.60 ± 4.54 0.230 ± 0.120

Ensemble method
(Zheng et al., 2020b)

98.40 ± 0.32 0.197 ± 0.054 88.13 ± 2.57 0.193 ± 0.054 98.53 ± 0.34 0.183 ± 0.067 84.64 ± 4.24 0.215 ± 0.085

TransUNet 3D (Chen
et al., 2021)

98.33 ± 0.32 0.212 ± 0.068 88.66 ± 2.70 0.183 ± 0.055 98.53 ± 0.36 0.206 ± 0.205 83.86 ± 4.97 0.235 ± 0.101

Attention UNet 3D
(Oktay et al., 2018)

98.41 ± 0.34 0.201 ± 0.068 88.90 ± 2.75 0.178 ± 0.056 98.56 ± 0.36 0.181 ± 0.084 84.99 ± 4.67 0.224 ± 0.096

UNet++ 3D (Zhou
et al., 2018)

98.24 ± 0.42 0.266 ± 0.134 88.22 ± 2.77 0.192 ± 0.059 98.31 ± 0.53 0.856 ± 1.251 84.31 ± 5.04 0.242 ± 0.118

Our KCB-Net method 98.79 ± 0.30 0.181 ± 0.054 90.33 ± 2.84 0.152 ± 0.051 98.84 ± 0.34 0.164 ± 0.058 86.10 ± 4.50 0.212 ± 0.090
𝑝-value ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001

aMarks the row in which the results are from the original paper.
Table 3
Comparison with state-of-the-art methods using full annotation on the SKI10 dataset with five-fold cross validation. Paired t-test values indicate the significance status of the
improved performance of our method vs. the ensemble method (Zheng et al., 2020b).

Femoral bone Femoral cartilage Tibial bone Tibial cartilage

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

TransUNet 3D (Chen
et al., 2021)

98.06 ± 0.76 0.236 ± 0.099 77.89 ± 5.24 0.343 ± 0.103 97.31 ± 1.91 0.322 ± 0.278 74.29 ± 7.05 0.345 ± 0.128

UNet++ 3D (Zhou
et al., 2018)

98.10 ± 0.82 0.225 ± 0.093 77.20 ± 6.07 0.392 ± 0.201 97.64 ± 1.96 0.337 ± 0.548 71.40 ± 6.55 0.409 ± 0.149

Ensemble method
(Zheng et al., 2020b)

98.15 ± 0.71 0.226 ± 0.091 78.89 ± 5.89 0.333 ± 0.150 97.68 ± 1.93 0.280 ± 0.311 75.67 ± 6.76 0.315 ± 0.124

Attention UNet 3D
(Oktay et al., 2018)

98.29 ± 0.90 0.363 ± 0.789 79.93 ± 5.87 0.316 ± 0.144 97.84 ± 1.90 0.268 ± 0.292 76.01 ± 6.48 0.295 ± 0.104

Our KCB-Net method 98.41 ± 0.65 0.184 ± 0.077 81.67 ± 5.34 0.308 ± 0.166 97.97 ± 1.50 0.226 ± 0.194 78.19 ± 6.63 0.299 ± 0.124
𝑝-value ≪0.001 ≪0.001 ≪0.001 0.030 0.017 0.035 ≪0.001 0.302
Table 4
Comparison with state-of-the-art methods using full annotation on the OAI ZIB dataset with five-fold cross validation. Paired t-test values indicate the significance status of the
improved performance of our method vs. the ensemble method (Zheng et al., 2020b).

Femoral bone Femoral cartilage Tibial bone Tibial cartilage

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

Ensemble method
(Zheng et al., 2020b)

98.49 ± 0.30 0.182 ± 0.046 89.26 ± 3.08 0.176 ± 0.067 98.60 ± 0.30 0.172 ± 0.049 86.36 ± 3.88 0.196 ± 0.081

UNet++ 3D (Zhou
et al., 2018)

98.44 ± 0.31 0.190 ± 0.047 89.19 ± 2.74 0.174 ± 0.052 98.57 ± 0.31 0.222 ± 0.340 84.96 ± 4.55 0.226 ± 0.102

TransUNet 3D (Chen
et al., 2021)

98.47 ± 0.29 0.188 ± 0.048 89.25 ± 2.94 0.173 ± 0.060 98.61 ± 0.30 0.171 ± 0.050 85.34 ± 4.24 0.240 ± 0.114

Attention UNet 3D
(Oktay et al., 2018)

98.55 ± 0.30 0.174 ± 0.048 89.56 ± 2.64 0.169 ± 0.059 98.70 ± 0.31 0.162 ± 0.067 86.74 ± 4.01 0.196 ± 0.089

Our KCB-Net method 98.62 ± 0.26 0.164 ± 0.039 90.24 ± 2.76 0.153 ± 0.049 98.76 ± 0.30 0.149 ± 0.048 87.19 ± 3.96 0.185 ± 0.085
𝑝-value ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 0.006
7
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Table 5
Comparison with state-of-the-art methods using full annotation on the Iowa dataset. Paired t-test values indicate the significance status of the improved performance of our method
vs. the ensemble method (Zheng et al., 2020b). ‘‘–’’ denotes that the corresponding results were not reported in the original paper.

Femural bone Femoral cartilage Tibial bone Tibial cartilage

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

LOGISMOS-4D
(Kashyap et al., 2017)a

– – – 0.550 ± 0.110 – – – 0.600 ± 0.140

Ensemble method
(Zheng et al., 2020b)

94.86 ± 1.02 0.649 ± 0.269 84.38 ± 2.40 0.467 ± 0.170 94.40 ± 1.23 0.676 ± 0.234 81.96 ± 4.59 0.577 ± 0.170

CML (Tan et al., 2019) 94.95 ± 1.23 0.651 ± 0.173 83.63 ± 2.33 0.611 ± 0.152 94.44 ± 1.24 0.612 ± 0.204 81.51 ± 4.91 0.583 ± 0.152
UNet++ 3D (Zhou
et al., 2018)

95.68 ± 0.91 0.691 ± 0.182 83.29 ± 2.75 0.487 ± 0.123 94.92 ± 1.71 0.658 ± 0.236 81.30 ± 4.30 0.421 ± 0.116

Attention UNet 3D
(Oktay et al., 2018)

95.80 ± 1.14 0.645 ± 0.244 84.42 ± 2.71 0.480 ± 0.124 95.09 ± 1.65 0.635 ± 0.221 82.27 ± 4.31 0.413 ± 0.120

TransUNet 3D (Chen
et al., 2021)

95.78 ± 0.79 0.663 ± 0.178 83.78 ± 2.85 0.441 ± 0.147 95.23 ± 1.51 0.705 ± 0.209 80.41 ± 4.51 0.480 ± 0.146

Our KCB-Net method 96.47 ± 0.88 0.542 ± 0.178 86.73 ± 2.76 0.349 ± 0.138 96.49 ± 1.59 0.524 ± 0.214 84.34 ± 4.27 0.416 ± 0.131
𝑝-value ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001

aMarks the row in which the results are from the original paper.
Table 6
Comparison with state-of-the-art methods using full annotation on the iMorphics dataset. Paired t-test values indicate the significance status of the improved performance of our
method vs. the ensemble method (Zheng et al., 2020b). ‘‘–’’ denotes that the corresponding results were not reported in the original paper.

Femoral cartilage Tibial cartilage Patellar cartilage Menisci

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

UDA (Panfilov et al.,
2019)a

90.70 ± 1.90 – 89.70 ± 2.80 – 87.10 ± 4.60 – 86.30 ± 3.40 –

CML (Tan et al., 2019)a 90.00 ± 3.70 – 88.90 ± 3.80 – 88.00 ± 4.30 – – –
Ensemble method
(Zheng et al., 2020b)

90.68 ± 2.03 0.229 ± 0.075 90.18 ± 2.59 0.185 ± 0.117 88.25 ± 5.79 0.369 ± 0.204 87.65 ± 3.21 0.322 ± 0.192

UNet++ 3D (Zhou
et al., 2018)

90.81 ± 2.06 0.221 ± 0.065 89.00 ± 2.59 0.271 ± 0.121 86.22 ± 5.90 0.349 ± 0.173 85.53 ± 3.21 0.428 ± 0.196

Attention UNet 3D
(Oktay et al., 2018)

91.03 ± 2.02 0.213 ± 0.080 90.48 ± 2.88 0.196 ± 0.151 88.89 ± 6.00 0.307 ± 0.297 88.45 ± 3.01 0.314 ± 0.128

TransUNet 3D (Chen
et al., 2021)

90.97 ± 1.84 0.205 ± 0.058 90.19 ± 2.37 0.247 ± 0.127 87.41 ± 4.68 0.273 ± 0.094 87.66 ± 3.03 0.322 ± 0.140

Our KCB-Net method 92.35 ± 1.81 0.188 ± 0.061 91.27 ± 2.40 0.184 ± 0.123 90.58 ± 4.76 0.254 ± 0.143 89.31 ± 3.11 0.255 ± 0.137
𝑝-value ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001 ≪0.001

aMarks the rows in which the results are from the original papers.
Table 7
Ablation study of our method on the SKI10 dataset.

Femoral bone Femoral cartilage Tibial bone Tibial cartilage

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

S1 (axial) 98.08 ± 0.74 0.228 ± 0.095 77.92 ± 5.44 0.353 ± 0.131 97.50 ± 1.97 0.297 ± 0.283 74.52 ± 6.50 0.357 ± 0.133
S2 (coronal) 98.12 ± 0.76 0.221 ± 0.088 77.55 ± 6.26 0.373 ± 0.189 97.95 ± 0.78 0.230 ± 0.094 71.48 ± 6.87 0.402 ± 0.138
S3 (sagittal) 98.21 ± 0.78 0.216 ± 0.092 80.55 ± 5.50 0.321 ± 0.156 97.76 ± 1.80 0.275 ± 0.301 76.68 ± 6.59 0.320 ± 0.122
S4 (3D) 98.24 ± 0.69 0.210 ± 0.093 81.06 ± 5.76 0.321 ± 0.172 97.59 ± 2.86 0.281 ± 0.362 77.29 ± 6.70 0.321 ± 0.134
S5 (ensemble) 98.31 ± 0.64 0.199 ± 0.078 81.12 ± 5.56 0.316 ± 0.150 97.67 ± 2.79 0.263 ± 0.384 77.66 ± 6.51 0.305 ± 0.118
S6 (bi-HEMD) 98.29 ± 0.66 0.195 ± 0.080 81.22 ± 5.53 0.314 ± 0.150 97.56 ± 2.93 0.252 ± 0.405 77.80 ± 6.64 0.303 ± 0.124
S7 (self-training) 98.35 ± 0.67 0.189 ± 0.079 81.26 ± 5.46 0.310 ± 0.154 97.60 ± 2.84 0.236 ± 0.394 78.01 ± 6.59 0.305 ± 0.128
S8 (IPM) 98.41 ± 0.65 0.184 ± 0.077 81.67 ± 5.34 0.308 ± 0.166 97.97 ± 1.50 0.226 ± 0.194 78.19 ± 6.63 0.299 ± 0.124
Table 8
Ablation study of our method on the OAI ZIB dataset.

Femoral bone Femoral cartilage Tibial bone Tibial cartilage

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

S1 (axial) 98.51 ± 0.30 0.178 ± 0.042 89.46 ± 2.94 0.171 ± 0.061 98.64 ± 0.29 0.165 ± 0.047 86.40 ± 4.25 0.198 ± 0.108
S2 (coronal) 98.41 ± 0.34 0.196 ± 0.054 89.02 ± 2.58 0.176 ± 0.050 98.57 ± 0.31 0.190 ± 0.155 84.87 ± 4.52 0.225 ± 0.099
S3 (sagittal) 98.50 ± 0.28 0.182 ± 0.044 89.53 ± 2.95 0.167 ± 0.060 98.63 ± 0.29 0.168 ± 0.047 86.31 ± 3.99 0.202 ± 0.099
S4 (3D) 98.58 ± 0.27 0.170 ± 0.040 89.83 ± 2.70 0.163 ± 0.054 98.74 ± 0.30 0.153 ± 0.048 86.91 ± 4.01 0.199 ± 0.090
S5 (ensemble) 98.60 ± 0.27 0.168 ± 0.040 89.94 ± 2.66 0.160 ± 0.050 98.74 ± 0.30 0.152 ± 0.049 87.02 ± 4.04 0.193 ± 0.095
S6 (bi-HEMD) 98.61 ± 0.27 0.166 ± 0.041 90.00 ± 2.74 0.157 ± 0.051 98.74 ± 0.30 0.152 ± 0.049 87.04 ± 3.99 0.193 ± 0.092
S7 (self-training) 98.61 ± 0.26 0.165 ± 0.039 90.13 ± 2.80 0.156 ± 0.052 98.75 ± 0.30 0.151 ± 0.048 87.14 ± 3.94 0.188 ± 0.085
S8 (IPM) 98.62 ± 0.26 0.164 ± 0.039 90.24 ± 2.76 0.153 ± 0.049 98.76 ± 0.30 0.149 ± 0.048 87.19 ± 3.96 0.185 ± 0.085
8
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Table 9
Ablation study of our method on the iMorphics dataset.

Femoral cartilage Tibial cartilage Patellar cartilage Menisci

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

S1 (axial) 89.03 ± 2.24 0.261 ± 0.061 88.91 ± 2.01 0.244 ± 0.150 86.98 ± 4.64 0.369 ± 0.142 85.87 ± 2.96 0.380 ± 0.096
S2 (coronal) 88.71 ± 2.25 0.284 ± 0.074 88.39 ± 3.08 0.332 ± 0.139 85.48 ± 5.06 0.326 ± 0.137 85.69 ± 3.31 0.345 ± 0.121
S3 (sagittal) 90.76 ± 1.97 0.234 ± 0.065 90.09 ± 2.55 0.251 ± 0.114 87.80 ± 5.15 0.297 ± 0.119 86.66 ± 3.35 0.389 ± 0.155
S4 (3D) 90.81 ± 1.96 0.235 ± 0.068 90.17 ± 2.74 0.228 ± 0.138 88.31 ± 5.19 0.287 ± 0.194 87.84 ± 3.15 0.357 ± 0.139
S5 (ensemble) 91.23 ± 1.76 0.210 ± 0.054 90.40 ± 2.51 0.223 ± 0.129 88.84 ± 5.23 0.264 ± 0.141 88.12 ± 3.18 0.323 ± 0.155
S6 (bi-HEMD) 91.86 ± 1.80 0.224 ± 0.101 90.50 ± 2.46 0.237 ± 0.126 89.47 ± 5.09 0.270 ± 0.148 88.60 ± 3.21 0.284 ± 0.181
S7 (self-training) 92.08 ± 1.75 0.206 ± 0.053 90.81 ± 2.41 0.185 ± 0.123 89.68 ± 5.01 0.273 ± 0.141 89.05 ± 3.14 0.280 ± 0.180
S8 (IPM) 92.35 ± 1.81 0.188 ± 0.061 91.27 ± 2.40 0.184 ± 0.123 90.58 ± 4.76 0.254 ± 0.143 89.31 ± 3.11 0.255 ± 0.137
Table 10
Ablation study of our method on the Iowa dataset.

Femural bone Femoral cartilage Tibial bone Tibial cartilage

DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm) DSC (%) ASSD (mm)

S1 (axial) 95.84 ± 0.90 0.690 ± 0.181 85.11 ± 2.86 0.417 ± 0.148 95.17 ± 1.48 0.690 ± 0.219 82.32 ± 4.40 0.460 ± 0.150
S2 (coronal) 95.71 ± 1.04 0.618 ± 0.238 85.43 ± 3.24 0.383 ± 0.123 94.97 ± 1.77 0.705 ± 0.243 80.88 ± 4.56 0.452 ± 0.114
S3 (sagittal) 95.77 ± 0.84 0.642 ± 0.194 85.13 ± 2.80 0.393 ± 0.126 95.23 ± 1.70 0.692 ± 0.241 80.64 ± 4.59 0.478 ± 0.125
S4 (3D) 95.87 ± 1.06 0.616 ± 0.166 85.45 ± 2.65 0.404 ± 0.170 95.41 ± 1.66 0.635 ± 0.396 82.93 ± 5.04 0.446 ± 0.111
S5 (ensemble) 96.09 ± 0.83 0.602 ± 0.160 85.79 ± 2.77 0.384 ± 0.150 95.71 ± 1.55 0.587 ± 0.210 83.13 ± 4.23 0.451 ± 0.151
S6 (bi-HEMD) 96.17 ± 0.88 0.590 ± 0.186 86.08 ± 2.69 0.371 ± 0.136 95.64 ± 1.64 0.561 ± 0.219 83.50 ± 4.27 0.442 ± 0.129
S7 (self-training) 96.35 ± 0.92 0.561 ± 0.185 86.42 ± 2.79 0.355 ± 0.132 96.05 ± 1.49 0.548 ± 0.210 83.91 ± 4.26 0.436 ± 0.124
S8 (IPM) 96.47 ± 0.88 0.542 ± 0.178 86.73 ± 2.76 0.349 ± 0.138 96.49 ± 1.59 0.524 ± 0.214 84.34 ± 4.27 0.416 ± 0.131
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design, edge-aware 3D AttentionUNet, bi-HEMD method, and IPM
post-processing method that we use in KCB-Net help improve the
segmentation performance.

Table 6 presents the results achieved on the fully annotated iMor-
phics dataset. We compare with the following recent methods. (i)
UDA (Panfilov et al., 2019): utilizing mixup and adversarial unsuper-
vised domain adaptation to improve the robustness of DL-based knee
cartilage segmentation in new MRI acquisition settings. (ii) CML (Tan
et al., 2019). (iii) The ensemble method (Zheng et al., 2020b). (iv)
Net++ 3D (Zhou et al., 2018). (v) Attention UNet 3D (Oktay et al.,
018). (vi) TransUNet 3D (Chen et al., 2021). Our method attains better
SC scores on FC, TC, PC, and M compared to the UDA method. We also
utperform the CML and ensemble methods in both DSC and surface
rrors of FC, TC, PC, and M, suggesting that our method can obtain
ore quantitatively accurate knee cartilage and bone segmentations.
Performance improvement of our KCB-Net over the original ensem-

le method (Zheng et al., 2020b) was evaluated on the four datasets,
sing paired t-tests. Tables 1, 2, 3, 4, 5, and 6 show that in most of
he compared cases, our new approach significantly outperforms the
nsemble approach (Zheng et al., 2020b) (with 𝑝-values < 0.05).

.4. Experimental results with sparse annotation

To evaluate the effectiveness of our approach on sparsely annotated
ata, we compare its performances on the four datasets with changing
parse annotation ratios vs. those achieved using different slice selec-
ion schemes. Specifically, we compare the representative annotation
RA) scheme used in our KCB-Net pipeline with two common slice
election schemes: equal-interval annotation (EIA) and random slice
election (RSS).
Suppose for a specified annotation ratio, 𝑆𝑘 slices are to be selected.

he EIA scheme selects 𝑆𝑘∕3 slices at equal distance along each axis,
nd the RSS scheme randomly selects 𝑆𝑘∕3 slices along each axis.
e repeat the RSS process 10 times, and take the average of the
esults as the RSS-based performance. 8, Figs. 9, 10, and 11 show the
erformance comparisons with various annotation ratios on the SKI10,
AI ZIB, iMorphics, and Iowa datasets, respectively.
Figs. 8, 9, 10, and 11, one can see that our RA outperforms the EIA

nd RSS schemes on both the cartilage and bone segmentations in most
he cases. Our method can notably alleviate performance degradation,
specially for annotation ratios ≤30%. This is because EIA selects the
9

v

ocationally same slice indices in each 3D image, which might make
he trained model overfit on the selected slices of the same indices
nd cause segmentation errors on the remaining slices. RSS performs
etter than EIA in very sparse annotation ratios (10%–30%) for most
f the segmentation targets but sometimes performs worse than EIA
n less sparse annotation ratios (e.g., >50%), since RSS can select
ifferent slices in different 3D images, likely incurring less overfitting.
he performances of these three selection schemes are similar for
nnotation ratios >80% since many slices they select tend to be the same
r similar at such dense annotation ratios.
Another observation from these four figures is that the performance

rops quickly when the annotation ratios are <30% for most of the
egmentation targets, suggesting that the annotation ratio of 30% might
e a ‘‘lower limit’’ for a satisfactory performance for knee segmentation.

.5. Ablation study

To examine the contribution of each key component in our KCB-
et, we conducted an ablation study to evaluate the performances of
ts components, denoted as follows. (1) S1: 2D 𝑎𝑥𝑖𝑎𝑙 module; (2) S2:
D 𝑐𝑜𝑟𝑜𝑛𝑎𝑙 module; (3) S3: 2D 𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙 module; (4) S4: 3D module; (5)
5: ensembling of the three 2D modules and the 3D module; (6) S6:
i-HEMD; (7) S7: self-training; (8) S8: IPM post-processing.
The performance of each individual component in S1, S2, S3, and S4

s given first, followed by the ensemble performance (S5) that combines
ll these four components. For S6–S8, components are sequentially
dded to the framework each time; the more the performance increases,
he more contribution the corresponding component (in S6–S8) makes.
hus, note that S8 actually reflects the performance of the entire
ramework including all its components.
7, 8, 9, and 10 present the ablation study results on the SKI10,

AI ZIB, iMorphics, and Iowa datasets, respectively. We observe that
he ensemble of the 2D and 3D modules can substantially improve the
erformance over the individual modules. The 3D module often attains
etter performance than the 2D modules since it exploits the inter-
elations among consecutive slices. The ensemble strategy can benefit
rom both the 2D modules (with a large receptive field) and the 3D
odule (exploiting the interactions among consecutive slices). Since
ome cartilages are very thin along the sagittal plane, it is quite difficult
or DL models to detect them along one such plane, especially with
ery sparse annotation. Utilizing other 2D modules can help address
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Fig. 8. Comparison of the three slice selection schemes (RA, EIA, and RSS) on the SKI10 dataset.
Fig. 9. Comparison of the three slice selection schemes (RA, EIA, and RSS) on the OAI ZIB dataset.
Fig. 10. Comparison of the three slice selection schemes (RA, EIA, and RSS) on the iMorphics dataset.
Fig. 11. Comparison of the three slice selection schemes (RA, EIA, and RSS) on the Iowa dataset.
this issue. Tables 7, 8, 9, and 10 show that the ensemble strategy

and the self-training mechanism play more important roles than the
10
other components. Figs. 12 and 13 qualitatively compare results in the

sagittal view on the Iowa and iMorphics datasets.
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Fig. 12. Visual comparison of knee bone and cartilage segmentation by our KCB-Net
and Attention UNet 3D (a best-known 3D segmentation method) in the sagittal view
on the Iowa dataset. (a) An input 2D slice from a 3D image; (b) segmentation ground
truth; (c) segmentation by Attention UNet 3D; (d) segmentation by our KCB-Net. Our
KCB-Net is able to correctly segment some thin boundary areas (e.g., see the dashed
yellow boxes).

Fig. 13. Visual comparison of knee bone and cartilage segmentation by our KCB-Net
and Attention UNet 3D (a best-known 3D segmentation method) in the sagittal view on
the iMorphics dataset. (a) An input 2D slice from a 3D image; (b) segmentation ground
truth; (c) segmentation by Attention UNet 3D; (d) segmentation by our KCB-Net. Our
KCB-Net is able to correctly segment some small cartilage areas (e.g., see the dashed
red and blue boxes).

4.6. Discussion

From Figs. 8, 9, 10, and 11, one can see that our representative
annotation (RA) scheme substantially reduces the performance gap
between different sparse annotation ratios and full annotation, sug-
gesting that our framework can achieve comparatively good results
while using much less annotated data than required for full annotation.
Our ensemble method and the self-training scheme using pseudo-labels
improved by the bi-HEMD method largely improve the segmentation
performance, because the training data we use contribute more infor-
mation in an efficient way. Figs. 12 and 13 show that our ensemble and
self-training strategies allow detection of small objects and thin bound-
ary areas, despite the annotation sparsity. Our IPM post-processing
11
helps further fine-tune the object boundary areas, making the overall
segmentation results more accurate and reliable.

5. Conclusions

We reported a new framework, KCB-Net, for segmenting cartilages
and bones in 3D knee joint MR images. Our method efficiently selects
subsets of diverse image slices for expert annotations in a way that
the most information-contributing slices are ranked most highly, al-
lowing to train image segmentation models using high-sparsity ratio
annotations. In the KCB-Net, three 2D segmentation modules and one
3D module integrating features across multiple scales with edge-aware
branches are ensembled to generate pseudo-labels of the un-annotated
slices, which are then used to re-train the 3D model. An IPM process
is employed to post-process the probability maps generated by the
3D model. Experiments on four large knee datasets show that our
new approach outperforms state-of-the-art methods on fully annotated
datasets, and can notably improve segmentation performances when
annotating only small data subsets.
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