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ABSTRACT

Glaucoma is one of the leading causes of permanent blindness due to optic nerve damage. Optical coherence
tomography (OCT) has become an important clinical tool for assessing structural damage from the loss of
neurons. Traditional 2D and 3D methods have been successfully applied to quantify inner retinal layer thickness.
However, these methods show less reliable segmentation in severe glaucoma when the retinal layers have become
thin and violate algorithm assumptions. Deep learning (DL) is an alternative image analysis approach due to its
powerful ability to extract features directly from data. State-of-the-art DL segmentation approaches can achieve
sub-pixel accuracy at multiple retinal surfaces in OCT scans from normal eyes. However, limitations, such as
spike-like segmentation errors (showing as high Hausdorff distances) and lack of contextual information from
the input image, still need to be improved. To address these limitations, three novel solutions were proposed in
this study. First, for data augmentation, we reconstructed more B-scans by reassembling A-scans at the vertical
and jittered planes to expose DL to a greater variety of features encountered in OCT. Second, smoothed and
contrast-enhanced images of each three adjacent B-scans were concatenated to provide a six-channel input image
stack to the neural network with contextual information. Finally, we merged the predicted surfaces from both
horizontal and vertical B-scans while maintaining retinal topological order. In our independently tested dataset,
which included eyes with severe glaucoma, the proposed approach outperformed the state-of-the-art methods in
mean absolute surface distances, Dice coefficients, and Hausdorff distance at multiple surfaces.

Keywords: OCT, glaucoma, deep learning, surface segmentation, data augmentation

1. INTRODUCTION

Glaucoma is one of the leading causes of permanent blindness due to optic nerve damage.! In addition to
functional tests (e.g., standard automated perimetry, SAP) and intraocular pressure exams, optical coherence
tomography (OCT) is often used for assessing retinal structural damage. Studies have suggested that progressive
macular ganglion cell plus inner plexiform layer (GCIPL) thinning can be identified before corresponding retinal
nerve fiber layer thinning at the optic disc.?2 To quantify retinal structural change, traditionally, 2D models and
graph-search-based approaches®* have been widely used to segment the retinal layers in OCT. However, these
methods have less reliable segmentation results in severe glaucoma cases because very thin retinas often violate
underlying algorithm assumptions.

Recently, deep learning (DL) has become popularized as an alternative approach for OCT layer segmentation
due to its powerful ability to directly extract latent features from the image.® However, because of limitations
imposed by the computational ability of standard computers and the relatively small training/testing datasets
(compared to non-medical images), most DL methods applied to OCT-segmentation rely on the use of single 2D
B-scans as input images. As an exploration of trying to use 3D information, Liu et al.® suggested using a hybrid
2D-3D network to capture displacements of B-scans to offset the 2D segmentation accuracy. At present, the fully
convolutional regression network (FCRN)"® and the internal-point-method (IPM) for surface segmentation® are
two examples of the most advanced OCT segmentation approaches. Although both approaches can achieve
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Figure 1. Flowcharts of the proposed method in training and inference.

sub-pixel accuracy at multiple retinal surfaces, spike-like segmentation errors (i.e., high Hausdorff distances) and
lack of 3D contextual information are significant limitations that need to be addressed.

In this study, we proposed a novel DL framework to address the limitations of current state-of-the-art DL
approaches and also to address the need for more robust OCT surface segmentation in cases of severe glaucoma
with very thin layers. To this end, an innovative data augmentation method was introduced to reconstruct OCT
B-scans by reassembling A-scans horizontally, vertically, and in a jittered plane to enrich input image patterns.
In addition, local 3D contextual information was added to the input of the neural network. Within the novel DL
framework, segmented surfaces were guaranteed correct topological orders without crossing each other in the 3D
surface context. To evaluate the performance of the novel DL framework, we computed mean absolute surface
distance (MASD), surface Hausdorff distance, and the Dice coefficient of GCIPL among the proposed method,
graph-search-based method,* and the FCRN method.”® Comparisons to manual tracing at six surfaces were
also made, which included the ILM (internal limiting membrane), RNFL-GCL (the surface between retinal nerve
fiber layer and ganglion cell layer), IPL-INL (the surface between inner plexiform layer and inner nuclear layer),
OPL-HFL (the surface between outer plexiform and Henle’s fiber layers), BMEIS (the boundary of myoid and
ellipsoid of inner segments), and OB-RPE (the outer boundary of the retinal pigment epithelium).

2. METHODS
2.1 Overview

Fig. 1 illustrates overall flowcharts describing the proposed method in training and inference for robust surface
segmentation in macular OCT scans (either 200x200x1024 or 512x128x1024 volume scans obtained by Zeiss
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Figure 2. Data augmentation and input B-scan concatenation. (a) An example of a horizontal jittered B-scan (J) at
location i, shown in the red jittery line; the two gray lines are the adjacent B-scans (JiZ; and JfL;). (b) Based on
the setting of (a), the input image stack is created by concatenating the adjacent (along the inferior-superior direction)

smoothed B-scans, J2 JH5 Jfrls , and the adjacent contrast limited adaptive histogram equalization (CLAHE) B-
JEE gHE gHE

scans, J; 717, J; i1

Meditec Cirrus OCT) with various levels of retinal thinning (including normal and glaucoma cases). For data
augmentation (Sec. 2.2), horizontal, vertical, and jittered B-scan planes were introduced by reconstructing A-
scans to enrich the input image patterns. In addition, every three adjacent smoothed B-scans and their contrast-
enhanced images are concatenated to form a six-channel input image stack (Sec. 2.3). This design enabled
capturing of local 3D contextual information to help achieve a smaller Hausdorff distance. The proposed network
(Sec. 2.4) used a modified six-layer U-Net!? followed by a simple segmentation head to identify initial surface
locations.®?

After the training process, to segment an input OCT volume, the horizontal and vertical B-scan stacks were
first separately resampled (Fig. 1b). Each B-scan in the horizontal and vertical stacks was segmented using the
proposed segmentation approach. The segmented retinal layer boundaries from the input B-scans were then
concatenated together to form 3D retinal surfaces that are labeled as the horizontal or vertical group. Finally,
the segmented retinal surfaces from both the horizontal and vertical groups were harmonized together according
to a smoothness assumption (Sec. 2.5). A topology guarantee module was also applied to maintain the surface
ordering in 3D.

2.2 Data Augmentation

Assume that an input macular OCT volumetric scan has image dimensions of X x Y x Z voxels along the
temporal-nasal, superior-inferior, and anterior-posterior direction, respectively (Fig. 2a). Currently, most of the
common deep learning methods” % 1171% segment retinal layers in each individual input horizontal B-scan, which
can be described as H, = (a,,)2_g = {04,814, - ,ax_14}, in which (e)? represents an ordered sequence
from v to v, and a,, is the A-scan at location (x,y). In other words, H, represents the horizontal B-scan
at location y along the superior-inferior axis. Because horizontal scanning is the default OCT device imaging
protocol, horizontal B-scans often have less motion artifacts (caused by small horizontal eye movements during

the scan acquisition) and are commonly used as the input images for image-analysis automated approaches.

In this study, on top of using the common horizontal B-scans as the input of the proposed neural network
(Sec. 2.4), we proposed another two novel schemes to increase the variety of the input images. First, we recon-
structed A-scans along the vertical direction to simulate the B-scans that are generated from the OCT device
using the vertical scanning protocol [i.e., along the superior-inferior direction scanning, V, = (am,y)?jz_ol]. Second,
based on the idea of reassembling A-scans, we constructed simulated jittered B-scans consisting of randomly se-
lected adjacent A-scans along either the temporal-nasal (i.e., the X-axis) or superior-inferior (i.e., the Y-axis)

direction. Meanwhile, adjacency constraints were added to ensure the retinal surfaces were still smooth in the
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simulated B-scans. [Note: Only one-voxel-away A-scans could be randomly selected in this study.] The horizon-
tal and vertical jittered B-scans are described below, and an example of a horizontal jittered B-scan is illustrated

in Fig. 2a.
yo: randomly selected from [0,Y — 1]
Horizontal direction: JH = (a;.4.)220" { Yos1 — yo: randomly selected from [—1,0,1]; adjacency constraint
Vy{0<y<Y -1}
xo: randomly selected from [0, X — 1]
Vertical direction: JV = (azy,y)zgol; Ty4+1 — x,: randomly selected from [—1,0, 1]; adjacency constraint

Ve, {0<z<X -1}
(1)

2.3 B-Scan Concatenation for Local Contextual Information

To enable local 3D contextual information for the neural network, instead of using a single B-scan as the input,
we concatenated three adjacent smoothed B-scans and their contrast-enhanced version to create a B-scan stack,
which contains a total of six B-scans, as the input image stack. For each horizontal, vertical, and jittered B-scan,
we first generated a smoothed B-scan by averaging with its two adjacent B-scans to reduce image artifacts and
noise. Then, we applied the contrast-limited-adaptive-histogram-equalization (CLAHE!®) method to enhance
the local contrast of the image, thus increasing the visibility of layer boundaries. Next, we repeated the same
smoothing-and-enhancing process for both adjacent B-scans of the original B-scan to create a B-scan stack
consisting of three adjacent smoothed and three adjacent contrast-enhanced images. Fig 3 shows an example of
a horizontal jittered B-scan stack.

Smoothed Contrast-Enhanced

Figure 3. An example B-scan stack that consists of a horizontal jittered B-scan (JZH) and its two adjacent B-scans (Jilil
and J/L,). The left and right panel shows the smoothed (J**%) and contrast-enhanced (J*>¥) version, respectively.

2.4 Network

We proposed a modified U-Net with a contracting (down-sampling) path and expansive (up-sampling) path in
six levels with increasing channels along the network depth; for each level, the down-sampling module and up-
sampling module were also connected (Fig. 4). The neural network was designed as a feature-extracting module
before a surface segmentation head. Along the down-sampling path, each down-sampling module consisted of
a 2x2 max-pooling, a 3x3 channel-change Conv2d module, and a cascade of three 3x3 channel-keep Conv2d
modules with a residual connection. The down-sampling and up-sampling paths were symmetrical, except for
each of the max-pooling layer in the down-sampling path was replaced by a bilinear up-sampling layer in the
up-sampling path.
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Figure 4. The architecture of the proposed neural network. The number of channels at each level is listed under the
corresponding down-sampling/up-sampling module. The total loss function was the summation of the cross-entropy loss
plus the L1 loss for all the desired surfaces.

The segmentation head was composed of a 128-channel 3x3 Conv2d module and a 1x1 Conv2d layer. The
output logits had dimensions of X x Z x K, in which X and Z represent the width and height of the input
OCT B-scan, and K is the total number of segmented retinal surfaces, in which element p ., € [0, 1] indicated
the estimated probability of surface k at pixel location (z,z). Assume that g, ., € [0,1] was the probability of
manual tracing at the same location for surface k. A multi-surface cross-entropy loss was computed by

o S N (g (P k) + (1= gz ) (1 — ez ) @)
XZK '

Leg=—

To estimate segmented surface locations, we utilized a softmax argmax to interpret the output logits from
the segmentation head. For the same input B-scan, the location of segmented surface k£ at column x can be
described as follows.

Z—1
Mz k = Z 2 Px,zk (3)
z=0

In addition, mean absolute error (i.e., the L; loss) was also introduced to penalize the difference between
the estimated surface locations and manual tracing. Given that s, ; was the corresponding pixel location of the
ground truth, the Ly loss can be described as

K-1 X—-1
I = k=0 2o Mok — Saul @
1 XK .

The total loss for the network training was Lrota; = Log + L1.

2.5 Surface Harmonization and Surface Topology Constraint

In the reference stage, as shown in Fig. 1b, each input OCT volume was resampled and formed as a stack of
horizontal B-scans and a stack of vertical B-scans. Based on the segmentation method described above, the
desired retinal boundaries were automatically labeled in each input B-scan and followed by concatenating the
B-scan outputs to form 3D surfaces. The reason for using both of the horizontal and vertical B-scan groups to
segment the retinal surfaces was because image artifacts and noise can be sometimes more suppressed in one
resampling direction over the other. So, the segmented surface can be locally smoother (or less noisy) in one
direction than the other. However, the output surfaces from the horizontal and vertical B-scans should be similar
in most cases.
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The segmented 3D retinal surfaces from the horizontal and vertical B-scan group were harmonized using the
methods below according to a local surface smoothness constraint in OCT images. For an estimated surface k
at A-scan location z from the horizontal (H) and vertical (V) B-scan group, if | Mf, b= uxk| < 3, the harmonized
surface at this location was the mean value, ﬂi‘f{k = 0.5 * (,uﬁk + /k‘c/,k)' When a disagreement happened (i.e.,
|pfl, — Y, | > 3), the harmonized surface location p2%, was chosen from either pf?, or 4V, according to whose
local 5x5’neighborhood has a smaller standard deviation. ’ 7

Finally, we applied a surface-topological-order constraint at the 3D harmonized surfaces. One of the state-
of-the-art methods, FCRN,”® used a “hard” ReLU to limit the surface topological orders at each single A-scan
context by fixing the upper surface location and then adjusting the lower surface locations. However, when a
spike error occurred at the upper surface, the assumption of using the upper surface as the reference surface
would fail and further affect the already-correctly segmented lower surfaces. To address this issue, another
state-of-the-art method IPM network® used At < 0, in which A is a matrix expressing the relations of adjacent
surfaces, and f is the K-surface location optimization vector along each A-scan. However, this method requires
heavy computations. In this study, we proposed a light-computation topological-order constraint by dynamically
assigning the reference location of the surface that had a smaller local 5x5 neighborhood standard deviation.
Once the surface topological order violation occurred, the violated surfaces would be forced to be overlaid with
the reference surface.

3. RESULTS
3.1 Dataset

In this study, a total of 41 OCT macular volumetric scans (Zeiss Cirrus, Carl Zeiss Meditec, Inc., Dublin CA)
from 41 different subjects were randomly selected (one eye per subject) from an existing glaucoma study at the
University of Iowa.!” Experiments used the same network for both normal and glaucoma cases. The training
set included a total of 20 (7 normal + 13 glaucoma) scans, the validation set included 3 glaucoma scans, and
the test set included 18 (9 normal 4+ 9 glaucoma) scans. The training/validation and test datasets were strictly
separate. The manual tracing for the ground truth was done by modifying the graph-search segmentation results®
by a human expert (J.-K. W.) using Iowa OCTExploer.'® Based on the ground truth, the mean thicknesses (+
standard deviations) of the GCIPL and total retina in the normal group and glaucoma group for all the 41 OCT
scans are shown in Table 1.

Table 1. Mean layer thickness (+ standard deviation) based on ground truth for the whole dataset

| Group [ Total Scans | Total Retinal Thickness (um) | GCIPL Thickness (um) |

Normal 16 288.41 £ 12.19 60.86 = 4.95
Glaucoma 25 261.31 £+ 21.37 45.99 + 7.54

3.2 Data Preprocessing

The randomly selected 41 OCT macula-centered volumes included two different protocols of 512x128x1024 or
200x200x 1024 voxels covering 6x6x6 mm?® along the temporal-nasal, superior-inferior, and anterior-posterior
direction, respectively. To be consistent, all the OCT volumes were resized to 200x200x512. Next, the data
augmentation (Sec. 2.2) and B-scan concatenation (Sec. 2.3) were applied.

For the manual tracing, since the human expert traced the retinal surfaces in each individual horizontal
B-scan, motion artifact could be introduced along the superior-inferior direction. To reduce this bias, a thin-
plate-spline algorithm was applied to create 3D smooth manually-traced surfaces.

3.3 Experimental results

The proposed segmentation network was trained using the Adam optimizer with an initial learning rate of 0.1
without weight decay. The batch size was set to two. Data augmentation on the fly was used by adding Gaussian
noise and salt/pepper noise as well as randomly flipping the whole input B-scan stack. In experiments, for all
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Table 2. Measurement results on the test set among different methods. Bold numbers indicate the best results in corre-

sponding column and case group.
Mean absolute surface distance’ (MASD) in ym + standard deviation

Cases Method Overall ILM RNFL-GCL | IPL-INL OPL-HFL BMEIS OB-RPE
Standard FCRN 2.4540.97 1.66+£0.42 2.88+0.52 3.50£0.92 3.16£0.67 1.50+0.45 2.03+0.44

Normal?! | FCRN + proposed augmentation 2.23+0.97 1.46+0.21 | 2.71+£0.64 | 2.94+1.07 | 2.98+0.75 | 1.1540.28 2.114+0.59
Our proposed method 2.1840.91 1.35+£0.16 | 2.89+0.70 | 2.70+0.62 | 3.06+0.75 1.2440.35 1.82+0.36
Graph search 3.70+4.04 2.0940.33 6.024+4.39 7.47+6.52 | 3.154+2.39 | 1.69+0.23 1.7840.22

Glaucoma Standard FCRN ) 3.58+1.99 2.2740.41 5.324+2.05 4.92+2.38 4.34+1.30 2.08+0.60 2.53+1.10
FCRN + proposed augmentation 3.36+2.08 2.0940.44 4.96+2.28 4.83+2.61 4.20+1.46 1.74+0.61 2.314+0.75

Our proposed method 3.02+1.85 1.87+0.33 | 4.93+2.80 | 4.03+1.30 | 3.71+1.00 | 1.67+0.55 1.90+0.24

GCIPL Dice coefficients and Hausdorff distances’ in pixels

Cases Method GCIPL Dice ILM RNFL-GCL | IPL-INL OPL-HFL BMEIS OB-RPE

Standard FCRN 0.945+0.018 29.6 13.0 10.5 16.0 10.2 15.2

Normal? | FCRN 4 proposed augmentation 0.952+0.019 8.2 19.3 15.3 15.2 6.5 8.0
Our proposed method 0.952+0.015 6.4 12.1 14.5 24.2 11.8 6.5

Graph search 0.844+0.133 25.5 31.3 35.3 42.2 9.3 9.4
Glaucoma Standard FCRN 0.889+0.024 48.4 330.9 321.3 309.8 295.8 344.8
FCRN + proposed augmentation || 0.896+0.030 141.1 273.9 320.5 307.7 294.5 279.9

Our proposed method 0.899+0.027 11.9 28.9 34.8 39.5 12.1 15.6

t For the MASD and Hausdorff distance, the lower the better; For the Dice coefficients, the higher the better.
1 All the surface segmentation results of normal cases from the graph-search method were manually examined and directly considered as ground truth.
* Voxel size along the A-scan direction is 3.91 pm/pixel.

the test scans, we compared the proposed method to the graph-search method,* the standard FCRN,”® and the
FCRN with our proposed vertical and jittered B-scan augmentation planes. In Table 2, compared to the ground
truth, the proposed method overall achieved mean absolute surface distances (MASD) of 2.18 £ 0.91 pym (mean
+ standard deviation) in the normal cases and 3.02 + 1.85 pum in the glaucoma cases; significantly less than
the other methods with p-values < 0.001. Our proposed network and data augmentation methods improved
GCIPL Dice coefficients in both normal and glaucoma cases and substantially reduced Hausdorff distances in
the glaucoma cases compared to other DL methods. Superposing our proposed data augmentation methods on
the standard FCRN method also explicitly improves the MASD and Dice coefficient. Fig. 5 shows two examples
where the proposed method overcame two typical segmentation errors, including the spike-like error (top row)
and the GCIPL-shifting error (bottom row).

To achieve the best segmentation results, we proposed the jittered/vertical B-scan data augmentation, local

Smooth Input Ground Truth Graph Search FCRN FCRN Our
+ jittered/vertical Prediction

example 1
(normal)

a
example 2 [ 8
(glaucoma)

Figure 5. Examples of how the proposed method performed well for two common types of segmentation errors. Top
row: spike-like error occurred at the ILM (i.e., the cyan surface) Bottom row: the GCIPL (between the orange and red
surfaces) segmentation is completely shifting down in the graph-search results (pointed by the red arrow) because of the
extremely thin adjacent RNFL layer (between the cyan and orange surfaces), which violated the graph-search underlying
assumptions.
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smoothed and CLAHE-enhanced B-scan concatenation, and 3D surface harmonization and topological constraints
in this study. We then investigated the effect of each single step on the segmentation performance. In the following
ablation experiments, the network architecture and configuration were fixed except for the ablation part. The
ablation mean absolute surface distance (MASD) errors were computed in micrometers (£ standard deviation)
for the normal and glaucoma cases (Table 3). The combination of all the proposed methods still showed the
best overall results for all the desired surfaces in both normal and glaucoma cases in the test set. Using only
one-smoothed and one-CLAHE B-scans affected the segmentation accuracy the most in the normal cases (i.e.,
increasing the overall MASD errors the most); the removal of the 3D topological ordering constraints affected
the overall MASD the most in the glaucoma cases.

Table 3. Measurement results on the test set in the ablation experiments. Bold numbers indicate the best results in the

corresponding column and case group.
Mean absolute surface distance! (MASD) in ym = standard deviation

Cases Method Overall ILM RNFL-GCL | IPL-INL OPL-HFL BMEIS OB-RPE
Our proposed baseline method 2.18+0.91 || 1.35+0.16 | 2.89+0.70 | 2.70+0.62 | 3.061+0.75 | 1.2440.35 | 1.82+0.36

No 3D topological order guaranteeing 2.56+£0.99 1.89+0.28 3.02£0.70 3.12£1.07 3.43+1.13 1.66+0.39 2.24+0.37

Normal 1 smoothed B-scan only input 2.5840.84 2.0540.40 3.2340.66 2.9040.61 3.254+0.87 1.67+0.41 2.37+0.41
3 smoothed B-scans input 2.50£0.85 1.9940.35 2.97+0.68 2.85+0.68 3.27+£1.05 1.784+0.46 2.16+£0.42

1 smoothed and 1 CLAHE B-scan input || 2.7341.06 2.22+0.89 3.32+1.12 3.32+1.06 3.44+0.82 1.7540.36 2.36+0.43

No jittered/vertical augmentation 2.6240.88 2.1140.29 3.384+0.99 3.014+0.62 3.23+0.71 1.68+0.37 2.2840.39
Our proposed baseline method 3.02+1.85 || 1.87+0.33 | 4.93+2.80 | 4.03+1.30 | 3.71+1.00 | 1.6740.55 | 1.90+0.24

No 3D topological order guaranteeing 3.33+2.44 2.134+0.63 5.434+3.94 4.57+2.41 3.96+1.34 1.80+£0.55 2.0840.32

Glaucoma 1 smoothed B-scan only input 3.244+2.16 2.05+0.48 5.11£3.01 4.5842.57 3.82+1.09 1.76+0.47 2.14£0.37
: 3 smoothed B-scans input 3.19+1.75 2.024+0.48 | 4.714+1.65 | 4.50+1.99 4.11+1.24 1.824+0.57 | 2.00£0.31

1 smoothed and 1 CLAHE B-scan input || 3.2642.00 2.114+0.49 5.2043.00 4.31£1.75 4.00+1.17 1.76+0.33 2.2040.38

No jittered/vertical augmentation 3.21+1.82 2.09+0.56 4.82+42.45 4.50£1.73 3.89+1.13 1.7440.37 2.20+0.31

1The lower the better.
* Voxel size along the A-scan direction is 3.91 pum/pixel.

4. CONCLUSIONS

In this study, we proposed novel approaches to enrich the variety of retinal layer patterns in OCT used for
deep learning along all three dimensions by reconstructing A-scans at the horizontal, vertical, and jittered
planes. Concatenating the adjacent and contrast-enhanced B-scans to form a six-channel image-stack as the
input image further enriched the learning of the segmentation network using 3D local contextual information,
leading to improved segmentation accuracy and robustness. In addition, the 3D surface harmonization and
topological constraints took advantage of surface local regional information to overcome image artifacts and
ensure the segmented surfaces followed a correct order rather than only considering a single A-scan context.”
Our experiments showed that the proposed method outperformed the state-of-the-art methods with fewer spike
errors and lower mean absolute surface distances from ground truth (manually segmented scans). The proposed
method offers a significant improvement that can be applied to other terrain-like surface segmentation needs.
A potential limitation of this study is that the manual tracing was obtained by modifying the graph-search
segmentation results as a starting point, so bias to the surfaces might be introduced. Also, the proposed data
augmentation methods would be violated if the input OCT scan has an ultra-high image resolution in one
direction on the retina but is sparsely scanned along the other direction (in other words, if there is an unbalance
between the total number of A-scans in each B-scan and the total number of B-scans in the input OCT volume).
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