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Abstract—In the car-following scenarios, automated vehicles
(AVs) usually plan motions without considering the impacts of
their actions on the following human drivers. This paper aims
to leverage such impacts to plan more efficient and socially
desirable AV behaviors in human-AV interactions. Specifically,
we introduce a socially compatible control design for the AV
that benefits mixed traffic in the car-following scenarios. The
proposed design enables the altruistic AV in human-AV
interaction by integrating the social value orientation from
psychology into its decision-making process. The altruistic AV
generates socially desirable behaviors by optimizing both its
own reward and courtesy to the following human driver’s
original plan in the longitudinal motion. The results show that
as compared to the egoistic AV, the altruistic AV significantly
avoids disrupting the following human driver’s initial plan and
leads the following human driver to achieve considerably
smaller car-following gap distance and time headway.
Moreover, we investigated the impacts of the socially
compatible control design with different altruism levels of the
AV using statistical assessments. The results collectively
demonstrate the significant improvement in traffic-level
metrics as a result of the AV’s altruistic behaviors in human-
AV interactions.

Index Terms—Automotive control, Autonomous vehicles

I. INTRODUCTION

Human drivers usually only consider preceding traffic
when planning longitudinal motions in the car-following
scenarios and neglect the impacts of their actions on the
following drivers due to their egoistic nature and limited
perception. This may lead to socially unwelcome behaviors
that are perceived as dangerous, uncomfortable, or overly
defensive by the following human drivers [1]. It may also
lead to inefficient road utilizations such as phantom jams
and unnecessary stop-and-go [2]. To overcome such
drawbacks, we propose designing a socially compatible
automated vehicle (AV) control strategy in the mixed traffic
that explicitly considers its impacts on the following human
drivers through human-AV interactions. This is enabled by
advanced sensing [3] and communication technologies [4] of
AVs that are generally unavailable for human drivers.
Different from most of the existing work on AV cruise
control which only considers egoistic goals using preceding
traffic information [5-6], by investigating and leveraging the
human-AYV interactions in mixed traffic, we aim to generate
socially desirable behaviors of AV and quantitatively
evaluate the benefits of such design to improve traffic
efficiency.
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To generate socially desirable behaviors, it is necessary to
establish a suitable and generalizable behavior generation
framework of AVs that integrates the social factors in
human-AV interactions. Some studies define social factors
as selfishness and altruism via Social Value Orientation
(SVO) [7]. SVO quantifies the degree for AVs to act
egoistically or altruistically in human-AV interactions. The
egoistic AVs make decisions that only benefit their own
utility, and the altruistic AVs optimize a social utility that
incorporates the benefits of the human drivers as well. Such
altruistic AVs have been demonstrated to create socially
compatible outcomes in some realistic driving scenarios,
such as highway merging ramps [7-8] and unprotected left
turns at intersections [9]. No results have been reported on
altruistic AVs in mixed car-following scenarios. Considering
human drivers will remain to be primary vehicle operators in
the foreseeable future, insights into the impacts of altruistic
AVs on mixed traffic will be beneficial for practical and
theoretical merits.

In order to achieve socially compliant motion control,
altruistic AVs first need to understand and predict the
behavior of human drivers. Inverse reinforcement learning
(IRL) based driver behavior models have been widely used
to understand the behavior of human drivers [9-14]. The IRL
approach aims to learn an underlying cost function that
encodes the driving preferences of the human driver in
driving demonstrations. In our previous work, we have
demonstrated that the proposed IRL-based driver behavior
model can effectively learn and replicate human drivers’
driving preferences in the car-following scenarios [13].

This study explores the potential benefits of developing a
socially compatible control design for the automated vehicle
in the car-following interaction with a following human
driver and investigates the impacts of different altruism
levels of the automated vehicle on mixed traffic. The main
contributions of this study are as follows: 1) altruism is
integrated into the decision-making processes of the
automated vehicle to achieve socially compatible behaviors
in the car-following interactions with the following human
driver. 2) the impacts of such a socially compatible control
strategy of the automated vehicle on mixed traffic are
analyzed considering the automated vehicle’s altruism
variations toward the human driver. To the best of the
author’s knowledge, this is the first study on the socially
compatible driving strategy of the automated vehicle in the
car-following scenario and its impacts on the traffic flow of
microscopic-level mixed traffic.

The remainder of this paper is organized as follows. In
Section II, the problem formulation in human-AV
interaction is introduced. In Section III, the socially



compatible behavior planning is formulated. In Section IV,
the socially compatible control design in mixed traffic is
developed. Section V examines the socially compatible
control design’s impacts on mixed traffic with numerical
simulations in realistic driving scenarios. Section VI
concludes with closing remarks.

II. PROBLEM FORMULATION

In this study, we consider an interactive two-agent system
in the car-following scenario where the agents are AV R
and human 7. The objective is to develop an altruistic AV
that considers the interest of itself and courtesy towards the
following human driver in the human-AV interaction. Let x,
and u, denote the state and control input of the AV (i=R)
and the human driver (i =), respectively. x' denotes the
state of the human-AV interaction at time ¢, where

x= (x;,xz;) and satisfies the overall system dynamics, as

shown below:
X = f(x g up, ) (1)
At time ¢, the longitudinal vehicle dynamics of the AV
and human driver are represented by the linearized third-
order model [15], and an actuation time-lag is considered
between the realized longitudinal acceleration and the
control input:

7t _ t t
di Vi TVis VY

i

! =a, a :i(u; ~a/), ie{R.H} ()
P

where d, represents the gap distance of the AV and human
driver with respect to their preceding vehicle in traffic; v, ,
denotes the longitudinal speed of the AV’s and human
driver’s preceding vehicle; v, and a, represent longitudinal
speed and acceleration of the AV and human driver,
respectively and p denotes the actuation time-lag. The
system state of the AV and human driver at time ¢ can be

T
defined as x," = [d,.’,vl.t ,af} and formulated as:

X' = Ax' +Bu/ +Dv;, (3)
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linearized third-order model is discretized with a zero-order
hold (ZOH). The discretized version of (3) can be stated as
x"'=A'x'+Bu'+DV,, where 4", B and D' are the
discretized version of 4, B and D, respectively.

We consider that both the AV and the human driver are
rational planners whose goals are choosing actions to
maximize their rewards or equivalent to minimize their cost
functions over the planning horizon during the vehicle
operation. Therefore, we assume that the optimal control
problem of the AV and the human driver can be solved by
using the Model Predictive Control (MPC) approach over
the planning horizon N. Let C, and C,, are the cost

function of the AV and the human driver over the planning
horizon, respectively:

C, (x’,uR,uH)=§ci(x”k,u;,u;), ie{R,H} (4
k=0

where x"* represents the (¢+k)" predicted system state of

T
the human-AV interaction and u, = (u,O T T ']) defines
the sequence of the predicted control inputs of the AV and
the human driver, respectively. At every time step ¢, the AV
and human driver can generate their optimal vehicle
operations by minimizing C, and C,,, respectively, and

compute their first control inputs u,y and u,; , and replan at

time 7+1.

The closed-loop dynamics of the human-AV interaction
can be formulated as a game considering the optimization-
based state feedback strategy during the interaction. To
simplify this game, we assume that the AV and human
driver are running a Stackelberg game where the AV is the
leader and the human driver is the follower, as expressed in
[10-11]. In the traditional two-agent Stackelberg game, the
leader chooses an action and the follower computes its best
outcome given the leader's action. With this simplification,
we further assume that the AV can access C,, and the
human driver only computes the best response to the AV’s
actions rather than influencing the AV’s original plan. This
presumption refers that for every control sequence that the
AV considers, the AV can compute how the human driver
would respond and how much it would cost to the human
driver:
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C,, (x’,uR) =C,, (x’,uR,g(xt,uR,uH))

where g(x’,uR,u,H) represents the response of the human
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driver towards the actions of the AV.
With the best response of the human driver for each
possible action of the AV, the AV can find its best decision:

u, =arg min Cp, (x’,uR,u’;1 (. u, )) (6)

Based on the previously stated assumptions and the game
formulation, we aim to generate altruistic behaviors of the
AV by incorporating the courtesy factor in the AV’s motion
planning. In the following section, we will provide the
implementation details of the socially compatible behavior
planning of the AV.

III. SociALLY COMPATIBLE BEHAVIOR PLANNING

A social factor such as altruism towards the human driver
should be quantified and formulated as an additional feature
into the cost function of the AV to achieve socially
compatible behavior planning. The degree of the AV’s
altruism towards the human driver is defined as Social Value
Orientation (SVO), a commonly used concept in the social
psychology literature that has been recently integrated into
robotics research [7-8]. We adopt the angular annotation for
SVO in the socially compatible behavior planning, as
defined in [16]. The SVO angular annotation ¢ quantifies

how an agent weights its own reward against the rewards of



another agent in the traditional interactive two-agent system.
Therefore, the AV’s cost function can be formulated as:

Cp :Ce(x’,uR)cos((/ﬁ)-kCc(x’,uH)sin(gé) @)
where C, is the cost function for an egoistic AV which cares

about only its own utilities; C, defines the courtesy term of
the AV to the human driver; SVO angle ¢ (¢ € [0,71'/4])

defines the altruism level of the AV towards the human
driver and cosine and sine functions are used to compute the
weights of the AV’s cost function with a given SVO angle.
The intuitive explanation of two extreme SVO angles is that
the AV behaves as an egoistic agent with ¢=0 by

maximizing only its own outcome, whereas it behaves as a
prosocial agent with ¢ = 7 /4 by maximizing the benefits
of both itself and the following human driver, as expressed
in [7].

A. Egoistic Term

The egoistic term denotes the effort of the AV to achieve
its own driving goal when following the preceding traffic on
the road. We formulate the egoistic term of the AV with the
constant time headway (CTH) car-following strategy. The
CTH strategy has been widely used as a speed planning
strategy for AVs. It aims to maintain a constant time gap
between the AV and its preceding vehicle, which ensures the
desired speed of the AV is proportional to the gap distance
[17]. Therefore, the egoistic term can be formulated as:
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Ce(x’,uR):Zre(x”",u;‘a), re(x‘/‘,u;‘a):(dcm —d;‘z) ®)
k=0
Aoy =d, +Vi1, ©)

where d.,, is the desired gap distance of the AV with the
CTH strategy; d,

distance and 7, is the constant time headway.

is the minimum car-following gap

B. Courtesy Term

In this study, we model courtesy as the effort of the AV to
avoid interrupting the human driver’s original plan in the
longitudinal driving scenario. In the car-following scenarios
where the human drivers follow a preceding vehicle, human
drivers are constrained by the preceding vehicle’s actions
and this may result in socially undesirable outcomes that are
seen as uncomfortable and overly defensive by the human
drivers. We assume that human drivers generally consider
the speed limit of the traffic when driving on the road [18]
and achieving and cruising at the speed limit of the traffic
can be treated as the driver’s original plan when the driver is
not constrained by any preceding vehicle [14]. Therefore, we
formulate the courtesy term as the deviation of the human
driver’s speed from the speed limit of the traffic:

N-1
2
' _ ko ok tkook) Lk
Cc(x,uH)—Zrc(x ,uH), rc<x ,uH)—<vL vH)

(10)

where v, represents the speed limit of the traffic.

C. Human Driver Behavior Model

In the human-AV interaction, we have assumed that the
AV can access the cost function of the human driver C,, to

compute the human response and courtesy term, a common
assumption in the framework of human-AV interactions [7-
11]. Then the cost function C,, can be recovered from the

human driving data through an offline learning process. We
collect demonstrations of a driver in the driver-in-the-loop
simulator [14] and use our previously developed inverse
reinforcement learning (IRL) based driver behavior learning
approach [13] to recover the cost function which explains
the driver’s driving preferences.

Based on the IRL approach, the cost function of the
human driver is defined as a linear combination of the
weighted features:

Cy (x’,u%,u;) =W/f, (x’,u;z,u;_l)

(an
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vector;

where W, =(W,,W,,---,W,) is the weight

f,, (x’,u;z,u;i):(ﬁ,fz,---,fn)T is the feature vector and n

represents the number of defined features. The cost function

over the planning horizon N becomes:
N-1

C, (x’ Uy, )= Z(W;fH (x"" Uy Uy, ))

k=0

(12)

The goal is to find the weight vector W, that best

describes the human demonstrations 7, €1, by
maximizing the likelihood of the human driver behavior in

the policy set 1} :
w,, =argrr‘1va}1(xP<7rZ |WH) (13)

According to the principle of Maximum Entropy, we
assume that the human drivers are exponentially more likely
to select trajectories with a lower cost:

P(ﬂf_; | W,, ) = exp(—CH (x’,uR,uH ))

The weight vector W,, can be derived with the gradient

(14)

of the optimization problem. For the detailed derivation of
the weight vector W,, and more details about the driver
behavior learning process, the reader is referred to [13].
Features: The features that are capable of describing
fundamental longitudinal driving behaviors [9-14] are
utilized to represent key driving behavior properties:

e Acceleration: capturing the ride comfort in the

longitudinal direction:

£ =(a,) (15)

e Desired speed: achieving and cruising at the speed
limit of the traffic:

fo=(v, =) (16)

e Relative speed: following the preceding vehicle’s
speed and maintaining a constant gap distance:

fo=(vg —v, )’ (17)

e Relative distance: maintaining the desired car-
following gap distance d,, with the CTH strategy:

foa =ldp =dyls dy =v,7,+d, (18)
where 7,, is the observed minimum time headway

of the human driver from the demonstrations.
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Fig. 1 Schematic of the socially compatible control design in mixed traffic.
Source: This figure was generated at https://icograms.com

Trajectory Generation: To generate driver-specific actions,
a nonlinear MPC (NMPC) algorithm is used because of the
nonlinear property of the recovered cost function. In the
human-AYV interaction, it is assumed that the human driver
can correctly predict AV’s motion in car-following scenarios
if the preview time horizon is sufficiently short [10]. By
using the definition of (12), the optimization problem of the
human driver can be formulated as:

w;, = argmin( Wik, (o ug.uy)). £ = (£ n fyn o)

. k k
st d <dy vy <y < vy,

‘max

where v,, and v, are the minimum and maximum

‘min X

longitudinal speed constraints, respectively.

IV. SocCIALLY COMPATIBLE CONTROL DESIGN IN MIXED
TRAFFIC

In the previous section, we formulated the socially
compatible behavior planning of the AV. Following that, we
will describe the socially compatible control design for the
AV to plan its longitudinal maneuvers in traffic. The
proposed method minimizes the cost function (7) across the
planning horizon by leveraging preview information from
both the preceding vehicle (PV) and the following human
driver (HVO0). Such preview information can be acquired via
vehicle connectivity and advanced sensing [3-4].

Furthermore, a homogenous human-driven fleet is
introduced to simulate the following traffic for the human-
AV interaction in the assessment of the proposed socially
compatible control design’s impacts on mixed traffic. The
human-driven vehicles in the fleet are expressed as “HV1”,
“HV2” and “HV3” for clarity. Fig. 1 depicts the proposed
design in mixed traffic.

A. Control Design Implementation

In this section, an NMPC algorithm is formulated to solve
the socially compatible control strategy of the AV. The
control objective of the NMPC design is to compute the

optimal control input vector of the AV uj, for every time
step ¢ by minimizing the cost function C, within the
prediction time horizon N subject to the system constraints
at each prediction step 4. The minimum and maximum
constraints are applied on the car-following gap distance of
the AV d, considering the safety and collision avoidance
and allowable distance for vehicle connectivity, respectively.
The constraints on the longitudinal speed v, are applied by

the determined minimum and maximum speed based on the
traffic conditions. Finally, the constraints on the longitudinal

(19)

acceleration a, and control input u, are used for the

vehicle’s drivability. The NMPC design parameters can be
found in Table I. By applying (8) and (10), the optimal
control problem of the AV can be formulated as:

u;, =arg n}in(Ce (x’,uR )cos(¢) +C, (x’,uH )sin(¢))

. k k
s.t.idp <dp< dRmax sV SRS Vg (20)
k k
U, <up<u, ,d, <ap,<a

‘min max ‘min ‘max

B. Microscopic Traffic Model

In this study, the Intelligent Driver Model (IDM) [19] is
adopted as the microscopic traffic model to generate realistic
traffic flow in mixed traffic, as shown in Fig. 1. This
microscopic traffic model is considered as the following
traffic for the human-AV interaction and consists of three
human-driven vehicles. The model is expressed as follows:

5 B
v=all- A 2 sT=s, +7 v+VA—V
vy s ’ T o Jab

where a is the maximum acceleration; b is the comfortable
deceleration; v, is the desired speed; Av is the speed

@n

difference of the subject vehicle to its preceding vehicle; 7,
is the desired time headway; s~ is the desired gap distance;
s, is the minimum gap distance and & is the acceleration
exponent. The model parameters are chosen from the
realistic range of IDM parameters [20] and listed in Table I.

Table I: NMPC and IDM parameters.

Parameter Value Parameter Value
N 3s a 2 m/s?
ag -3 m/s? b 2 m/s?
ag . 3 m/s? So 3m
ug -4 m/s? 75T 1s,12s
Ug 4 m/s? 5, p 4,045
dp > d, 5m Vig > Ve s Ve | max(vy,)
de_ 45m Vi Vit 0 s

V. RESULTS AND DISCUSSIONS

By using the previously described models, we aim to
investigate the impacts of the socially compatible control
design on mixed traffic through different altruism levels of
the AV. Therefore, we define four different altruism levels
of the AV for the comparison study in which the SVO angles
are described as ¢ [0, 7/12, 7/6, z/4]. In this study,

we performed an experiment to collect real-world driving
data to verify the effectiveness of the proposed design with
naturalistic vehicle trajectories. The driving scene consists of
highway and urban driving scenarios, as shown in Fig. 2.
This driving scene defines the PV’s speed profile, and it is
used to depict a realistic traffic scenario in which the PV’s
drivability is ensured. The speed profile can be found in Fig.
3 (PV).



Fig.2 Experimental daily commute driving scene.

We use the average gap distance and time headway of
mixed traffic for each comparison case to assess the impacts
of the socially compatible control design on mixed traffic.
Each traffic participant’s stated gap distance and time
headway are calculated with respect to its preceding vehicle.
We first evaluate the impacts of the socially compatible
control strategy on the human-AV interaction with two
extreme SVO angles. Fig. 3 and Fig. 4 show the speed and
gap distance profiles of the traffic participants when the AV
performs with egoistic (¢=0) and prosocial (¢=7/4)

behaviors, respectively. By comparing the gap distance
profiles in Fig. 4, we find that the HVO follows the prosocial
AV quite closely than the egoistic AV. This is supported by
Table II, where a 50-52% reduction in average gap distance
and time headway of the HVO is observed when the AV
performs with prosocial behavior in the human-AV
interaction. The fundamental reason for this is that the
prosocial AV relieves the impedance towards the HVO by
incorporating the courtesy factor in its decision-making
problem to avoid interrupting the HVO’s original plan on the
road.

Table II:  Statistical comparison of the AV and HVO in egoistic and

prosocial altruism levels.

Average Average Average Average
Altruism Gap Gap Time Time
Level Distance Distance Headway Headway
(AV-PV) (HV0-AV) | (AV-PV) | (HV0-AV)
Egoistic 23.28 m 31.63 m 1.62 s 2.17s
Prosocial 1991 m 1534 m 1.29s 1.08 s
Difference 14.45% 51.50% 20.55% 50.35%

We then evaluate the impacts of the socially compatible
control strategy on mixed traffic. The results in Fig. 5 show
the significant differences in the average gap distance and
time headway of mixed traffic when comparing the traffic
flow among the different altruism levels of the AV. It is
found that the average gap distance and time headway of the
traffic can be significantly reduced when the AV’s altruism
level increases toward prosocial. These results collectively
demonstrate that the altruistic AV not only benefits the HVO0
but also improves the traffic flow of mixed traffic with its
increasing altruism level in human-AV interaction.

At last, we analyze the impacts of the socially compatible
control design on mixed traffic by using a public driving
dataset to demonstrate the effectiveness of the proposed
design in various naturalistic vehicle trajectories. By this, we
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randomly selected five different passenger vehicle trajectory
data from the Next Generation SIMulation (NGSIM) 1-80
dataset [21] and each vehicle’s speed trajectory is assigned
to PV’s speed profile. The numerical results in Table III
show that AV’s prosocial behaviors provide a 3-6% decrease
in average gap distance and a 4-8% decrease in average time
headway of traffic compared to the egoistic behavior of the



AV in the human-AYV interaction. These results indicate that
the proposed socially compatible control design has the
potential to improve the traffic flow of different realistic
mixed traffic scenarios. Additionally, the benefits of the
socially compatible control design on mixed traffic grow
when the AV increases its altruism level toward the
following human driver in the human-AYV interactions.

Table III: Traffic flow difference when prosocial and egoistic AV
participate in traffic (NGSIM 1-80).

. Average Ga Average Time
Vehicle ID Distince b Hea%iway
70 4.24% 6.27%
17 4.23% 6.04%
182 3.76% 5.54%
25 5.85% 8.12%
291 3.84% 4.49%

VI. CONCLUSION

Summary: In this work, we developed a socially compatible
control design for the automated vehicle to create socially
desirable outcomes that benefit itself and as well as the
following human driver in the car-following scenarios.
Furthermore, the impacts of the socially compatible control
on mixed traffic are explicitly studied with simulation cases
incorporating the automated vehicle’s altruism variations in
the human-AV interaction. The statistical results imply that
the socially compatible behaviors of the automated vehicle
can significantly improve the traffic flow of the mixed
traffic, such as reducing the average gap distance and time
headway.

Limitations and Future Work: Our work is a first step
towards developing a socially compatible behavior for
automated vehicles in the car following interactions with
human drivers. We have so far assumed that the automated
vehicle can acquire the cost function of the human driver
through an offline learning process by using human
demonstrations. In practice, automated vehicles may not
access human demonstrations in advance to recover the
driver-specific cost function offline and the offline learned
cost function may mismatch with the behavior of the real
driver. We also recognize that computing the Stackelberg
game in the human-AV interaction can bring a high
computational cost in real-time optimization. Based on these
limitations, we will further extend the work by designing an
online human driver behavior learning model in the human-
AV interactions and developing real-time simulations to
assess the performance of the proposed design.

Moreover, our preliminary results have shown that the
human driver follows the altruistic automated vehicle with a
considerably smaller gap distance and time headway
compared with following the egoistic automated vehicle.
Here, we argue that the altruistic automated vehicle with the
proposed approach can potentially earn the trust of the
following human driver and provide more comfortable car-
following experiences, resulting in a smaller driver-
perceived safety clearance. Hence, our future work will also
focus on examining these hypotheses with proper and
extensive statistical investigations.
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