T-1TS-21-06-1495.R1

Distributed Stochastic Model Predictive Control
for Human-Leading Heavy-Duty Truck Platoon
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Abstract—Human-leading truck platooning systems have been
proposed to leverage the benefits of both human supervision and
vehicle autonomy. Equipped with human guidance and
autonomous technology, human-leading truck platooning systems
are more versatile to handle uncertain traffic conditions than
fully automated platooning systems. This paper presents a novel
distributed stochastic model predictive control (DSMPC) design
for a human-leading heavy-duty truck platoon. The proposed
DSMPC design integrates the stochastic driver behavior model of
the human-driven leader truck with a distributed formation
control design for the following automated trucks in the platoon.
The driver behavior of the human-driven leader truck is learned
by a stochastic inverse reinforcement learning (SIRL) approach.
The proposed stochastic driver behavior model aims to learn a
distribution of cost function, which represents the richness and
uniqueness of human driver behaviors, with a given set of driver-
specific demonstrations. The distributed formation control
includes a serial DSMPC with guaranteed recursive feasibility,
closed-loop chance constraint satisfaction, and string stability.
Simulation studies are conducted to investigate the efficacy of the
proposed design under several realistic traffic scenarios.
Compared to the baseline platoon control strategy (deterministic
distributed model predictive control), the proposed DSMPC
achieves superior controller performance in constraint violations
and spacing errors.

Index Terms—Truck platooning, intelligent transportation
systems, driver behavior, inverse reinforcement learning,
stochastic model predictive control.

I. INTRODUCTION

RUCK platooning has gained considerable attention in
recent decades with the growing technology readiness in
intelligent transportation systems (ITS). The main objectives
of the truck platooning systems are to improve road
utilization, safety, fuel economy, and carbon emissions in
traffic [1-3]. With the recent developments of the ITS,
controlling an automated truck platoon in a form is feasible
with different control strategies such as distributed and
centralized formation control approaches [4-5].
Despite the growing vehicle connectivity and autonomy in
the truck platooning systems, the highly uncertain and
dynamic traffic conditions still prove to be challenging for the
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fully automated truck platoons to operate in all circumstances
safely. As an alternative, a supervising human driver at the
leader truck has been proposed to enhance the platoon’s
capability to handle unforeseen situations [6-7]. This human-
leading platooning system has the advantages of human
expertise that is assisted with vehicle connectivity and
autonomy, compared to the existing fully automated truck
platooning systems [8]. With the human-leading truck
platooning system, the human-driven leader truck can
strategically deal with traffic conditions that are difficult for
existing fully automated trucks, such as construction zones,
traffic control situations, erratic drivers, weather changes, etc.,
while guiding the fully automated following trucks on the road
[9-10]. This proposed implementation effectively synthesizes
vehicle autonomy with human intelligence, which
substantially expands and accelerates the application and
adoption of automated trucks in realistic traffic situations.

In the human-leading truck platooning systems, the
following automated trucks should accurately predict the
intent of the human-driven leader truck to control the platoon
in a form safely. However, the stochastic nature of a human’s
decision-making mechanism challenges understanding the
intentions of the human-driven leader truck by the following
automated trucks in traffic. Therefore, it is essential to develop
an accurate driver behavior model that captures the
stochasticity of the driver behavior in real-world driving
scenarios. Existing studies have widely used inverse
reinforcement learning (IRL) based driver behavior models to
explain human’s internal decision-making strategies when
operating vehicles [11-15]. The IRL approach assumes that
human drivers are rational decision-makers whose aims are
selecting driving maneuvers to minimize cost functions [15].
The cost function encodes the unique driving preferences of
the human driver, such as desired speed and car-following gap
distance. The IRL intends to recover this cost function from
driver-specific demonstrations and recursively solve the
optimal control problem with respect to the learned cost
function to compute personalized driver-specific trajectories.
However, most traditional IRL-based driver behavior models
are deterministic and aim to obtain a single cost function from
a particular collection of driving demonstrations. In practice,
this learned single cost function is unable to sufficiently
describe the stochasticity of the human driver behavior. Over
the past decade, some IRL-based learning models have been
proposed to learn multiple cost functions in different
applications [16-19]. A recent probabilistic IRL-based driver
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behavior model is proposed to learn multiple cost functions
from a given collection of demonstrations where each cost
function is learned for a particular driver [19]. This suggested
driver behavior model considers the uniqueness of the driver
behavior, but the time-varying stochastic nature of human
driver behavior is not explicitly addressed.

In the vehicular platooning systems, the distributed model
predictive control (DMPC) approach has been widely used to
control the platoon by maintaining constant inter-platoon gap
distances [20] or constant time headway between the trucks
[21] with the string stability property [22-23]. The DMPC
approach enables each vehicle in the platoon to be effectively
controlled online while addressing the input and state
constraints and predicting the evolution of the system with
time. However, most existing DMPC strategies do not
consider the stochastic disturbances affecting the system and
assume accurate predictions of the predecessors’ state
information in the platoon. In the human-leading truck platoon
system, the stochastic driving behavior of the human-driven
leader truck may lead the existing DMPC approaches to take
wrong decisions that incur safety constraint violations,
recursive infeasibility, and string instability in the platoon.
Therefore, some studies suggest that the vehicle control
problem can be solved with the stochastic model predictive
control (SMPC) approach to effectively deal with the
stochastic driving actions of the preceding vehicle in a variety
of traffic situations [24-25]. Moreover, distributed SMPC
(DSMPC) approaches have been proposed as an alternative to
the DMPC approach for improving the controller performance
to efficiently deal with stochastic disturbances in the
distributed systems [26-28]. In [26], the authors propose a
DSMPC approach with theoretical guaranteed recursive
feasibility and closed-loop chance constraint satisfaction for a
group of linear systems with stochastic disturbances and
chance constraints. Results show that the proposed method can
effectively deal with stochastic disturbances while achieving
recursive feasibility and closed-loop chance constraint
satisfaction. Compared to the developed SMPC approaches,
few DSMPC methods for the vehicle control problems have
been presented in the literature. In [28], the authors propose a
DSMPC approach for a vehicular platoon, and the results
demonstrate that the proposed model can obtain string-stable
and safe longitudinal control for the platoon by the proper
model settings. No theoretical analysis of the recursive
feasibility, chance constraint satisfaction, and string stability is
provided, though.

Motivated by the aforementioned discussions, this study
aims to establish a distributed stochastic model predictive
control design integrated with the stochastic driver behavior
prediction model to control a human-leading heavy-duty truck
platoon in a form during the trip. The distinct contributions of
this study include:

1. A stochastic driver behavior learning model for the
human-driven leader truck is proposed to learn and
predict the driver’s stochastic driving strategies in a
variety of longitudinal driving scenarios.

2. A distributed stochastic control design for the

following automated trucks is implemented with
sufficient conditions to satisfy the recursive feasibility,
closed-loop chance constraints, and string stability.
To the best of the authors’ knowledge, this is the first study
explicitly addressing the stochastic driver behavior learning
and distributed stochastic formation control for human-leading
truck platooning systems.

The rest of this paper is organized as follows. Section II
presents the stochastic driver behavior model. Section III
formulates the distributed stochastic model predictive control
design with the recursive feasibility, chance constraint
satisfaction, and string stability analysis. Section IV provides
the simulation results along with performance analysis.
Section V concludes the paper.

II. STOCHASTIC DRIVER BEHAVIOR LEARNING

In this study, a human-leading heavy-duty truck platoon
with a predecessor-following (PF) communication topology is
considered. The platoon consists of a human-driven leader

truck (i =0) and three homogenous following automated

trucks (i =1,2,3), as shown in Fig. 1.

Fig. 1. Schematic of the human-leading heavy-duty truck platoon in traffic.
Source: This figure was generated at https://icograms.com.

In this section, the stochastic driver behavior learning model
of the human-driven leader truck will be presented. The
proposed stochastic driver behavior learning model uses an
inverse reinforcement learning approach and aims to learn a
cost function distribution that encodes the uniqueness and
richness of the truck driver with given demonstrated driving
data. The learned cost function distribution of the driver will
be wused to predict the human-driven leader truck’s
longitudinal acceleration distribution by the immediate
following automated truck during the trip. In the remainder of
this section, the implementation details of the proposed
stochastic driver behavior learning model will be presented.

A. Vehicle Trajectory Modeling

In the stochastic driver behavior learning model, the vehicle
trajectory is formulated as the longitudinal position of the
heavy-duty truck. In general, the space of such vehicle
trajectories has infinitely many dimensions. To overcome this
problem, a one-dimensional quintic polynomial is used as a
finite-dimensional representation of the longitudinal position
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of the heavy-duty truck in this study. For vehicle trajectory
modeling, the quintic polynomials have been widely used in
existing studies [11-14] for the benefits of smooth motion,
easy calibration, and light computation.

The longitudinal position of the heavy-duty truck is

formulated in a time interval [zj,t/. +7,, — At } ,j=0,1, ... N-
1, for a trajectory that consists of N segments where 7, and

At define the length of each trajectory segment and the

sample time, respectively. The longitudinal position for each
trajectory segment j is defined as

r () =af’ +oyt* + ot + o’ + et +a )
where ¢, , are the polynomial coefficients for each
demonstrated trajectory segment and fe [O, At 2At,

s Ty —At_s,]. The longitudinal velocity and acceleration can
be defined as 7, (1) and 7 (f), respectively. By utilizing

r (t), rj(t) and rj (t) for each trajectory segment, «, , can

be set with the observed longitudinal acceleration, velocity,
and position of the heavy-duty truck at ¢ =0, respectively and
o, , can be found through the optimization which will be

later mentioned in Algorithm 1.

B. Stochastic Inverse Reinforcement Learning (SIRL)

In this study, the stochastic inverse reinforcement learning
framework (SIRL) is proposed to learn the human driver
behavior model from the driver-specific demonstrated driving
data. By using a collection of trajectory demonstrations D, the
objective is to learn a driver’s cost function distribution where
each cost function in the distribution describes the driver’s
behavior for each observed trajectory segment. Each cost
function is specified as weighted features

T
J; =9, f.i(rj) )
where subscript j represents the jth trajectory segment, J is
function, €@ is the vector, and

f(r) :(f],fz,.--,fn)r is the feature vector where n defines

the cost weight

the number of features. The objective is to find the optimal "
that maximizes the posterior likelihood of the demonstrations
for each trajectory segment

0, A

L
0, =argrrlyz?xPr(Dj |€j)=argmaxHPr(rj \Hj) 3)
where L represents the number of the planning subsegments
for each demonstrated trajectory segment and each trajectory

subsegment has the same length 7,, P. (r |0) represents the

probability distribution over the trajectory segment, which is
proportional to the negative exponential costs obtained along
the trajectory segment based on the Maximum Entropy
principle [29] as shown below

P, (r,10,)=exp(-0,"1(r,)) ()

Although the feature weight € is usually not derivable
analytically, the gradient of the optimization problem with
respect to @ can be derived. The gradient can be calculated
by subtracting the observed and predicted feature values [30]
as

Vi =f —f° )

J J J

where f is the average observed feature values of the
demonstrated trajectory segment 77] as shown below

= 1G,.
=200 (©)

The expected feature values can be computed as feature
values of the most likely trajectory segment by maximizing

R(16) (11
f°~f (arg max P (r/. |6, )) (7

The feature weight vector for each trajectory segment can
be updated based on the normalized gradient descent method
(NGD) [31] with the learning rate y as in (8)

0«0 -y v ®)

S i
By utilizing the outlined steps above, a collection of N
distinct cost functions for a given set of trajectory
demonstrations D will be obtained. The learned set of cost
functions will be used to generate a distribution in the
following stage. To accomplish this, it is crucial to select an
efficient distribution model to fit the learned set of cost
functions. Copulas are a useful way for constructing a
multivariate distribution by breaking down the joint
cumulative distribution into marginal cumulative distributions
and the copula function. Moreover, copula functions allow
modeling dependency between variables that do not follow the
same distributions. Considering the learned feature weights do
not follow the same distributions and the dependency between
the learned feature weights, the learned set of feature weight

vectors 0 =[6,,6,,6;,....6, ] is then fitted using t-copula in a
multivariate distribution G, [32].

In the t-copula fitting, initially, the kernel density estimation
(KDE) [33] method is used to transform the learned feature
weight vectors into the copula scale [0,1]. The scaled learned
feature weight vectors are then fitted to the t-copula by using
the maximum likelihood method, as expressed in [32]. After
the fitting process, the samples can be generated from the t-
copula, and then the generated samples can be transformed
back to the original scale by using the inverse KDE method.

C. Feature Construction

Since we focus on driving behaviors in the longitudinal
direction in this study, the following features are defined to
represent the critical factors of the longitudinal driving
preferences:
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Acceleration: The integration of acceleration across each
planning horizon is carried out to determine the driver’s
desired acceleration and deceleration actions within the
trajectory subsegment.

L@ =["J@)f a ©

Desired Speed: The driver’s preferred speed during the trip is
determined by integrating the deviation from the cruising
speed. The desired speed v, is defined as the observed

maximum speed of the preceding traffic in the trajectory
subsegment.

v, (1) dr

L =]"" (10)

Relative Speed: The driver’s desire for following the
preceding vehicle speed v,, is used to capture through

relative speed integration.

t+Tp

L) =" e ()= ()] a (11)
Steady Car-following Gap Distance: The driver’s preferred

car-following gap distance d (t) is determined by integrating
the gap distance deviation from the desired value d, where
d, is the minimum car-following gap distance and @ is the

time headway. @ is defined as the observed average time
headway within the trajectory subsegment.

d =r(t)o+d, (12)
fa=]" (13)

Safe Interaction Gap Distance: Under the congested traffic
condition, the integration of the gap distance variation from
the minimum safety car-following gap distance is employed to
capture the driver’s desired safe interaction gap distance.

fu(t)= _[tHTP d(t)-d[ dr

Free Motion Gap Distance: When the driver controls the
vehicle in free motion rather than interacting with the
preceding vehicle, the integration of the negative exponential
growth of the gap distance is utilized to capture the driver’s
desired gap distance to the preceding vehicle.

L) =" e O

D. Feature Selection

d(t)-d,| dt

(14)

(15)

In this study, the trajectory segments are clustered
depending on the observed driving conditions, and a distinct
set of features are applied to each cluster. With this, three
different driving conditions are addressed in the longitudinal
direction, and the relevant features are applied for each driving
condition. To characterize the driving behavior phases for
each trajectory segment, the average time headway (THW)
and inverse time-to-collision (TTCi) are employed as main
indicators. These three distinct driving conditions are outlined
and detailed further below.

Steady car-following: The steady car-following phase occurs
when the average THW<6s [34] and average

TTCi<0.05s" [35] for each trajectory segment. The
features f,, f, ., f,, and f, are used to capture the driver’s
steady car-following behavior within the trajectory segment.

Free motion: During the free motion driving phase, the driver
operates the vehicle without engaging with the preceding
vehicle on the road. The free motion driving phase within the
trajectory subsegment is described using the criteria listed
below

1. Average THW > 6's and average TTCi<0s™

2. The average gap distance to the preceding vehicle
250 m

3. The average driver’s speed > 8 m/s

The first condition indicates that the driver is not
approaching the preceding vehicle, and the driver desires
larger time headway to the preceding vehicle during the trip.
However, these may occur in congested traffic when the driver
closely follows the preceding vehicle at a reduced speed with
frequent stop-and-go actions, or in free motion when the
driver is not fully impacted by the preceding vehicle. By using
the trajectory segments from the driving data, which will be
introduced in section IV-A, the trajectory segments that match
the first requirement are selected. A K-means clustering
algorithm [36] is then utilized to determine whether the driver
is in congested traffic or free motion for each trajectory
segment by using the selected trajectory segments that match
the first condition. The trajectory segments are clustered in the
average speed and gap distance space by the K-means
algorithm. Fig. 2 shows the clustering results in the average
speed and gap distance space. Notably, the trajectories are
grouped into two clusters represented by free motion and non-
free motion trajectory segments, respectively. By examining
the K-means clustering results, the second and third criteria
are obtained accordingly. The features f,, f, and f, are

used to capture the driver’s free motion driving strategy for
each trajectory segment.
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Fig. 2. The clustering results for the free motion driving.
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Unsteady car-following: The unsteady car-following phase
occurs when the driver is neither in steady car-following nor
in free motion driving conditions. The features f,, f,, f.

and f,, are used to capture the driver’s unsteady car-

following behavior within the trajectory segment.

E. Algorithm Implementation

Given a set of trajectory demonstrations D consists of N
observed trajectory segments (7,7,...7, ), each trajectory
divided into L

(FasFigseoasi p o Py oo gaeens Ty Py o Py gaeens Py, ) - A illustrated in

segment is planning  subsegments

Algorithm 1, the detailed steps are used for the driver behavior
learning process.

Algorithm 1: Stochastic driver behavior learning algorithm

Input: (7”1,1a’i,z"--s’lu”z,w”z,zw-a”z,Lr'--s”N,l””N,z"--s”N,L)
Output: G, = [Ggl NEA ’G%J ,

(ru 3Tig seslip oTay Ty seeeslyp seens Ty 5Ty seees Ty g )

1:  Cluster the trajectory segments with respect to the
driving conditions
for each cluster do

Initialize weight set 6 « [ ]

2

3

4:  for all trajectory segments do
5 0, < all-ones vector

.1 .
6: f; =;ij (rj,k)
k=1
7 while 6, not converged do
8: for all r: € (rj1 ,r; ,...,r; ) do
9: (as,a,, o) < (position, velocity,
acceleration)
10: at the initial state of the 7,
11: Optimize (a,,a,,c,) with respect to
T
0,1,
12: end for
1 L *
13: f; =sz/‘(’”j,k)
k=1
14: Af = —f°
J J J
15 0, <0 v
: 0 —y—
S
16: end while
17: 0«0,
18:  end for
19: end for

20: G, « Fiteach cluster’s set of weight vectors € into

t-copula distribution

F. Trajectory Generation

In the previous section, we generated the cost function
distribution that best reflects the driver’s preferences using the
demonstrated driving data. We will then use the learned cost
function distribution to derive driver-specific vehicle
trajectories with the nonlinear model predictive control
(NMPC) strategy because of the nonlinearity imposed by the
learned cost function. If the prediction time horizon is small
enough, it is assumed that the driver can properly estimate the
motion of the preceding vehicle in the longitudinal driving
scenario [14]. For each trajectory segment j, the

optimization problem needs to be solved recursively at each
time instance k within the prediction time horizon 7, to

generate the driver-specific trajectories, as shown below
a, (k) =argmin J, (a, (k))
J, = 6’I.Tf ;
s.t.
d <d, (k), Von SV, (k) Vo

(16)

where a; (k ) is the optimal acceleration; d is the minimum

car-following gap distance that ensures the safety clearance;
and v__ are the minimum and maximum longitudinal

min max

v
velocity constraints; Hj and f ; are the feature weight vector

sample from the distribution G, and the feature vector based

on the observed driving conditions within the planning
horizon, respectively, as defined in Sections 1I-B and II-D.
The proposed NMPC design solves (16) with the sequential
quadratic programming (SQP) algorithm [37] and only the
first value of the predicted acceleration vector

P _[ Pk _Pk Pk : :
aowk—[ao’k,aoykw&,...,aOY“TP_A,‘J is applied to update the

vehicle state at the time k + Af, where a; (k) = a(i ’: .

k+At,

accomplished using the discretized inter-vehicle dynamics
model [38] with sample time Az, as formulated below

At the time the vehicle state updating is

d, (k+Ats):(vPV (k)_vo (k))Ats +d, (k)

. a7
vo (k+At) = v, (k)+a, (k)At,

where v, and v,, are the longitudinal velocity of the human-

driven leader truck and preceding vehicle, respectively.

III. DISTRIBUTED STOCHASTIC MODEL PREDICTIVE CONTROL
(DSMPC) DESIGN

In this section, a serial distributed stochastic model
predictive control (DSMPC) for the following automated
trucks under PF communication technology will be
formulated. The following automated truck 1 solves the local
optimal control by utilizing the predicted acceleration
information of the human-driven leader truck through the
learned cost function distribution (16), as motivated from [39].
The remaining following automated trucks solve the local
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optimal control by utilizing the probability distribution of the
predicted acceleration information from its predecessor
through V2V communication.

The following objectives are considered for developing the
DSMPC strategy for the following automated trucks in the
platoon:

1. The local controllers should be recursive feasible and

guarantee chance constraint satisfaction for the closed-
loop system.

2. The platoon should be L* string stable. This indicates
that the peak magnitude of the spacing error should
not be amplified through the vehicular string such that

"Adm”w < "Adl. "w, where ”Adi”w defines the L* norm

of the spacing error of the following truck i, as
formulated in [22].

A. Problem Formulation

In this study, the control objective of the following
automated trucks is to regulate the inter-platoon distance gap
with a constant distance policy and to maintain zero relative
speed to their predecessors in the platoon.

At the time 4k, the vehicle dynamics of each following
automated truck in the platoon can be formulated by the
nonlinear third-order model [40] as

d, (k) =, (k)= v,(k)
v, (k) = a (k)
di(k) = f[(Vi:af)+ 8; (Vi)gi

where i represents the ith following automated vehicle in the
platoon, d, defines the inter-vehicle distance, v, and g,

(18)

define longitudinal velocity and acceleration, respectively, &,

represents engine input, f;(.,.) and g;(.) are formulated as

1 vA,.C .
fl.(vl.,al.)=——{a,.+—F’ i vi2+&j
T 2m, m

i i

_ UAiCdiviai

(19)

m.

i

1
gi(vi):
m.T

where 7, is the actuation time-lag; U is the mass of the air;

are the mass, cross-sectional area,

miy Aﬁ s gom‘ s Cd,
mechanical drag, and drag coefficient of the vehicle i,
respectively. By applying the control law in [40], the engine
input &, can be derived as
vA4;C,

i i

2
g =um; + v +o, +T,UAE Cdivl.a[ (20)

where u, is the control input. After applying the feedback

linearization technique [41], 4, (k) can be formulated as

() =~ (1, ()= a, ()
T.

i

ey

Since the control objective of each following truck in the
platoon is to maintain the constant inter-vehicle distance and
zero relative speed to its predecessor, the system error
dynamics of each following truck can be derived as

A, (k) = d, (k) —d,

Av,(k)=v_,(k)-v,(k) 22)

where Ad, is the deviation from the equilibrium spacing d,
and Av, is the relative speed of the vehicle i to its
predecessor. The system state of each following truck can be
defined as x, (k) =[Ad, (k),Av,(k),a,(k)]" and the state-space

form can be defined as

x,(k) = Ax,(k)+ Bu,(k)+ D,a,_ (k) (23)
01 0 0 0

where 4 =10 0 -1 |, B =|0 |, D =|1
00 -1/t 1/ 0

The discrete version of (23) with a zero-order hold (ZOH)
approach can be defined as

x,(k+At)=A'x,(k)+ B/u,(k)+ D/a, (k)

i

(24)

where 4/, B/ and D/ can be obtained by applying Jordan-

Chevalley decomposition [42].
The acceleration of the vehicle i—1 is considered as an

additive disturbance and the state prediction xf ,;kw: at the

time k + A¢, can be derived as

Pk _ 41 Pk " Pk 1 ~Pk
Xi kA, =4 Xik +B, Ui +D, ik

(25)

where the longitudinal acceleration of the preceding truck

~P.k . e . y .
a; ", has a truncated normal distribution N;’,, with sequence

arsrek } has

it g s At rnr, 2o Yt hsar, oo Y1k

~P.s,k ~P,s,k ~P.s.k ~P.s+&k ~Pos+&k
> i-Lk+Atg 2 i-1Lk+Tp

non-zero mean E[d[’i ’H:E[ i, and variance I, & and s
are the number of generated samples and the current generated
sample at the time £k, respectively, and 7, defines the

prediction time horizon.

P.k

. Pk Pk
The variables z;;, ¢, , v,; and K, represent the

nominal state, error corresponding to the effect of the
disturbances, the nominal control input, and the linear
feedback gain, respectively, as shown below
Pk Pk Pk
Xip =Zip te
Pk Pk Pk (26)
Uiy :K/'ei,k’» TVik
The predicted nominal state and the error at the time
k + At, can be derived as
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Z:/lﬁm = A,’Zzpkk + B,,V,PAI( @7
et (A +B'K ) e +D/alt

ik+ALg i t 1,k

initialized at Zf = x: . The predefined linear feedback gain
K,
where the optimal control problem is carried out over the
nominal control input.

The receding horizon stochastic optimal control problem of
each following truck in the platoon at the time Ak is

formulated as in (28)

v = argmin(E[l (xlk’v )])

is used to reduce the growth of the error in the prediction

(28a)
s.t.
Zijom, = Az + BV (28b)
ety =(4'+BK,)el} + D/, (28¢)
Xt =zt et (28d)
=K e +vi (28¢)
Pk Pk Pk
S o SN
Ptk gl Ll
P [H.x%”k < hj} >1-8 (28g)
u; <u,“m <u, (28h)
2o, €2, (281)
Vi, €11, (289)
zf’,;’ir €Z, (28k)
Vn e {0,1,2,...,(TP/AtS)—1} (281)
Vs e {1,2,..,¢} (28m)
Vk e {0,Ar,2A1,,..,T} (28n)

where E[l,. (xfk,vfkﬂ is the expected value of the cost

function; (28g) is the state chance constraints for regulating
the vehicle states, such as regulating the maximum deviation
from the equilibrium spacing and acceleration constraints;
(28h) is used to guarantee the control input values within the
predefined range; (28k) is the terminal state constraint to
maintain the terminal state to be close enough to the
equilibrium point.

Cost function: The expected value of the cost function

Jsurc, :E[l,.(xfk,vfk )] at the time k is derived as

Joupe, = E[l, (xlk,v )}
(Tp/At )1
(( zk+nAt) Qx zk+nAt ( zpkinAt) Ruuzpkinm)

A%

n=0
( l /(+T,, ) QP 1k+Tp:|

)T x zk+nAt ( zk+nAt ) Q E[ zk+nAt ]
) +2(, ) RKGE[e, ]) OO
+( :k+T) Oy th;T +2( 1k+r) OpE |:L/(+TP:'+C

(Tp /AL, )1
(0 ) ( 1k+)1At

Rka

u i k+nAt,

(1 /80,)-1

where c:E{ Z

(i) (0 KTRE, )l o

T .
(ef fir,;) O,e, ,;"ﬂp} is a constant term that can be excluded

from the cost function since it does not depend on the decision

variable v/;"; the expected value of the errors E[ e, J and

—Pk 1—Pk
E[ e s, ] can be approximated as D,a}, . and D, A gar, s

respectively; Q. is positive definite weight matrix
y, 0 0

0.=| 0 w, 0 |;R, ispositive definite weight value and
0 0

0, is the terminal cost weight which is the solution of the
Lyapunov equation (A'+B’Kf)QP (A’+B’Kf)—A'+B’Kf
—(Qx +K /,RuK;) [43] and the linear feedback gain K, can

be obtained solving the linear quadratic regulator (LQR)
optimal control problem.

State constraints: The stochastic nature of the longitudinal
acceleration of the preceding truck di’f , may enforce state

constraints violations when defined as deterministic and hard
constraints. This subsequently will incur safety-critical issues.
Therefore, the state chance constraints (28g) are formulated as

in (30), requiring the probability P, () of violating the

constraints based on arisk level g e (0, 1]

P [ai’kﬂ 2a ] >1-p

30
Pr [ai,k+.v < ai,m j| = 1_,3 ( a)
[Adz kto,s+s = Ad;kmz s+1:| 21-p4 (30b)
|:Adr k+o,s+8 S Ad: k+Atg v+]:| > 1 ﬂ
) —d,, fori=1
A s = max(max(|Ad, o )) for>1
Ad;y 1 = MAX (max (jaa’ ],(,|))5 fori>1 (30¢)

Vo e {0,ML, 200,k + AL}, VS € {1,2,3,,5+1)

where the constraints on the vehicle acceleration are imposed
for the vehicle drivability in (30a); d,, is a predefined spacing
error. The constraint of the spacing error guarantees the string

stability L” with the probability as formulated in (30b) and
(30c), which will be proved later in the following section. The
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proposed DSMPC design uses the
introduced in Algorithm 2.

implementation as

Algorithm 2: The DSMPC algorithm

Input: The human-driven leader truck’s predicted
distribution of the longitudinal acceleration
Output: The following trucks’ trajectories

1. Attime k=0,

2 Initialize x,, =0 for all the following trucks
3: Attime £>0

4: for i=1

5: The following truck i predicts the set of the

longitudinal acceleration with & samples of the

human-driven leader truck S , by solving (16)
and fits S, to the non-zero mean normal

distribution Ny, bounded with

[min(sa& ) max(S " )}

6: The following truck i derives the & samples of
the predicted vehicle state S o, by solving (28)

7: Following truck i transmits S to i+1

8: end

9:  for 1<i<3

10: The following truck i receives the & samples of

predicted longitudinal acceleration values S,

—1/(

from the following truck i—1 and fits S, tothe
non-zero mean normal distribution N},

bounded with [min(s ) max(Sa )}

11: The following truck i derives the & samples of
the predicted vehicle state S, by solving (28)

12: if i<3

13: Following truck i transmits S, to i+1

14: end

15: end

16: Update time k =k +A¢, and go to step 3

Terminal constraint: The terminal constraint set Z, ; should
be considered as the subset of the robust positive invariant set
Z, ; C Zpy to guarantee that each local controller will remain
in the robust invariant set once it enters, as discussed in [22].

By this, a terminal control law 7Z'f( 2 fur, )el‘[ is required

when each local controller reaches the robust positive
invariant set Z,, . The terminal control law can be

constructed with the obtained linear feedback gain such as

and we have Az}, +B;rf( lk’jTP)

under the terminal control law.

P
”f( 1k+TP) K,z i,

eZ, , forall zl.,;ﬁrp €Z,,

B. Platoon Feasibility, Chance Constraint Satisfaction and
String Stability Analysis

In the previous section, we formulated the DSMPC as a
formation control strategy for the following automated trucks
in the human-leading heavy-duty truck platoon. Next, we will
establish the recursive feasibility, chance constraint
satisfaction, and string stability of the proposed DSMPC
design with the following lemmas and proofs.

Lemma 1: The DSMPC algorithm for the following trucks is
recursive feasible, i.e. it is feasible for all times 0 <k <T =T,

if the initial state is feasible and the following states remain in
the feasible set.

Proof: Since the stochastic variables in the optimization
problem of the proposed DSMPC design only affect the cost,
the recursive feasibility can be established in terms of the
deterministic nominal state and control input using the
traditional principles in predictive control, as stated in [44].
Assume that DSMPC is initially feasible with respect to the
constraints (28, 30) at k=0, and there exists an optimal

PO PO P,0
= |:Vi,0 Viar oo Vit -, :|

€Il , with the resulting nominal state trajectory z/, = [zf’ s

sequence for all following trucks v/,

where Z, , is the

PO PO P,0
Z;sas 20 2o EZ:‘,O:| and z; €Z, ,

terminal state domain. Next time interval at k=Az, the

solution is also feasible for the following trucks with the
_[Vzm’ Viong > IPT]’K ZP]:'EHIAI’

Pl A'z P, +B'K ZPI :|EZI',A[

optimal sequence v,

P P, P,
Z. =|:z. " Z. . and

i,Atg 1,2A8 0 Zi3A1 0" ’IT’ llT [Ty

Az[; +BK,z[; €Z, .. Therefore, the DSMPC algorithm is
feasible at all time steps using induction.

Lemma 2: The DSMPC algorithm for the following trucks
satisfy the closed-loop chance constraints (28g) for
k=0,..,T and j=1,...,¢ if and only if the nominal system

(28Db) satisfies the constraints (281) with

Z, ={ze®R | H <p, ) 31)
where 77, is given by
Miik = mix n
s.t. (32)

P[ Mox <h, HeP"—E(D,d,Pl"k)}Zl—ﬁ
Proof: The state chance constraints (28g) can be expressed

with the predicted nominal state and the stochastic disturbance
as shown in (33)

RH," <h—He™ |21-p
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or 33)
B[, <h—He* |21-p

where denotes a bound that 1is calculated as

M}k

szi * < 1., and (33) can be reformulated as shown in (34)

P [qu <h,~H e ~E(D/a%, )} >1-8 (34

where the scalar value E(Dl.'&fi fk) defines an additional

constraint tightening to deal with the non-zero mean E,}j’,]fk.

The chance constraint in (34) can be expressed in terms of the
cumulative density function (CDF) F}, of the random variable

h—H,e" - E(D,,’aj}{fk) as shown in (35)

Fy (-1, )=1-8 (35)

where the probability of the truncated distribution N, is
known. Thus, the value of 7,,, can be calculated by

evaluating the inverse CDF F, H_l as shown in (36)

Nk = _FI-;I (l _ﬁ)
which concludes the proof.

Lemma 3: The DSMPC algorithm for the following trucks is

L” string stable when the DSMPC algorithm is recursive
feasible, and the chance constraints are satisfied.

Proof: When the DSMPC algorithm is recursive feasible and
the chance constraints are satisfied, the state constraint on the
spacing error (30b) is satisfied at all time steps. Therefore, the
L” string stability ||Ad,,+, LS ||Ad,. ||00 is satisfied when k& — o

[22].

(36)

IV. RESULTS AND DISCUSSION

In this section, the performance of the proposed stochastic
driver behavior model and the truck platooning control
strategy will be investigated. Besides, a comparison study with
a deterministic formation-controlled platoon will be conducted
to evaluate the controller performance of the proposed design.

A. Stochastic Driver Behavior Model Implementation

In this study, we used a driver-in-the-loop driving
simulation integrated with MATLAB Automated Driving
Toolbox to collect realistic driving data for training and testing
the proposed stochastic driver behavior model. The setup
consists of a driving seat, three curved monitors, a steering
wheel, and pedals is provided, as shown in Fig. 3. The
simulation cases focus on the single-lane longitudinal driving
scenarios where a heavy-duty truck driver follows a preceding
vehicle that is operated under several predefined speed
profiles. Fig. 4 shows an example scene from the 3D
simulation environment where a driver (blue truck) follows a
preceding vehicle (red vehicle) on the road. The driving data
set is collected under 10 different driving scenarios, and each

driving scenario is performed 30 different times by three
drivers. The driver model is developed using 300 leader-
follower trajectories for each driver. The data is obtained from
the simulation environment at 10 Hz.

Fig. 3. A driving scene when a driver operates the truck in the 3D simulation
environment.

Fig. 4. A road scene from the 3D simulation environment.

To assess the performance of the proposed stochastic driver
behavior model for each driver, 25 trajectories for each
driving situation are chosen randomly for training, and the
remaining 5 trajectories for each driving scenario are used for
testing. In the weight vector update, the learning rate y is set
to 0.2 at the initial and then drops by half for every five
epochs. The length of each trajectory segment 7, and

subsegment 7, are set to 3 seconds and 1 second,

respectively. The sample time Az, is 0.1 seconds, and the safe
car-following gap distance between the vehicles d_ is set to 5

m. In the trajectory optimization with respect to quintic spline
coefficients, as in step 11 of Algorithm 1, the BFGS Quasi-
Newton method is used [45]. Besides, v, is set to 0 m/s and
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V.. 18 set to the maximum speed of the preceding traffic

during the trip in (16). For the trajectory generation, 50
samples for each driving scenario are generated by using the
NMPC design, as defined in (16).

B. Stochastic Driver Behavior Model Assessment

In this section, we will evaluate the performance of the
proposed stochastic driver behavior model in various driving
scenarios. Fig. 5 shows the L? norm of weight update gradients
for the trajectory segments used in training for Driver 1.
Notably, the feature weights converge after roughly 40 epochs
for all the trajectory segments during the optimization. For
demonstration purposes, we present the graphical results of
one trajectory (Fig. 6, Fig. 7, and Fig. 8) used for testing for
Driver 1 and summarize the numerical results from all other
trajectories for each driver in Table I. The predicted one
sample and actual one sample of a driving scenario in testing
are shown in Fig. 6 and Fig. 7. The predicted 50 samples and
the actual 5 samples of this driving scenario in testing are
plotted in Fig. 8. The results show that the stochastic driver
behavior model can generate diverse trajectory samples which
represent the richness of the driver’s unique driving
preferences. Furthermore, it can be seen that the proposed
stochastic driver behavior model generates accurate
trajectories, although the model has never seen the testing
trajectories previously, suggesting a high degree of validity.

Root Mean Square Error (RMSE) between predicted and
actual trajectories is used to evaluate the performance of the
learning model. Table I shows the average RMSE values
between the mean of the actual and predicted trajectories
among all driving scenarios for each driver. The results show
that the proposed driver behavior model can mimic the
observed trajectories with small prediction errors for each
driver. Because the expected features are determined as the
feature values of the most likely trajectories throughout the
learning process, small deviations between the actual and
predicted trajectories are acceptable in testing.

To conclude the discussion in the driver behavior model
evaluation, the findings show that the proposed stochastic
driver behavior model is transferable to different truck drivers
and it can learn and imitate each driver’s observed unique and
stochastic driving behaviors in various driving scenarios.

TABLEI
AVERAGE RMSE VALUES IN TESTING

Truck Driver Speed (m/s) Acceleration (m/s?)
Driver 1 1.10 0.50
Driver 2 1.40 0.73
Driver 3 1.28 0.54

10

30 T T :

Trajectory segments
====Mean

25

0 10 20 30 40 50 60 70 80
Fig. 5. Gradients (L’ norm) of the trajectory segments for training.
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Fig. 6. Speed trajectories for testing in a driving scenario (one sample).
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Fig. 7. Acceleration trajectories for testing in a driving scenario (one sample).
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Fig. 8. Speed and acceleration trajectories for testing in a driving scenario (all

samples).

C. Baseline Deterministic Platoon Control Design

We compare our proposed DSMPC design with a serial
distributed deterministic model predictive control design
(DMPC) to analyze the controller performance of the truck
platoon. The DMPC design is a well-established and widely
accepted distributed formation control approach to control the
vehicular platoon in a form [20-23]. The baseline DMPC
formation control strategy is adopted for each following
automated truck to maintain the constant gap distance and zero
speed difference to their predecessors in the platoon. In the
deterministic DMPC baseline strategy, the uncertainty of the
longitudinal acceleration of the human-driven leader truck is

ignored and only the expected mean value E[a, | J alt, is

i-1,k
considered. The baseline DMPC design uses the
implementation strategy as introduced in Algorithm 3.

In the baseline DMPC design, the receding horizon
deterministic optimal control problem of each following truck
in the platoon at the time 4 is formulated as:

_ . P P
u=argminJ,,. (xl.’k,ul.,k)

Tp/ At . 2

upc, = "Z; [( X eana, ) O0.x e u(ui,/LJr(n—l)At‘) } (37a)
(20, ) 0l
S.t.
X, = A+ Bl + DAl (37b)
u <u; ke, < 7 (37¢)
& S, S (37d)
Ad;, JerAr, = <Ad, Jenr, = Adl+k+m (37¢)
Adyyy, SOy, SO,

d, fori=1 379

Adfjkm;\ :{

max(|Ad, la|>} fori>1
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Ad,., =max(|Ad,_, fori>1
Vo e {O,Ats,gAtS,...,|12+Ats} 7
X, € X (37h)
u €U, (37i)
ver, € X, (37))

Algorithm 3: The DMPC algorithm

Input: The human-driven leader truck’s predicted

distribution of the longitudinal acceleration

Output: The following trucks’ trajectories
Attime k=0,

1

2 Initialize x;, = 0 for all the following trucks

3: Attime £>0

4 for i =1

5 The following truck i predicts the set of the
longitudinal acceleration with £ samples of

the human-driven leader truck S , by solving

(16) and fits S , to the non-zero mean normal
o k

distribution N§, bounded with

[, -max (s, |

6: The following truck i uses the expected mean
value of the human-driven leader truck

B[4t ]=ar

state xl.’,r by solving (37)

derives the predicted vehicle

7: Following truck i transmits af . to i+l
8: end
9:  for 1<i<3
10: The following truck i receives the predicted

longitudinal acceleration ail,k from the
following truck i—1 and the following truck i
derives the predicted vehicle state xf « by

solving (37)
11: if i <3
12: Following truck i transmits afk to i+1
13: end
14: end

15:  Update time k =k +A¢, and go to step 3

D. Evaluation of the DSMPC Design with Comparison Study

One of the driving scenarios from the data set is used to
simulate the traffic in front of the truck platoon. The speed
profile of this driving scenario can be found in Fig. 9
(preceding traffic). The truck platoon with the leader truck
(Driver 1) follows the preceding traffic according to the
control objectives as previously introduced in (16) and (28).
We carry out 100 Monte Carlo simulations to evaluate the
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performance of the proposed design. The model parameters of
the proposed DSMPC and the baseline DMPC designs are
listed in Table II. For the sake of conciseness, the following
trucks are abbreviated as “FT1”, “FT2”, and “FT3”,
respectively, in the results.

Firstly, we evaluate the performance of the proposed
DSMPC design through the number of constraint violations
and the spacing error. Table III shows the average constraint
violations and maximum spacing error of the proposed
DSMPC and DMPC baseline designs for each following truck
among the generated 100 simulations. The boxplots of the
maximum spacing errors of the following trucks in the platoon
are shown in Fig. 10. According to the results in Table III, the
proposed DSMPC design achieves the closed-loop constraint
satisfaction of 100%, 99.95%, and 99.94% for the following
trucks in the platoon. This indicates that the constraints of
each following truck are satisfied with the specified
probability of 95% in the closed-loop. By incorporating the
benefits of the stochastic prediction model and the chance
constraint implementation, the proposed DSMPC design can
achieve better controller performance with fewer constraint
violations and better spacing error tracking compared to the

DMPC baseline strategy.

20 T T T T " . T
Preceding traffic ===~ Leader truck mean| |

Leader truck samples

% 12+
S 10 ‘\‘
S 10
o] \l
2 s 7
n [
6 i
n
o
]
1
2t (1
i’
0 10 20 30 40 50 60 70 80
Time (s)

Fig. 9. Speed trajectories of the human-driven leader truck and preceding
traffic.

TABLE II
DSMPC AND DMPC PARAMETERS

TABLEIII
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CONSTRAINT VIOLATIONS AND SPACING ERROR COMPARISON

Average Average Average Average
constraint | maximum | constraint | maximum
Truck violations spacing violations spacing
(DSMPC) error (DMPC) error
(DSMPC) (DMPC)
FT1 0 0.19m 0 0.78 m
FT2 0.34 0.15m 5.80 0.28 m
FT3 0.43 0.14m 3.73 0.28 m
_ FT1 _ FT2
Eqp = EOfE
s ‘ 5 03 ‘
= o=
206 4 o 0.25 -
5 £ |
204 § 0.2 -
302 = %015 B
§ s 2 —_
DMPC DSMPC
R T3 DMPC DSMPC
é -
< 03 :
<]
025 =
()
S
S 02
. T
< 0.15 =
= 01 ==
DMPC DSMPC

Fig. 10. Boxplots of the maximum spacing errors of the following trucks in
the comparison study.
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Fig. 11. The speed and spacing errors and acceleration of the following trucks
in the platoon with DSMPC design.

The string stability of the truck platoon is another critical
factor in the performance analysis of the proposed control
design. Fig. 11 shows the evolution of speed and spacing
errors and acceleration of the following trucks in one
simulation run. Table IV shows the L° norm of each
following truck during the trip in one simulation run. Table V
shows the minimum, average, and maximum observed L*
norm of each following truck during the trip among generated
samples. These findings reveal that the truck platoon is

satisfying the L” string stability condition ||Adl.+1||3c < ||Ad,.||w
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by successfully utilizing the L° norm constraints in (30), and
the errors decay throughout the platoon.

TABLE IV
L” SPACING ERROR COMPARISON IN ONE SIMULATION RUN

Truck L
FT1 0.26 m
FT2 0.22 m
FT3 0.13 m
TABLE V

L” SPACING ERROR COMPARISON IN ALL GENERATED SAMPLES

Truck L. L:Vg L

FT1 0.13m 0.19m 0.28 m
FT2 0.12m 0.15m 021 m
FT3 0.11m 0.14m 0.18 m

To summarize the discussion in the performance evaluation
of the proposed DSMPC design, the results show that the
proposed DSMPC design can achieve better controller
performance compared to the deterministic DMPC baseline
method. Furthermore, the proposed DSMPC design can
achieve a string stable platoon by satisfying sufficient
conditions. The findings demonstrate that the proposed
DSMPC design has the advantages of accurately representing
stochastic driver behaviors and explicitly treating human-
induced uncertainty to navigate the human-leading truck
platoon safely.

V. CONCLUSION

In this study, we designed a distributed stochastic model
predictive control design for a human-leading heavy-duty
truck platoon. The proposed control framework integrates a
stochastic driver behavior learning model of the human-driven
leader truck with a distributed control strategy for the
following automated trucks in the platoon. The stochastic
driving behaviors of the leader truck are learned by acquiring
the cost function distribution from the driver-specific
demonstrations with inverse reinforcement learning. In the
distributed control design, the following automated trucks
predict the distribution of the predecessors’ acceleration
maneuvers. The proposed stochastic formation control strategy
handles the uncertainty of the predicted acceleration
information to control the platoon in a form by satisfying the
recursive feasibility, chance constraints, and string stability.
The comparison results reveal that the human-leading heavy-
duty truck platoon with the proposed control strategy can
achieve minor constraint violations and spacing errors than the
deterministic baseline model predictive control. The results
collectively demonstrate that the proposed stochastic
distributed control strategy is effective for a human-leading
heavy-duty truck platoon, a new form of platoon leveraging
vehicle autonomy and human intelligence.

As a further extension of the work, we will investigate
different drivers’ behaviors of the human-driven leader truck
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and their impacts on the following automated trucks in the
platoon.
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