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Abstract— Drivers have distinctively diverse behaviors when
operating vehicles in natural traffic flow, such as preferred pedal
position, car-following distance, preview time headway, etc. These
highly personalized behavioral variations are known to impact
vehicle fuel economy qualitatively. Nevertheless, the quantitative
relationship between driving behaviors and vehicle fuel
consumption remains obscure. Addressing this critical missing
link will contribute to the improvement of transportation
sustainability, as well as understanding drivers’ behavioral
diversity. This study proposed an integrated microscopic driver
behavior and fuel consumption model to assess and predict vehicle
fuel economy with naturalistic highway and local commuting
traffic data. Through extensive Monte Carlo simulations,
significant correlation results are revealed between specific
individual driving preferences and fuel economy over drivers’
frequent commuting routes. Correlation results indicate that the
differences in fuel consumption incurred by various driving
behaviors, even in the same traffic conditions, can be as much as
29% for a light-duty truck and 15% for a passenger car. A
Gaussian Process Regression model is further trained, validated,
and tested under different traffic and vehicle conditions to predict
fuel consumption based on drivers’ personalized behaviors. Such
a quantitative and personalized model can be used to identify and
recommend fuel-friendly driving behaviors and routes,
demonstrating a strong incentive for relevant stakeholders.

Index Terms—Driver Behavior, Fuel Economy.

I. INTRODUCTION

ITH the rapid development of the automotive industry

and increasing vehicle ownership, the number of
motorized vehicles have topped one billion worldwide as of
2010. While the growing availability of vehicles has greatly
facilitated personal and commercial transportation needs, it also
brings about critical challenges, including energy consumption
and pollution [1]-[3].

Significant efforts have been dedicated to improving the
efficiency and sustainability of the ground transportation
system from different perspectives, including vehicle
technology advancements, enhanced infrastructures, and proper
traffic policies. One factor that is often overlooked, though, is
the human factor and its impacts on the vehicle fuel economy
in real traffic scenarios. This study will quantitatively
investigate this issue and demonstrate tangible benefits through
common and realistic traffic case studies.
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Existing literature has investigated the significance of
driving behaviors primarily for safety enhancement purposes
[4], considering a human driver inevitably encounters
distractions [5], reaction time [6], and operating mistakes [7]
that lead to the deterioration of driving performance. Therefore,
it is crucial to understand how human driving preferences affect
vehicle operation through driver behavior modeling [8]. In [9],
the authors describe the characteristics of human drivers and
provide in-depth guidance on modeling approaches. Physical
limitations and attributes like human delay, visual and motion
influences, and preview utilization are strongly suggested when
modeling human driver behaviors. In [10], authors use a
Markov dynamic model to infer drivers’ intended actions based
upon observed temporal patterns of environmental and behavior
state. Simulator studies under various driving conditions,
including emergency maneuvers, show the effectiveness of this
approach.

Drivers often have unique driving preferences attributed to
diverse demography, mental state, travel purposes, among other
factors. Such diversity directly translates to different vehicle
maneuvers even facing the same traffic condition [11], resulting
in different vehicle motion dynamics that substantially impact
fuel consumption. In [12], the authors investigate the impacts
of the human driver on an intelligent transportation system from
the perspective of traffic efficiency and average travel speed.
Probabilistic models are shown capable of modeling driver
behavior based on empirical measurements. In [13], the authors
report a long-term training program for urban bus drivers
towards more fuel-efficient driving behaviors. It is found that
while the fuel-saving effects are strong during the training
period, such improvement does not translate to drivers working
situations. In [14], the authors investigate the effectiveness of
providing drivers with road information to reduce traffic
congestion. Under the assumption that drivers have perfect
information about road capacity, travel costs are reduced as
expected. However, when imperfect information is delivered to
drivers, the reduction is absent.

For a given vehicle, in addition to various driving behaviors,
the fuel consumption is also heavily influenced by traffic
conditions such as traffic density and travel time [I5].
Therefore, the exact characterization of the relationship
between driving behaviors and fuel economy in real-world
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driving scenarios becomes highly challenging due to traffic
uncertainties. In this study, we mitigate such uncertainties by
limiting our scope to daily commuting traffic, where we
continuously collect the daily commuting traffic data over a
certain number of frequent routes [16]. Since the daily traffic
patterns are similar on the frequent routes during the same travel
time, the impact of traffic uncertainty is reduced. This is based
on a reasonable assumption that drivers often operate vehicles
over frequent daily routes, considering many drivers’ commute
routes are limited [17]. In addition, most commercial fleets,
such as parcel delivery, urban public transportation, and shared
mobility service operate according to specific routes and
schedules on a daily basis. Hence the revelation of the
relationship between driving behaviors and vehicle fuel
consumption can have potentially significant economic
incentives for the logistics and transportation sectors.

An accurate and computationally friendly driving behaviors
model and fuel consumption estimation are indispensable to
examine the quantitative correlation between driving behaviors
and vehicle fuel economy. In [18], a continuous microscopic
traffic model (Intelligent Driver Model) is developed and
calibrated with experimental traffic trajectories. The model
describes the longitudinal vehicle dynamics as a function of
both traffic conditions (desired freeway speed, speed limit,
relative speed, and distance) and driving behaviors
(acceleration and braking aggressiveness, preview time
horizon) in a deterministic formulation. The model shows
realistic driving behaviors and produces no collision. Besides
the driving model, a precise estimation of vehicle fuel
consumption is critical for high fidelity results. A desirable fuel
consumption model should be both accurate and generalizable.
In [19], a power-based vehicle fuel consumption model is
proposed to predict the instantaneous fuel rate using vehicle
acceleration and speed. The model is validated against
experimental data and demonstrates a high level of accuracy.
The model can be calibrated with publicly available data.

This study aims to quantitatively characterize the impacts of
individual driving behaviors on vehicle fuel economy over
frequent routes in real-world traffic scenarios. Such a
characterization enables the potential of predicting and
assessing vehicle fuel economy by observing human driving
preferences through daily operations such as commuting,
delivery, and public transportation. ~An  accurate
characterization of the relationship between driving behaviors
and fuel economy can be particularly advantageous in
managing large commercial fleets by guiding drivers towards
cost-effective behaviors and routes. It can also facilitate the
development of Advanced Driver-Assistance Systems (ADAS)
to better cope with personal preferences that will improve
drivers’ comfort and trust. By exploiting the growing
availability of human driving data, such benefits can be
anticipated in the foreseeable future.

The contributions of this study include:

1. A computational-efficient microscopic driving model
with fuel consumption estimation is constructed based
on naturalistic traffic trajectories.

2. Statistically significant correlations between drivers’

diverse behaviors and vehicle fuel economy are revealed
through extensive Monte Carlo simulations.

3. A prediction model is trained, validated, and tested to
predict vehicle fuel consumption based on human
driving preferences with high accuracy and
generalizability.

The rest of this paper is organized as follows. In section II,
the integrated driving behavior and fuel consumption model is
established and calibrated. In section III, the numerical
correlations between driving preferences and fuel economy are
investigated with experimentally collected traffic data during
local and highway commuting. Simulation results are presented
and discussed. Concluding remarks are made in the last section
of the paper.

II. DRIVING BEHAVIOR AND FUEL CONSUMPTION MODEL

A dynamic driving behavior model integrated with vehicle
fuel consumption estimation is developed in this section. The
proposed model consists of two submodules, namely a
microscopic driving model to describe the individual driving
behaviors in realistic traffic and a vehicle fuel consumption
model to provide an instantaneous estimation of fuel
consumption rate. The structure of the proposed model is shown
in Figure 1.
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Figure 1. Driving behavior and fuel consumption model

A. Microscopic Driving Model

The driving behavior is modeled by the Intelligent Driver
Model (IDM) as introduced in [18]. The IDM model
characterizes longitudinal vehicle dynamics as in (1) and (2),
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where v is vehicle velocity; subscript i represents the ith vehicle
in the traffic; a is the maximum acceleration; vy is the desired
freeway speed; 0=4 is the acceleration component; s is the
actual gap distance; s” is the desired minimum gap distance; so
is the jam distance; T is the time headway; Av is the speed
difference to the leading vehicle; b is the desired deceleration.
As shown in (1), the longitudinal vehicle dynamics is a
nonlinear function of multiple coupling factors that encodes
both traffic conditions and driving behaviors. For the sake of
conciseness, we briefly discuss this under two typical traffic
conditions. First, when a vehicle is traveling at high speed in
light traffic, the actual gap distance s is much larger than the
desired minimum gap distance s*. The vehicle acceleration is
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mainly determined by the desired freeway speed and actual
vehicle speed since s°/s approximates to zero. As vehicle speed
approaches the desired freeway speed, the right-hand side of
Eq. (1) converges to zero. Therefore, the desired freeway speed
is reached and maintained. Second, when a vehicle is traveling
at a low speed in heavy traffic, the acceleration is mainly
determined by the desired gap distance and actual distance since
the vehicle speed is much lower than the desired freeway speed
and v/vo approximates to zero. In this scenario, the car-
following policy tries to regulate the actual gap distance to the
desired gap distance. When the desired distance is reached, the
acceleration reduces to zero, and speed is maintained. These
two trivial cases demonstrate the IDM working mechanism in
general. A rigorous analysis of stability can be found in [18].
The traffic conditions in practice are often a mixture of the two
scenarios mentioned above.

In addition to traffic conditions, human driving preferences
also affect longitudinal vehicle dynamics significantly. In the
IDM, the driving preferences are characterized by several
intuitive parameters with physical implications. For instance, an
aggressive driver may apply throttle harder and result in large
maximum acceleration. On the other hand, a cautious driver
may preview a longer time headway to avoid unnecessary speed
fluctuations. Under heavy traffic conditions, the desired
minimum gap distance also varies among different drivers.
These examples show that driving behaviors can explicitly
affect vehicle dynamics on the microscopic level, and such
effects are well parameterized in the IDM model.

B. Vehicle Dynamics
The instantaneous vehicle power is calculated as in (3) [22],
v R(t)+1.04m1'/
P(t) = —( ) , 3)
36007,
where v (m/s) is vehicle speed; m (kg) is vehicle mass; #q is
driveline efficiency; R(¢) (N) is resistance force as in (4),
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where p (kg/m®) is air density; Cp is the drag coefficient; C; is
the altitude correction factor; Ay (m?) is the front area; g (m/s?)
is gravitational acceleration; C,, ¢; and c; are rolling resistance
parameters associated with tire and road conditions; G is road
grade.

C. Fuel Consumption Model

The microscopic driving model will provide longitudinal
vehicle dynamics that can be used to compute fuel consumption
based on instantaneous vehicle power demand as in (5) [19],

a, +a,P(t)+a,P(t) P(t)>0
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where f is the fuel consumption rate (L/s); ao, a1, o are

calibrated parameters to be determined; P (kW) is instantaneous

vehicle power; ¢ is time. The calculation of model parameters is

introduced as follows. Firstly, the vehicle idling fuel
consumption is calculated as (6),
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where P,y (Pa) is the idling fuel mean pressure; wia. (rpm) is
the engine idle speed; d (L) is the engine displacement; Ohear
(J/kg) is the lower heating value of fuel, and N, is the number
of engine cylinders. With ao calculated as in (6), the remaining
parameters a; and o, are obtained by solving a set of linear
equations as in (7),
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where subscripts city and highway represent EPA city and
highway driving cycles; F (L) is the accumulated fuel
consumed in the driving cycle; 7 (s) is the time duration of the
driving cycles; P (kW) is the sum of power in the driving cycles.
Such information is publicly available from automotive
manufacturers [20]. More details on the model calibration and
experimental validation results can be found in [21].

Remark 1: It is acknowledged that the vehicle fuel
consumption is influenced by additional factors other than
instantaneous power demand, such as powertrain
configuration, engine operation, auxiliary systems, etc.
However, to fairly evaluate the impacts of driving behaviors on
vehicle fuel economy, such additional factors should be
considered as controlled variables, therefore kept the same
during all numerical investigations. As a result, the influences
on vehicle fuel economy from controlled variables do not
interfere with the principal analysis of driving behaviors.
Meanwhile, despite the seemingly trivial formulation, the fuel
consumption model is shown to have high fidelity supported by
experimental validation from in-field tests [21], which provides
a good balance between accuracy and computational demand
for the proposed investigation.

III. SIMULATION CASE STUDY

In this section, simulation cases utilizing the collected
commuting traffic data will be designed to reveal the
interconnection between the individual driving preferences and
vehicle fuel economy, considering various traffic scenarios and
vehicle types.

A. Scenario Setup

We first collected two sets of daily commuting data with in-
vehicle GPS over the period of one week. The geographical
information of the routes is shown in Figure 2 and Figure 3. The
elevation along each route demonstrates a mostly flat terrain. It
is shown that the driver routinely adopts the local route and
highway route in the morning and evening, respectively. The
commuting data agree with our assumption that the driver tends
to follow specific routes during daily operation. Moreover, due
to the fixed transportation infrastructures along routes (traffic
light, stop sign, etc.) and periodical traffic flow during rush
hours, the vehicle speed trajectories demonstrate fluctuations
with similar patterns, which can be observed from a sample of
collected speed trajectories in the temporal and spatial domains
within one-week commute route as in Figure 4 and Figure 5. As



expected, the highway and local commute routes have
distinctively different speed patterns. Local driving often
involves low-speed limits and frequent stops, while highway
driving features high cruising speed with fewer speed
fluctuations, as shown in Figure 6. In the following context, we
use these two trajectories (Day 4) to represent the local and
highway commute traffic, respectively.
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Figure 3. Highway route (top, 6.7 miles) with elevation (bottom)
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Figure 4. Speed-time trajectories from one week of commute
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Figure 5. Speed-distance trajectories from one week of commute
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Figure 6. Speed comparison of local and highway traffic

The commute speed trajectories are used as input to the IDM
model to represent the speed of the preceding traffic, and the
driver will follow the preceding traffic based on the dynamics
described in (1) and (2). Depending on drivers’ preferred
behaviors, the actual speed trajectories vary even under the
same traffic conditions. The driving preferences are captured by
four parameters encoded in the IDM model, including
maximum acceleration, desired deceleration, time headway,
and jam distance. These parameters quantitatively characterize
how drivers’ microscopic behavioral preferences affect vehicle
longitudinal dynamics. Among the general population, a range
of these parameters has been identified [23] that can replicate
realistic and diverse driving behaviors. As shown in Table 1,
the differences in driving preference parameters can vary as
much as ten times within the realistic range. It implies that
driving behaviors among drivers can be dramatically different.
With the proposed model, we can efficiently generate diverse
driving behaviors in naturalistic traffic conditions. This is
particularly beneficial compared with methods that exclusively
rely on human subject tests, which are often limited by
participants pool, experimental resources, potential safety
hazards, and legal issues, leading to insufficiently rich



trajectory datasets that may contain biases.

Table 1. Driving preference parameters

Parameters Category Realistic Range
Maximum Acceleration a (m/s?) 0.2-2
Desired Deceleration b (m/s?) 1-3
Time Headway 7 (s) 0.8-2
Jam Distance sy (m) 1-3

In addition to traffic and drivers, vehicle types also affect fuel
consumption due to different powertrain and aerodynamics
designs. In this study, two representative fuel consumption
models are calibrated for the passenger car (Honda Accord) and
light-duty truck (Ford F150), as described in section II. The key

parameters of the models are shown in Table 2.

Table 2. Fuel consumption model calibration results

Calibration Parameters | Passenger Car | Light-duty Truck
Mass (kg) 1453 3152
Drag Coeff. 0.3 0.6
Frontal Area (m?) 2.32 3.87
Cylinders NO. 4 8
Engine Size (L) 2.4 6.2
US City Fuel (mpg) 22 12
US Hwy Fuel (mpg) 31 16
oo 5.9217e-4 7.7984e-4
ol 4.2378e-5 1.9556e-5
o le-6 le-6

B.  Analysis Methodology

To quantitatively investigate the relationship between
driving behaviors and vehicle fuel economy, we first need to
identify which driving preference can significantly influence
fuel consumption. To this end, a sensitivity analysis of the
parameters is essential. Existing sensitivity analysis approaches
[24], [25] can be categorically classified as local approaches
and global approaches. Local approaches have been proposed
first historically, which studies the impact of small
perturbations of input around a nominal value on the model
output. The foundation of this method relies on calculating or
estimating the partial derivative of the model at the nominal
point. For accurate and straightforward analytic models, such
an approach provides a quick and easy assessment of the
sensitivity of parameters at a certain point. However, as the
model complexity grows, the method becomes infeasible as the
partial derivative is challenging to compute. Moreover, the
local approach is only valid at the nominal point where the
partial derivative is evaluated, which ignores the possible global
variations of the output caused by the input perturbations. It also
ignores the potential coupling effects when the model has
multiple inputs since the local approach is a one-at-a-time
method. To avoid such limitations of local approaches, global
sensitivity analysis methods will be adopted in this study.
Existing global approaches range from simple screening and
scatter plots to the comprehensive decomposition of variance.
Considering the aspects of result accuracy, required
assumption, and computational effort, the method of

importance measures is used to determine the sensitivity of
parameters on the model outputs. The method is introduced as
follows.

An iterative Monte Carlo simulation is first conducted. At the
beginning of each iteration, a set of driving preference

parameters W =(a,b,s,,T), as defined in (1) and (2), is

randomly generated within the realistic range, as shown in
Table 1. This set of parameters defines the driving behaviors of
a driver, which are affected by many factors such as driver
demography, traffic conditions, travel purposes [26]. The
generated driving preference parameters are used in the
microscopic driving model to calculate the vehicle trajectories
subject to the preceding traffic. The vehicle trajectories are used
to calculate fuel consumption as in (5). At the end of each
iteration, the driving preference parameters and corresponding
trip fuel consumption will be recorded. This procedure is
repeated until the iteration number exceeds a predefined
threshold. We require that all trajectories have approximately
equal travel time and distance. This requirement is to mitigate
the impacts of traffic uncertainties, such as accidents, detours,
or overly conservative drivers that lead to prolonged travel
time, on the correlation between driving preferences and fuel
consumption.

The vehicle speed trajectories from all iterations during local
and highway traffic are shown in Figure 7 and Figure 8. The red
lines represent the preceding traffic, and the grey shaded areas
represent the generated trajectories from 1,000 simulations with
diverse driving preferences. As shown in the results, the actual
vehicle speed trajectories are profoundly different due to the
differences in driving preferences, even in the same traffic
scenarios with approximately equal trip distances, as shown in
Figure 9. This further underscores the significance of explicitly
addressing driving behavioral diversity in naturalistic traffic
scenarios.
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Figure 9. Trip distances from 1,000 simulations

Following the Monte Carlo simulation, we will now measure
the importance of each driving preference parameter on fuel
consumption by calculating the distance correlation coefficient.
The distance correlation coefficient [27] between each driving
preference parameter and fuel consumption is calculated as in

®,

B dcov(X,Y)
o _\/dcov(X,X)dcov(Y,Y), ®)
doov’ (X,Y):=
elb-xlr-vl)e s er-rl). o

~E(|x =y -v])- £ (- x Yy -v])
where r, is the distance correlation coefficient and |rxy| <1;X

and Y represent two variables whose correlation are to be
determined; dcov is the distance covariance between two
variables; E denotes expected value; A primed variable X'
denotes an independent and identically distributed (i.i.d.) copy
of an unprimed variable X . The distance correlation

coefficient is a measure of correlation strength between two
vectors where r =0 represents no correlation and |”xy| =1

represents a linear correlation between X and Y.

Algorithm 1: distance correlation coefficients calculation
Input: preceding traffic speed trajectories
Output: distance correlation coefficients

1. Set preceding traffic speed trajectories as v, ,_, (t)
2: FOR 1< <j

3: Initialize vehicle speed and acceleration
(V1122910 ) < (0,0)
4: Define the jth driving reference parameters set as

w, =(aj,bj,s0j,Tj)
Parameterize W, ~ U (Wj,min,
and W, are defined according to Table 1

6: Input 7, to the IDM model (1) and (2) to
calculate vehicle speed and acceleration
trajectories (v"l.)l.:2 (¢).v], (t))

w

J,max

) where W, .

7 Input (vj w2 (£):91,_, (1)) to vehicle longitudinal
dynamics model (7) and (6) to calculate resistance
R’ (t) and power P’ (t)

8: Input power P’ (¢) to fuel consumption model (3)
to calculate fuel rate f” (t) , then the total trip fuel
consumption is Y f/(¢)

9: Update j <— j+1 and go to step 2

10: END
11: Calculate distance correlation coefficient r,, between

z 1 (t) and individual parameters defined in W,

Compared with commonly adopted Pearson correlation, the
most distinct advantage of distance correlation is the capability
of characterizing the nonlinear relationship of arbitrary
dimension variables. The calculation of distance correlation
coefficients is summarized in Algorithms 1.

The calculated distance correlation coefficients are shown in
Table 3. The value in each cell represents the correlation
strength between the corresponding parameter and fuel
consumption. Clearly, the larger the coefficients are, the
stronger the correlation strength is. Furthermore, we highlight
the coefficients that pass a significance test with p-values being
less than 0.05, indicating high-level confidence in the
correlation results. For instance, we find that maximum
acceleration and time headway are significantly correlated for
both vehicle types in highway traffic. The result indicates that
vehicle fuel consumption during highway driving is strongly
influenced by driving preferences to apply acceleration and
preview the traffic ahead. While in the local traffic, in addition
to maximum acceleration and time headway, the desired
deceleration can also affect fuel economy. We will discuss
these results in detail in the following section.



Table 3. Distance correlation coefficients 7y, (p<0.05 in blue)

Ligh- Passenger
Traffic Parameters Duty
Car
Truck
Maximum
Acceleration a 0.8419 0.8308
(m/s?)
Desired
Highway Deceleration b 0.0016 0.0005
(m/s?)
Time Hf;)‘dway T 1 00210 0.0225
Jam Distance s (m) -0.0008 -0.0009
Maximum
Acceleration a 0.4339 0.4327
(m/s?)
Local Desired
Deceleration b 0.0070 0.0118
(m/s?)
Time Headway T 0.0127 0.0128
Jam Distance s (m) 0.0009 -0.0010

Remark 2: Selecting the maximum iteration number of Monte
Carlo simulations is an empirical task since there is no general
and analytical rule to determine the required number of
iterations given a fixed confidence interval. Recalling that the
purpose of the Monte Carlo simulation is to find the correlation
strength between driving preference parameters and fuel
consumption, it is proposed that the iteration number deems to
be sufficient when the calculated correlation coefficients
converge to constant levels as the iteration number increases.
The evolution of the correlation coefficient, along with the
iteration number, is shown in Figure 10 and Figure 11. There
are four lines in each plot, representing four parameters’
correlations with respect to fuel consumption in local and
highway driving scenarios. After 1,000 runs of simulation, the
resulting correlation coefficients converge to constant levels as
expected. Therefore, it is determined that the Monte Carlo
simulation results are representative.
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C. Results Discussion

It can be easily identified from Table 3 that the correlation
coefficients of maximum acceleration are at least one order of
magnitude higher than any other correlation coefficients in all
traffic scenarios and vehicle types. In other words, maximum
acceleration has the strongest correlation with fuel economy,
therefore, has the potential to serve as a primary predictor. We
visualize the correlations between maximum acceleration and
fuel consumption in Figure 12, where clear nonlinear
correlating patterns can be observed in each scenario.

Car (highway) Truck (highway)

08 |

Fuel Consumption (L)
Fuel Consumption (L)

Maximum Acceleration (m/s ) Maximum Acceleration (m/s )

Car (local) Truck (local)

/

Maximum Acceleration (m/s )

Fuel Consumption (L)
°
2

Fuel Consumption (L)

05 1 15 2 05 1 15 2

Maximum Acceleration (m/s )

Figure 12. Correlations between maximum acceleration and fuel
consumption

Furthermore, such a correlation can be captured by a quintic
function as in (10),

{(a)=2za" +z,a" + z @’ +z,a" +za+z,,

(10)
where « is the maximum acceleration; z;¢ are fitting constants
determined by least-squares regression. The numerical model-
fitting results are summarized in Table 4. A low Root Mean
Square Error (RMSE) indicates the quintic function is able to
capture the correlation with high accuracy, and the high R-
squared values indicate the strong capability of the quintic



model to explain the data variances. Therefore, the fitted quintic
function provides an adequate estimation of vehicle fuel
consumption based on drivers’ preferred maximum
acceleration.

Table 4. Maximum acceleration model performance

Traffic Vehicle R-Square | RMSE (L)
Highway Light-Duty Truck 0.927 0.0235
Passenger Car 0.8939 0.0067
Transient Light-Duty Truck 0.8933 0.02267
Passenger Car 0.8814 0.008529

Further inspection of the correlations in Figure 12 reveals
more profound insights into the impacts of drivers’ maximum
acceleration on vehicle fuel consumption. In the local traffic
scenario, the lowest fuel consumption occurs when the drivers
have the lowest maximum acceleration, around 0.2 m/s?. As the
maximum acceleration increases to 0.6 m/s?, the fuel
consumption increases almost linearly and peaks around 0.6 to
0.8 m/s?. Then, the fuel consumption decreases as the maximum
acceleration increases until 1.2 m/s?, after which the fuel
consumption is not significantly affected by the change of
maximum acceleration. Both vehicles demonstrate similar fuel
consumption trends with respect to the maximum acceleration,
whereas the light-duty truck shows a more significant variance
of 29% from bottom to peak, compared with 14% for the
passenger vehicle. This correlation qualitatively suggests that
one may prefer to drive with a lower maximum acceleration to
achieve a better fuel economy in local traffic. This finding is
practically beneficial for applications such as parcel delivery,
which typically adopt light-duty trucks and vans that operate
with similar daily local routines.

In the highway traffic, however, we observed distinctively
different correlation relationships between the drivers’
maximum acceleration and vehicle fuel consumption. When the
drivers have low maximum accelerations ranging from 0.2 m/s’
to 0.4 m/s?, a positive correlation is observed until the fuel
consumption peaks at 0.4 m/s?. After that, the fuel consumption
sharply decreases with the increase of maximum acceleration.
As a result, it is found that more fuel-economical driving
behaviors in the highway traffic require higher maximum
accelerations ranging from 1.4 m/s? to 2 m/s. This conclusion
is the opposite of local traffic due to the dramatically different
traffic patterns, where highway traffic features much fewer
stop-and-go scenarios and higher cruise speed, as shown in
Figure 6. Similar to the local traffic, the light-duty truck has a
larger fuel consumption variance of 23%, while the passenger
car has a variance of 15%. Besides, the peak fuel consumption
in all four scenarios appears around 0.4 m/s’> to 0.6 m/s’
suggesting a common region of undesirable driving behaviors
in terms of fuel economy. To summarize the findings from
Figure 12, we confirm the strong and consistent correlations
between drivers’ maximum acceleration and vehicle fuel
consumption with different traffic scenarios and vehicle types.
These correlations provide general guidance to estimate vehicle
fuel consumption based on the drivers’ maximum acceleration.

In addition to the maximum acceleration, other driving

preferences, such as time headway and desired deceleration,
also have non-negligible influences on vehicle fuel
consumption despite their much lower correlation strengths, as
shown in Table 3. This suggests that such preferences may not
be used to single-handedly predict fuel consumption but can
potentially serve as supplemental indicators to enhance the
accuracy of the prediction model (10). Driven by this
motivation, we will present a more rigorous model to
characterize the correlation quantitatively and evaluate its
performance enhancement numerically in the following
context.

The new prediction model takes the driving preference
parameters as inputs and predicts vehicle fuel consumption as
output. We utilize a Gaussian Process Regression (GPR) model
to train and predict the fuel consumption of drivers operating
on frequent routes. A GPR model is a nonparametric kernel-
based probabilistic model that predicts the value of a response
variable y, , given the input features vector x,,, and the

training data set (X,Y) = {(x,.,yl.)|i =12, n} . The input

features are selected according to Table 3 where p < 0.05. The
GPR model takes the form of (11),

y=h(x) B+g(x), (11)

g(x)~GP(0,k(x,x')), (12)

g(x) are latent variables from a Gaussian process with zero

mean E ( g(x))=0 and covariance function,

k(x,x') = Cov[g(x),g(xv)] = E[g(x)g(x')] . (13)
h(x) are a set of basis functions that transform the original

feature vector into a new feature vector in R”. [ is an m-by-1
vector of basis function coefficients. The covariance function
k(x,x') of the latent variables g(x) captures the smoothness

of the response, and basis functions h(x) project the inputs

into an m-dimensional feature space. Response Y can then be
written as,

P(Y|G,X)~N(Y|Hﬂ+G,o-21), (14)
Xz(xlr,xf,--‘xnr)r
Y =3, 1,0y, T

(J/1 Y Y ) (15)

= (h(xlr)’h(sz)""h(an))T ,
G=(g(x).g(x)g(x))
and o’ is the noise variance. The covariance function k(x,x')

is parameterized by a set of kernel functions. In this study, we
adopt the Matern 5/2 kernel defined as

k(x,x') = O'f2 [1 +ﬂ+ 5r22 ]exp[—ﬁ],
o, 3o (16)

I I o

r= (X—Xi)T(X—X‘)




where o, is the standard deviation and o, is the characteristic

;
length scale that defines how far apart the input x can be for the
response to become uncorrelated. Both o, and o, are positive

and can be parameterized by a vector & such that,
6 =logo,
1 =089, (17)
0, =logo,
The estimation of parameters ,3, 9,6' is conducted by
maximizing the likelihood P(Y |X ) as a function of f,0,0

over the training data set,

ﬁ,é,é‘:argmaxlogP(Y|X,ﬁ,¢9,0'), (18)
B.60.0
where the marginal log-likelihood function is,
logP(Y|X,,8,¢9,a) =
—%(Y—Hﬂ)T(K(X,X)+c721n)_l(Y—Hﬂ). (19)

n 1
- log 27[—510g|K(X,X)+0'21n|

Here the covariance functions for the joint distribution of latent
variables are denoted as

k(x,x) k(x,x,) k(x,x,)
K(X,X): k(xi,xl) k(xzz,xz) k(xz:,xn) . (20)
k(xn,xl) k(xn,xz) k(xn,xn)

The solution of (18) yields the GPR model for prediction, which

estimate the expected value of prediction y,,, at x,, over the
validation data set,
E(ynew Y’X’xnew’ﬂ597o-) =
h(%,0,) B+ @1
K(x, . X)(K(X.X)+0’L,) (Y-HP)

The detailed proof can be found in [28]. The prediction models
are cross-validated with five folds under each of the driving
scenarios. The validation results are shown in Table 5.
Compared with the quintic model in Table 4, the GPR model
surpasses the performance measurements in all scenarios
considered.

Table 5. GPR model performance

Traffic Vehicle R-Square | RMSE (L)
Highway Light-Duty Truck 0.95 0.018807
Passenger Car 0.92 0.0058608

Transient Light-Duty Truck 0.94 0.017209
Passenger Car 0.94 0.0062848

D. Personalized Driving Application

A practical application of the prediction model is to develop
a personalized fuel-friendly driving strategy for drivers who
operate frequent routes on a daily basis, such as commuting,
public transportation, and delivery. As drivers regularly drive
over frequent routes, the vehicle can collect the driving data,
including speed, acceleration, and fuel consumption

measurement. The speed and acceleration trajectories can be
used to estimate the drivers’ preferences, such as the maximum
acceleration, desired deceleration, and time headway, assuming
the vehicle is equipped with proper sensors. This assumption
does not necessarily introduce additional hardware
modifications or costs since many mass-production vehicles are
already equipped with onboard radar and cameras nowadays.
The driving preferences and fuel consumption can then be used
as training and validation datasets for the prediction model to
learn drivers’ behaviors and predict the vehicle fuel economy.
As drivers accumulate more miles on the frequent routes due to
daily driving, the training and validation datasets expand
accordingly, which improves the model’s adaptability of
tailoring to specific human drivers’ preferences. Based on the
model prediction, the vehicle can then suggest drivers adopting
specific routes and driving behaviors that will lead to reduced
fuel consumption without incurring prolonged trip duration.
The structure of the proposed implementation is shown in
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Figure 13. Personalized fuel friendly driving strategy
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Figure 14. Test driving preference parameters distributions

To demonstrate the proposed design concepts and verify the
generalizability of the trained model, we further conduct a
model test using a new dataset of driving preference
parameters, including 1,000 samples that are not used in



previous training and validation datasets, as shown in Figure
14. The x-axis represents the range of each driving preference
parameter, and the y-axis represents the normalized probability.
The test driving preference parameters are generated from a
normal distribution with a mean value equal to the average of
the realistic range as in Table 1, and the standard deviation is
10% of the mean value, as shown in (22),

W ~N(VI_/I€:!’(O'1XVV1€5[)2)'

test

(22)

The practical implications of normal distributions in driving
preference parameters are based on the assumption that an
individual’s driving behaviors are influenced by not only his or
her intrinsic characteristics but also the uncertain external
environment (travel purpose, weather condition, etc.).
Therefore we consider the individual has driving behaviors
governed by a normal distribution where the mean value
represents the intrinsic driving preference, and the standard
deviation represents the environmental uncertainty. In practice,
different drivers have various distributions of driving
preferences, which can be estimated [29] via continuously
collected driving data on frequent routes.

Perfect Predictions
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Figure 15. Fuel consumption prediction (model test)
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Figure 16. Predicted fuel consumption distribution (model test)
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We visualize the test result for a passenger car operating
under transient traffic as an example. As shown in Table 3, in
the local traffic, the maximum acceleration, desired
deceleration, and time headway are the driving preferences that
have substantial correlations with vehicle fuel consumption.
Hence these three features are used as the inputs for the trained
GPR model to predict fuel consumption. The exact prediction
results can be found in Figure 15. The solid blue line represents
the perfect prediction, and the red points cloud represents
observed fuel consumption. The prediction error is 0.0043 L
(RMSE). The test result shows the model’s accuracy and
generalizability to predict fuel consumption based on the
correlations developed earlier.

A statistical comparison result of the GPR model against the
ground truth is shown in Figure 16, where the y-axis is the
normalized probability. Practically, this can be interpreted as
the estimated likelihood of fuel consumption for the individual
driving on specific routes. To evaluate the model accuracy from
this statistical perspective, we need to quantitatively measure
the similarity between the predicted distribution Q and the true
distribution P by Kullback—Leibler (KL) divergence, as
calculated in (23),

DKL(PllQ)=§P(xf)l°g(%]’

where x, represents the event for each discretized probability

(23)

distribution, and N is the total number of events. It can be shown
that Dy, (P||Q)€[0,0) where the lower value of KL

divergence represents a high similarity between two
distributions and vice versa [30]. The test result has a KL
divergence of 0.0823, indicating a good match between the
predicted distribution and ground truth. The comparison results
in Figure 15 and Figure 16 collectively demonstrate the
quantitative impacts of drivers’ behaviors on the fuel
consumption of vehicles operating on the frequent routes in a
statistically significant manner.

IV. CONCLUSIONS AND FUTURE WORK

The impacts of various driving behaviors on vehicle fuel
economy in different traffic scenarios are quantitatively
investigated in this study. This is conducted through a
combined Monte Carlo simulation and experimentally collected
naturalistic traffic trajectories, which allows us to efficiently
evaluate diverse and realistic driving data that are otherwise
difficult to obtain through in-field tests. Results suggest that
drivers’ preferred maximum acceleration plays the most critical
role when determining vehicle fuel consumption on frequent
routes. Such a relationship can be described by a quintic
polynomial that is capable of capturing the primary nonlinear
correlation between fuel consumption and maximum
acceleration. Additional findings reveal that driving behaviors
like desired deceleration and time headway also have
statistically significant impacts on fuel consumption in local
and highway traffic, despite much weaker -correlations
compared with maximum acceleration. By identifying these
significant behavioral factors that affect fuel consumption, we



can utilize these parameterized driving preferences as featured
inputs to train a Gaussian Process Regression model that can
predict the vehicle fuel consumption with high accuracy,
generalizability, and efficiency. The model can be used to
estimate vehicle fuel economy based on the drivers’ preferences
over frequent routes, recommend fuel-friendly routes and
driving strategies, and better accommodate individual driving
needs from daily operation.

Future studies, including a personalized eco-driving strategy
for the automated vehicle to improve traffic energy efficiency,
and real-time driving behaviors modeling, will be expanded
upon the insights gained in this study.
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