Inverse Resource Rational Based Stochastic Driver Behavior Model

Mehmet F. Ozkan**?, Yao Ma**»*?

*mehmet.ozkan@ttu.edu, **yao.ma@ttu.edu
 Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409 USA

Abstract: Human drivers have limited and time-varying cognitive resources when making decisions in
real-world traffic scenarios, which often leads to unique and stochastic behaviors that can not be
explained by perfect rationality assumption, a widely accepted premise in modeling driving behaviors
that presume drivers rationally make decisions to maximize their own rewards under all circumstances.
To explicitly address this disadvantage, this study presents a novel driver behavior model that aims to
capture the resource rationality and stochasticity of the human driver’s behaviors in realistic longitudinal
driving scenarios. The resource rationality principle can provide a theoretic framework to better
understand the human cognition processes by modeling human’s internal cognitive mechanisms as utility
maximization subject to cognitive resource limitations, which can be represented as finite and time-
varying preview horizons in the context of driving. An inverse resource rational-based stochastic inverse
reinforcement learning approach (IRR-SIRL) is proposed to learn a distribution of the planning horizon
and cost function of the human driver with a given series of human demonstrations. A nonlinear model
predictive control (NMPC) with a time-varying horizon approach is used to generate driver-specific
trajectories by using the learned distributions of the planning horizon and the cost function of the driver.
The simulation experiments are carried out using human demonstrations gathered from the driver-in-the-
loop driving simulator. The results reveal that the proposed inverse resource rational-based stochastic
driver model can address the resource rationality and stochasticity of human driving behaviors in a

variety of realistic longitudinal driving scenarios.
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1. INTRODUCTION

Automated vehicles (AVs) are widely expected to deploy in
human-dominated traffic scenarios where human-operated
vehicles and AVs share the road with frequent interactions in
the foreseeable future (Di and Shi, 2021). The driver behavior
model is necessary for AVs to understand the intentions of
drivers to safely interact with human-operated vehicles in
highly interactive human-dominated traffic scenarios.
However, existing driver behavior models, such as inverse
reinforcement learning (IRL) based models, assume that
human drivers are perfect rational decision makers during the
operation of vehicles and consider that human drivers make
actions with a fixed planning horizon setting in traffic
(Kuderer et al., 2015) (Sadigh et al., 2016) (Gao et al., 2018)
(Naumann et al., 2020) (Ozkan and Ma, 2022). However, this
assumption is not realistic because of human drivers’
behavioral stochasticity and limited cognitive resources to
make a decision in a time-varying manner. To this end, it is
crucial to develop a comprehensive driver behavior model
that addresses the human drivers’ cognitive processes with
the rational use of limited resources and stochastic driving
behaviors in real-world driving scenarios.

Resource rationality in cognitive science can offer a
theoretical framework to better understand human behavior
by incorporating realistic assumptions about human agents’

cognitive limitations (Griffiths et al., 2015) (Lieder and
Griffiths, 2020). Resource rationality is a principle for
modeling the human decision-making mechanism as utility
maximization while taking into account cognitive limitations.
Resource rationality provides several opportunities to more
precisely understand human behavior, such as making
generalizable predictions about how long it will take humans
to make decisions and how much information humans will
include when making decisions (Ho and Griffiths, 2022). A
recent study has been proposed to understand the human
inverse model of resource rational processes with the IRL
framework (Zhi-Xuan et al., 2020). The proposed method
considers that the human agents have limited and time-
varying resources when making decisions and aims to learn
the goals and preferences of the human agents with the
learned reward functions while considering the resource
rationality.

Motivated by the discussions above, this work aims to
develop an inverse resource rational-based stochastic driver
behavior model that reflects the resource rationality and
stochasticity of human behavior in real-world longitudinal
driving scenarios. This study makes the following
contributions: 1) an inverse resource rational-based stochastic
inverse reinforcement learning approach is developed to learn
the dynamic planning horizon and cost function distributions
of the human driver from human driving demonstrations. 2)



the developed inverse resource rational-based stochastic
driver behavior model is employed to compute driver-specific
trajectories by using the nonlinear model predictive control
with the time-varying horizon approach in realistic
longitudinal driving scenarios. To the best of the authors’
knowledge, this is the first study explicitly addressing the
resource rationality of human drivers’ cognitive processes in
real-world driving scenarios.

The remainder of this work is structured as follows. Section 2
develops the inverse resource rational-based stochastic driver
behavior model. The numerical findings of the developed
driver behavior model are presented in Section 3. The paper
is concluded in Section 4.

2. DRIVER BEHAVIOR MODEL

This study aims to acquire the planning horizon and cost
function distributions that best characterize the human
driver’s cognitive process while operating vehicles in traffic.
To this end, we will first outline a stochastic inverse
reinforcement learning approach (SIRL) approach to learn the
cost function distribution of the human driver with a fixed
planning horizon, and we will then integrate the inverse
resource rationality to acquire the planning horizon
distribution of the human driver with a given set of driving
demonstrations. At last, we will introduce the nonlinear
model predictive control (NMPC) algorithm with a time-
varying horizon to generate driver-specific vehicle
trajectories in longitudinal driving scenarios by using the
learned planning horizon and cost function distributions. Fig.
1 shows the schematic of the developed driver behavior
model framework.
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Fig. 1. Schematic of the developed driver behavior learning
framework.

2.1 Cost Function Distribution Learning with Stochastic
Inverse Reinforcement Learning (SIRL)

The primary goal of the SIRL approach is to learn a driver’s
cost function distribution from a set of human driving
demonstrations D consisting of K observed trajectory
segments in which each cost function from the distribution
reflects the driver’s demonstrated behavior for each seen
trajectory segment. The cost function can be specified as the
weighted features:

J =W4(1) (1)
where J, is the cost function, W, is the weight vector, and
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features for each observed trajectory segment; 7, defines the

@, )T is the feature vector that consists of n

longitudinal position representation of each trajectory
segment, and subscript 7 represents the ith trajectory segment
in the human driving demonstrations.

We employ quintic polynomials as a finite-dimensional
representation of longitudinal vehicle trajectories. Because of
the advantages of smooth motion, quick calibration, and light
computing, quintic polynomials have been frequently
employed for vehicle motion planning problems in existing
research such as autonomous vehicle trajectory planning and
driver behavior learning (Kuderer et al., 2015) (Ozkan et al.,
2021). Hence, the longitudinal vehicle trajectory model is
specified as a one-dimensional quantic polynomial, and the
longitudinal position representation of each trajectory
segment i is stated as:

1 ()= ol + 0t + 3,8+ pit + y i+ )

where 1y, s are the coefficients for each demonstrated

trajectory segment; te[t[,t, +H ] and H is the length of
each trajectory segment. The longitudinal velocity and
acceleration can be expressed by using the derivatives of
r.(t) suchas 7 (¢) and 7 (t), respectively.

The goal is to find the optimal feature vector W' that
maximizes the likelihood of the demonstrations for each
observed trajectory segment:

W=argmyg><p(D,-lVK) argmaXHp W) 3)

W k=1

where B defines the number of the fixed planning horizons
within each observed trajectory segment and each trajectory

subsegment has the same planning horizon N, p(r|W)
specifies a probability distribution across the trajectory
segment that is proportional to the negative exponential costs

determined using the Maximum Entropy principle along the
trajectory segment. (Ziebart et al., 2008):

p(r 1) =exp(-W4(r,)) ©
The weight vector W can be derived with the gradient of the
optimization problem. The gradient can be acquired by

subtracting the observed feature values from the expected
feature values:

Ve =4 -4 (5)

The feature values of the most likely trajectory can be used to
determine the expected feature values:

¢ ~ ¢ argmax p (7, | ;) (6)



The gradient descent approach can be used to update the
feature weight vector with the learning rate o for each
trajectory segment:

W, W,~av4, ™

After the derivation of the weight vector W, the next step
will be generating a distribution from the learned set of K
different cost functions. We used t Copula approach (Bouye
et al., 2000) to fit the learned set of feature vectors
W =W, W,,W,,..,W] in a multivariate distribution G, .
For more details about the cost function distribution fitting
process, the reader is referred to (Ozkan et al., 2021).

2.2 Feature Design

The features listed below are utilized to represent the key
properties of longitudinal driving behaviors:

Acceleration: Capturing riding comfort along the
longitudinal direction:
t+N .. 2
Mf)zf, i (¢)[ at )

Desired Speed: Reaching and maintaining the traffic speed
limit v, :

t+N

%.(0)=],

Relative Speed: Maintaining a constant gap distance while
observing the speed of the preceding vehicle v :
t+N

6. ()= v, ()= ()] e

Steady Car-following Gap Distance: Achieving a desired
car-following gap distance d_, with the constant time

v, —i(0) dr )

(10)

headway approach:
d =r(t)r+d,

c

b (="

where 7 is the observed minimum time headway of the
human driver with the given human demonstrations and d is

an

2a’z

d(t)-d,

(12)

the standstill distance.

Safe Interaction Gap Distance: Maintaining a safe car-
following gap distance when closely following the preceding
vehicle in congested traffic:

4. (t) _ J-lmv

Free Motion Gap Distance: Capturing the driver’s desired
gap distance to the preceding traffic when the driver controls
the vehicle in free motion:

t+N
b (t)= .[, e Odt

|d (t)-d, ||2 dt

(13)

(14)

2.3 Driving Conditions and Feature Selection

We classified the observed trajectory segments depending on
their observed driving conditions, and the distinct sets of

features are applied to each driving condition. Therefore, we
considered three longitudinal different driving conditions,
and the corresponding features are applied to each driving
condition. These three driving conditions are briefly outlined
below.

Steady car-following: The steady car-following driving
phase is a driving condition in which the average THW < 6 s

(Vogel, 2003) and average TTCi < 0.05s™ (Lu et al., 2010)
for each trajectory segment. The features ¢, , ¢, , ¢, and

¢, are employed to describe the driver’s steady car-
following condition.

Free motion: The driver operates the vehicle without
engaging with the preceding vehicle during the free motion
driving condition. Based on the numerical analysis by (Ozkan
et al., 2021), the following conditions are utilized to represent
the free motion driving condition.

1. The average THW > 6 s and average TTCi<0s™.
2. The average car-following gap distance > 35 m

3. The average driver’s speed > 5 m/s

Unsteady car-following: The driver operates the vehicle in
the unsteady car-following condition when the human driver
is neither in steady car-following nor in free motion driving
conditions. The features ¢, , ¢, , ¢, and ¢ , are utilized to

identify the driver’s unsteady car-following condition.

To ensure that all features are equally sensitive, we
normalized each feature to the range of [0, 1] .

2.4 Algorithm Implementation of Inverse Resource Rational
Based Stochastic Driver Behavior Model

In the previous sections, we outlined the main components of
the SIRL approach for learning the cost function distribution
of the human driver with the fixed planning horizon setting.
Now, we will integrate the SIRL with the inverse resource
rationality to learn the planning horizon distribution of the
human driver. In the inverse resource rationality approach,
the goal is to find the distribution of the optimal planning
horizon values where each optimal horizon value gives the
most likely trajectory against the ground truth during the
learning process. The details are included in Algorithm 1.

2.5 Trajectory Generation with Nonlinear Model Predictive
Control (NMPC)

In the previous section, we learned the planning horizon and
cost function distributions that best represent the driver’s
cognitive process when operating vehicles in traffic by using
human demonstrations. We will then use the learned planning
horizon and cost function distributions to compute driver-
specific motions in longitudinal driving scenarios with the
NMPC algorithm with a time-varying horizon approach. In
the longitudinal driving scenario, we consider that the human
driver can adequately estimate the movements of the
preceding traffic if the preview time horizon is relatively
short (Sadigh et al., 2016) (Ozkan and Ma, 2022). At each
time step ¢, the optimization problem needs to be solved



sequentially over the prediction time horizon N to compute
the driver-specific motions:

a, (1) =argminJ,, (a, (1))
N

Jy = ZW%(X’F’,Z,a;’,Z)
z=1

st.. W~G,, N~PB, d <d”

(15)

where ay, (¢) is the optimal acceleration; x| and aj are

the (t+z)[h predicted vehicle state and acceleration,
respectively; ¢ is the feature vector depending on the

observed driving conditions over the planning horizon; W is
the random feature weight vector sample from the
distribution G, ; N is the random prediction horizon sample
from the learned planning horizon distribution P, and d is

the standstill distance that ensures the safety clearance in the
longitudinal driving scenario

Algorithm 1: Inverse resource rational-based stochastic
driver behavior learning algorithm

Input: (7,7,...7% ) s Nypgar = [25, 35, 4 5]

Output:
GW/.‘\':Z,%A = |:GW1 4 GWz 4 GWJ :" PN = [ N=2 ’PN:3’PN:4 ] >

* * * * * * * * *
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1: Classify the trajectory segments depending on their
driving conditions

2: for each classified trajectory segment do
3:  Initialize weight pool W _,, «[ ]
4:  for all trajectory segments do
5: for each planning horizon in N do
6: Partition each trajectory segment into B planning
subsegments (l’j,l,l’jﬂz,...,rjﬁ)

7: W. < all-ones vector

- 13 ~
8 G-L3a()

B D
9: while /' not converged do
10: for all ’/;,k E(’;J,r},z;n-:’/]ﬁ) dO
11: (¥5,v4,¥5) < (position, velocity,
acceleration)
12: at the initial state of the 7, ,
13: Optimize (y,,¥,,¥,) withrespect to
w'e,
14: end for
15: Update W, with respect to the gradient of
the optimization problem V ¢,

16: end while
17: W <«Ww,
18: Record the final gradient V¢,
19:  end for

20:  Record the planning horizon value N mmlmmw

and weight vector Wiminv¢ with the lowest final
i

gradient
21:  end for
22: end for

23: G, <« Fiteach cluster’s set of weight vectors W _, , ,
with the corresponding planning horizon
N tomlmmW[ into t Copula distribution

24: P, <« Calculate the probability vector of the planning

horizons based on their occurrences

3. RESULTS AND DISCUSSION

3.1 Driver Behavior Model Development

We used our previously developed driver-in-the-loop driving
simulator (Ozkan et al., 2021) to collect realistic driving data
for developing the proposed driver behavior model. The
simulation scenarios concentrate on car-following scenarios,
in which a driver follows a preceding vehicle on the road that
operates at various specified realistic speed trajectories. The
driving data set is collected using nine different driving
scenarios, each of which is repeated 30 times by the same
driver. At a rate of 10 Hz, data is extracted from the
simulation environment. The driver model is built using 270
leader-follower trajectories.

To evaluate the effectiveness of the proposed driver behavior
model in different longitudinal driving settings, 25
trajectories for each driving scenario are randomly chosen for
training, and the remaining five trajectories for each driving
scenario are applied for testing. For the trajectory
optimization process for the quintic polynomial parameters
during the learning, as mentioned in step 13 of Algorithm 1,
the BFGS Quasi-Newton method (Fletcher, 1987) is used.
The length of each trajectory segment H 1is set to 12 s. The
standstill distance d and learning rate ¢ are set to 5 m and

0.1, respectively. For the trajectory generation, the NMPC
design introduced in (15) is employed to generate 50 samples
for each driving scenario.

3.2 Driver Behavior Model Evaluation

We will assess the proposed driver behavior model’s
performance under several driving scenarios in this section.
First, we will assess the developed driver behavior model’s
training performance. Fig. 2 shows the L? norm of weight
update gradients with different planning horizon settings for a
trajectory segment that is used in the training process. During
the optimization, it is shown that the feature weights
converge after around 200 iterations for all planning horizon
settings in this particular trajectory segment. Fig. 3 depicts
speed trajectories of the trajectory segment with different
planning horizons in training, including the initial guess,
predicted trajectory, and ground truth. It can be seen that the
predicted trajectories with all the planning horizon settings
can approach ground truth when the weights converge to
optima via incremental gradient updates.



Fig. 4 shows the learned probability distribution bar graph of
the planning horizon values for three different driving
scenarios from the demonstrations, along with preceding
traffic speed trajectories of the corresponding driving
scenarios. Notably, we can see that the proposed driver
behavior model can learn different optimal planning horizon
values for each driving scenario and the probability of each
planning horizon value varies among different driving
scenarios. These findings demonstrate that drivers have time-
varying cognitive resources when making decisions in real-
world traffic scenarios, and the proposed driver behavior
model can capture the resource rationality of the human
driver with the dynamic planning horizon approach.

We then assess the testing results of the developed IRR-SIRL
driver behavior model. Fig. 5 and Fig. 6 illustrate the
observed and predicted trajectories in one of the driving
scenarios from the demonstrated driving data. The results
reveal that the developed driver behavior model can generate
various trajectory samples that reflect the complexity of the
driver’s individual driving strategies. The proposed IRR-
SIRL model predicts accurate trajectories when compared to
actual trajectory samples, demonstrating a high degree of
validity.

Table 1 shows the RMSE values between the observed and
the predicted trajectories for testing using the learned cost
function. We observe that the proposed driver behavior
model can mimic the demonstrated trajectories of the human
driver with minor prediction errors. Since human drivers
demonstrate highly uncertain driving behaviors due to their
complex cognitive processes and the expected features are
derived as the feature values of the most likely trajectories
throughout the learning process, minor deviations between
the observed and predicted trajectories are expected in
testing.

The results collectively demonstrate that the proposed inverse
resource rational-based stochastic driver behavior model can
learn and mimic a driver’s observed resource rational,
distinct, and rich driving strategies in diverse longitudinal
driving scenarios. The developed driver behavior model
provides the possibility for automated vehicles to make better
predictions about human drivers’ behaviors while taking into
account the realistic assumptions about human drivers’
cognitive limitations in real-world traffic scenarios.
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Fig. 2. Gradients (L’ norm) of a trajectory segment with
different planning horizon settings for training.
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Fig. 3. Speed trajectories of a trajectory segment with
different planning horizon values for training.
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Table 1. Average RMSE values of IRR-SIRL driver behavior
model in testing.

Speed (m/s)
1.37

Model
IRR-SIRL

Acceleration (m/s?)
0.53

4. CONCLUSION AND FUTURE WORK

In this work, an inverse resource rational-based stochastic
driver behavior model is developed to learn the human
driver’s resource rational and stochastic driving behaviors in
longitudinal driving scenarios. The proposed driver behavior
model employs an inverse resource rationality approach
integrated with the inverse reinforcement learning framework
to generate the planning horizon and cost function
distributions of the human driver that captures the resource
rationality and stochasticity of the human driver behavior
with given human driving demonstrations. The numerical
results indicate that the proposed driver behavior model can
learn and mimic the human driver’s resource rational,
distinct, and rich driving behaviors across a wide range of
longitudinal traffic scenarios.

The proposed driver behavior model is the first step towards
understanding the resource utilization in the cognitive
processes of human drivers when driving in traffic. We have
so far assumed the possible planning horizon values can be
enumerated and the optimization problem can be solved for
each planning horizon setting in the learning process of the
driver behavior model. We will further extend the proposed
driver behavior model by including the planning horizon
value as a decision variable in the inner optimization problem
to get optimal planning horizon values during the learning
process.
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