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Abstract—Recent studies have shown that, experiencing the
appropriate lighting environment in our day-to-day life is
paramount, as different types of light sources impact our mental
and physical health in many ways. Researchers have intercon-
nected dayvlong exposure of natural and artificial lights with
circadian health, sleep and productivity. That is why having
a generalized system to monitor human light exposure and
recommending lighting adjustments can be instrumental for
maintaining a healthy lifestyle. At present methods for collecting
daylong light exposure information and source identification
contain certain limitations. Sensing devices are expensive and
power consuming and methods of classifications are either inac-
curate or possesses certain limitations. In addition, identifying
the source of exposure is challenging for a couple of reasons.
For example, spectral based classification can be inaccurate, as
different sources share common spectral bands or same source
can exhibit variation in spectrum. Also irregularities of sensed
information in real world makes scenaric complex for source
identification. In this work, we are presenting a Low Power BLE
enabled Color Sensing Board (LPCSB) for sensing background
light parameters. Later, utilizing Machine learning and Neural
Network based architectures, we try to pinpoeint the prime source
in the sorrounding among four dissimilar types: Incandescent,
LED, CFL and Sunlight. Our experimentation includes 27
distinct bulbs and sunlight data in various weather/time of the
day/spaces. After tuning classifiers, we have investigated best
parameter settings for indoor deployment and also analyvzed
robusiness of each classifier in several imperfect situations. As
ohserved performance degraded significantly after real world
deployment, we include synthetic time series examples and
filtered data in the training set for boosting accuracy. Result
shows that our best model can detect the primary light source
type in the surroundings with accuracy up to 99.30% in familiar
and up to 90.25% in unfamiliar real world settings with enlarged
training set, which is much elevated than earlier endeavors.

Index Terms—Light Source Classifying, Low power sensing

l. INTRODUCTION

The role of lighting to human beings is not merely limited
to illumination, but also impacts a person physiologically and
psvchologically [1], [2]. As a diurnal species, the periodicity
of light exposure throughout the entire day is crucial [3].
Researchers have examined the influence of light exposure
on human during different cycles of a day by studying heart
rate, cortisol, concentrated body temperature (CBT), fatigue,
and sleeping behavior [4]. Exacerbation of behavioral distur-
bances and the disrupted circadian sleep patterns have been
observed in people with dementia due to improper lighting
scenarios [3]. Anomalies like inadequacy or non-periodicity in
melatonin production, an event that is coupled with daylong

light exposure, has been found as one of the major offenders
for sleep disorders that affects 50 to 70 million adults and
one third of the senior population in the US [6], [7]. Not only
lighting parameters, but also lighting type, especially at night,
can suppress and delay the normal operation of a person’s
biclogical clock [8]. For example, avoiding blue enriched
sources (most present day LEDs) is recommended by health
professionals afier sundown hours for quality sleeping [9].
Studies also show that careful lighting design can improve
healthiness among senior citizens, Alzheimer’s disease and
related dementia (ADRD) patients, and others [10]-[12].
Therefore, continuous monitoring of various types of light
exposure data throughout a day is imperative, particularly
at nursing homes and hospitals, where lighting schemes are
purposefully decorated for ensuring ambience and as a part of
treatment [13].

Commonly deployed devices for sensing light contain cer-
tain limitations. Acquiring light exposure statistics during a
whole day can be expensive, memory-intensive, highly power-
consuming and on top of that, sensors are mostly designed
to be wearable which adversely effects level of comfort and
ergonomics. Even when light sensors are deploved as an
immobile device, detection accuracy can vary based on sensor
placement, parameter selection, adopted classification model
and nature of classifiers” training sel. Unfortunately, present
studies cannot answer which classifier and what parameters
are best suited for indoor light classification.

Adopied classifiers till to date are trained only with stand-
alone sources, with limited examples and setups remained
non interrupted throughout data collection. However, in real
world, identifying environments can deviate from ideal sce-
nario in multiple ways. Modern day lighting architectures are
not isolated, rather have become dynamic and personalized
through blending sources of multiple types and specific fea-
tures, which creates a complex environment for specifying
the major contributing source. Classifiers that are trained with
limited examples will fail to identify source that lies outside
the training sei. Also in reality, signal patierns can randomly
fluctuate during on-offfpresence of noise around sources or
undesirable/unavoidable interruption during acquisition, like
obstruction between the source and the sensor due to human
movement. As classifiers are not familiarized with such signal
patterns, they tend to mis-classify at those adversaries and
accuracy falls below satisfactory level. Therefore, modifica-
tion of training data is a pre-requisite to get our classifiers
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Fig. 1: An illustration of a few analysis done in this paper.
From left to right a) Sensor placement, b) No of samples
for classification, ¢) Detecting prime source in multi-source
environment, dj Tdentifying light type at smart environments

acquainied and correctly classify sources in real world settings.

In this work, we have designed and developed a Bluetooth
Low Power (BLE} enabled color sensing board for acquiring
light exposure information for extended period and demon-
strated how recording only RGB information can be fruitful
identifying major source exposure at various times, This
smart device exploils very low memory, suilable for indoor
deployment and flexible to be shaped into wearable format if
required. Based on sensed information, it can calculate on-the-
spot lighting parameters like Lux Intensity (LT) and Correlated
Color Temperature {CCT), as well as provide data to distin-
zuish major source in background off-board. Afier placing this
sensor at indoor atmospheres, we investigate the ideal distance
from light source for placing sensors and no of samples
needed, along with their dimensions for optimal classifying
performance. To find the best performing classifier, we have
studied multiple Machine Learning and Neural Network based
classitying methods and made comparative analysis of accu-
racy of those classifiers in ideal/non-ideal backgrounds like
multi-source/noisy/smart environments. Finally, we introduce
application of Time Series Generative Adversarial Network
{TimeGaN) to generate synthetic examples to familiarize light
sources outside training set. We have also designed and im-
plemented various length filters for recognizing sources from
irregular signal patterns. After introducing those methods, we
have observed elevated source identification accuracy in real
world setup. This study will be advantageous regarding indoor
deployment of light sensors for optimal performance, as well
as robust, power efficient and persistent identification of source
exposure in real world.

II. RELATED WORK

Source classification techniques till date has been primarily
relied on spectrum data from mini-spectrometers. C12666MA
mini-spectrometer from Hamamatsu electronics has been the
most favored which costs around 5400, operates on 4.75-5.25
V range and consumes power around 30mW. A similar of its
kind, HPCS300P Mini Spectrometer (price around $500) uses
USB interface (300mA/SYV-900mA/SY) to operate. Even, with
low cost lower resolution version, like TINFSA analyzer (only
549), runs on battery allowing only 2/4 hours for portable
use. Mini-spectrometers from Pasco can operate on wire-
less mode, but again costly (around $450) for multi-location
mass deployment. Utilizing CI2666MA  mini-spectrometer,
non-visual impacts of light exposure was studied in modern

homes by identifying daily source exposure and recording
daily sleeping hours [14]. Specrrace, a wearable sensor for
spectrally-resolved personal light monitoring system was built
to recover a diversity of spectra at ditferent bandwidths con-
sisting accelerometer and gyroscope to provide feedback of
the current light exposure [15]. Proposed sensor was claimed
to be low cost, small size to provide a high-accuracy result of
spectrum-specific light intensity [16]. Low-cost and portable
spectrometer using CMOS-based sensors was designed which
is able to detect wavelengths in a range trom visible 1o NIR
region. Named AvaSpec-Mini2048CL spectrometer, different
types of electric lights, along with natural light source were
chosen for capturing class variation and MLP model was
used for data reconstruction. Prediction errors were calculated
for different indoor and outdoor conditions after comparing
with Wavego |17]. Fernandez [18] utilized RGB information
from TCS3414CS color sensor and ADJDS311 color semsor
to classify various artificial sources (34 LED, 16 incandescent
and 6 fluorescent sources) and selecting a model estimation of
Color Rendering Index (CRI) and Correlated Color Tempera-
ture {CCT). Ma, Bader and Oelman [19] did similar kind of
research with TSL2561, ISL29125 color sensors, AMISISCA,
POWLID2P solar cells and USB20W+ spectrometer, where
sensor data for Halogen, Fluorescent, LED and Incandescent
bulbs were collected via USB interface and I-V tracers and
KNN, SWM and Decision tree algorithms were utilised for
classification for the most part. It has been displaved that
even with higher intensity interference from other sources, ML
based approach can typify sources with only 62.5% ouiside
training specimens.

ITI. LIMITATIONS OF EARLIER APPROACHES

Indoor light characlerization with spectrum analyzer is
high-priced and data acquisition process is intensely energy
and memory hungry. For real world deployment, cumulative
energy expenditure becomes significant for daylong operation.
Moreover, higher spectral resolution data throughout the day
may conglomerate that appeals humongous memory stack.
When our goal is metering the source type with common
lighting parameters, high resolution spectral information is not
quintessential.

Patients/senior citizens who have limited movement, car-
ryving device for the whole day with other appliances may
offer discomfort and undesirable for gathering lighting aspects
at indoors. Where person spend most of his/her hours under
the roof, easy to install indoor smart sensors can uncover
their round the clock lighting exposure. loT based fexible
RGB sensors should come into play. In addition to otfering
wearability/mobility, they can be deployed as a fixed room
light sensor for accessing lighting information from practical
distances at low energy cost and operate for an extended period
without power/memory replacement.

When light sensors are carried by human, relative distance
between the source and sensor position is unmanageable. Bui
in case of indoor deployment, placements can be climacteric
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for elevated performance, which unfortunately, were not dis-
sected in earlier investigations.

Whether remotely installed or designed as a wrist-band
device, intelligence regarding number of samples and their
sizes are critical for classifiers to determine the source type,
where methodical studies are few and far between,

With spectrum analvzer. magnitude at a particular wave-
length and transient waveform shape were adopted for typi-
fying, which is inaccurate, as sources of different types share
common speciral range. Magnitude of the sensed parameters
can fluctuate based on the relative distance between the source
and the sensor and at last, data acquisition in real life cannot be
always conducted only during transient switch on/off phases.

When machine learning algorithms were called into play,
the training size chosen for experiments were too small to
draw any conclusion. Sometimes same sources with varyving
intensities were trained with, which fails to encompass any
substantial portion of most common and evolved varieties
of bulbs available at market. Even Sunlight possess indoor
variations throughout the time of the day, weather and sur-
roundings, which can be misidentified if not acknowledged.
As a consequence, classifiers report near perfect accuracy
with familiar sources, but performs poorly after encountering
sources oulside training set. Neural Networks (NN) along with
Time series based analysis should come into play for their
reputation in pattern recognition for unseen examples and seen
examples in non ideal scenarios.

Previous approaches of categorization were mostly based on
considering isolated single sources, whereas captured readings
may get influenced from another source or from any RGB
element’s presence near the sensor that can misdirect classifier
towards pinpointing wrong class. In modern indoor lighting,
sources keeps on/off based on person’s presence. This can
completely shatter the steady state RGB pattern and makes
classification task complicated.

I'V. PROPERTIES FOR CLASSIFICATION AND EFFECTS
ROUND THE CLOCK

In this work, we have considered three most widely used
indoor bulbs with sunlight: Incandescent lamps, Compact
Fluorescent Light bulbs {CFLs) and Light Emitting Diodes
(LEDs)figure 2. Radiation is generated through heating
tungsten filament for incandescent bulbs. CFL mostly offers
"cool white light" and spectrum exhibits certain spikes during
the startup phase [20]. Led delivers radiance over a wide
band of wavelengths, like soft white (2700K-3000K), cool
white (3100K-4000K), daylight (S000K-6000K) etc. Emissive
surfaces of LEDs are highly-concentrated, illuminance of
which can be 1000 times higher than recommended level [21].
Although sunlight covers the broadest spectrum, its nature
is dynamic, intensity and color components of light (wave-
lengths) change with the time of day, time of vear, the weather
and the location on earth,

CFLs and LEDs may be energy efficient but emit more
unhealthy blue light that disrupts triggering the release of the
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Fig. 2: 100 samples of sensed RGB values for each type
of light source (x-axis:sample no., y-axis: hex value): In-
candescent ("' soft white", 40 W), CFL (" natural daylight",
13 W), Led ("soft white", 9 W), Sunlight (open, 12:45 pm)

biclogical stimulation [21]. Absorption of blue light compo-
nent changes with age and increases with light intensity. Bright
Sunlight is the most powerful source for blue enriched light
(upto 1,500 pW/cm®) can boost maintaining healthy sleeping
order, whereas LED computer screen with blue illuminance
around 30 pWiem? couple of hours before bed can promote
lower melatonin secretion [22]. That is why maintaining
daylong healthy light receptiveness through appropriate class
of light is imperative.
V. METHODOLOGY

To address power efficient elongated operation of light
sensing, we develop a low power color sensing board (LPCSB)
dedicated to sense lighting information from the near around
environment and transmit data in a wireless/local fashion.
Although there are multiple color sensors in the market, most
of them are not cost effective, are large dimensional. energy
inefficient and require to relay information to central hub for
further analysis mostly through wired connections. Our goal
was to develop small scale, low-cost, mobile, lightweight task
specific sensor, that is unobtrusive (o already installed sysiems
in that swrroundings and easy to deploy as smart room sensor
or as wearable systems in future. LPCSB advertises BLE pack-
els containing RGB, clear value (related to intensity), color
temperature and lux information of a light source (calculated
from RGB wvalues), which enables user to place the board in
inaccessible/unreachable arcas, connect with BLE receivers
and then deliver sensed values as instructed. Moreover, the
system consumes extremely low power, as a result the power
source does not need to pet replaced often which lowers
down the maintenance hazards. In addition, information can
be captured from a distance and analysed in any platform of
users choice (for example, smart watch or remote servers).
For classification, we use this board only as an advertiser to
advertise a BLE data packet containing 1D, raw data (clear,
red, green, and blue) split into two bytes per color, color
temperature and lux of the measured light calculated from raw
rzb values and the number of the latest packet being advertised.
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Raw data measurements taken from the color sensor reveal
the amount of red, green, and blue components that compose
the unfiltered light. Utilizing RGB info, we calculate and
advertise LI and CCT of the measured light value from the
sensor [23].

We then collect data from 27 different bulbs (9 from each
of LED, Incandescent and CFL) for acquiring both inter-class
and intra-class variation of RGB values. To achieve true nature
of each light by minimizing influence from other sources, we
decide to carry out all the measurements (for artificial bulbs)
in a dark room. For collecting sunlight data, we expose sensor
te sun in diverse conditions and scenarios. which includes
taking data from sunrise to sunset, during heavy rainy, foggy
and drizzling days. Inconsisiency of sunlight RGB information
may also derive from contrasting indoor conditions {location,
window glass material, with and without blinds etc.). To
accommodate them into our training sel, we collect sunlight
data in different buildings and also in various corners of a
building.

Hen Vakees of Colors
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CFL Sun Led Imc CFL Sum Led Onc CFL Sun Led Inc

Fig. 3: Violin plot depicts RGB values of different classes of
light source lie in common range which makes it difficult
to categorize based on cutoff intensity (Mean and Median
values are marked with white and black lines)

In practice, electromagnetic light waves experience reflec-
tions from nearby structures. Finally sensed complex signal,
deriving from contrasting scenarios and mixed with direct
and indirect components, simply do not follow inverse square
law of radiation and generates irregularity in RGB values. To
acknowledge magnitude variability and irregularity of RGB
features based of sensor placement, we capiure artificial light
data at five different distances.

For analysis, we collect 300 samples for each observa-
tion. To determine optimal sample size for classification, we
divide our collection window size from 10 samples up to
125 samples. Figure 3 shows RGE distribution of all the
sources dealt in this study. As discovered, unalike sources
share common RGB spectra and magnitude, which turns it
problematic to differentiate solely based on RGB threshold. t-
SNE wvisnalization of RGB values also reveals the fact that
dissimilar light sources are linearly inseparable (figure 4).
That's why we investigate multiple Machine Leaming(ML)
and Meural NetworkiNN) algorithms to distinguish each type
of source (shown in Table I). ML and NN models are in-
dependent of feature magnitude after scaling and capable of
non linear classification. As RGB signals contain resemblance
with image data (both are primarily three channel information),
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Fig. 4: 2D tSNE plot of recorded RGB information reveals
linearly inseparability of source clusters

TARBLE I: Methods of classification

Method

Decision Tree DT
~Random Forest RF

Tuned Pard Model Par.

criterion, max depth

max depth, max femures, min
samples leaf, min samples splic,
Hi ESTIators

Acronym

Giaussian Boost GH feaming rate, mar depel, min
samples leaf, min samples splic,
Hi ESTIators
Maive Hias ;] Var smoatfing
K Nearest KNMNN metric, 1 nelghbors, welghts
Meighbor
Logistic LE C parameier, penaliy
Regmession
Support REF C parameter, gamma
Vector (SVM-Rad)
Machine Linear
(5VM-Lin)
Polynomial
(SVM-Paly)
Multilayer FNN No of lavers:7, Dropour:20%,
Parcaptron Activation:rel,  sofimax,  Opi-
mizer=5G0, Loss = Caregovical
IS gy
Convelutional CEN-1D No of lavers: 6 (I-Dy7 (2-

Meural Metwark CHMN-2D ), Noooof filters; 643210-
[.64/32416 (2-D), Kernel Size
= 2 x 2 (I-D}, 3 % 3 (2
D). Padding=same, optimizer=
Adam, Drapous:20%

No af layers: 4 | output dimen-

slon= S0,oprimizer= Adam

Long Short Term
Memory

L5TM

we inspect both feedforward Multilayer Perceptron Models
(MLP) and Convolutional Neural Networks, with 1-D and 2-
D filters (CNNs) for categorization. As sensed data is time
series based, we have also included Long Short-Term Memory
(LSTM) network for typifying.

Afier training and fine tuning our chosen classifiers with
controlled environment data, we record performance of each
classifier based on different size sample window and sensor
placement. While training, we have scaled, normalized and
divided the balanced dataset into training, test and validation
sets (80%, 10% and 10% respectively). For better evaluation
and to ensure representation from each group, we have implied
stratified 10 fold cross validation by tuning classifiers to their
best hyper parameters using Gridsearch.

For identifying primary source in a mulii-source envi-
ronment, we have blended RGB wvalues light sources and
observe whether our classifiers can identify the primary source.
While mixing, we have made sure that the RGB values
from second/interfering source never goes past values from
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Fig. 5. RGB observations (x-axis: sample no., y-axis: raw
RGB values) along with lux intensities (x-axis: sample no.,
y-axis: lux/m?) from multiple sources, LED was set as
primary and CFL as secondary source. Observed outpuis
deviate from simple addition
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primary source, as classifier is expecied to determine the
major contributor between/among sources. In previous work
like [19], only constructive interference has been considered
as the consequence of overlapping. For further investigation,
we place two light sources near the sensor and compare the
resultant with simple theoretical addition. We find that they
differ by a large margin, both in RGB and in lux domains
{fgure 5).

Based on the phase difference resulting from positioning of
both sources at sensor point, a numercus blending ratio is
possible. Variety of mixture represents blending of constant
positioned sources at different sensor placement or positioning
of sources at different locations, sensed at the same spot.
However, highest possible deviations are amalgamation of
identical and opposite phases. As our goal was to testify our
classifiers, we have only added those extreme cases that can
lead into inaccuracy with the highest probability.

Now we deploy our sensor in real life testbeds and record
performances. Based on our investigation, we have seen that
even afier training the best model with fine tuning and wide
ranging examples, performance has deteriorated substantially,
especially in recognizing unfamiliar artificial sources in some
observations or at unexpected events like source transitions
and human movemenis.

With limited amount of data, machine leaming models tend
to over-fit and become problematic for non-linear classifica-
tion. However, at the same time. it is unrealistic to include
all the lizht source available in the market in our training set.
To surpass this limitation, we have generated equal number
of synthetic examples of captured data and based on current
data distribution by utilizing TimeGAN. GAN generated time
series RGB examples can generate realistic data for superior
segrecation of different light classes by adding excluded exam-
ples from source distribution. Light source classifiers is then
expected to perform with higher accuracy in an environment
containing unfamiliar sources. Figure 6 demonstrates disiribu-
tion of first two principal components of real and synthetic
examples generated using TimeGAN.

Fluctuation during data acquisition may occur arbitrarily
and for unknown duration, where sensors may receive transient
rather than imminent information. When our sensors records
zero RGB values, it is practically impossible o detect the
source type. But if it senses non-zero values even for some
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Fig. & Prim':i']':;f Components Compaﬁsnmhmen Real
{left) and Generated Synthetic Examples (right) using
TimeGAN

duration, we may utilize that information for source classifica-
tion. To familiarize our classifier models with those events, we
have designed filters of different window sizes and randomly
implemented them within acquisition timeframe (shown in
figure 7). These examples are also expected to familiarize our
classifiers with scenarios where switch on/off is non-periodic
or presence of sudden obstacles in between source and sensor.

¥

[ EEE [N R

1& F oo aa
Fig. 7: Applying filters of different sizes on a LED source
to capture fluctuations in a 25 RGB sample window
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To the best of our knowledge, TimeGAN method along
with filtier designing have been implemented for the first time
for light source classifving. After including both filtered and
synthetics examples in our training set, a comparison between
classification accuracy has been presented between limited and
extended training set
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VI. IMPLEMENTING LPCSB

LPCSB is a printed circuit board (PCB) that interfaces
TCS53473 sensor and is regulated with nRRF51822 micro con-
troller. It is qualified to communicate over 2.4GHz Bluetooth
Low Energy (BLE), flexible enough to operate in two way
(transceiver mode) or one way (advertising) mode, as needed.
System has a dimension of roughly 24mm = 39 5mm, suited
to get fit and comfort as wearable devices. For low power
consumption and simplification, rRF31822 micro controller
components were limited to only clock circuits, 3.3 V regula-
tory circuitry and power supply connector in the final design.
Micro Reach Xtend (FROS-5I-N-0-110) Chip Antenna was
assembled to establish communication and fit in PCB, plus
USB connector for supplving power. Fully assembled LPCSB
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TABLE II: Approximate cost of major LPCSB components

Component Price in Bulk
20 board'panel 2-laver standard thickness FCB 538
NRFS18220F Blustooth® 4,024 GHz RF SoC 30
TCS53472 RGE + Clear Color Sensor 2.0
MicroReach (FRO5-51-N-0-110} Chip Antenna BIL&
EPSON-FA-128 (MHz RANGE CEYSTAL UNIT} B0
MAXEETEZKI3+T 3.3V Linzar Regulator 040
BAL-NRFO1D3 Transformer Balun 020

can be seen in Figure 9.

The power regulation section consisted of a micro-USB B-type
connector, a green LED indicator circuit, MAXSSTEZKI3+T
Low-Dropout 300mA 33V Linear Regulator, and several
bypass capacitors meant to help stabilize the input / output
voltage and current in case of supply fluctuations. With
the help of BAL-NRFOID3 transformer balun for impedance
matching and "LightBlue" phone app for monitoring, we
have tested BLE radio transmitter inside nRF31822. Using
the "nrf3x-base” and "Adafruit-TCS534725" GitHub reposito-
ries as design references, we have instructed the TCS34725
through aRF51822 to measure the ambient light and send
the resulting values. Red-filtered, green-filtered, blue-filtered,
and clear (unfiltered) diodes data of TCS34725 sensor is
stored as a 16-bit value, split berween two registers. We
have further calculated the color temperature of the light in
degrees Kelvin and the lux in lumens per square meter, using
formula provided by Adafruit. Figure 10 represents energy
intake per cycle of LPCSB, where sensor reading is followed
by a BLE advertisement event. If we set parameters to classify
source within a minute, ave current drawn is per sampling is
around 0.22m A and the system can operate upto 45 days with
conventional 3.3 Lithium batteries without replacement. For
mass deployment, as shown in Table I, LPCSB is notably
cheaper than mini spectrometers .
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Fig. 10: LPCSB with sensing and advertisement events

VII. EVALUATION

We have analyzed prediction accuracy in different back-
ground and have recorded mean values of classifying accuracy

{with standard deviations). As initial accuracy were high
with only using RGB data, we have discarded clear value,
lux intensity or color temperature readings for classification.
Although artificial lighting landscapes do not change very
often at indoor, classifiers should be robust enough there to
classify under inexperienced screenplays with factual mishaps.
We start with the ideal scenarios to fix parameters for indoor
deplovment and then progress with evaluating non-ideal inci-
dents with the setiled values. We have illustrated the findings
mostly with violin plots, which depict distributions of numeric
data through density curves on the both sides of the mean
value. Accuracy values exceeding 100% in those plots were
trimmed.

A. Prediction in known scenario

Upper plot of Figure 11 illustrates variability of mean accu-
racy for different classification techniques with varying num-
ber of samples. Observation reveals accuracy is not linearly
proportional with number of observed RGB samples. The best
average result is achieved with 50 samples, although average
accuracy with 10 and 25 samples were also near 90%. Lower
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Fig. 11: Performance comparison among ML and NN
methods for LPCSB at indoor where training windows
were varied from 10 to 125 samples: 50 samples triggers
the best performance and KNN was the best performer
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plot of Figure 11 represents a comparative analysis among
classifiers, trained with different sample sizes. It uncovers
that overall performance of ML algorithms is better than
NMNs at ideal and known scenario. K-Nearest Neighbor (KNN)
triumphs for generating highest and most consistent accuracy
among all.

To carry on with KNN, our goal is to find the sweet
spot for balancing number of samples with accuracy. Afier
observing KNN accuracy with varying samples window size,
we conclude 25 samples window exhibits the combination of
highest accuracy and lowest standard deviation. We continue
our analysis with 25 samples window for both capturing the
transient and stable state of radiation and accommodating
minimum number of samples at packet loss scenarios.
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B. Placemeni of sensor

Our goal was to observe if we had the liberty of deploving
sensor at any distance from the source indoor, where should
we place it for yielding maximum identifying accuracy. We
place LPCSB at 5 different distances for Inc, CFL and LED
bulbs, starting from 30 cm to 150 cm to observe whether
placement of sensor plays any role in classifiers’ performances.
Our analysis shows placing sensor at 100 cm can detect the
background source with maximum accuracy (figure 12).
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Fig. 12: Variation in accuracy vs Sensor placement dis-
tance: 100cm yields the maximum mean aceuracy
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MNow, we focus on non-ideal situations with known
sources/scenarios and testify classifiers performance by setting
up 25 samples window length. For investigation, as before, we
include 80% examples in our training set to familiarize our
classifier and 10% each for validation and test sets.

C. Tvpifving in multiple source environment

To fabricate multi source environment, RGB values from
second source was mixed at different amount, varying from
20% to 80%, of the intensity of the primary source. High-
est possible deviations were included for analysis (through
addition and subtraction of RGE values of primary and sec-
ondary sources) and mixing signals from all possible combi-
nations (LEDVCFL, LED/Sunlight, Sunlight/LED+CFL eic.).
Our study reveals although classifiers accuracy declines with
increasing mixture ratio but overall performance do not fall
significantly in multi source environments (fgure 13).
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Fig. 13: Owverall accuracy at multi source environments
where secondary source intensities were varied in between

20% to 80% of the primary

D. Identifving in presence of random noise

In real world, nearby elements can act as a noise source by
reflecting particular component of light which can escalate
or descend the sensed values. However, by placing RGB

reflecting elements nearby, we find that finally recorded value
contain very were small interference. We vary the influence
randomly from 0% to 5% of maximum RGB values (without
noise) and enlist the performances (figure 14). As recorded,
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Fig. 14: Overall accuracy based on randaml} varying RGB
values in between 0% to 5% of the major source intensity

accuracy decreases with increasing intensity of perturbations.
All inclusively, NN based classifiers can withstand turbulence
better than ML based classifiers. Random forest performs
best among ML algorithms (mean accuracy 84.46%) where
accuracy score of KNN was close to that (mean accuracy
B3 17%).

E. Detection Precision n smart environment

For source detection in smart environments, we vary the
on/off duration of sources and also the cutoff points, from
20% to 80% of the maximum value. Final RGB signal patterns
had major shifis from initial patiern based on threshold. Now
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Fig. 15: Overall accuracy in primary source detection at
smart environments

CHN CHH LETM
i 20

evaluating the performances to identify the aliered patierns,
we inspect that LSTM is the best performer (figure 15). If
we enlarge the accuracy in KNN case based on threshold, we
can see that accuracy of classification decreases with lowering
threshold values (figure 16). So balancing threshold is a pre-
requirement for desired accuracy in smart environments.
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Fig. 16: Declining d&leclmn IIEI:I.II."RI:}’ of KNN classifier was
observed with lower cutoff settings
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Fig. 17: RGB signals in test-beds with accuracy, circles
point placement of LPCSB (x-axis:sample no., y-axis: hex
value)

F. Real world deployment

Here, we deploy our board in real world settings. For
classification, we have singled out KNN as our classifier, for
exhibiting the most consistent performance in all scenarios and
trained it with all ideal/non-ideal examples from controlled
aimosphere. We conduct 3 experiments at 3 different test
beds: (1) Household., (2) Lab environment-1 and (3) Lab
environment-2. All the test were done with completely un-
known artificial bulbs. Experiments included single source,
mixed light source and arbitrary switching of bulbs scenarios
(figure 17).

G. Analysing misidentified examples

After analysis, we observe that classification accuracy has
been degraded unexpectedly. Classifier got confused during
few transition events. We also observe that the faulty predic-
tions were not common for any particular light. Moreover, for
artificial lamps, a single source at different distances have been
typified as different classes. While detecting RGB spectrum
of sunlight during sunrise and sunset, classifier has been
misguided.

Now, we retrain our KNN classifier with extended training
set and re-record the accuracy. Our investization reveals that
performance of KNN classifier has been significantly improved
(figure 18), especially in few cases of sudden movements
and random switching between sources (figure 19). Even with
elevated training, we observed examples that were failed to
get correctly identified. A few of them have been listed below
(figure 200, Again, no single pattern of mis-classilication was
discovered.
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Fig. 18: Accuracy reveals KNN with extended training set
exhibits superior performance in unfamiliar environments
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Fig. 19: Correct Predictions with extraneous training set
(x-axis: sample no., y-axis:hex valve) : During Switch-
over (lefi):Prev-Led, Now-CFL. During random movement
(right): Prev-CFL, Now-Sunlight
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Fig. 20: Miscategorized examples with Incandescent
("work white", 150 W),Led ("warm yellow light", 40 W)
and CFL ("T9, 6400K", 22 W) bulbs (x-axis: sample no.,
y-axis: hex value): (a) Inc. as Sunlight (b) Led as Sunlight
(c) Led as Ine, (d) CFL as Led

VI DISCUSSION

In this experiment, we have used TCS3475 sensor with 1X
ADC gain with an integration time of 700 ms, which allows
us to read color values up to value 65535, Based on the place
of interest for source detection, color sensor parameters like
integration time and ADC gain settings can be modified for
increased sensitivity at low light levels. Sensors can be preset
only to record data if there is any certain amount of change in
value and discard values that are below threshold. Sampling
and Advertising rate can also be adjusted for better power
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management on the transmitting side. However, if the rate is
too high and number of samples for identification are pre-
fixed, it may fail to capture amount of variation needed for
classification. On the other hand, too low sampling rate will
result in unnecessary delay in classification process. Moreover,
color sensors like TCS3473 has a limitation regarding integra-
tion time and highest value that can be recorded for a color
channel. When running the control tests, we did not test light
bulbs with colored glass in detail or rotating search lights.
As BLE technology has range limitation, on board storing
and processing can be beneficial to minimize packet loss but
conceivably will require hicher memory and processing power.

IX. CONCLUSION AND FUTURE WORK

For accurate identification of light exposure, light sensors
need to encounter all the scenarios we have discussed here.
What we have monitored is that a single classifier is not the
best performer in all the landscapes. In addition, inaccurate
identification was not bulb specific. For indoor deployment,
placement of sensors, along with the number of samples
considered for source identification play pivotal roles. With
KNN, sensing 25 samples at a distance of 100 cm achieves
accuracy up to 99.30% in constrained cases, compare to 100%
in identifving indoor light among LED, CFL, Inc. and Halo-
gen [19] and 100% in distinguishing among Warm Led, Cool
Led, Halogen, CFL and solar simulator [24] {in both the cases,
architectures were trained with only one example of each type
with varied lux intensities). Recognition of primary source in
a multi-source environment, classifiers” mean accuracy was
98.96%, compare to 100% in [19] and 85.4% in [24]. However,
after adding filtered and synthetic data, our highest mean
accuracy was 9.25% for unfamiliar synopses, compare to
only 62.5% in [19]. Training classifier with limited data set
may tall short for classification in real world setting, where
adding synthetic and filtered data can elevate the performance.
Finally, interference like accidental movement can hit hard the
performance, so stable environment is advantageous.

Our future endeavors include readjusting sensor parameters
that further minimize energy intake for dayvlong operation,
keep high accuracy intact and help us gathering knowledge
regarding primary source around the environment as quickly
as possible. On board classification approach can be embraced
tor developing self-contained systems to store, analyze and
publish outcomes as a package like smart watch. We also
plan to conduct time series feature based identification which
may require higher memory and power for calculation but
can identify primary source in nearby atmosphere with higher
accuracy than utilizing only raw RGB values. Mis-classified
and adversarial examples can be included in the training set
for upgrading robusiness.
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