2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) | 978-1-6654-9624-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/IPSN54338.2022.00033

2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

An Energy Supervisor Architecture for Energy-Harvesting
Applications

Nurani Saoda
University of Virginia
saoda@virginia.edu

Wenpeng Wang
University of Virginia
wangwp@virginia.edu

Md Fazlay Rabbi Masum Billah Bradford Campbell
University of Virginia University of Virginia
masum@virginia.edu bradjc@virginia.edu

ABSTRACT

Energy-harvesting designs typically include highly entangled app-
lication-level and energy-management subsystems that span both
hardware and software. This tight integration makes developing
sophisticated energy-harvesting systems challenging, as developers
have to consider both embedded system development and intermit-
tent energy management simultaneously. Even when successful,
solutions are often monolithic, produce suboptimal performance,
and require substantial effort to translate to a new design. Instead,
we propose a new energy-harvesting power management architec-
ture, ALTAIR that offloads all energy-management operations to the
power supply itself while making the power supply programmable.

ALTAIR introduces an energy supervisor and a standard interface
to enable an abstraction layer between the power supply hardware
and the running application, making both replaceable and recon-
figurable. To ensure minimal resource conflict on the application
processor, while running resource-hungry optimization techniques
in the supervisor, we implement the ALTAIR design in a lower power
microcontroller that runs in parallel with the application. We also
develop a programmable power supply module and a software
library for seamless application development with ALTAIR.

We evaluate the versatility of the proposed architecture across a
spectrum of IoT devices and demonstrate the generality of the plat-
form. We also design and implement an online energy-management
technique using reinforcement learning on top of the platform and
compare the performance against fixed duty-cycle baselines. Results
indicate that sensors running the online energy-manager perform
similar to continuously powered sensors, have a 10X higher event
generation rate than the intermittently powered ones, 1.8-7x higher
event detection accuracy, experience 50% fewer power failures, and
are 44% more available than the sensors that maintain a constant
duty-cycle.
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1 INTRODUCTION

The ubiquitous vision of the Internet-of-Things is greatly ham-
pered by the “battery problem”. As reliable power sources like wall
power are not always available where IoT devices are deployed,
many devices use batteries as their main power source. Batteries,
due to their limited cycle count [5, 35], potential long recharge
times [32, 47], and hazardous nature [25, 29] have become a less

attractive option as a power source for applications that require low
maintenance and life-long service. To eliminate these drawbacks,
certain ubiquitous applications which previously relied on batter-
ies as their power source, have adopted energy-harvesting power
supplies as an alternative. Such applications include building and
home automation, smart industrial monitoring, and smart wear-
able applications. Recent works have even pushed the boundaries
of smart sensing by introducing energy-harvesting medical im-
plants [16, 31], wearable activity tracker [28, 42, 46], micro-satellites
for space observation [27], and industrial and residential monitor-
ing [1, 9, 14]. Though energy-harvesting systems are making their
way into mainstream sensing applications, a vast majority of the
commercial off-the-shelf IoT sensors still rely on batteries [10, 20].
Unfortunately, converting a battery-powered application to energy-
harvesting is not as straightforward as replacing the battery with a
harvester. Harvestable energy is usually very limited, intermittent,
and unpredictable which requires special hardware and software
support to achieve useful operation [8, 11, 17, 48].

The operating principle of battery-less energy-harvesting appli-

cations can be broadly categorized into two approaches: intermittently-

powered and energy-neutral. The first category of sensors harvest
energy from the environment through solar, RF, thermal, and kinetic
sources, store the energy momentarily in a capacitor, operate until
the capacitor is depleted, and repeat this cycle continuously, while
the latter store energy for future use and regulate the operational
frequency of the sensor to ensure that the outgoing energy roughly
matches the combined incoming and stored energy. Various designs
implement these techniques to realize energy-harvesting systems,
including hardware-based [12, 18, 24, 49] and software-based so-
lutions [7, 11, 26, 36]. In both cases, however, energy-harvesting
systems typically consist of a single processor along with an energy-
harvesting front-end and application peripherals, where the proces-
sor is responsible for both energy management tasks (i.e. tracking
the amount of energy stored, controlling the wake-up time in-
terval, turning on peripherals at specific voltage levels, etc.), and
application-specific tasks (i.e. sampling, computation, and trans-
mitting radio packets). While this monolithic architecture can be
simple and efficient for the intended application, adopting these
platforms to build new applications can be quite difficult due to
tightly-coupled implementations of energy-management code and
application code. The intertwined application and energy manage-
ment requires the developer to be responsible for understanding
not only how to manage energy and correctly implement the appli-
cation, but also how the two halves might interact.
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This tight coupling of energy management and application logic
imposes a major limiting factor for energy-harvesting system de-
sign. In this paper, we propose ALTAIR, a modular architecture for
energy-harvesting system design that decouples energy manage-
ment from application execution. We claim that traditional power
supply interfaces (consisting only of one or more voltage rails
and possibly a power available flag) must expand to allow energy-
harvesting power supplies to encapsulate the complex energy man-
agement tasks required of sophisticated energy-harvesting systems
to achieve energy-neutral operation. By requiring the power sup-
ply itself to handle tasks including energy forecasting, allocation,
measurement, and management, the application logic no longer
has to integrate these tasks. Application platforms can focus on
the IoT task (as they would with a battery-based power supply),
and the new “smart” power supply can make intelligent decisions
about when the application should wake up, what operating mode
it should be in, and how long it should stay active, based on its
careful knowledge of the energy state.

To make these decisions, the ALTAIR design incorporates an
energy supervisor that runs energy management protocols (for
example, reinforcement-based learning algorithms for harvesting
prediction and long-term optimizations for energy neutrality) on
behalf of the application. Since the algorithms and power supply
are tightly coupled, they can be highly optimized, and must only be
implemented once. Many application-level platforms can leverage
the same power supply. Further, the energy supervisor can handle
the uncertainty in energy-harvesting system deployment, relieving
each application from needing to consider the range of potential
deployment conditions it might face, and instead allowing the power
supply to adapt to the local conditions post deployment.

Expanding the role of the power supply also requires fundamen-
tally re-thinking the interface between the application processor
and the energy supervisor. ALTAIR includes a much richer interface
that supports a range of potential application platforms. ALTAIR
supports “harvesting-aware” applications that can instead use the
power supply almost as a co-processor to provide hints about the
correct operating mode to use to meet the application’s overall
operational goals. By supporting a range of use cases, ALTAIR can
help many IoT devices embrace the benefits of energy-harvesting
operation.

While implementing ALTAIR architecture, we ensure minimal
resource conflict on the application hardware by offloading the
energy management algorithm to a power-optimized microcon-
troller. Using a separate core also allows decoupling in the time
and power domain and flexibility to be re-used across a variety
of devices. To realize ALTAIR design and evaluate its extensibility,
we create a prototype implementation of the platform with a func-
tional power supply interface. To demonstrate a potential complex
energy management algorithm, we implement a lightweight rein-
forcement learning (RL)-based duty cycle adaption technique that
can run entirely inside the power supply. We provide a bus-based
power supply interface, as well as a software library that application
platforms can use to interface with the power supply.

In our experiments, we integrate six IoT sensors with the ALTAIR
power supply and compare the performance of a variety of energy
supervisor control algorithms. By demonstrating the performance
of several energy-management techniques on a single hardware
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platform, integrated with a number of existing devices, we show
the generality, flexibility, and robustness of the energy supervisor
architecture. Our results show that the event capture rate of sensors
when optimized by the RL-based ALTAIR energy supervisor is com-
parable to using a traditional reliable power source, and the capture
rate is 10X higher compared to the intermittently powered ones.
Sensors can achieve 1.8-7X higher event detection accuracy with
opportunistic duty-cycling. We also find that our system incurs
50% fewer power failures and has 44% more availability than the
statically duty-cycled sensors.
To summarize, the main contributions of the paper include:

We propose, ALTAIR, an energy supervisor architecture for IoT
sensing applications that executes energy management decisions
separately from the application. We claim that this separation is
crucial for better energy optimization and independent applica-
tion design of energy-harvesting battery-less devices.

We propose a new power supply-application interface that sup-
ports building on top of unreliable power sources and implement
a flexible software library to demonstrate the efficiency of the
proposed system.

We implement the proposed architecture as a standalone PCB that
can be easily incorporated into new as well as already existing
battery-powered devices. The platform is open source.

2 SYSTEM DESIGN CHALLENGES

Energy-harvesting devices must balance an unreliable source of
energy with application-level goals. Coupling an application’s task
flow to an unreliable source of energy makes energy-harvesting
systems difficult to develop and debug, and can result in poor per-
formance. Often, the application’s task i.e., sensing, computing, or
transmitting, is carefully mapped to the recent energy state of the
energy storage. This tight integration between an application’s task
flow and energy availability significantly limits today’s battery-less
systems in several ways.

Suboptimal performance. With a high degree of energy-applic-
ation coupling, an application’s execution becomes highly energy-
dependent. With unreliable energy, the application needs to per-
form complex software checkpointing techniques to ensure forward
progress, which is not always guaranteed. Application programs
can enter an endless inactive loop [30, 36], producing suboptimal
performance. The complexity, uncertainty, and software overhead
induced in intermittent computing indicate a need for alternative
approaches to design energy-harvesting systems.

Runtime energy optimization. When an application’s task
execution is directly mapped to its energy status, this mapping is
often performed at design time and is not optimized or re-evaluated
during runtime. Decisions made at design time fail to scale post
deployment. Since the nature of harvestable energy is time, space,
and source dependent, modeling accurate energy states for all pos-
sible scenarios apriori is non-trivial. Figure 1 shows two co-located
intermittently-powered solar energy-harvesting nodes that both
transmit a radio packet each time their capacitor reaches a certain
voltage. Though deployed in relatively similar environments, the
harvesting rate of the sensors varies quite significantly resulting
in different throughput and availability, which is hard to model at
design time. Non-linear device parameters are another source of
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Figure 1: Two energy-harvesting sensors in room a) trans-
mit at a rate shown in b). Performance varies significantly
indicating high energy variability of indoor solar energy. Dif-
ferent duty cycles in c) result in different event detection
percentage in d).

stochasticity in energy-harvesting design. For example, two sensors
deployed nearby and powered by the same PV cell could operate
at different points on its PV curve at a given time and therefore,
produce different output power. Different output power results in
different capacitor recharge times. Both of these two relations are
stochastic and non-linear and fixed design time decisions produce
suboptimal performance in post-deployment phases indicating the
importance of runtime energy modeling.

Impedes development. Developing applications with unstable
power requires more expertise, development time, and rigorous
testing and debugging than with reliable power. With the appli-
cation’s behavior being energy-coupled, developers have to care-
fully implement everything from the low-level energy-harvesting
hardware circuitry to writing optimized code within the system’s
limited energy budget. This creates a large burden on an IoT ap-
plication developer. Moreover, finding the optimal design strategy
often takes multiple design-test-deployment cycles. Successful and
smooth battery-less development requires a well-balance between
providing enough abstraction as well as control into the underlying
energy optimization mechanism [38].

This combination of challenges suggests that a different design
architecture for energy-harvesting is required.

3 OVERVIEW OF ALTAIR

We propose ALTAIR, a new energy-management architecture for
energy-harvesting applications that decouples energy related deci-
sions from an embedded application’s task execution. This separa-
tion introduces an abstraction layer between the application and
power management which enables independent, modular, and faster
design of both subsystems. ALTAIR hides the low-level complex-
ity of energy measurement and management from an application
developer, while exposing critical energy parameters through the
ALTAIR energy APL
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Figure 2: Overview of ALTAIR energy supervisor architecture.

Figure 2 depicts the high-level overview of the ALTAIR energy su-
pervisor architecture. The design consists of three core components:
the energy supervisor, the energy-application interface, and the
main application. The energy supervisor monitors the energy states
of the storage along with load energy consumption and determines
the optimal duty-cycle to achieve energy-neutral operation within
the limited energy budget. The supervisor works as a wrapper func-
tion that implements power supply functionality and an interface
to facilitate calls between the supervisor functions and main appli-
cation. The main application implements the application specific
tasks of an IoT sensor such as sampling, computation, and data com-
munication, and makes call into the energy supervisor using the
interface. The energy-application interface handles requests from
the main application, defines the function-specific input/output
parameters, and ensures reliable data communication. Algorithm 1
outlines how the application and the supervisor can interact. The
function MAIN invokes ENERGY_SUPERVISOR specifying applica-
tion requirements (p1, p2, ..) to receive the rate at which a task is
performed. Instead of tying an application’s task with the specific
energy status of the storage as done in many battery-less appli-
cations, the main application offloads the decision to determine
an optimal wake-up rate of the sensor to the energy supervisor.
This way, the dependence between the energy supervisor and the
application is reduced.

3.1 Enabled Properties

ALTAIR enables several desired properties of energy-harvesting
system design that traditional implementations often cannot. It in-
troduces a general, reusable, and reliable application-power supply
interface for energy-harvesting applications and achieves indepen-
dent and modular design. Since the energy supervisor and the main
application are separate modules of code and the application’s task
flow is not directly logically dependent on the outcomes of the
supervisor, development can be performed in a parallel fashion.
This decoupling also simplifies adding new APIs to the energy-
supervisor and new functionality in the application. A standard
interface between the energy-harvesting power supply hardware
and the IoT sensor enables integrating a variety of sensors with a
single power supply without re-designing the harvesting circuity
or energy management logic, enabling reusability and scalability of
the platform. Also, since the application does not interact with the
underlying energy-harvesting power supply hardware, the IoT ap-
plication developer does not need to implement power-supply spe-
cific drivers in the application code. Moreover, though we propose
ArTAIR for energy-harvesting applications, the general architecture
can be adopted in battery-powered IoT and mobile applications as
well as for advanced power optimization.
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Algorithm 1

function ENERGY_SUPERVISOR (p1, P2, ., Pn)
return action_rate
function APP_ROUTINE (rate), // application task code
return
function MAIN
After each tyerioq {
rate = ENERGY_SUPERVISOR (p1, p2, .., Pn)
APP_ROUTINE (rate) }

4 ALTAIR SYSTEM DESIGN

An IoT application interfaces with the energy supervisor of ALTAIR
to maximize its energy utilization. In this section, we discuss the
core components of the architecture and how they interact. We also
investigate the design choices to understand the trade-offs in the
design space.

4.1 Design Space Trade-off

We note that the isolation between the energy management and
application sub-blocks proposed by ALTAIR can be implemented
in both software and hardware. In software, this isolation would
be possible by delegating the energy management portion in a
separate module with the implementation of appropriate interface
functions accessed by the main application. In the hardware ver-
sion, the energy management functionality could be executed in
a separate core or a processor with dedicated hardware resources.
We identify some crucial factors when choosing between these
various design points. While implementing ALTAIR as a software
component would provide the desired logic detanglement and inde-
pendent code development, we advocate for the hardware version
of ALTAIR design to take advantage of several benefits.

4.1.1  Minimal resource conflict. Today’s IoT devices are extremely
resource-constrained due to their size and power restrictions, yet,
they are expected to perform a diverse range of processing-intensive
applications. Such applications include critical real-time processing,
multi-radio wireless communications, and even running machine
learning inferences. Typically these computation-intensive tasks
are handled in real-time by a low-end microcontroller causing sig-
nificant burden on the shared memory and CPU bandwidth. Adding
an online energy management algorithm would exacerbate these
concerns. Instead, we leverage an ultra-low power microcontroller
with dedicated clock, memory, and I/O bandwidth to execute the
energy supervisor in parallel with the application.

4.1.2  Decoupling in the power domain. Using hardware isolation
and adding additional hardware components to the system might
impose an additional energy cost in an energy-harvesting appli-
cation. However, we argue that the average energy overhead can
actually be reduced by leveraging a lower power core than the main
application. As these two cores are decoupled in the power domain
and they can be turned on/off independently, one can reduce the
overall energy cost. This architecture has been implemented by
silicon vendors in many low power dual-core processors [43, 45].
Furthermore, the energy-management core can be further power-
optimized with the recent growth of ultra-low power chip technol-

ogy.
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Table 1: List of ALTAIR APIs.

Energy Supervisor Main Application

c_param_t dc_t get_optimal_dutycycle()
get_critical_parameters()

list_param_t get_app_list()

double
get_current_energy_status()
int get_update_period()

mode_param_t
get_power_modes()

model_array_t
get_energy_model()

4.1.3  Reusability and generality. A hardware implementation of
ALTAIR accelerates the development phase and reduces developer
effort by providing modularity and reusability across multiple appli-
cations. To promote reusability, we adopt the hardware-accelerated
software energy management of ALTAIR and implement the energy
supervisor in a lower power microcontroller taking inspiration from
the ARM’s big. LITTLE technology [4] that leverages a smaller lower
power core to enable power optimization. In the evaluation, we
test the performance with a variety of IoT sensors and demonstrate
the composability and generality of the platform. This enables fu-
ture embedded designers to rapidly develop their own applications
while adopting energy-harvesting functionality.

4.2 The Energy Supervisor

The energy supervisor of ALTAIR handles the tasks of energy man-
agement, prediction, and allocation, and makes decisions indepen-
dently from the application logic. To accomplish this, the energy
supervisor has two key components. First, the supervisor interacts
with an energy-harvesting front-end to collect useful information
about the harvesting conditions. This information includes the aver-
age input power, the charging rate of the storage, and instantaneous
and average stored energy. The energy-harvesting front-end typ-
ically accommodates an energy-harvester (e.g. solar, RF, thermal,
or piezoelectricity), a charge controller, and an energy storage (e.g.
capacitor). Second, the supervisor implements the dynamic power
management scheme and the interface presented to the main ap-
plication. For dynamic energy management, the application can
specify the parameters (i.e., duty-cycle) to be optimized and an
optimization algorithm among the supported ones. The supervisor
can also inform the application about which operating mode the
application peripherals should be running in, or the recommended
order of priorities for multiple applications.

The supervisor makes power management decisions by keeping
track of system’s past experience and predicting future expected en-
ergy incomes. Learning and adapting the optimization parameters
at runtime, as opposed to fixed design time or datasheet parameters,
makes the energy supervisor more robust to real-world deployment
conditions. The supervisor attempts to support any type of appli-
cation workload. However, as the underlying hardware can only
buffer a finite amount of energy, the average energy consumption
of the application must be below the maximum buffered energy.
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Energy supervisorcode App code

intmain (){ intmain (){

configure_supervisor();

wait_for_cmd_from_app ();
get_critical_parameters();

get_app_list();
get_ power_modes();

get_current_energy_status();
t_timer = get_update_period();
/I once set_timer expires
get_optimal_duty_cycle();

Figure 3: Example workflow diagram between the application
and energy supervisor. The direction of the arrow specifies
the direction of API calls.

4.3 Energy-Application Interface

The energy-application interface enables the abstraction layer be-
tween the main application and the energy supervisor module.
It facilitates communication between the energy supervisor and
the main application by implementing a set of useful APIs. This
standard interface enables updates and improvements to the en-
ergy supervisor and any optimization algorithms without requiring
direct changes in the application.

4.3.1 ALTAIR Energy API. Table 1 shows the list of available APIs

provided by ALTAIR. The energy supervisor calls get_critical_parame-

ters, get_app_list, and get_power_modes to acquire application or
device specific information. These are fixed configuration parame-
ters of the application that are not expected to change at runtime.
get_critical_parameters returns an array of permitted duty-cycles of
the running application, according to which the energy supervisor
optimizes for long term energy neutrality, and which energy opti-
mization algorithm from the supported ones to use. Currently, the
platform implements three duty-cycling mechanisms (described in
Section 6.2). To understand how energy is being spent, get_app_list
provides the list of energy-atomic operations performed by the ap-
plication. Energy-atomic operations are categorized into sampling
a sensor, computing and analysing the sampled data, transmitting
data, or receiving data. Each of these operations is associated with
a unique operation ID. The application specifies the required op-
erating power modes using get_power_modes. ALTAIR saves this
information into the non-volatile memory of the energy supervisor
to eliminate the need to repeat the APIs calls after a power failure.

On the application side, ALTAIR provides another four APIs,
namely get_current_energy_status, get_optimal_dutycycle, get_update-
_period, and get_energy_model. get_optimal_dutycycle returns the
calculated optimal duty-cycle which is one of the values specified
by get_critical_parameters and the power modes of each operation.
The application performs sensor sampling, computation, and com-
munication at this optimal rate and enters sleep mode in between
operations. The get_update_period returns at what interval the ap-
plication should check for the updated duty-cycle. This depends on
how variable the incoming energy profile of the device is (defaults to
15 minutes). The get_current_energy_status and get_energy_model
offer finer insight into the system’s energy status. By calling these,
the application receives the current stored energy on the capaci-
tor and the current numeric input values used by the duty-cycle
algorithm to calculate the duty-cycle, respectively.
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4.3.2 Hardware Energy Interface. The hardware energy interface
consists of the hardware abstraction layer that configures the hard-
ware interface between the supervisor and the application. Each
API call is executed by a set of hardware signals and a data com-
munication channel. The interface consists of voltage, control, and
data channel as shown in Figure 2. The data channel enables a syn-
chronous communication channel between two processors where
the application processor provides the clock signal. When the ap-
plication processor makes a call into the API functions, it sends an
interrupt signal to the energy processor. The energy processor uses
the interrupt to configure the communication hardware and initiate
data transfer. The energy API calls described in the previous section
are translated into data packets. The first byte of energy API packet
encapsulates header information specifying the intended API call
and a read/write bit, and the next two bytes specify the message
length. To invoke the energy supervisor to call an API, the main
application sends a write request and an API call from the applica-
tion is sent as a read request. Both processors avoid sending a new
request if there is any previous unresolved or pending request. We
also keep a timeout timer to avoid a communication deadlock.

Figure 3 shows a flow diagram between the energy supervisor
and the application code using ALTAIR energy API. Upon startup,
the main application uses the configure_supervisor to send write re-
quests and prompt the energy supervisor to call the next three func-
tions for configuration. get_current_energy_statusand get_energy_m-
odel is called at any time application, while, the get_optimal_dutycycle
is invoked according to get_update_period.

4.4 The Main Application

The main application is a piece of software that performs the typical
workload of an IoT sensor, i.e. sampling, computing, processing,
and transmitting.

5 ALTAIR PLATFORM IMPLEMENTATION

We implement the ALTAIR energy-harvesting power supply module
in a custom PCB.

5.1 Hardware Components

The ALTAIR hardware consists of two primary modules: a power
system module and an external application module. The power
system module implements the energy supervisor, low level energy-
harvesting hardware, and the hardware interface between the en-
ergy supervisor and the main application. The main application is
representative of a typical IoT sensing application that is powered
through the power supply interface.

Power supply module. The power supply module of ALTAIR
hardware accommodates an energy-harvesting front-end and a
companion microcontroller that implements the energy supervisor
software. Figure 4 shows the power supply module and the block
diagram of the core components.

An ultra-low power battery charger IC SPV1050 charges the
supercapacitor from a solar or TEG harvester until it reaches 3.1 V.
A nano-power boost regulator MAX17222 with > 70% efficiency
at 10 pA of input current regulates the supercapacitor voltage after
its voltage reaches 2 V. The platform currently uses a monocrys-
talline IXYS solar cell as the harvester and a 470 mF supercapacitor
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Figure 4: The ALTAIR hardware platform consists of a power
supply module that implements the energy supervisor and
a discrete power supply application interface that can be
plugged in directly with an external application.

with an ESR value of 25 2 as electrical storage. We size the capacitor
empirically to ensure that it can supply the highest system peak
current.

The energy supervisor uses an ultra-low power 32-bit ARM
Cortex-M0+ with a 8 kB of SRAM and 64 kB of flash with different
low power modes. The power supply consists of a current-sense
amplifier MAX9634 to keep track of the load energy consumption.
A nano-power power gating IC TPL5110 with reconfigurable time
interval allows the MCU to duty cycle the application in hardware
with minimal calibration. The MCU leverages a digital potentiome-
ter to dynamically reconfigure the time interval according to the
calculated duty cycle.

The interface. The interface of the power supply module pro-
vides two voltage rails of 3.3V and 1.8V, one duty-cycled voltage
rail, capacitor voltage output. We use SPI to exchange information
between the two microcontrollers and one GPIO to trigger inter-
rupts. For debugging and evaluation, the interface exposes a UART
channel that can be used to log the instantaneous capacitor voltage
state and current measurement channel.

Application module. The application module of ALTAIR plat-
form is an externally attached sensor. We implement an air quality
and pressure sensor board as a part of the platform.

5.2 Energy Supervisor Implementation

We implement an example energy supervisor to show how the
architecture can be leveraged to optimize the duty-cycle of the con-
nected application. With the dedicated hardware resources of the
energy supervisor microcontroller, processing-intensive on-device
energy optimization can be implemented without imposing signifi-
cant resource conflict on the application microcontroller. One of the
useful properties of the energy supervisor is its capability to learn
to behave optimally post deployment without explicitly modeling
the harvesting environment pre-deployment. To demonstrate this,
we implement an on-device energy supervisor using reinforcement
learning. Reinforcement learning has shown promising results as a
power management technique since it can enable the sensor node
to learn to adjust its duty cycle in a completely unknown environ-
ment [3, 21, 41]. The RL-based energy supervisor reacts to changes
in available energy to update an application’s operation, in this
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Algorithm 2 RL Algorithm for Energy Management

Initialize S, A, Q(s,a) =0, a,y,€,8
while true do
for each episode do
s « Sample current states
a < Choose current action from s using e-greedy policy
wait for a duration of t,4ir
for each step of the episode do
Perform action a for the duration of tszep
wait for a duration of ty,qi¢
s’ « Sample next states
r « reward (s’, a) according to equation (3)
a’ « Choose next action using e-greedy policy
Q(s,a) — Q(s,a) +ax[r+y=(Q(s').a") - Q(s,a)]
€e—e—94
ses’
a—a

implementation, the rate of sending packets to report an event. The
goal of the algorithm is to maximize the application sensing rate
while avoiding critical energy depletion.

At a given time, the energy-harvesting node acts as an agent
in different states (s; € S) corresponding to the available stored
energy, incoming energy, and energy consumed by the load. The
environment in this scenario consists of the stochastic harvestable
energy source and the randomness inherent in the sensor hardware.
The node interacts with the environment in time-slotted episodes by
selecting a sensing rate (a; € A), and receives feedback in the form
of reward (R : S X A — R). Through a series of such interactions
with the environment, the agent finds its optimal policy (%) to
select future actions.

RL algorithm. We define the state space for the algorithm to
capture the energy profile of the system. At a given time-step #; of
an episode, the energy supervisor collects all the following state
information,

S = {est (tk)s ein(tk) €1oad (i) } (1

where eg; (), ein(tr), and ej,,q(f) denotes the supercapacitor
voltage at t;, average input energy, and the load energy consump-
tion during t;. These parameters are indicative of the system’s
overall energy dynamics for which the supervisor finds an optimal
action for the sensor. We consider a 24-hour long episode with a
time step of 20 minutes.

The action space consists of a set of discrete sensing rate,

@)

where rmin and rpgx are the minimum and maximum rate for
the application. At each time step f;, the agent selects an action
a(t;) € Aaccording to the underlying policy. The goal of the reward
function is to inspire the agent to choose the actions that maximize
the sensing rate of the application and maintains minimum required
energy on the energy storage. To model the reward function we
adapt the reward function proposed by Aoudia, et al. [3] as follows:

A = [Tmin, - Ymax]

R = (est — emin)/(€max — emin) * a(ly) ®3)

We assign a negative reward of -400 if capacitor voltage falls
below the minimum required voltage level of 2.0 V. We choose this
number so that the maximum cumulative reward over an episode
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Figure 6: ALTAIR device deployments.

does not exceed the negative reward. Algorithm 2 lists the pseu-
docode showing how we implement the SARSA reinforcement
learning technique [44] to calculate the optimum duty cycle of an
application.

Parameter setup. Though states and actions are continuous
functions, we discretize those to restrict the size of Q-matrix. The
discrete action space is A = [1,2,3,4,5] s, which denotes the time
between two consecutive tasks. We set A = .99,y = .8, A;pin = .1, =
.001, & = .1 after explicit testing. To enable faster convergence, we
ensure that the learned Q-table is saved before a power failure
happens by polling the capacitor voltage in the background.

6 EVALUATION

To evaluate the ALTAIR design, we investigate the usability of the
energy supervisor architecture and develop a set of different IoT
applications. To demonstrate the versatility of the architecture, we
run the applications using different energy supervisor algorithms

and compare their performance. We tested the platforms across
four categories of IoT hardware and evaluated how well these appli-
cations perform in terms of event generation frequency for periodic
sensing and percentage of accurate detection for event-based ap-
plications. We integrated six sensors with the ALTAIR hardware
platform. We also explore the performance of the reinforcement
learning based energy supervisor to understand how well the sys-
tem adapts in terms of cumulative active time and reactivity—an
inherent feature of the energy supervisor that shows the online
adaptability of the system in post deployment situations.

6.1 Methodology

Categorizing existing IoT devices. ALTAIR uses its standard
hardware and software interface to enable different applications. To
test the usability of the ALTAIR power supply interface, we broadly
categorize existing IoT devices into four groups based on the hard-
ware and software interface exposed by the device: 1) sensors that
are custom built specifically to use with ALTAaIR platform ensur-
ing ideal interfacing, 2) sensors with open source hardware and
optimized applications, 3) sensors that have available hardware
design with somewhat modifiable software stacks, 4) off-the-shelf
sensors with non-modifiable hardware and software. This spectrum
is shown in Figure 5. Of these four groups, the first group of sensors
is best suited for use with ALTaIr. However, embedded software
developers typically use the second and third categories of sensors.

We select six IoT sensors from these four categories to perform
our experiments. These sensors are 1) a Pascal sensor board that

Test platforms Processor Peak current (mA) | Default power supply Available interface
Pascal Cortex-M4 nRF52840 13.6 flexible power supply, SPI
BLEES Cortex-M0 nRF51822 15 Non-rechargable battery power supply
Herald Cortex-M0 nRF51822 14.8 Intermittently powered power supply
LPCSB Cortex-M0 nRF51822 14.6 USB-powered power supply, 12C

Nordic Thingy:52 | Cortex-M0 nRF52832 10 Rechargable battery SPIl,) %;;;?Ijﬁjjrcs: 0
SensorBug BR-LE4.0-S3A 17 Non-rechargable battery power supply

Table 2: Specifications of test applications.
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Figure 7: Performance of different sensors when optimized by different variants of the energy supervisor and their default power
supply. The ALTAIR energy supervisor implements reinforcement learning to choose between a set of transmission intervals.
BLEES, LPCSB, and Thingy:52 sensors using ALTAIR produce a similar distribution of packet frequencies as the continuously

powered version. For intermittently-powered Herald beacons however, ALTAIR produces denser packet distribution.

monitors ambient air quality and pressure (category 1), 2) the BLEES
platform [1] that senses temperature, humidity, light, pressure, and
movement, (category 2), 3) the LPCSB [40], an ambient light sensor
that categorizes natural light from sunlight, (category 2), 4) Herald,
an intermittently-powered energy harvesting Bluetooth Low En-
ergy (BLE) beacon [39] (category 2), 5) the Nordic Thingy:52 [33], a
multi-sensor prototyping platform (category 3), and 6) the Sensor-
Bug [6], a BLE beacon for smart home monitoring with temperature,
light, and acceleration sensors (category 4). While BLEES, LPCSB,
Herald hardware have limited hardware interfaces, the Pascal and
Thingy platform includes a relatively richer interface with ports for
communication including I2C and SPI. For the devices that do not
have a data channel or open software that we can reprogram, we
use the duty-cycled voltage terminal of the power supply interface
to turn on/off the sensor according to the calculated duty-cycle.
This exhibits the benefit of using the hardware version of the energy
supervisor as discussed in Section 4.1.3.

The selected devices are designed to work on different powering
options including rechargeable/non-rechargeable batteries, con-
stant power, and intermittent source of energy. Also, these sensors
use different application microcontrollers and their energy con-
sumption varies. Table 2 lists the characteristics of these hardware
platforms. ALTAIR’s strength lies in its ability to take a battery-
powered sensor and convert it to a self-powered energy-harvesting
device. We envision that this will pave the way to many future
battery-less applications.

Interfacing with ALraIr. To interface with ALTAIR, we simply
deactivate the default power supply of the sensor and jumper the
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power rails and SPI channel to the ALTAIR power supply. In the
Thingy:52 board, we connect the voltage rails bypassing the battery
monitoring circuitry. The application uses the energy API library
at runtime to interface with the energy supervisor. The application
developer implements the mapping between the API and their
corresponding request id as an initial configuration for both the
application and energy supervisor.

Sensing applications. We consider periodic and event-based
sensing tasks from the above four categories to understand how
well the adaptive power management algorithm captures useful
events. The sensors use Bluetooth Low Energy (BLE) radio to report
events. An always-on BLE receiver scans for advertisement packets
and advertisements are sent with short intervals in between, in the
range of milliseconds to a few seconds.

Deployment. Our deployment scenario consists of four different
indoor locations in a building space that are exposed to variable
light levels across different times of a day: on three walls, on a desk,
a door, and a window. Figure 6 shows some of the deployed devices.
A gateway device collects the BLE packets sent by the deployed
sensors and logs them for post-processing. We train the energy
supervisor reinforcement learning agent before beginning the data
collection unless specified otherwise.

6.2 Energy Supervisor Performance

Event frequency. In this section, we compare the performance
of the six test sensors in terms of the captured event frequency
with respect to their default power source and different variants of
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Figure 8: The percentage data yield of each sensor normalized
to their default power supply. The ALTAIR energy supervisor
produces better data yield than the Altair-max variant that

always selects the high sampling rate.

!

R 100 A [fair B | Altair-Max T— Altair-Min
=X g0
i
R rl
o]
< 20

Pascal BLEES LPCSB  Thingy:52 SensorBug

Figure 9: Percentage active time comparison across different
energy supervisors. Active time denotes the percentage of
time within an interval the sensor was continuously trans-
mitting data. Altair outperforms the other variants.

the energy supervisor running on the power supply. The different
variants of the energy supervisors are: Altair that runs the energy
supervisor as discussed in Section 5.2, Altair-Min which always
chooses the minimum duty cycle, hence maximum delay between
packets (5s), and Altair-Max which chooses the minimum delay
between packets (1s). We evaluate the cumulative distribution func-
tion (CDF) of the time between packets received by the receiver.
Figure 7 compares the results. The time between two consecutive
samples is a helpful parameter to understand overall how respon-
sive the system is to an external event. The denser the samples, the
more likely is the system to report critical events.

The sensor workload consists of taking a sample and reporting
the data in BLE packet. When powered with the default supply,
we program the BLEES, LPCSB, Thingy:52 sensor to send a BLE
packet with the sensor data every second and SensorBug has a
pre-programmed advertising interval of 1636 ms. For the herald
beacon, however, the rate at which a packet is sent is proportional
to its rate of harvesting energy. When connected to the ArtaIr
power supply, the sensors dynamically change the packet sent rate
reacting to the changes in available energy.

We observe from the distributions of packet intervals in Figure 7
that for BLEES, LPCSB, and Thingy:52 sensors, the distribution
curve of ALTAIR and the default power supply follow closely, and
the 95th percentile of the inter-packet times are within ten seconds.
The SensorBug, in contrast, achieves 111 s. The packet interval
distribution of SensorBug with ALTAIR follows similar pattern as
the default power, however, it undergoes longer occasional power
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Figure 11: Packet distribution with the default power source.

outages due to its relatively high peak current (Table 2). ALTAIR
achieves overall higher captured event frequency than Altair-Min,
the intermittent power supply, but worse than Altair-Max. For the
intermittently-powered herald beacons, the time between consecu-
tive samples is directly affected by the availability of harvestable
energy and charge time of the storage capacitors resulting in larger
delays. ALTAIR system however masks the irregularity of energy by
storing it in a sufficiently sized capacitor and ensures samples are
collected evenly at the desired rate. According to Figure 7, Herald
achieves 10x higher captured event frequency with ALTAIR than
with its intermittent power supply.

ALTAIR produces better percentage data yield and active time
than both baselines as shown in Figure 8 and Figure 9, as ALTAIR
optimizes for better sensing rate and fewer power failures. The
percentage data yield signifies the amount of produced data nor-
malized with respect to constant power sources and the percentage
active time denotes the time in a fixed time interval for how long
the sensor was active.

Figure 10 compares the distribution of inter-sample times of
the sent packets. ALTAIR distributes the sample rate among the
allowable rates reactively based on the decision of the energy su-
pervisor. The RL agent chooses more and more actions that sample
packets at a high rate when there is an energy surplus and re-
laxes the rate when the system is likely to see a power outage.
The distribution shows that for all the sensors more than 35% of
the total samples have a rate of one sample per second. Figure 11
shows the distribution for the default power supply. In the case
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of intermittently-powered systems, the samples are more sporadic
and the sensor is spending majority of the time in charging the
energy storage. Such systems are likely to miss events than ALTAIR
that prioritizes higher sample rates when possible.

Event detection accuracy. To investigate how well applications
can detect external events with ALTAIR, we classify event-based
applications into two categories: time critical and non-time crit-
ical. For the time critical scenario, detecting an event should be
instantaneous (i.e., less than a few seconds) since some external
agent might need to react that event, for example, door sensors and
motion-based light switch. For the non-time critical applications,
detecting an event in a reasonable time interval is sufficient, for
example, temperature sensors for HVAC systems. We deployed one
BLEES sensor to detect door events, one to detect motion in two
different locations and one Thingy:52 to detect temperature events.

We connected one BLEES board with the ALTAIR power supply
and deployed it on a door to detect each time the door has been
opened or closed, and two of them in a hallway and on a desk to
detect movements for one week. With the default power supply,
when the sensor gets an interrupt due to an event, BLEES wakes up
to report the event. When connected with ALTAIR, the power sup-
ply processor fully controls the turn on/off the BLEES application
processor. For the Thingy:52 board, the sensor is configured to go
to the sleep mode and wake up when an event happens and report
that event only if the capacitor has sufficient voltage. We chose to
detect motions in two different locations to emulate two real-life
scenarios: spaces that are usually lit most of the time of a day like a
hallway, and spaces that have sporadic light exposure and sensing
and harvesting is likely to happen simultaneously such as at a desk.
To ensure we have enough data for statistical reasoning, we expe-
dited the data collection process at the end by manually generating
events as capturing organic events takes significant time. We used
a constantly powered version of the sensors to collect the ground
truth for events. We compared the performance of ALTAIR with two
variants: ALTAIR-Min that always chooses minimum duty-cycle
and ALTAIR-Max that selects maximum duty-cycle.

Figure 12 shows the percentage of correctly detected events and
compares the result across three power management algorithms
in three of the deployment scenarios. We find that sensors with
ALTAIR achieves 70% and 80% detection accuracy in the hallway
and on the door respectively, higher than the other two variants.
This happens since ALTAIR spreads out the system active time by
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Figure 14: When moved to a new environment, the system
increases its activity as it learns the new harvesting condi-
tions.

optimally choosing the duty-cycle and is likely to capture events
correctly, whereas, ALTAIR-Max sees frequent power failure events
and ALTAIR-Min misses events for spending much time in time
between wake-ups. However, in the work-desk space ALTAIR-min
detects more events than ALTAIR as it aggressively selects higher
sampling rate. This signifies that careful decisions should be made
for applications where the event of interest can happen before the
device can harvest enough energy. In such scenarios, predicting
such events beforehand can improve detection accuracy. We plan
to investigate such cases for future study.

As a candidate of non-time critical event detection, we deployed
one Thingy:52 to monitor the temperature of a home in two differ-
ent locations: on a window and on an indoor wall. We analyze how
many times the sensor can correctly report when the temperature
falls below 76°F or exceeds 79°F (selected according to the comfort
level of the occupants). Figure 13(a) shows that with ALTAIR the de-
vice reports 79% and 83% of the events accurately. To determine the
latency between the event has occurred and successfully reported,
we show the CDF of detection latency in Figure 13(b). We find that
the 95th percentile latency remains within 12 s.

6.3 RL Supervisor Robustness

System active time. ALTAIR uses a 470 mF supercapacitor as an
energy-reservoir of the system. The larger the size of the capacitor,
the more time it takes to recharge after a power failure. In this
section, we aim to analyze the active time of a sensor connected
to ALTAIR. We define the duration of the time a sensor samples
continuously before exhausting its energy buffer as the active time.

To evaluate how much time the system spends in recharging
the capacitor in a dynamic energy environment, we moved the
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Figure 16: The histogram of the delay in servicing the mes-
sage request by the energy supervisor in clock cycles.

Thingy:52 sensor from its original window position to a wall. Fig-
ure 14(a) shows the active time of the sensor during each progres-
sive power cycle. After being exposed to a new environment with
a different harvesting scenario, at first the system explores to find
the optimal set of actions that avoids power failure. The system
active time progressively increases as it sees less power failures
with occasional dips. Figure 14(b) shows the cumulative active time
of the sensor.

Reactivity. In this section, we analyze how the energy supervi-
sor reactively changes the rate responding to the available energy.
A sensor that runs at a constant duty-cycle suffers from multiple
consequences: 1) in case of an energy surplus, the system underper-
forms by not sampling more, and 2) in case of an energy drought,
the system runs the risk of frequent power failures by not backing
off. Figure 15 shows how ALTAIR adjusts the time between samples
reacting to the capacitor voltage. We set the episode interval as
2 min for this experiment. In the beginning, the system experiences
frequent power failures around 8, 15, 22 and 25 minutes, spends sig-
nificant time in power failure, but learns to adjust the time between
samples allowing the sensor to sleep. A falling capacitor voltage
results in an increase in the time between samples and a steady or
rising capacitor voltage encourages frequent samples. Throughout
this experiment, the harvester was kept under a stable harvesting
environment which ensures that the capacitor voltage was only the
system variable. By vary its rate of operation, the system incurs
50% fewer power failures with an increased availability of 44%.

6.4 Energy Supervisor Responsiveness

As the energy supervisor processor receives the energy API request
from the main processor through a hardware GPIO interrupt, we
investigate the number of clock cycles needed to serve the interrupt.
We characterize the delay to wake up the energy supervisor from
a low power sleep and the delay to respond to an interrupt while
performing its routine task. We show the histogram of delays of 100
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Table 3: Power draw overhead of ALTAIR.

Component Active current | Sleep current
MCU STM32L010R8 585 pA@16Mhz 4.7 uA
Charger SPV1050 2.6 A 1nA
Current Sensor Max9634 | 1pA 1nA
Power Gating TPL5110 | 35nA N/A

interrupts in Figure 16(a) and Figure 16(b), respectively. Though
the delay in terms of clock cycle varies, the distribution shows the
delay can be bounded within a few clock cycles.

6.5 Energy Overhead

Using the ALTAIR platform does come with an energy overhead.
However, while implementing the platform, we chose components
with low power options. Table 3 lists the active and sleep current
of the used components. The average active power draw of the
board is 7.8 mA and the quiescent power draw is 94.5 HA. We notice
that the significant energy overhead comes from the ADC polling
to observe the system energy as ADC reading over one second
costs 24.3 yJ. This overhead can be reduced by polling the ADC less
frequently.

7 RELATED WORK

In this section, we review state-of-art designs and architectures
in energy harvesting systems and reactive power management
schemes using reinforcement learning.

7.1 Energy-Harvesting Device Architectures

Existing works for energy harvesting systems can be broadly cate-
gorized into two directions: intermittent systems which perform
operations whenever there is enough energy and non-intermittent
systems which usually store the harvested energy in larger capaci-
tors for future use.

Intermittent systems are often equipped with small energy buffers
and perform simple tasks whenever the stored energy reaches a
certain threshold. For example, the Gecko [48] and Monjolo [13]
principle performs sense and send type workload whenever the
capacitor voltage reaches certain threshold. Monjolo exploits the
insight that the rate of energy-harvesting is indicative to the sensed
quantity. However such insight fails to scale outside the intended
applications since the source of sensing and harvesting are often
not co-related. One proposed architecture and toolkit for energy
harvesting systems uses a similar principle [9], which masks the
inevitable intermittency with a variety of trigger abstractions that
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activate the device for certain conditions. With ALTAIR, we advo-
cate for the power supply to be standard across different types of
sensing applications.

UFoP [18] introduces the concept of federated energy that charges
a dedicated capacitor for each peripheral which is responsible for
specific individual tasks. By discarding the idea of a central storage
for the whole system, UFoP provides flexibility for each periph-
eral and promotes modular application development. Flicker [19]
further improves modularity and flexibility required for rapid pro-
totyping of battery-less applications by allowing the peripherals
to reconfigure their activation thresholds at runtime. Federating
energy across multiple energy stores decreases the dependency
between the energy availability on a single energy storage and
each peripheral’s task execution. While being motivated by similar
goals of modularity, flexibility, and generality, ALTAIR decouples the
energy logic altogether from the application, dedicating a sophisti-
cated hardware module and introducing a novel software interface
in the battery-less system design. ALTAIR moves away from the
intermittent principle of operation to achieve higher uptime and
to support long running applications. Capybara [24] introduces
a hardware-software approach to match the energy requirement
by a task by dynamically resizing for its banked capacitor, which
reduces cold start and capacitor recharge time. It provides the flex-
ibility to choose from different energy modes and a combination
of capacitors to activate according to the requirements of the ap-
plication. While Capybara adopts a task-based model to map each
tasks to energy modes and energy modes to the dynamic size of the
capacitor, we adopt an interface-based architecture to reduce the di-
rect coupling between the underlying power supply hardware and
the application. The signpost platform [2] is a generalized energy-
harvesting platform for city-scale sensing using a shared backplane
to interconnect and isolate each module, allowing energy to be
used for a particular module. In Signpost, applications virtualize
the amount of stored energy and employ a different duty-cycling
strategy without affecting each other’s execution. In ALTAIR, we
make the power supply itself programmable which continues to
learn and adapt post-deployment to learn new strategies to achieve
optimal duty-cycling strategy.

7.2 Dynamic Energy Management using RL

Reinforcement learning (RL) has been adopted for dynamic energy
management in energy harvesting nodes. Hsu et al. [22] introduce
a dynamic power manager for energy harvesting networks using
Q-learning algorithm. Another work provides dynamic throughput
provisioning according to the battery’s energy level [23]. The RL
agent attempts to avoid specific states of the energy storage, which
include overcharging, deep-discharge, and depletion. Different from
other approaches, Rioual et al. [37] investigate the performance
of different reward functions for energy optimization in energy-
harvesting IoT nodes. Fraternali et al. [15] introduce a day-by-
day learning algorithm using reinforcement learning to maximize
the quality of service of the sensing. Another SARSA algorithm
proposed by Ortiz et al. [34] attempts to learn a power allocation
policy in two-hop communications and maximize the throughput
of a communication system. SARSA (1) was also introduced to
develop an adaptive power management algorithm for solar-energy-
harvesting nodes [41] using large weather datasets. In this paper,

334

we implemented a SARSA reinforcement learning on a resource-
constrained embedded device to maximize the event generation
and event detection rates of IoT sensing applications.

8 DISCUSSION

Partial decoupling. Though ALTAIR reduces the logical depen-
dency between energy management and application tasks, both
subsystems are required to have a knowledge of the expected in-
formation from each other. Since IoT sensors are typically small
systems with a handful of running applications, we expect the AL-
TAIR architecture is sufficient. However, for large scale embedded
systems full decoupling may be needed.

Vast heterogeneity of IoT applications. Though we believe
that ALTAIR is a stepping stone in the direction of a “general-
purpose” energy-harvesting power system suited for IoT sensing
applications, the spectrum of sensing is broad in terms of energy
cost and time-sensitiveness. Applications that are susceptible to
occasional power failures might require back-up source of energy
such as rechargeable batteries [24]. In such a case, the RL manager
might reduce the negative reward, if the backup energy source is
available.

Energy storage size. Though an over-provisioned energy reser-
voir can mask unstable available energy and eliminate the need
for complex software support, bigger capacitors suffer from higher
leakage, prolonged cold-start phase, and longer recharge times.

Limited harvester support. Current ALTAIR platform only has
support for harvesting energy using solar and TEG harvesters.

Enabling new techniques. We believe that faster testing and de-
velopment plays an important factor when designing novel energy-
harvesting applications and ALTAIR attempts to lower the barrier to
entry. We recognize that there is a lack of prototyping platform for
energy-harvesting application and this work will attract researchers
to build and test new software and hardware techniques for better
power management.

9 CONCLUSION

Managing energy is critical for energy-harvesting systems, and
this burden has been foisted on the IoT application software with
only limited support from the energy-related hardware. We argue
that ad-hoc and implementation-specific interfaces between appli-
cations and power supplies constrain the development of energy-
harvesting devices, and that a new MCU-power supply interface
is critical for restoring proper layering to these systems. In this
paper, we introduce such a system that isolates the energy manage-
ment decisions from a sensor’s workload, and provides a simple
interface for adding new applications to the system. By strictly
separating energy-management from device operation, we believe
we can lower the bar for developing energy-harvesting systems,
helping to realize a fully batteryless IoT.
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