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Fig. 1: Illustration of our gaze-contingent neural radiance field for VR. (a) Visualization of our egocentric-viewing-tailored
coordinate and neural scene representation. (b) Our neural encoding and synthesis method matches human visual and stereoscopic
acuity and also balances the quality and run-time perceptual latency. Beyond fast performance, (c) and (d) zoom into the foveal
region where the human vision has highest sensitivity to imagery quality and stereopsis. Our method shows superior quality than
alternative neural rendering (NeRF as in (d), [33]) approaches, with the full quality rendered ground truth, GT, as reference (d).

Abstract— Virtual Reality (VR) is becoming ubiquitous with the rise of consumer displays and commercial VR platforms. Such displays
require low latency and high quality rendering of synthetic imagery with reduced compute overheads. Recent advances in neural
rendering showed promise of unlocking new possibilities in 3D computer graphics via image-based representations of virtual or physical
environments. Specifically, the neural radiance fields (NeRF) demonstrated that photo-realistic quality and continuous view changes of
3D scenes can be achieved without loss of view-dependent effects. While NeRF can significantly benefit rendering for VR applications,
it faces unique challenges posed by high field-of-view, high resolution, and stereoscopic/egocentric viewing, typically causing low
quality and high latency of the rendered images. In VR, this not only harms the interaction experience but may also cause sickness.
To tackle these problems toward six-degrees-of-freedom, egocentric, and stereo NeRF in VR, we present the first gaze-contingent
3D neural representation and view synthesis method. We incorporate the human psychophysics of visual- and stereo-acuity into an
egocentric neural representation of 3D scenery. We then jointly optimize the latency/performance and visual quality while mutually
bridging human perception and neural scene synthesis to achieve perceptually high-quality immersive interaction. We conducted both
objective analysis and subjective studies to evaluate the effectiveness of our approach. We find that our method significantly reduces
latency (up to 99% time reduction compared with NeRF) without loss of high-fidelity rendering (perceptually identical to full-resolution
ground truth). The presented approach may serve as the first step toward future VR/AR systems that capture, teleport, and visualize
remote environments in real-time.

Index Terms—Virtual Reality; Gaze-Contingent Graphics; Neural Representation; Foveated Rendering

1 INTRODUCTION

The unprecedented virtual and augmented reality (VR and AR) hard-
ware revolutions have enabled realistic immersion and natural inter-
action. An essential need for future VR/AR is to teleport different

• Nianchen Deng and Jiannan Ye are with School of Software, Shanghai Jiao
Tong University. E-mail: {dengnianchen, wsyhdyjn}@sjtu.edu.cn.

• Zhenyi He is with Department of Computer Science, New York University.
E-mail: zh719@nyu.edu.

• Budmonde Duinkharjav is with Immersive Computing Lab, New York
University. E-mail: budmonde@gmail.com.

• Praneeth Chakravarthula is with Computer Science, UNC Chapel Hill.
E-mail: cpk@cs.unc.edu

• Xubo Yang is with School of Software, Shanghai Jiao Tong University and
Peng Cheng Laboratory. E-mail: yangxubo@sjtu.edu.cn.

• Qi Sun is with Tandon School of Engineering, New York University. E-mail:
qisun@nyu.edu.

* These authors contributed equally to this work.
† The corresponding authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

users and different environments for collaborative scenarios. The re-
cent advancement of neural radiance field (NeRF) methods encode a
full radiance field reconstruction via image-based shots [33]. The high
quality and flexibility show promising applications for serving as future
VR content creation and consumption representations.

Unlike traditional screens, practical VR displays require high field-
of-view (FoV), low latency, stereoscopic, and egocentric viewing.
These requirements are fundamental to ensure realism and safety with-
out strong simulator sickness. However, the inference from NeRF
representation, compared with forward-rendering, demands heavy com-
putation and causes high latency and/or low quality while consumed
with immersive viewers.

Acceleration without compromising perceptual quality is the ul-
timate goal of real-time rendering. Gaze-contingent rendering ap-
proaches have shown remarkable effectiveness in presenting imagery
of perceptual quality identical to full resolution rendering [16, 39, 52].
This is achieved by harnessing high FoV head-mounted displays and
high precision eye-tracking technologies. However, existing forward
foveated rendering approaches rely on 3D assets such as triangularized
geometries. Acquiring such information for physical world objects,
such as humans, typically contain noise or low-quality texture. This
problem, in comparison, can be harnessed by image-based approaches.

There has been a surge in image-based neural representa-
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tions/rendering as an alternative to traditional 3D representations such
as polygonal meshes. Examples include voxelization [47], distance
fields [33, 38, 45], multi-layer panorama imagery [2, 26], and many
more. However, existing solutions suffer from high time consumption
(i.e., latency), low image fidelity, or inconsistent robustness of com-
plex scenes with occlusion. Recent accelerations include depicting
the inference as basis functions [56] or fast integration via learning
gradients [27]. Whereas, no method encodes the human visual system
and optimizes for the egocentric and stereoscopic viewing in VR.

We present the first gaze-contingent neural radiance representation
and foveated synthesis approach. By encoding human vision’s spa-
tial/stereoscopic acuity and temporal sensitivity, we significantly im-
prove responsiveness (from 9s to 20 ms) from alternative neural synthe-
sis methods. This is achieved without loss of visual fidelity compared
with the rendered or captured ground truth.

We achieve this by first representing 3D radiance fields with concen-
tric spherical coordinates. The tailored representation both optimizes
for egocentric viewing and minimizes inference running time. Our rep-
resentation also allows for depicting the foveated color and stereopsis
sensitivities during the training and inference phases. To this end, we de-
vise retina-matched perceptual models and VR-tailored representation
coordinates toward high visual quality as well as low systematic latency.
Lastly, we derive an analytical spatial-temporal perception model from
optimizing our neural scene representation toward imperceptible loss
in image quality and latency.

We validate our system by conducting psychophysical experiments,
numerical analysis, and case studies on commercially available VR
display devices. The series of experiments reveals our method’s ef-
fectiveness and advantages: it delivers immersive, high-FoV, and
high-fidelity neural radiance fields that are perceived identical to
an arbitrarily high-quality rendered 3D scene with perception opti-
mized quality-latency performance. To encourage third-party repro-
duction and extensions in the community, we will open-source our
implementation and dataset. The code and dataset are accessible at
https://github.com/dengnianchen/fovnerf. In summary, we make the
following major contributions:

• A low-latency and high-fidelity immersive application, offering
full perceptual quality with instant high resolution and high FoV
first-person VR viewing;

• A 3D neural radiance field representation tailored for egocentric
immersive viewing and accelerated inference;

• A human-vision-matched neural synthesis method considering
both visual- and stereo- acuity;

• A spatio-temporal analytical model for jointly optimizing system-
atic latency and perceptual quality for human observers.

2 RELATED WORK

2.1 Image-based View Synthesis
Image-based rendering (IBR) has been proposed in computer graphics
to complement the traditional 3D assets and ray propagation pipelines
[14, 22, 44]. Benefiting from the flexible 2D representation, it delivers
pixel-wise high quality without compromising rendering performance.
However, a major limitation of IBR is its sparse and small viewing
range, narrowing the applicability in the smooth VR viewing experience
where the head/gaze continuously moves. To address this problem,
recent research has been exploring synthesizing novel image-based
views instead of fully capturing them. Examples include synthesizing
light fields [18, 24, 32] and multi-layer volumetric videos [7]. However,
the synthesis usually suffers from the trade-off between optimal quality
and fast performance.

2.2 Neural Scene Representation and Rendering
To fully represent a 3D object and environment, neural representations
have drawn extensive attention. With a deep neural network that depicts
a 3D world as an implicit function, the neural networks may directly
approximate an object’s appearance given a camera pose [33,37,46–48].
Prior arts also investigated implicitly representing shapes [38] and
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Fig. 2: Coordinate system and variable annotations. We partially
visualize our 3D full spherical representation with an example of N =
3 spheres. Variables and equations are annotated at corresponding
positions.

surfaces [31] to improve the visual quality of 3D objects. Inspired
by [38], signed distance functions have been deployed for representing
raw data such as point cloud [4, 15] with better efficiency [9]. The
input information ranged from 2D images [12, 25, 57], 3D context
[36, 41, 59], time-varying vector field [35] to local features [28, 51].
Current implicit representations primarily focus on locally “outside-
in” viewing of individual objects, with low field-of-view, speed, and
resolution. For large scenes, the lack of coverage may cause the quality
to drop. However, in virtual reality, the cameras are typically first-
person and highly dynamic, requiring low latency, high resolution, and
6DoF coverage.

2.3 Panorama-Based 6DoF Immersive Viewing
Panorama images and videos are directly applicable to VR platforms
thanks to their 360 FoV coverage. However, the main challenge is
their single projection center in each frame, limiting free-form camera
translation, thus 6DoF natural viewing experience. Recently, exten-
sive research has been proposed to address this problem. Serrano et
al. [43] presented a depth-based dis-occlusion method that dynamically
reprojects to 6DoF cameras, enabling natural viewing with motion
parallax. Pozo et al. [40] jointly optimizes capture and viewing pro-
cesses. Machine learning approaches have advanced the robustness
of various geometric and lighting conditions [2, 3, 26]. As a spherical
image, panoramas are designed for capturing physical worlds with
flexible reprojections to displays. The 6DoF viewing typically suffers
from trade-offs among performance, achievable resolution/translation
ranges, and dis-occlusion artifacts due to the insufficient none-light-of-
sight capture. With an orthogonal mission, our model represents and
reproduces arbitrary 3D virtual or physical worlds. In Section 5.2, we
compare our method with a panoramic-imagery-based view synthesis
approach considering visual quality and allowable translation.

2.4 Gaze-Contingent Rendering
Both rendering and neural synthesis suffer from the heavy computa-
tional load, thus systematic latency and lags. With a full mesh rep-
resentation, foveated rendering has been proposed to accelerate local
rendering performance and/or enhancing perceptual cues, including
mesh- [11, 16, 20, 39], image- [19, 21], and optically-based [10, 49]
methods. The accelerations are typically achieved through high-FoV
displays (such as VR headsets) and eye-tracking technologies [29].
However, these all require full access to the original 3D assets. Our
method bridges human vision and neural rendering. It accelerates and
extends neural synthesis beyond local rendering, enabling computa-
tional efficiency and perceptually high fidelity.

3 METHOD

Based on a concentric spherical representation and correspondingly
trained network predicting RGBDs (Section 3.1), our system predomi-



nantly comprises two main rendering steps in run-time: synthesizing
visual-/stereoscopic-acuity-adaptive elemental images with ray march-
ing for fovea, mid-, and far- peripheries; followed by image-based
rendering to composite displayed frames (Section 3.2). For desired
precision-performance balance, we further craft an analytical spatial-
temporal model to optimize the determination of our intra-system vari-
ables, including representation sparsity and neural-network complexi-
ties (Section 3.3).

3.1 Egocentric Neural Representation and Training
The recent single-object-oriented “outside-in” view synthesis meth-
ods [33, 47] typically represent the training targets using uniform vox-
elization. However, immersive VR environments introduce unique
and open challenges for such parameterization due to the commonly
egocentric (first-person) and “inside-out” viewing perspective (e.g.,
Figure 1a). As a consequence, the neural representation on large virtual
environments typically suffer from ghosting artifacts, low resolution,
or slow speed (Figure 1c).

Egocentric coordinate. To tackle this problem, we are inspired
by the recent panoramic imagery dis-occlusion methods [3, 7, 26]: we
depict the rapidly varying first-person views with concentric spherical
coordinates. This representation has been shown to allow for robust
rendering at real-time rates and 6DoF interaction to navigate inside
complex immersive environments. As visualized in Figure 2, our repre-
sentation is parameterized with the number of concentric spheres per
neural network (N) and their respective radii (r = {ri}, i ∈ [1,N]). Un-
der this spherical system, a given 3D spatial position can be represented
as q = q(r,θ ,φ) where θ and φ are two angular numbers. Similar
to [33], the run-time rendering goal is predicting a 4D vector (r,g,b,d)
for each q, followed by a view-dependent ray marching through this
intermediate function to synthesize individual pixel. Here, (r,g,b) and
d are the color and density, respectively.

Neural representation. Existing neural rendering for “outside-
in” viewing independently train neural networks to predict the 4D
vector for individual q. This is due to the high variations in view
points other than the viewing targets. However, egocentric viewing is
the opposite: despite the translation for 6DoF viewing, the observers’
may change viewing targets frequently by rotating the head and gaze
(See Figure 2). That is, given a neural network’s capability, a local
egocentric neural representation may encode less viewing changes but
more spatial variances. To achieve this aim, we design the network to
infer an array of vectors per viewing ray:

C (x,v), (R,G ,B,D). (1)

Here, x/v defines a ray’s origin/direction. R,G ,B,D are N dimen-
sional vectors representing the R/G/B/intensities of the N intersect-
ing points (q(ri,θi,φi), i ∈ [1,N]) between the ray and the concentric
spheres. The system can then render individual color channels via
integrating over R/G /B with D as weights. Denser spherical sam-
pling (i.e., higher N) lead to more precise quality but slower run-time
performance.

Inspired by NeRF [33], we devise a machine learning approach that
encodes C as a multi-layer perception (MLP) neural network. NeRF
predicts each individual intersection point {q̂i} before calculates the
final color, causing slow performance due to the N network inference
operation per ray in run-time. Our egocentric-viewing-tailored repre-
sentation (Equation (1)) concatenate all N encoded coordinates to a
vector and feed the coordinates to the MLP module with only one infer-
ence. During training, we define the input {x,v} as the N intersecting
points q̂i. Our MLP module contains Nm fully-connected layers with
Nc channels in each layer.

3.2 Gaze-Contingent Synthesis during Run-time
Our concentric spherical coordinate, as described in Section 3.1, ad-
dresses the large view target variance problem in the training stage.
However, it may still suffer from significant rendering latency (about
half a second for each stereo frame). This is another essential chal-
lenges causing neural representation to be unsuitable yet for immersive

viewing. In this research, we leverage the spatially adaptive human
visual- and stereoscopic- sensitivities to unlock fast runtime inference.
Instead of the typical single image prediction, we synthesize multiple
elemental images to enable real-time responsiveness. The elemental
images are generated based on the viewer’s head and gaze motions and
are adapted to the retinal acuity in resolution and stereo.

3.2.1 Adaptive Monoscopic Acuity
The human retinal ganglion cells, which collect and transmit visual
information, are not uniformly distributed. Instead, its density in the
visual fields close to the retinal center is much higher than the periphery
[54]. This is referred as foveated vision in accelerating immersive
rendering [19, 39]. Inspired by this, we significantly accelerate the
runtime inference by integrating the characteristic of spatially-adaptive
visual acuity without compromising the perceptual quality.

Specifically, given device-tracked camera position (x), direction
(R), and gaze position (vg), we synthesize three elemental images
cover different eccentricity ranges of field-of-view (FoV) for each eye:
the fovea (I f (x,R,vg), 0−20 deg), the mid-eccentricity (Im(x,R,vg),
0−45 deg) and the entire visual field (Ip(x,R), 0−110 deg) (Figure 3).
Note that Ip is independent from the gaze direction vg. Given the
decreasing visual acuity from low to high eccentricities, we devise two
orthogonal networks with different hyper parameters: C f oveal for I f
(the high acuity fovea), and Cperiph for Im and Ip (reduced acuity).

To incorporate the display capabilities and aspect ratios, we define
the resolutions of I f /Im/Ip as 2562/2562/230×256. That is, the I f has
the highest angular resolution of 12.8 pixels per degree (PPD), higher
than those of Im (5.7 PPD) and Ip (2.33 PPD).

3.2.2 Adaptive Stereoscopic Acuity
Head-mounted VR displays require stereo rendering to provide parallax
depth cues. So do the elemental images I{l,r}f , I{l,r}m , and I{l,r}p for each
(left and right) eye. The stereoscopic rendering, however, doubles
the inference computation that is critical for latency- and frame-rate-
sensitive VR experience (please refer to Section 5.5 for breakdown
comparisons).

We accommodate the inference process with the adaptive stereo acu-
ity in perception. In fact, besides the spatial visual acuity in monoscopic
vision, psychophysical studies have also revealed human’s significantly
declined stereopsis while receding from the gaze point [34]. Motivated
by this characteristic, we perform the computation with I{l,r}f , Ic

m, and
Ic
p instead of inferring 6 elemental images, where c indicates the view

at the midpoint of the left and right eyes. As Ic
m, and Ic

p have zero

disparity, obvious misalignment may exist in the blending area of I{l/r}
f

and Ic
m. To reduce this misalignment, we shift Ic

m and Ic
p according to

the vergence of eyes, i.e. the horizontal difference between the left
and right gazes, to introduce a disparity that is close to the foveal.
Assuming the difference is ∆xg = xl

g− xr
g (in pixels), then Ic

m and Ic
p

should be shifted by ∆xg/2 for the left eye and −∆xg/2 for the right
eye. Figure 4 visualizes the stereopsis changes from the adaptation
using an anaglyph.

3.2.3 Real-time frame composition
With the obtained elemental images as input, an image-based rendering
in the fragment shader is then executed to generate final frames for
each eye. The output frames are displayed on the stereo VR HMDs.
Two adjunct layers are blended using a smooth-step function across
40% of the inner layer as shown in Figure 3. This enhances visual
consistency on the edges between layers [16]. Lastly, we enhance the
contrast following the mechanism of [39] to further preserve peripheral
elemental images’ visual fidelity due to its low PDD.

3.3 Latency-Quality Joint Optimization
As a view synthesis system based on sparse egocentric representation
(the N spheres per network) and neural network synthesis (the Nm,Nc),
neural rendering methods inevitably introduce approximation errors.
The errors can be reduced by introducing additional networks (thus
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Fig. 3: Visual acuity adaptive synthesis and rendering mechanism. We first synthesize the elemental images from our egocentric neural
representation for fovea (within 20 deg)/mid-periphery (within 45 deg)/far-periphery (within 110 deg, the capability of our VR display). Then
these images are blended to the final displayed frame.
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Fig. 4: Visualization of the adaptive stereo-acuity with anaglyph. (a)
shows the rendered image with 6 retinal sub-images (I{l,r}f , I{l,r}m , and

I{l,r}p ). (b) shows the rendered image with our adaptive and accelerated

inference considering foveated stereoacuity (I{l,r}f , I{c}m , and I{c}p ). Our
method preserves full stereopsis in the fovea while reducing the angular
resolution in the periphery for accelerated inference.

lowered N assuming a fixed number of spheres representing a scene)
and increasing individual network’s capability (i.e., higher Nm,Nc).
However, these variables also significantly increase the online computa-
tional time that is determined by inferring function C and ray marching.
While VR strictly demanding both quality and performance, to seek
the optimal latency-quality for human viewers, we present a spatial-
temporal model that analytically depicts the correlations and optimizes
the variables.

Precision loss of a 3D scene. As shown in Figure 2, under the
egocentric representation, a 3D point q is re-projected as the nearest
point on a sphere that connects it to the origin point:

q′(N,r,q), rk
q
‖q‖

, k = argmin
j∈[1,N]

(∥∥‖q‖− r j
∥∥) . (2)

Similar to volume-based representation, the multi-spherical system
is also defined in the discrete domain. The sparsity thus naturally
introduces approximation error that compromises the synthesis quality.

To analytically model the precision loss, we investigate the geometric
relationship among the camera, the scene, and the representation. As
illustrated in Figures 1a and 2, for a sphere (located at origin point)
with radius r, its intersection (if exists) with a directional ray {x,v} is

p(r,x,v) = x+
((

(x ·v)2−‖x‖2 + r2
) 1

2 −x ·v
)

v, (3)

where x and v are the ray’s origin point and normalized direction,
respectively.

Inversely, given a view point x observing q, the ray connecting them
has the direction v(q,x) = q−x

‖q−x‖ . This ray may intersect with more
than one sphere. Among them, the closest one to q is:

q̂(x,N,r,q), p(rk,x,v(q,x)) | k = argmin
j∈[1,N]

(∥∥‖q‖− r j
∥∥) . (4)

In the 3D space, the offset distance ‖q′− q̂‖ indicates the precision loss
at q from the representation. By integrating over all views and scene
points, we obtain:

Escene(N,r) =
∫∫ ∥∥q′(N,r,q)− q̂(x,N,r,q)

∥∥dqdx,

∀{x,q} pair without occlusion in between.
(5)

By integrating all 3D vertices q and camera positions x in our dataset
sampling, Escene depicts how the generic representation precision of a
scene, given a coordinate system defined by N and r.

In comparison, a neural representation aims at predicting projected
image given a x and R. Thus, we further extend Equation (5) to image
space to analyze the error given a set of camera’s projection matrix
M(x,R) as

Eimage(N,r,x,R) =
∫
‖M(x,R) · (q− q̂(x,N,r,q))‖dq. (6)

From Figure 2 and eq. (6), we observe: given a fixed min/max range of
r, N is negatively correlated to Eimage; with a fixed N, the correlation
between distribution of r j and scene content (i.e., distribution of qs)
also determines Eimage.

However, for neural scene representation, infinitely increasing net-
work capabilities may significantly raise the challenges in training
precision and inference performance. Likewise, increasing repre-
sentation densities (i.e., lower N) and/or network complexities (i.e.,
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Fig. 5: Latency-quality joint-optimization. The two tables on the left
plot Eimage in Equation (6) and latency of an example foveal network
during the optimization process (in milliseconds). The values are
computed with various settings of Nc×Nm (X-axis) and N (Y-axis:
given a fixed number of spheres representing a scene, lower N indicates
the need of more networks thus heavier computation). The images on
the right indicate corresponding foveal images under different settings.
Our method balances both perceptual quality and latency.

higher Nm/Nc) naturally improves the image output quality (lower Equa-
tion (6)). However, this significantly increases the computation dur-
ing ray marching, causing quality drop stretched along time. In the
performance-sensitive VR scenario, the latency breaks the continuous
viewing experiment and may cause simulator sickness. Thus, with
content-aware optimization, we further optimize the system towards an
ideal quality-speed balance.

Spatial-temporal modeling. Inspired by [1, 23], we perform
spatial-temporal joint modeling to determine the optimal coordinate
system (N) for positional precision and network complexity (Nm, Nc)
for color precision that adapt to individual computational resources and
scene content. This is achieved via latency-precision modeling in the
spatial-temporal domain:

E(N,Nm,Nc) = ∑
t

∫
CNm,Nc(q)×

‖M(xt ,Rt) ·q−M(xt−l ,Rt−l) ·q(rk,xt−l ,vt−l)‖dq,
(7)

where l , l(N,Nm,Nc) is the system latency with a given coordinate
and network setting. CNm,Nc(q) is the four (r,g,b,a) output channels’
L1-distance between a given network setting and the highest values
N = 8,Nm = 4,Nc = 1024). For simplicity, we assumed uniformly
distributed r with a fixed range of the spherical coverage.

As suggested by Albert et al. [1], the latency for a foveated system
shall reach below ˜50ms for undetectable artifacts. Given our test
device’s eye-tracking latency ˜12ms and the photon submission latency
˜14ms ( [1]), the synthesis and rendering latency shall be less than
L0 = 24ms. Thus, we determine the optimal {N,r} to balance latency
and precision as

argmin
N,Nm,Nc

E(N,Nm,Nc), s.t. l(N,r)< L0. (8)

Figure 5 visualizes an example of the optimization mechanism for an
foveal image I f . The optimized results (N,Nm,Nc) for individual net-
works are used for training. The optimization outcomes are detailed in
Section 4. The visual quality is validated by psychophysical study (Sec-
tion 5.1) and objective analysis (Section 5.2). The latency breakdown
of our system is reported in Section 5.5.

4 IMPLEMENTATION

In this section, we elaborate on how we collect data for training, the
specific parameters we choose for the two orthogonal neural networks,

and the software/hardware environment we use.

Datasets. We leveraged two groups of datasets: The synthesized
datasets (i.e. barbershop, classroom, lobby and stones used in Sec-
tion 5) are generated from CG scenes by rendering engine1. For these
scenes, views are sampled uniformly in the translation and rotation box.
We generate two separate datasets for every scene to train foveal and
periphery networks. The foveal dataset is composed of images rendered
with 40 deg field-of-view and 400×400 resolution, while the periphery
dataset contains images of 400×400 with 60 deg field-of-view. Our
method is also applicable for physical datasets captured by camera
(as illustrated in Figure 1). For this kind of datasets, we first record
a video of a physical scene using mobile phone. Then images are
extracted at every second from the video and their poses are evaluated
by Colmap [42]. This forms the foveal dataset. The periphery dataset
is built by downsample the images in the foveal dataset by factor of 2.

Optimized network parameters. Guided by the latency-quality
joint optimization described in Section 3.3 and 64 spheres depicting
all the tested scenes, we implemented the foveal network with Nm = 4,
Nc = 512 and N = 16. For the periphery network, the values are Nm = 4,
Nc = 256 and N = 32. These optimized parameters achieve a proper
balance between quality and latency, as shown in Figure 7 and Table 2.

Environment. The system was implemented through OpenGL
framework using CUDA and accelerated by TensorRT with Intel(R)
Xeon(R) Gold 6230R CPU @ 2.10GHz (256GB RAM) and one
NVIDIA GTX 3090 graphics card. For each scene, we trained both the
foveal network and the periphery network with 200 epochs.

5 EVALUATION

With various scenes as shown in Figure 7, we conduct a subjective
study (Section 5.1), and calculate objective measurements (Section 5.2)
to evaluate our method’s perceptual quality compared with alternative
solutions ( [33]). Further, Section 5.4 validates the method’s ben-
efits on enabling large scale translation and view-dependent effects
by comparing against prior panorama-based 6DoF synthesize litera-
ture [26]. Lastly, we analyze the intra- and inter-system performance
in Section 5.5.

5.1 User Study

We conducted a psychophysical experiment to investigate how users
perceive our solution (OURS) compared with alternative neural view
synthesis ( [33], NeRF) and full-quality ground truth images (GT).

Stimuli. For precise comparison and accommodating the low frame
rate of alternative solutions (Section 5.5), each group of stimuli con-
sisted of static stereo images rendered via GT or synthesized via
OURS/NeRF with the same views, as shown in Figure 7. They were
generated with the same and randomly defined gaze fixation across
conditions. The resolution of the image per eye was 1440×1600 (full
capability of the VR display). During the study, the target gaze position
was indicated as a green cross on the stimuli images. We used the
classroom, lobby and barbershop scenes for study use. Each condition
from an individual scene consisted of 2 different gaze positions.

For generating NeRF condition, we retrained the model from [33]
on our dataset with Nm = 8, Nc = 256, and N = 64 for coarse network
and N = 128 for fine network. The top right insets of Figure 7 show
the resulting NeRF images.

Setup. Each participant wore an eye-tracked HTC Vive Pro Eye
headset and remained seated to examine the stimuli during the experi-
ment. Twelve users participated in and completed the study (6 females,
M = 23.25). No participants were aware of the research, the experi-
mental hypothesis, nor the number of conditions. All participants had a
normal or corrected-to-normal vision.

1barbershop and classroom are rendered by Blender’s Cycles rendering
engine, while lobby and stones are rendered through Unity.



0 4 8 12

GT v.s. Ours

Ours v.s. NeRF

GT v.s. NeRF
Choose Ours
Choose GT

Choose NeRF

Fig. 6: The users’ preference votes from our evaluation experiment (Sec-
tion 5.1). X-axis shows stacked vote results of selecting the condition
of each pair. Y-axis lists the pair accordingly.

Task. The task was a two-alternative-forced-choice (2AFC). Each
trial consists of a pair of stimuli generated from two of the three meth-
ods (OURS / NeRF / GT) with a sampled view and gaze position. To
avoid gaze motion variances among individual trials, we enforced static
gaze than free-form viewing in each pair of trials. Each stimulus ap-
peared for 500ms on the display. The duration was designed to prevent
refocusing and unintentional shifting (0.3-0.5s) as studied in [8]. A
forced 0.3sec break (black screen) was introduced between conditions
to flush the vision. During the study, the participants were instructed to
fix their gazes on a green cross rendered on the display. To prevent the
fixation from shifting away and ensure accuracy, we tracked the users’
gaze throughout the experiment. Whenever the gaze is more than 5
deg away from the target, a trial was dropped immediately with a black
screen informing the participant. After each trial, the participants were
instructed to select which of the two stimuli appeared with higher visual
quality using a keyboard. Before each experiment, a warm-up session
with 6 trials was provided to familiarize the participants with the study
procedure. The orders of conditions among trials were randomized
and counter-balanced. The entire experiment of each user consists
of 36 trials, 6 trials per pair of ordered conditions. To minimize the
effect of accumulated fatigue, we also enforced breaks between trials
(at least 2 seconds) and after each scene (60 seconds). Meanwhile, the
participants were allowed to take as much time as needed.

Results. Figure 6 visualizes the results considering all conditions
and their orders in the 2AFC experiments. Here we analyzed and
reported the results regardless of the orders. Among all three condi-
tions, we observed close-to-random-guess among trials that compared
GT and OURS (42.4% voted for OURS, SD = 0.23). Meanwhile,
a significantly higher ratio of voting GT over NeRF was observed
(91.0%, voted for GT, binomial test showed p < 0.005∗∗∗, SD = 0.11).
The preference applies to OURS vs. NeRF as well (89.6% voted for
OURS, SD = 0.09, binomial test showed p < 0.005∗∗∗). We then cal-
culated the effect size when sample size is 12 (in our case) and set
power to 0.8. To reach 0.8 for power value, effect size is at least to
be 1.69 and our effect size Cohen′sd = 3.5 for Ours v.s. NeRF, and
Cohen′sd = 4.5 for GT v.s. NeRF.

Discussion. The close-to-random-guess (50% given a 2AFC task)
results in OURS vs. GT revealed the statistical perceptual similarity.
Meanwhile, both conditions showed significant quality preference than
NeRF. That is, with immersive, stereo, high-FoV, and egocentric view-
ing settings, OURS synthesizes gaze-contingent retinal images with
superior perceptual quality than alternative solutions ( [33]).Given a
fixed network representation capability, NeRF synthesizes the whole
visual field with identical quality while OURS concentrates the repre-
sentation based on the optimal spatial and stereoscopic acuity.

5.2 Static Visual Quality

Conditions and metrics. Complementary to the subjective mea-
surement (Section 5.1), we further objectively validate the perceptual
quality at individual eccentricities in a breakdown fashion. Specifi-
cally, with all four scenes and GT as the quality reference, we com-
pare OURS, NeRF, and an additional image-space spatial foveation

F-GT [17]. As has been studied to be perceptually identical to GT, the
F-GT condition serves as a spatially adaptive quality reference.

For each eccentricity range, we compare the deep perceptual similar-
ity (LPIPS) [58] across all scenes. LPIPS uses deep neural networks
to estimate perceptual similarities between the image provided and a
reference image. It widely serves as image-based metrics that quan-
tifies humans’ visual similarity judgments. Smaller values indicate
higher perceptual similarity. Mildenhall et al. [33] also applied LPIPS
for quality measurement. For each scene, we sample 25 views with
gazes at the middle of the display, resulting in 25 data per eccentricity
value, 21 eccentricity value per scene (5 deg step size), thus 525 data
per scene. We used one-way repeated measures ANOVAs to compare
effects across three stimuli on LPIPS value of each eccentricity range
(IV: stimuli, DV: LPIPS value). Paired t-tests with Holm correction
were used for all pairwise comparisons between stimuli. All tests for
significance were made at the α = 0.05 level. The measurement was
conducted at individual eccentricity ranges (from 0 to 110 deg, the
capability of the VR HMD).

Results. Figure 7 plots LPIPS values across all scenes and ec-
centricity ranges (5 deg step size). From foveal to near periphery
(≤ 15 deg), we observed significant effects of the stimuli on LPIPS
with a “large” effect size (η2 >= 0.15). That is, OURS shows signif-
icantly lower LPIPS than NeRF (p <= .005∗∗∗), and being higher
than F-GT in scene classroom and lobby or lower than F-GT in
scene barbershop and stones. For example, the main effects of stim-
uli (F(2,48) = 24.74, p < .001∗∗∗) was significant on eccentricity
= [0,30] deg in scene barbershop (Figure 7a). OURS was signif-
icantly lower than NeRF (t(24) = −4.26, p < .001∗∗∗) and F-GT
(t(24) = −9.1, p < .001∗∗∗) both with a “large” effect size (Cohen’s
d > 0.85). The example observation generally applies to all 4 scenes
being validated. The trend extends to (≤ 35 deg) for the “lobby” and
“barbershop” scenes.

From near- to far- eccentricity (¿20 deg), we observed significant
effects of the stimuli on LPIPS with a “large” effect size (ω2 = 0.32).
OURS shows higher LPIPS than NeRF and it became significantly
from eccentricity=40 deg. Whereas, comparing with F-GT, we ob-
served significant lower scores (p < .001∗∗∗). For instance, the main
effects of stimuli was significant on eccentricity = 40 deg in scene
lobby (F(2,48) = 87.78, p < .001∗∗∗, Figure 7c). OURS was signif-
icantly lower than F-GT (t(24) = −9.095, p < .001∗∗∗), and higher
than NeRF (t(24) = 3.797, p < .001∗∗∗) both with a “large” effect size
(Cohen’s d = 0.76). The example observation generally applies to all 4
scenes being validated.

Discussion. In the foveal and near-periphery, the observation re-
vealed our method’s significantly higher visual quality than the alterna-
tive solutions. This is evidenced by the significantly stronger perceptual
similarity to GT by comparison between OURS and NeRF. In our sub-
jective study (Section 5.1), the statistically indistinguishable/preferred
voting of OURS vs. GT/NeRF also agrees with the discovery. In the
periphery with eccentricity larger than 20 deg, OURS showed lower
LPIPS (i.e., perceptually more similar to GT) than F-GT. The latter
has been shown to display identical perceptual similarity to full res-
olution rendering [39]. Thus, the findings show that OURS doesn’t
compromise the peripheral vision’s quality with its significantly en-
hanced synthesis acuity in the fovea. Note that the discoveries above
also agree with the observations from Section 5.1. That is, in addition
to the significantly faster performance (99.8% time reduction per frame
as in Section 5.5), our method showed superior perceptual quality than
NeRF under first-person, high resolution, and immersive viewing.

5.3 Dynamic Viewing Quality
We further validated our method on dynamic scenes allowing free head
and gaze motions in a VR immersive environment. Subjective 2AFC
evaluations requiring free gaze motion are limited by a fundamental
problem where the gaze trajectories differ between discrete 2AFC tri-
als. This inevitably results in variations in perceived stimuli between
any two methods being compared, thereby resulting in erroneous com-
parisons arising from potential bias. To overcome this problem, we
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Fig. 7: LPIPS visualization of all scenes and comparison of OURS, NeRF, and F-GT over the visual field. The left column plots the analysis
results from Section 5.2. X-axis indicates the eccentricity range (0 to 110deg). Y-axis shows the LPIPS loss [58] with GT condition as reference.
Lower values mean more similar perceptual quality to the reference, i.e., better quality. The error bars indicate the standard deviation. The green
circles indicate intersection points between curves. The right column visually compares foveal/periphery images with randomly sampled views.
Green/yellow rectangle indicates fovea/periphery.
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Fig. 8: The descriptive results from fvvdp measurement. X-axis shows
the FovVideoVDP results (higher values mean perceptually closer to
the reference GT condition). Y-axis lists four scenes being validated.
Error bars indicate standard deviation.

Comparison Mean Diff 95% CI of Diff P Value

OURS vs F-GT 0.2706 0.1861 to 0.3551 < .0001∗∗∗∗
OURS vs M-GT 1.496 1.356 to 1.635 < .0001∗∗∗∗
F-GT vs M-GT 1.225 1.144 to 1.307 < .0001∗∗∗∗

Table 1: The post-hoc comparison results for FovVideoVDP ANOVA.

instead employ a novel combination of subjective viewing trajectories
and recent objective perceptual metric for foveated video quality.

Specifically, we collect subjective gaze data wherein the users were
asked to freely observe the full-resolution ground truth (GT) immersive
VR video. We then generate foveated videos using state-of-the-art
foveated rendering methods to compare against our method with the
collected gaze and head data as the baseline. This way, we make sure
that the gaze trajectories across all the methods are maintained same.
To predict the perceived visual quality of video stimuli generated using
different methods, we use the most recent FovVideoVDP metric [30]
which is tailored for large field-of-view (e.g., VR) video sequences
considering various perceptual factors such as spatial and temporal
effects across visual eccentricities, motion and contrast. The metric
effectively predicts the levels of visible visual differences between a
given video stimulus and a reference.

Conditions and metrics. In this experiment, we collected 12 ran-
domly sampled (gaze and head) trajectories from the participants in
Section 5.2. Each trajectory forms one trial that is about 2 seconds
long (i.e., 100 frames with OURS). Due to FovVideoVDP’s model-
ing of only monocular views, we measure with the rendered frames
with left eyes only, without the loss of generality. GT, the video se-
quence rendered with full-resolution, was considered as the reference in
FovVideoVDP. With the target reference, we compare our method with
various gaze-contingent methods, including the recently presented real-
time ventral metamers [13,53] (M(etamer)-GT) and foveated real-time
foveated rendering [17] (F-GT). Due to the significantly low temporal
performance of NeRF condition (see Section 5.5), the trial duration (2
sec) is shorter than the needed time to generate a single frame with it (90
sec). It showed a significantly low FovVideoVDP rate (≤ 5.1). Thus,
we exclude the unnecessary statistical comparison with this condition.

Results and discussion. Figure 8 and Table 1 show the results’
statistical distribution. Specifically, with FovVideoVDP’s visual sim-
ilarity range from 0 to 10, OURS achieves M = 8.26,SD = 0.14,
significantly higher than M-GT M = 6.77,SD = 0.18 and F-GT
M = 7.99,SD = 0.19 with F(11,22) = 14.15, p < .001∗∗∗. We fur-
ther perform a power analysis by setting sample size to 12 and power
to 0.8. To reach 0.8 for power value, effect size is at least to be 1.69
and our effect size for OURS v.s. F-GT is Cohen′sd = 2.58, and
Cohen′sd = 14.24 for OURS v.s. M-GT.

In addition to the previous experiment on controlled static viewing
(Section 5.2), the analysis demonstrates our outperformance in spatio-
temporal visual quality under dynamic viewing conditions. This is
validated via comparing with existing rendering approaches that have
been demonstrated to provide perceptually identical quality to a full res-
olution rendering (i.e., GT the reference of the metric). The experiment
simulates real-world viewing scenarios in immersive environments
where users view constantly moving with their heads and gazes.

OURS

PANO

(a) large translation w/ occlusion

OURS

PANO

(b) small translation w/ flat surface

Fig. 9: Qualitative comparison between OURS and panorama-based
view synthesis. Comparison between our model (OURS), and PANO
[26] shows that the quality of images varies most where the scene
contains complex geometries, and/or a wide scale of depth variance
and occlusion (cf. desk with books in (a)). Meanwhile, presence of high
frequency textures (cf. door window in (b)) show marginal difference
between the methods.

5.4 Qualitative Comparison with Panorama-Based View
Synthesis

Conditions and implementation. The synthesis quality of
panoramic-imagery-based approaches is determined by the occlusion
and translation ranges. Thus, as a case study, we visually compare our
synthesis approach with [26] and varied translation ranges from the
camera origin. To produce a Layered Depth Panorama ( [26], PANO),
we render 16 images from a virtual camera ring rig around the origin
of the scene. Then as an identical input format, we passed the images
to Lin et al.’s pre-trained model. Once a PANO is generated, we query
it for images corresponding to the same camera poses used for OURS.

Dis-occlusion quality. Figure 9 shows sampled views of failure
(large translation range of 30cm while facing occluded geometries,
Figure 9a) and success (small translation range of 15cm while facing a
flat surface, Figure 9b) modes of PANO in comparison to OURS. We
observe that our model performs better in scenes with high occlusion
and depth variance, while presenting a marginal difference for mostly
flat geometries. We hypothesize that this observation is largely because
our approach presents better congruence towards learning complex
geometries, whereas PANO is biased towards modeling geometries as
planes. We note that this bias is likely conducive to PANO’s ability to
retain high frequency textures if the variance in depth is minimal.

View-dependent effects. Another limitation faced by single
view-port based panorama image view synthesis is the limited view-
dependent effects. This becomes more visible in highly glossy and
reflective scenes. Figure 10 provides an example that visually compares
OURS’ advancement in producing realistic view-dependent effects.

5.5 Performance
Virtual and augmented reality demands high frame rates along with high
quality to ensure an immersive and comfortable experience. Our neural
synthesis method achieves real-time performance through our egocen-
tric neural representation (Section 3.1) as well as the spatial and angular
(stereoscopic) foveation (Section 3.2). Further, our latency-quality joint
optimization for the representation and network also balances quality
and performance (Section 3.3). Here, we evaluate the performance of
each component and compare with existing neural synthesis solutions.

For high resolution (1440× 1600), high field-of-view (110 deg)
stereo images required by VR display, our system completes all com-
putation (including gaze-contingent neural-inference and elemental
images composition) in 31.8ms per frame without stereo foveation, as
shown in Table 2. While our egocentric neural representation (which
costs 562ms) significantly speedup the synthesis compared to NeRF
and PANO (the bottom rows of Table 2), our spatial foveation further
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(b) PANO

Fig. 10: Comparing view-dependent effects between OURS and PANO.
Note the view-dependent effect appeared on the glossy wall-mounted
clock. With an up-down rotating and translating camera, OURS (a)
shows stronger view-dependent effects than PANO (b) condition.

improves the system performance from offline computation to interac-
tive speed (about 30FPS). Finally, our full method with both spatial
and stereoscopic foveation achieves a high performance of 50 FPS,
contributing to a temporally continuous viewing experience without
loss of perceived resolution and quality.

foveal infer (per eye) 8

mid- & far-periphery infer (per eye) 5.4

blending & contrast enhancement 0.1

OUR method without foveation 562
OUR method without stereo foveation 27
OUR full method 21.5

NeRF [33] 9.0×104

PANO [26] 1.0×104

Table 2: Time consumption breakdown and comparison. The numbers
show the average time consumption (in ms) of each component and the
overall system per frame. All units are in millisecond.

6 CONCLUSION

We present a gaze-contingent neural scene representation and view
synthesis method tailored for egocentric and stereoscopic VR viewing.
To unlock the practical deployment of neural radiance fields in VR, we
overcome their challenges such as high latency, low resolution, and low
fidelity that are exacerbated with stereoscopic and immersive displays.
This is achieved by encoding not only the scene content but also how
human vision perceives it, i.e., the gaze-contingent visual acuity and
stereopsis. Our network individually synthesizes foveal, mid-, and
far-periphery retinal images, and then blended them to form a wide
field-of-view image. We also derive an analytical model depicting
quality-latency balance and optimizes these two essential factors based
on psychophysical study data. Orthogonal to traditional rendering
pipeline, our method takes advantage of NeRF’s versatile capability
of synthesising not only virtual content but also physically captured
scenes, as demonstrated in Figure 11. Compared with NeRF [33],
our method creates significantly faster and higher perceptual fidelity
for high resolution and high FoV immersive viewing. Furthermore,
with the support of view-dependent effects (Figure 10), our method is

OURS NeRF

OURS

(a) room scene

OURS

NeRFOURS

(b) trex scene

Fig. 11: Neural rendering with physically captured scenes. With the
data from [33], we compare the visual quality between OURS and
NeRF. Due to the limited data field-of-view coverage, we trained
the model with fovea-only network parameters. The zoom-in images
further visualize OURS’ enhanced quality in high depth disparity and
high frequency areas.

robust to occluded scenes with complex geometry, a challenge faced by
panorama-based synthesis approaches (e.g., [26]).

Limitations and future work. While our method achieves superior
performance compared to existing approaches, its broader deployment
requires combating several constraints. Our multi-spherical represen-
tation renders optimal quality when the virtual camera is within the
innermost sphere. Although our method unlocks large translation scale
than panorama + neural dis-occlusion approaches, the optimal trans-
lation range is constrained by the radius of this sphere. However,
infinitely enlarge it will decrease synthesized image quality. Therefore,
devising an adaptive and dynamic system that automatically optimizes
the coordinates may shed lights on allowing traversal-scale translation
range without decreasing the perceptual quality or performance. Sim-
ilarly, multiscale coordinates that consider various level-of-details of
the 3D space have shown their effectiveness of interpolating geome-
tries [55]. Developing a corresponding network that synthesizes the
imagery from global to local level-of-details would be an interesting
direction for future work that extends the applicability to large-scale
scenes with strong occlusions.

Aliasing in the periphery exists because of the low sampling rate.
Although we have not apply any anti-aliasing methods yet, the result of
our user study shown that the aliasing doesn’t cause significant degrada-
tion of perceptual quality. While traditional anti-aliasing methods (such
as MSAA used in Guenter et al. [16]) may have an effect, these methods
will introduce a significant performance penalty when combined with
neural synthesis methods. We think that a candidate solution may be
applying multi-scale-encoding, as proposed by Barron et al. [5, 6].

We sample the scene fully based on eccentricity, considering acuity
and stereopsis. However, we envision that fine-grained visual sensitivity
analysis, such as luminance [52] or depth [50], would provide more
insights on achieving higher quality and/or faster performance.

For simplicity, the spatial-temporal joint optimization in Section 3.3
connects the output precision and latency to the number of the spheres
(N) but not their radii r. This is due to the potentially significantly
higher parameter sampling. Incorporating the parameters into a single
training process may significantly reduce the time consumption for
the optimization. With the adaptive training process, a content-aware
distribution (i.e., r) of the spheres would further improve the synthesis
quality and performance. The perceptually-based method is orthogonal
yet compatible with other remarkable neural radiance field inference
acceleration solutions, e.g., [27, 56]. Combining varies perspectives
may unlock the future instant and high quality immersive viewing
experience such as teleportation.
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