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Abstract

We present a new approach, EgoGlass, towards egocen-
tric motion-capture and human pose estimation. EgoGlass
is a lightweight eyeglass frame with two cameras mounted
on it. Our first contribution is a new egocentric motion-
capture device that adds next to no extra burden on the user
and a dataset of real people doing a diverse set of actions
captured by EgoGlass. Second, we propose to utilize body
part information for human pose detection - to help tackle
the problems of limited body coverage and self-occlusions
caused by the egocentric viewpoint and cameras’ proximity
to the human body. We also propose a concept of pseudo-
limb mask as an alternative for segmentation mask when
ground truth segmentation mask is absent for egocentric
images with real subject. We demonstrate that our method
achieves better results than the counterpart method with-
out body part information on our dataset. We also test our
method on two existing egocentric datasets: xR-EgoPose
and EgoCap. Our method achieves state-of-the-art results
on xR-EgoPose and is on par with existing method for Ego-
Cap without requiring temporal information or personal-
ization for each individual user.

1. Introduction

For the head-worn AR/VR devices that can capture hu-
man motion, heavy headset or cameras stretching out from
the wearer add inconvenience and restriction to both the
wearer and the environment. We envision that future de-
vices need to be lightweight and the user will be able to
wear it in daily activities, e.g. Google smart glasses. To
this end, we propose a novel prototype, EgoGlass, which
is eyeglasses augmented with light cameras and barely adds
any extra burden to the wearer. It facilitates flexible data
acquisition and human pose detection using a lightweight
wearable data capture device.

Understanding human pose from EgoGlass requires
egocentric-view pose estimation. However, existing human
pose estimation methods are usually from a third-person
point-of-view [7, 10, 14, 19, 22, 25, 26, 36] - also called
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Figure 1. Overview of the egocentric human pose estimation
pipeline we proposed. (a) the capture headset we built with Ego-
Glass attached on it (the headset is only needed when capturing
training data); (b) digital model of EgoGlass. Note that for exper-
imental purpose we installed six cameras on it but we finalized to
use the two cameras circled in the image; (c) an example visualiza-
tion of 3D body pose; (d) an example frame captured by EgoGlass
consisting of two views.

outside-in methods. These methods need the cameras to
be placed around the scene, which adversely restricts the
recording volume to a very limited size. Moreover, they of-
ten fail when the subject is occluded by other people (e.g.,
close social interaction) or objects (e.g., furniture) in the en-
vironment.

Due to the aforementioned limitations of the outside-in
methods, human pose estimation from the egocentric view
is of great interest recently, especially with the development
of xR technologies (such as AR, VR and MR). Egocentric
human pose estimation overcomes the constraint on record-
ing volume imposed by the placement of external cameras.
Instead, using wearable capture devices, it allows the users
to participate in activities indoor or outdoor without any size
constraint. It also handles the occluded scenarios by nature.
Moreover, in XR applications, it enables the users to better
perceptually immerse themselves into a virtual environment
thanks to its special, egocentric viewpoint. While there have
been valuable efforts on this task [, 11, 17, 20, 29, 30, 33],
egocentric human pose estimation is yet not thoroughly
solved. Some of the previous work [8, 11, 17] rely on sen-
sors worn on human body, while the cumbersome instru-



mentation and extra weight make them not suitable for ev-
eryday activities. Others [20, 29, 30, 33] infer the 3D body
pose from images captured by head-mounted cameras.

In this paper, we introduce EgoGlass (Fig. 1): a novel
prototype with two cameras mounted for egocentric motion-
capture and human pose estimation. We also create a dataset
of real people wearing EgoGlass - towards the task of hu-
man pose estimation. Two-step approaches [4, 5, 14, 16, 31,

] have been popular for human pose detection - consisting
of 2D heatmap prediction and 3D lifting. However, these
approaches suffer from the low-visibility of some joints.
Our key insight is that adding body part information can
help the network to reason about human skeleton configu-
ration. Especially in the egocentric view, while having the
2D heatmap information means having the 2D joint location
plus uncertainty, body part information will account for the
bone configuration even when the joint is not visible.

We validate our EgoGlass design and the essence of
multiple cameras by experimenting with a state-of-the-art
single-view egocentric method [30]. Our experiments show
that multiple camera views allow pose detection with im-
proved accuracy. Our experiments also show that utilizing
body part information is useful for pose detection especially
when many joints are out of camera views. We also test our
proposed method on two existing egocentric datasets, xR-
EgoPose [30] and EgoCap [20]. On xR-EgoPose, we de-
crease the 3D joint reconstruction error by 8%. On EgoCap,
our method is on par with existing method without requir-
ing any temporal smooth term or any personalization prior
to the capture.

Our work is the first method to motion-capture and hu-
man pose estimation from eyeglass frames. Our main con-
tributions include:

* A new egocentric motion-capture approach EgoGlass.
EgoGlass can serve towards research on lightweight
and portable egocentric devices.

* An egocentric dataset captured by the EgoGlass eye-
glass frame.

* A learning algorithm which utilizes body part informa-
tion for egocentric human pose estimation. The pro-
posed algorithm improves the body pose estimation
task especially when a large portion of joints are not
visible.

2. Related work

We describe related work on human pose estimation
in two categories based on the viewpoint of the camera.
We first focus on third-person view approaches and fol-
low with egocentric-view ones. For third-person view pose
estimation, we focus on monocular approaches since our
method uses two views that can cover the user body as

much as when using a single front-facing camera and there
is barely overlap between two views. For egocentric-view
approaches, we describe their capture setup and methods,
as well as the difference between theirs and ours.

Monocular human pose estimation from the third-
person view: In the regime of 3D human pose esti-
mation, most approaches fall into one of the two cate-
gories: (i) inferring 3D body pose directly from images
[12, 13, 15, 18, 21, 26, 28], and (ii) predicting 2D joint
positions first and then lifting 2D predictions to 3D predic-
tions [4, 5, 14, 16, 31, 37]. The availability of large datasets
with 3D ground truth and advancements of deep neural net-
works have significantly improved the accuracy of inferring
3D pose directly from images. Among the methods, gen-
erating 3D heatmap first as a keypoint localization problem
in a discretized 3D space [18, 26], similar to 2D pose es-
timation tasks, is proved to have advantage over direct re-
gression of 3D joint coordinates [12]. On the other hand,
decoupling the step of predicting 2D heatmaps and predict-
ing 3D pose from 2D pose enables us to exploit existing
success on 2D pose estimation task (including both meth-
ods and datasets) and helps the neural network to explore
prior skeletal knowledge when predicting 3D pose.

Egocentric-view motion-capture and pose estimation:
Various solutions for egocentric motion-capture have been
proposed in recent years. Earlier works are mostly suit-
based with the help of non-visual sensors, such as foot
pressure-sensor pad [34] or IMU sensors [27]. These suits
usually require long setup time and a cumbersome cali-
bration step. Jiang and Grauman [! 1] proposed to use a
single chest-mounted camera looking outwards to infer the
full 3D body pose with cues from the surrounding scenes.
Ng et al. [17] further proposed to leverage cues from in-
teractions with another person as there is often an inherent
synchronization between interacting individuals. Hwang et
al. [8] followed this design but used an ultra-wide fisheye
lens which can capture part of the user’s body, instead of
only leveraging environmental cues. However, the chest-
mounted setup would cause inconvenience and discomfort
when worn, such as affecting the outfit look.

Rhodin et al. [20] proposed to estimate wearer’s pose
from a pair of fisheye cameras mounted on a V-shape rig on
a headgear. They combined a 3D generative body model
and a 2D body part detector which was trained using a
dataset of multiple people. However, the 3D body model
needs personalization of shape and skeleton bone lengths
and their two cameras stretch out of the user’s body for
about 25cm, which severely restrict its use cases. Xu et al.
presented a capture device based on a single cap-mounted
fisheye camera in Mo2Cap2 [33], which significantly de-
creased the distance between the camera and the user’s face
to around 8cm. Tome et al. [29, 30] further decreased the
number to 2cm by installing a fisheye camera on the rim of a
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Figure 2. Illustration of the main different aspects among our setup and existing solutions. The images on the first row and distance values
on the third row show the capture devices and their distances to the user’s head. The second row presents one example frame for each
dataset. The first image in our Device cell is the prototype of our eyeglass frame with two blue circles showing the locations and angles
of the cameras; the second image shows the real eyeglass frame (other parts of the headset are only for training data capture). Given other
solutions use fisheye cameras for larger field of views, their views can cover a larger portion of the user’s body than ours. However, our
device is the smallest and closest to user’s head. We had to use cameras small enough to fit the eyeglass frame and cover as much body
part as possible at the same time. To this end, we attached two Raspberry Pi spy cameras on it.

head mounted virtual reality device. They followed the two-
step approach for 3D human pose estimation and proposed
a multi-branch architecture to reconstruct 2D heatmaps and
joint rotations together with 3D joint positions [29]. See
Fig.2 for visual comparison of capture devices and example
frames.

In contrast to existing methods, EgoGlass proposes a
smaller and lighter capture device. By integrating two Rasp-
berry Pi spy cameras on an eyeglass frame, we successfully
make the device suitable for almost all daily activities. Our
camera choice also avoids the strong distortion from fish-
eye cameras. However, we still face the challenge of self-
occlusions as other egocentric devices. Moreover, due to the
limited field of view of our cameras, even with the two cam-
eras, there is still a larger portion of joints that are out of the
views compared to other egocentric datasets. Our proposed
pose detection method explicitly utilizes body part informa-
tion for pose detection, unlike the existing methods, which
allows it to improve on the pose detection task especially in
occlusion scenarios.

3. EgoGlass dataset

In this section, we introduce a new dataset for egocentric
human pose estimation. The images were captured by real
human wearing our EgoGlass, which provides the training
corpus for egocentric human pose estimation from portable
and convenient eyeglass frames. To obtain ground-truth 3D

human pose, we made use of an outside-in capture system
to estimate pose in world coordinate and projected to our
frame-mounted cameras using calibration, which will be de-
tailed in Sec 3.1

3.1. Data acquisition and processing

We designed a capture system that consists of two com-
ponents: (i) the EgoGlass helmet to capture the user from
the egocentric view and (ii) six external cameras for outside-
in motion capture. Note that the large helmet is only needed
when capturing training data.

Fig. 2 presents the prototype of our EgoGlass frame and
the capture helmet. Our goal is to design a lightweight
motion-capture setup consisting of small and lightweight
cameras. While all existing egocentric datasets use fish-
eye cameras, for our setup where camera fields could be
easily occluded by nose or cheek, fisheye cameras may not
always provide good results. Hence we chose Raspberry Pi
spy cameras which are tiny and weigh only about 9 grams.
While having a very light footprint, the angle of view of a
Raspberry Pi spy camera is only about 64 x 48 degrees. In
order to compensate for this body part visibility limitation,
we mounted two of these cameras with different angles on
the eyeglass frame, which we call bodycams.

Inspired by Rhodin ef al. [20] and building upon Cha et
al. [3], we used six cameras placed around the scene for
outside-in motion-capture and applied the state-of-the-art
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Figure 3. Percentage of coverage of joints from each view aggregated among all subjects and actions. The numbers are computed in the
way that dividing the number of frames that a joint is visible in a view by the number of total valid frames. Notation: Ankle (A), Elbow
(E), Hip (H), Knee (K), Shoulder (S), and Wrist (W). L/R: Left/Right

Joint Visibility (%)

human pose estimation method from the third-person view,
OpenPose [1, 2, 24, 32], to generate ground truth of 3D
pose. Then we projected the ground truth to the coordinate
system of each bodycam.

3.2. Dataset overview

Our dataset is diverse in terms of both subject appear-
ance characteristics and actions. In the EgoGlass dataset,
we captured 10 subjects in total, 5 males and 5 females, with
a diversity of heights, body shapes, skin tones and cloth-
ing. Each subject did six categories of actions, which are
greeting, introducing, pointing, waiting, thinking and wav-
ing hands, and they were free to choose the specific poses
they would perform within each category. Each subject also
repeated their poses three times - while they were sitting,
standing and walking. Because of the differences in how
a user wears the eyeglasses, e.g., the height of nose is dif-
ferent, a small variation of the body parts within each view
exists in the dataset. The variations of views and poses pre-
sented by different subjects help the dataset to better gener-
alize to unseen subjects and poses.

The dataset contains 173577 frames in total and each
frame has two views (Fig. 1), each of which is captured
by one bodycam on the eyeglass frame. Table | presents the
statistics of frames per subject and per action.

3.3. EgoGlass pose estimation challenges

There are two factors making egocentric human pose es-
timation from our dataset a challenging task. The first one is
self-occlusions. Self-occlusion is a common issue shared by
all egocentric datasets because of the special camera view-
points, and the extremely close distance between cameras
and the user’s face makes it more severe in our dataset than

Subject Sitting Standing Walking
S1 3901 3847 4160
S2 8539 8804 7938
S3 9233 5044 4869
S4 5561 4312 4503
S5 6978 7352 7042
S6 2847 3567 3771
S7 6568 5355 7949
S8 6093 6837 4966
S9 4358 2042 3503

S10 8328 8040 7270

Table 1. Total number of frames per subject per action.

previous works. Thus our method aims at tackling this is-
sue. Fig. 2 provides example frames from existing egocen-
tric datasets. The second challenge is limited body cover-
age. We attached two cameras on EgoGlass to make them
cover a large part of the user’s body but occlusions still ex-
ist. Due to the cameras’ limited field of view and proxim-
ity to the human body, when the user is doing stretching
poses, the arms or legs may leave the views of all cameras.
Fig. 3 provides the statistics of the visibility of each joint
within each view. Also see Fig. 2 for a visual comparison
of visibility of joints in EgoGlass dataset and other existing
egocentric datasets.

4. Method

We adapt the two-step approach for pose detection.
Our method consists of two 2D modules to generate 2D
heatmaps for two views and a 3D module to generate 3D
joint positions using 2D heatmaps as input. The visualiza-
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Figure 4. Our architecture consists of two 2D modules and one 3D module.

tion of our network is shown in Fig. 4.

For experimental purpose, we installed six bodycams on
the eyeglass frame, aiming to enable a larger coverage of
human body. However, we find that most of the images
captured by the middle four bodycams have limited visibil-
ity of joints while adversely add large variation among each
individual subject.

4.1. 2D heatmap generation

The architecture of our 2D module is based on U-Net
[23] with ResNet18 [6] as the backbone for all experiments.
The input to the 2D modules is RGB images from two views
for our dataset. There are two branches in the upsampling
part: one branch for 2D heatmap prediction and the other for
body part information prediction. We train one 2D module
for one individual view, each of which has the same archi-
tecture but does not share weights.
2D heatmap branch: The output of this branch is 2D
heatmap, one for each joint except Neck. To train this
branch, we apply the mean square error (MSE) to the
ground truth heatmap H M and the prediction HM as loss:

Lop(HM,HM) = mse(HM, HM) (1)

body part branch: We propose to explicitly enforce the
network to reason about the body part information in the im-
age by adding a body part branch. When a joint is occluded,
the image information of body part layout can help the net-
work infer the human skeletal configuration. The intuitive
representation for body part information is segmentation
masks. For synthetic datasets, segmentation masks can be
obtained without difficulty. However, when dealing with
images of real people and real scenes, even state-of-the-
art segmentation methods cannot provide perfect masks as

ground truth given the special egocentric viewpoint. Thus
we propose the concept of pseudo-limb mask, which is ob-
tained by connecting the areas between joints on human
limbs, including both arms and legs. While lacking real
segmentation mask ground truth, this pseudo-limb mask can
serve as a rough mask and learning this can improve the ac-
curacy of 3D reconstruction as we demonstrate.
The loss function for this branch is also MSE loss:

Ly(mask, mask) = mse(mask, mask) (2)

4.2. 3D module

Our 3D module is an autoencoder architecture, which is
inspired by the two-branch decoder model in [30]. It takes
the joint heatmaps predicted by the 2D modules as input and
pushes them through an encoder to get embedding features.
The first branch in the decoder is to generate 3D body pose
estimation while the second branch is to enforce the encod-
ing of the uncertainty in 2D prediction by reconstructing the
input heatmaps as output. The difference is that we have
two sets of heatmaps from both views. In most cases, these
two views cover different joints. To fuse these information,
we concatenate the heatmaps along the channel dimension.

To train this module, we use the Mean Per Joint Position
Error (MPJPE) for the 3D pose branch:
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where NNV, is the batch size and N is the number of joints.
P is the joint position prediction and P is the ground truth.
And MSE loss is applied to the heatmap reconstruction
branch.



MPJPE(mm) Lower Body Upper Body Full Body

selfPose/Caml 156.5 113.0 134.8
selfPose/Cam2 146.4 114.1 130.3
Ours / All 139.0 79.0 106.7

Table 2. Quantitative results on our dataset. We apply self-
Pose [29] to each single egocentric view and apply our method
to both views. The results show that two views is minimal number
of views and missing either view will downgrade the performance.

We also add the cosine-similarity error as in xR-EgoPose

[30]:

L
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5. Experiments

We conduct experiments to show the effectiveness of
our method on our EgoGlass dataset and compare with two
baselines: the first one is a state-of-the-art egocentric human
pose estimation method for monocular image proposed by
Tome et al. [29] and the second one is a method using the
same architecture as ours but without the body part branch.
Moreover, we test our method on two existing egocentric
datasets, EgoCap [20] and xR-EgoPose [30] and show ei-
ther state-of-the-art or competitive performance with a sim-
pler approach.

5.1. Evaluation metrics

Following the two protocols of Human3.6M [9], we re-
port both the Mean Per Joint Position Error (MPJPE) com-
puted as Equation 3 and the Mean Per Joint Position Er-
ror after Procrustes transformation (P-MPJPE). Procrustes
transformation is a rigid transformation that aligns the pre-
diction and ground truth in scale, translation, and rotation.
It is a meaningful evaluation metric since the main purpose
of EgoGlass is to reconstruct the user’s body in egocentric
view relative to the capture device, regardless of the global
joint positions.

5.2. Implementation details

The training set we used is S1, S3, S4, S5, S6, S7, S8
and actions of sitting and standing; the test set we used is
S9 and S10 and actions of sitting and standing. S2 was used
for validation purpose. The resolution of input images and
pseudo-limb masks are 128 x 160, while the 2D heatmaps

Figure 5. Qualitative results of our method on our EgoGlass
dataset. The first column is the input images from two views con-
nected side-by-side; the second column illustrates the predicted
pseudo-limb mask from our body part branch for both views,
where colors encode individual limbs; the last column is the visu-
alization of 3D joint positions, skeletons in blue are ground truth
and skeletons in red are predictions.

have a lower resolution of 32 x 40. We predict 3D positions
for 13 joints: Neck, Shoulders, Elbows, Wrists, Hips, Knees
and Ankles,and the ground truth are relative to the EgoGlass
device. The 2D modules and 3D module were trained in
an end-to-end manner with a learning rate of le-3 and 8
epochs. We used the Adam optimizer and step_Ir scheduler
with a step size of 4. Loss weights were set as: A\op = 1,
A =1, Arecon = 0.001, A\yeg = 0.1, and Acos = 0.01.

5.3. Results on our EgoGlass dataset

The pseudo-limb mask covers the visible part of the
user’s arms and legs. We connect the areas between joints
of Shoulder, Elbow, and Wrist to generate the mask for one
arm and the areas between the joints of Hip, Knee and Ankle
to generate the mask for one leg.

Baseline 1: The method proposed by Tome et al. [29] is
the state-of-the-art method for monocular egocentric human
pose estimation, and their experiment shows that state-of-
the-art methods for front-facing cameras, such as [14], will
fail in the egocentric setup. We consider their method as a
baseline to validate the necessity of information from mul-
tiple views in our setup. Due to the public unavailability of
their code, we use our own implementation which achieved
43.0mm MPJPE on the xR-EgoPose dataset (their reported
number is 41.0mm). Table 2 shows the quantitative compar-
ison. The results show that we need information from both
views and thus selfPose method cannot handle our multi-
view setup.

Baseline 2: We use the same architecture as shown in Fig.



MPJPE(mm)

‘ Neck LShoulder LElbow LWrist RShoulder REIbow RWrist‘ LHip

LKnee LAnkle RHip RKnee RAnkle‘ All

w/o body part 0.9 29.4 96.6 1819 30.2 96.3
w/ body part 0.0 27.6 833 164.1 28.9 71.7

1984 | 965 1815 2383 953 184.6 221 127
1715 | 71.0 1573 2012 722 147.6 1849 | 106.7

A(row1-row2) ‘ 0.9 1.8 13.3 17.8 1.3 18.6

269 | 255 242 371 231 37 36.1 | 203

Table 3. Quantitative results (MPJPE) and ablation study of our method with body part branch on our EgoGlass dataset. Our method with
body part branch outperforms its counterpart without body part branch on all joints and average error.

P-MPJPE(mm) ‘ Neck LShoulder LElbow LWrist RShoulder REIbow RWrist‘ LHip

LKnee LAnkle RHip RKnee RAnkle‘ All

161.6 | 59.9 75.1 72.3 53.0 81.9 67.3 79.3
1433 | 59.3 76.4 73.3 57.3 71.8 69.2 74.1

w/o body part | 52.8 62 743 1454 53 72.5
w/ body part 411 495 70.6  137.0 45.1 63.6
A(rowl-row2) | 117 125 3.7 8.4 7.9 8.9

183 | 06  -1.3 -1 43 41 219 | 52

Table 4. Quantitative results (P-MPJPE) and ablation study of our method with body part branch on our EgoGlass dataset. Our method
with body part branch outperforms its counterpart without body part branch on most joints and average error.

Approach MPIJPE error (mm)
EgoCap [20] 70.0 £ 10.0
Ours 67.9 £+ 134

Table 5. Quantitative comparison between our method and the
method in the original EgoCap paper [20]. Note that the method in
EgoCap paper added temporal smooth constraint while ours does
not, thus our standard deviation is expected to be slightly larger
than theirs.

Figure 6. Qualitative results of our method on the EgoCap [20]
dataset. Skeletons in blue are ground truth and skeletons in red are
prediction.

4 without the body part branch in the 2D modules as our
second baseline. We report the mean reconstruction errors
for each joint in Table 3. Our method outperforms its coun-
terpart without body part branch on all joints, while the im-
provements on lower body part are all larger than 20mm.
This result aligns with the fact that the lower body part is
usually more severely occluded. We also report the recon-
struction error in P-MPJPE in Table 4. See Fig. 5 for visu-
alization of the predicted pseudo-limb masks and 3D joints.

5.4. Results on EgoCap Dataset

EgoCap[20] dataset is another egocentric dataset cap-
tured by real subjects. We downloaded the training set and
validation set from the website of Rhodin et al. [20], which
contains 35285 frames from 6 subjects in the training set
and 1001 frames from 1 subject in the validation set. They
provide two sets of training data: one with raw green-screen
background and the other augmented by replacing the orig-
inal background with a random, floor-related image from
Flickr. We use the first set as they only provide validation
set in raw background. Furthermore, it does not provide
segmentation masks so we use the pseudo-limb mask gen-
erated by our method. We use the same 17 joints as in their
paper.

To the best of our knowledge, there is only one exist-
ing method which is proposed in Rhodin et al. [20]. Ta-
ble 5 shows the comparison between our method and their
method. Our method achieves better mean accuracy over
all joints, while the standard deviation is slightly larger than
theirs, which is expected as they imposed temporal smooth
constraint but our approach does not use any temporal infor-
mation. Fig. 6 shows the qualitative results of our method.

5.5. Results on xR-EgoPose dataset

We used the dataset released from xR-EgoPose [29, 30]
GitHub page with 10M/10F in training set and 7M/4F in test



Approach MPIPE

Lower Upper

Patting  Reacting Talking S Walking All

error (mm) Gaming GesticulatingGreeting Stretching tretching
xR-EgoPose [30] FullBody 56.0 50.2 44.6 51.1 59.4 60.8 439 539 57.7 58.2
Zhang [35] FullBody 36.8 34.1 36.7 50.1 57.2 34.4 32.8 54.3 52.6 50.0
SelfPose [29] FullBody 52.5 49.2 72.0 37.3 53.0 44.4 46.1 39.3 372 410
LowerBody 36.8 31.8 333 53.1 59.2 36.8 31.0 58.7 58.0 53.4
Ours - w/o body part UpperBody 27.6 29.3 31.2 26.6 28.8 254 222 37.6 28.6 32.7
FullBody 32.2 30.5 32.2 39.9 44.0 31.1 26.6 48.2 433 43.0
LowerBody 39.6 31.8 332 483 59.6 39.0 30.1 51.2 50.5 48.1
Ours - w/ body part  UpperBody 26.0 29.2 342 22.6 319 273 24.0 29.0 242 27.3
FullBody 32.8 30.5 33.7 35.5 45.7 332 27.0 40.1 374 317

Table 6. Quantitative comparison with existing methods on the xR-EgoPose dataset[30]. For our methods, we also report the reconstruction
errors on upper and lower body. Numbers for existing methods are from respective papers as they did not release their code. Our method

with body part information outperforms all other methods.

Figure 7. Qualitative results of our method on the xR-EgoPose [30]
dataset. Skeletons in blue are ground truth and skeletons in red are
prediction.

set and the same 16 joints as in their paper. It is a synthetic
dataset and provides the segmentation mask ground truth,
so we do not need to generate limb masks. As in selfPose
[29], we added a limb-error term in the loss function. None
of the previous methods[30, 29, 35] released their code, so
we re-implemented the method in selfPose first as they have
the state-of-the-art results. Our re-implementation with an
added body part branch achieves 37.7mm in comparison to
the result of 41.0 mm from Tome et al. [29] without our
proposed body part branch. See Table 6 for detailed results.

The results confirm that (i) body part masks help with
egocentric human pose task regardless of number of views

and (ii) the pseudo-limb mask and segmentation masks per-
form a similar role in egocentric human pose estimation.
Segmentation masks can provide accurate body part infor-
mation while pseudo-limb mask is much easier to generate.
Fig. 7 shows the visualization of our results.

Figure 8. Failure cases when the joints are severely occluded. In
the top frame, only right wrist is visible, while no visible joint in
the bottom frame.

6. Conclusion and future work

We present EgoGlass, a new solution to egocentric
motion-capture with a curated method for egocentric hu-
man pose estimation. We hope this eyeglass-frame-based
approach can further facilitate the research in egocentric hu-
man estimation. Despite the improved accuracy at current
stage, the method still suffers from some limitations such as
that the estimation for lower body is generally worse than
that for upper body. To improve this, utilizing more 3D
information by explicitly enforcing multi-view consistency
may help. Another failure case lies in the circumstances
when the joints are severely occluded, see Fig. 8. Since
the subjects were doing continuous motions when captured,
adding temporal constraints to take advantage of visible
joints in adjacent frames is a possible direction.
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