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ARTICLE INFO ABSTRACT
Keywords: Learning thermodynamics concepts remains challenging to students through grades K-12. In this
Thermodynamics learning study, we presented a design-based research program that aims to design and examine an inno-
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vative application, Infrared Explorer, that organically integrates physical experiments with a
virtual environment. Relying on the theory of concreteness fading, we use infrared imaging and
multimodal analytics to augment students’ interaction with physical materials. Through two it-
erations of design and testing, we analyzed a variety of data sources and found that students
actively used the application during their physical experimentation process. This technological
application can allow students to highlight salient information and remove confusing details such
that students’ conceptual understanding of thermal concepts can develop further. Through this
iterative development process, we also synthesized factors (e.g., multitasking and cognitive load)
to consider when designing and implementing technologies to blend physical and virtual envi-
ronments supporting learning. This research showed the promise of using concreteness fading to
design science learning experiences through innovative technologies and identified important
factors to consider during the design and implementation phases.

1. Introduction

Heat and temperature are intimately related to daily life. The concepts and principles of thermodynamics are the foundation for the
natural sciences of physics, chemistry, and biology (Koh & Paik, 2002; Nottis, Vigeant, Prince, Golightly, & Gadoury, 2019). They are
among the essential concepts that students must learn through the K-12 school science curriculum in most countries. However, the
physics of heat has been identified as a notoriously difficult concept for students to grasp. Studies have found that students have
problems linking temperature with a measurement of a physics attribute and often think that temperature and heat are the same (Lewis
& Linn, 1994). Thomaz, Malaquias, Valente, and Antunes (1995) found that students have problems identifying the nature of heat,
believing that heat is a kind of substance that can reside in objects, and which can further move from one object to another instead of a
theoretical idea of energy transfer between objects of different temperatures. Moreover, students tend to misinterpret the temperature
of an object based on their thermal sensation regardless of the fact that the initial temperature of the object is supposed to reach
thermal equilibrium with ambient temperature (Russell, Lucas, & McRobbie, 2004). For example, students often respond that the
temperature of a metal should be lower than wood because it feels cooler during the same physical interaction (Donnelly, Vitale, &
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Linn, 2015). While learning the basic thermodynamics is crucial, it is challenging for K-12 students to understand these concepts as
they are difficult to extrapolate from students’ sensory experiences.

Previous research has primarily examined two contrasting approaches to facilitate the learning of thermodynamics concepts. The
first approach is to design various physical lab activities. For example, Hitt and Townsend (2015) proposed to use household materials
- food coloring and water — for students to visualize the connections between heat and particle motion. Rascoe (2010) presented a
“how fluids move” experiment to allow students to engage in the process of scientific inquiry that leads them to understand a variety of
thermodynamics concepts. The second approach examined a diverse set of virtual technologies that support thermodynamics learning.
To illustrate, Tanahoung, Chitaree, Soankwan, Sharma, and Johnston (2009) conducted research to understand the effectiveness of
interactive lecture demonstrations over traditional instruction on students’ learning of heat and temperature. Several other studies
applied simulation and modeling tools (e.g., microcomputer-based laboratory, MBL, Donnelly et al., 2015) and interactive heat
transfer simulation (Xie, 2012). There are some other studies that explore various pedagogies to aid students in developing their
understanding of heat and temperature, e.g., developing context-based materials (Bilgin, Nas, & Coruhlu, 2017), or using engineering
design activities (Schnittka & Bell, 2011), these works are usually investigated without any technological element. Therefore, they are
not fully relevant to our research.

Two popular approaches, physical experiments and virtual tools and simulations, each have their unique affordances in supporting
thermodynamics learning. For physical labs, Balamuralithara and Woods (2009) summarized the three key affordances for physicality,
the acquisition of psychomotor skills, awareness of safety procedures, and learning how to use human senses for observation.
Particularly, students can take advantage of tactile information in an experiment with thermos, according to theories of embodied
cognition, to foster the development of conceptual understanding in thermodynamics (De Jong, Linn, & Zacharia, 2013). For virtual
technologies, they provide rich information and varied representation (e.g., numerical, pictorial, graphical, conceptual, etc.) and offer
capabilities to alternate reality (e.g., simplifying real-world models, visualizing objects and processes that are normally beyond
perception, improving experiment efficiency, De Jong et al., 2013). Given these differing affordances, some researchers have explored
the combing use of physical experiments and virtual tools. Most of these studies have primarily focused on utilizing both physical labs
and virtual simulations in supporting students’ learning (e.g., Jaakkola & Nurmi, 2008; Olympiou & Zacharia, 2012) rather than
synthetically combining them to support learning.

In this study, we aim to design, develop, and investigate an innovative technology, Infrared Explorer’, that systematically blends
physical experimentation with a virtual tool to foster comprehension of thermodynamics concepts. Relying on the theory of
concreteness fading (Fyfe, McNeil, Son, & Goldstone, 2014), the developed learning tool uses infrared imaging and data analytics to
augment the learning of thermal concepts (Xie, 2011; Xie & Hazzard, 2011). Students begin by physically interacting with the
experimental materials, then “seeing” the thermal phenomenon through infrared imaging, which is otherwise invisible. This expe-
rience then translates to an eventual abstract understanding of thermal concepts visualized by multi-representational data analytics.
To examine the effectiveness of the learning tool, we took a design-based research (DBR) approach. DBR involves iterative cycles of
design, evaluation, and improvement of learning interventions to identify meaningful educational practices (Anderson & Shattuck,
2012). Specifically, we conducted two iterations of design and testing to understand how students use the virtual tool, to determine
how this tool augments students’ scientific practices, and to further support the development of students’ conceptual understanding of
thermodynamics. This research method also enables us to distill design factors to guide the development of learning technologies for
thermodynamics which mixes physical manipulatives and virtual technologies.

2. Theoretical foundation
2.1. Concreteness fading

The theory of concreteness fading is the framework that guides the development of Infrared Explorer such that it synthesizes the
experience of a tactile physical experiment with dynamic virtual visualizations (Fyfe et al., 2014). In many learning settings, concepts
can be presented using a diverse set of representations, some of which are more concrete than others (Fyfe & Nathan, 2019). In order to
teach heat and temperature, for example, a metal spoon and a plastic spoon can be placed with ice cubes for a period of time to create a
felt temperature difference. There are various benefits to using concrete materials. They can provide a practical context that can
activate real-world knowledge (Schliemann & Carraher, 2002) and induct physical action to enhance memory and understanding
(Glenberg, Gutierrez, Levin, Japuntich, & Kaschak, 2004), further enabling students to construct their own knowledge of abstract
concepts (Berthold & Renkl, 2009). Using different virtual visualizations to teach thermodynamics can eliminate extraneous
perceptual details and increase the portability and generalizability of what is learned in alternate contexts (Son, Smith, & Goldstone,
2008). Using abstract materials can also direct students’ attention to structural and representational aspects, rather than towards
superficial features (Kaminski & Sloutsky, 2009).

The theory of concreteness fading offers a framework to combine the advantages students gain from making connections in these
different representational settings — by beginning with physical interactions with concrete instantiations of a target concept, and
gradually and explicitly fading toward more abstract representations (Fyfe et al., 2014). Concreteness fading theory proposes that
learning usually occurs by going through three stages of representation as in Fig. 1: (1) an enactive stage, which is action based (e.g.,

1 Infrared Explorer is open to public use and can be accessed at https://intofuture.org/ie.html.
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acting on a physical concrete model); (2) an iconic stage, which is image-based (e.g., using a pictorial or pictorial model); (3) a
symbolic stage, which is notation-based (e.g., using an abstract model). This concreteness fading framework exploits the continuum
from the concrete to the abstract and allows students to benefit from the grounded and tactile experience while still encouraging them
to abstract and generalize beyond it. There is increasing theoretical and empirical support of concreteness fading to demonstrate how
various features of this theory are helpful in learning contexts.

2.2. Multitasking and cognitive load

The design and development of Infrared Explorer are also informed by the affordances of multitasking on students’ cognitive load.
The implementation of multiple tasks within a short time is often referred to as concurrent multitasking (Salvucci, Taatgen, & Borst,
2009). However, multitasking is more than simultaneously or rapidly conducting different activities. Sequential multitasking is an
additional type of multitasking in which the time gap between related tasks can be longer (e.g., an hour) and each task is equally
important (Salvucci et al., 2009). Cognitive load describes the simultaneous mental activity used for information processing (Paas,
Renkl, & Sweller, 2004). Excessive cognitive load, when information needed to be processed by learners exceeds their capacity, can
impair students’ learning outcomes (Seufert, Wagner, & Westphal, 2017). The excess of cognitive load can be caused intrinsically (e.g.,
interpreting learning materials using prior knowledge) and extraneously (e.g., the presentation or required manipulations with
learning materials) (Sweller, 2005).

There have been studies examining the cognitive load affordances of concurrent and sequential multitasking, with concurrent
multitasking having the tendency to increase cognitive load and sequential multitasking not significantly affecting the cognitive load.
For example, Oriin and Akbulut (2019) conducted a randomized controlled experiment to examine the effects of concurrent and
sequential multitasking on participants’ perceived mental effort and retention of knowledge. Their results showed that compared to
participants in the control group (no multitasking), concurrent multitaskers tended to have lower knowledge retention and higher
reported mental effort, while sequential multitaskers had no significant difference. In the proposed Infrared Explorer which involves
both physical (e.g., conducting experiments) and virtual interactions (e.g., visualization and analysis using the provided tool), there is
inevitably multitasking required that may negatively affect students’ learning. It is important to consider multitasking and cognitive
load in our design of Infrared Explorer. We discuss more details of multitasking and cognitive load for the two design iterations in the
next section.

3. Infrared Explorer development
3.1. Concreteness fading in Infrared Explorer

Infrared Explorer was designed to embody the three stages of concreteness fading. The development of the enactive stage in
Infrared Explorer is natural as the learning tool aims to augment students’ exploration with the physical world through mobile devices
and an infrared-ray (IR) camera enhanced by analytic tools. In this enactive stage, students can directly interact with the physical
materials to gain the learning experience with physical objects. As shown in Fig. 2a, students can form a concrete perceptual model
with the physical materials (e.g., rulers) used in experiments in Infrared Explorer. To enable graphic representations in the iconic stage,
we have utilized thermal imaging powered by FLIR ONE Pro thermal camera and its software development kit (SDK). This thermal
camera provides images rendered with a color heatmap to serve as direct indicators of temperature differences (see Fig. 2b).
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Fig. 1. Illustration of concreteness fading.
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Fig. 2. Development of infrared explorer incorporating concreteness fading.

Meanwhile, buttons on the user interface are designed with icons to provide mental shortcuts for comprehending the purposes of each
button. Finally, to assist with learning in the symbolic stage, we have developed a series of temporal and spatial graphs (e.g., tem-
perature (Y) by time (X), temperature by horizontal distance (X)) to allow students to collect relevant structural patterns and
representational features through data analytics (more detail in the next section). Fig. 2c demonstrates the use of temporal graphs to
assist with students’ information generation.

3.2. Data analytics in Infrared Explorer

Infrared Explorer was developed to allow students to conduct multi-representational data analytics to support their scientific in-
quiry. Studies have suggested that students’ science learning can greatly benefit from data analysis with multiple representations to
help them observe, measure, and decode scientific phenomena (Madden, Jones, & Rahm, 2011; Quintana et al., 2018; Xing, Lee, &
Shibani, 2020). In Infrared Explorer, three representations of data can be utilized for analysis, all of which derive from sensor-collected
thermal data. The first representational form visually analyzes using color. For example, students can use the heatmap superimposed
on thermal images to easily identify temperature differences. The second representation utilizes graphing such that students can
understand and compare trends of temperature change in various thermal image locations. Finally, students can analyze and interpret
thermal data in a textual form in which they can quantify the temperature in a specific pixel location by placing and reading ther-
mometers. Other than allowing students to learn through data analytics, Infrared Explorer also empowers researchers to conduct
learning analytics to evaluate, analyze, and report students’ learning processes. For example, other than thermal images and thermal
data, Infrared Explorer also records students’ every interaction with the learning tool (e.g., thermometer creation, movement, and
removal) as system logs. Researchers can understand students’ scientific inquiry triangulated from the perspectives of content (lab
reports), dynamics (thermal images), and behaviors (system logs).

3.3. Two iterations of Infrared Explorer

Infrared Explorer experienced two iterations of design and development. The major distinction between the two iterations resides
in how students can use Infrared Explorer to analyze thermal data for learning: real-time (mainly concurrent multitasking) or post hoc
(mainly sequential multitasking), while other features (e.g., thermometers and graphing) remain the same. In the first iteration,
students can only analyze data (e.g., the temperature at the pixel level) in real time as they are being collected by the thermal camera.
When the thermal camera is disconnected or the app is closed, students will not be able to re-analyze the observed thermal phe-
nomenon. The nature of real-time mode requires students to be well-prepared for an experiment; temperature changes can occur and
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disappear within seconds. To enable students to focus on initial observations and have second thoughts in experiments, we provided a
post hoc analysis mode in the second iteration (Fig. 2, “Record” button), in which students can analyze data in their recorded thermal
videos. In the post hoc mode, recorded videos retain the captured temperature data at the pixel level across time. Moreover, students
can edit the recorded videos to eliminate noise in an experiment (e.g., trim the video to skip experiment preparation footage). Both
real-time and post hoc modes support the three stages in concreteness fading well through access to various analytical tools (e.g.,
thermometers and temporal and spatial graphs). However, graphing in the post hoc mode differs from the real-time mode in that
students can preview the complete temperature trend located by student-created thermometers. This is natural as students cannot have
future data in real-time mode, but they have already concluded data collection in the post hoc mode.

4. Methodology
4.1. The current study

This study intends to investigate a technological innovation which mixes physical materials and virtual tools to transform the
learning of thermodynamics using infrared imaging and data analytics. The resulting tool, Infrared Explorer, is primarily informed by
the theory of concreteness fading and supports students’ various stages of thermodynamics learning. Following the design-based
research approach, this study will develop, test, and refine this tool in an iterative process. We are guided specifically by the
following research questions.

(1) To what extent do students use the virtual tool in the integrated learning environment and how does this use vary across the two
iterations?

(2) To what extent do students conduct augmented observation using the virtual tool in the integrated learning environment and
how does the augmentation vary across the two iterations?

(3) To what extent does students’ conceptual understanding of thermodynamics differ across the two iterations?

4.2. Research context and participants

Students in the 9th grade (ages 14 to 15) from three suburban high schools in the Northeastern US participated in the study. In the
first iteration of the study, 111 students from five physical science classes in one school participated and were taught by one male
teacher. In the second iteration of the study, 132 students from seven science of energy classes, taught by three male teachers,
participated, and another 72 students in four earth science classes were involved in the study taught by one female teacher from two
schools, respectively. See Table 1 for student demographic details. Students without parental consent forms were excluded from this
study. Thermal concepts taught included radiation, convection, conduction, and latent heat. The classical approach to conceptual
learning, prediction-observation-explanation (POE, Bakirci & Ensari, 2018), was adopted. That is, before implementation of the lab,
students used their prior knowledge to predict the experiment outcome (P) and gave initial explanations. After the scientific obser-
vation (O), students reconstructed their explanations (E) based on the collected real-world evidence.

All activities took five days, with one class per day. The first day was the warmup and Infrared Explorer tutorial. During the second
to fifth days, the labs for four thermal concepts were conducted. Students completed a lab report each day and filled in the corre-
sponding section of the lab report. The student data from the conduction concept was selected for this analysis because it was
implemented during the latter part of the 4-day curriculum, which minimized the errors that came from learning a new tool. Also, this
activity contained the most completed lab reports. The lab implementation of conduction (Fig. 3b) asked students to put two thumbs on
metal and wood rulers for 1 min and observe the thermal differences between the rulers and thumbs. In the first iteration, the
experiment implementation and data analysis happened simultaneously for students, while the second iteration separated the data
analysis from implementing the lab. See Table 2 for the details.

To conduct experiments, students were paired together. Students were seated together in pairs in the classroom, so we followed this
natural arrangement. Experiments were carried out by the student pairs. At the beginning of class, each pair received a printout of the
experiment’s instructions, a phone and IR camera set, and the necessary supplies. The student pairs worked together and carried out
the experiments following the steps listed on the handout. The teacher kept order in the room, circulated to answer students’ questions,
and corrected any mistakes in following the written instructions. The researchers served as the technical experts in the classroom and
helped resolve issues with the phone, camera, and software. At the end of the class, the same pair of students completed one lab report
collaboratively. Therefore, the N reported in this paper’s result section indicates n pairs, not N individual students.

Table 1
School demographics of participants.
Students African American Asian Hispanic White Male Female
First iteration 111 3.8% 10.9% 6% 73.8% 47% 53%
Second iteration School A 132 26% 6.9% 12.2% 48.5% 52% 48%
Second iteration School B 72 2.8% 36.6% 5.9% 50.7% 52% 48%
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Fig. 3. The three methods to capture thermal data using Infrared Explorer app.

Table 2
Lab behavioral sequences in the first and second iterations.
Phase First Iteration Second Iteration
Before experiment eAdd thermometers to rulers.
eTurn on the temperature-time T(t) graph
During experiment eThumbs on rulers for 1 min eRecord video
eTake four images depicting thermal changes eThumbs on rulers for 1 min
eStop recording video
After experiment Export the T(t) graph as an image Open video for analysis:

eAdd thermometers on rulers

oTurn on the T(t) graph

eExport the T(t) graph as an image
eTake four images of thermal changes

Note. The two iterations provided students with the same phone, IR camera, and lab materials. The second iteration used an updated version of
Infrared Explorer, which provided a new feature of recording videos. Therefore, in the second iteration, students recorded the video while conducting
the experiment, then analyzed the video to save snapshots as evidence. In this way, students could focus on observing the changes in real time with no
need to worry about when to take a picture as evidence.

4.3. Data collection and analysis

System log data analysis for RQ1. Several major indicators from log data relevant to the experiment process were identified to
understand students’ usage of the tool and to determine whether the two iterations of implementations were significantly different
from each other. These variables are: (1) duration of the experiment, which shows the total time each student dyad spent from the
beginning to the end of the experiment and is identified by reviewing the logged screen video; (2) repetition times, which indicates
each group’s number of attempts to perform the experiment and to collect all the graphs as required in the lab report; (3) number of
pictures taken during the experiment; (4) number of thermometers placed in the app to measure designated areas; (5) whether each
pair turned on the T(t) graph during the experiment to analyze the temperature trend over time. Welch’s two-sample t-tests were
conducted to analyze whether students from two iterations differ from each other on duration, repetition frequency, number of pic-
tures, and thermometer counts. A chi-square test of independence was used to determine whether students of both iterations were
different in the toggling state of the temperature-time graph.

Lab report for RQ2. The way in which students carried out observations and interpreted data were measured using students’ de-
scriptions of five thermal images captured. The images include (1) the initial state of two rulers; (2) the two rulers with the thumbs
pressed to them for 1 min; (3) the two rulers immediately after the thumbs are removed; (4) the thumbs immediately after they are
removed from the rulers; and (5) the T(t) graph for the whole process. Students’ descriptions of phenomena revealed how they utilized
multiple pieces of evidence to support their observations. Infrared Explorer provided three types of evidence: the color heat map
visualization (V) in which brighter color indicates the warmer area (Fig. 3a), temperature reading (R) from a virtual thermometer
(Fig. 3b), and the T(t) graph (G) for trends over time (Fig. 3c). Besides the evidence from the app, students might also use their
perception (P) and abstract concept (A) to interpret data. Two independent researchers rated the student writings from the first
iteration of the design. They identified the evidence used in each image’s interpretation and allowed the existence of multiple evidence
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Table 3
Lab-report questions to measure students’ conceptual understanding.

Computers & Education 196 (2023) 104726

Iteration Prediction

Explanation

First Iteration Q1: Guess when you touch the two rulers, which one will feel cooler?
Explain why.

Q2: What will happen to the temperature patterns of the two rulers
after you touch them for 1 min? Explain why.

Q3: What temperature pattern will happen to your two fingers right

after you move them away from the rulers? Explain why.

Second Iteration Q1: After you press on the rulers for 1 min, what will happen to the
area 2" away from your thumbs on the two rulers? The area 2" away

from your thumb ___. a) on the metal ruler will be warmer

Q1: When you touched the two rulers, which one felt cooler? Explain
why.

Q2: As the image you took for Table 4(b) in the lab report shows, two
rulers’ temperatures were different at the places 2 inches away from
the thumbs. Explain why.

Q3: As the image of Table 4(c) in the lab report shows, the places two
thumbs touched had different temperatures. Explain why.

Q4: As the image of Table 4(d) in the lab report shows, one thumb was
cooler than the other after touching two rulers. Explain why.

Q1: Does thermal energy diffuse at different rates in different
materials?

Q2: Why does the thumb on the metal ruler feel colder?

b) on the wood ruler will be warmer

¢) on both rulers will be equally as warm

Explain why.

Q2: After you press on the rulers for 1 min, what will happen to the
areas where your thumbs were pressing on the rulers? The area under
your thumb __. a) on the metal ruler will be warmer than that on the
wood ruler

b) on the wood ruler will be warmer than that on the metal ruler

) on both rulers will be at the same temperature

Explain why.

Q3: After pressing on the rulers for 1 min, which of the following
relationships might best describe the temperatures (T) of the thumbs?

) Tthumb-on-metal > Tthumb-on-wood

b) Thumb tal < Tthumb. d
©) Tihumb. tal ~ Tthumb d
Explain why.

sources for a single picture. The inter-rater reliability was 0.82. Automatic multi-label text classification using machine learning
techniques was adopted in the second iteration to analyze students’ lab reports (P, V, A, G, R) (see more details in Sung et al., 2021). In
the construction of machine learning models, the researchers compared the state-of-the-art deep learning model, bidirectional encoder
representations from transformers (BERT, Devlin, Chang, Lee, & Toutanova, 2018), with support vector machine (SVM), a classical
machine model that has been reported with robust results in natural language processing applications (Dessi, Fenu, Marras, &
Recupero, 2019; Kadhim, 2019). Different linguistic feature engineering techniques in natural language processing (NLP), such as
part-of-speech tags (e.g., extracting grammatical components in sentences) and named entity recognition (e.g., extracting entities such
as person, unit, time expression, location, etc.) were examined to achieve an optimized result. The model evaluation suggested that
linguistic features slightly increased the predictive performance of SVM while degrading that of BERT. BERT trained with raw text data
could achieve the best predictive accuracy, with an average area-under-the-curve (AUC) score of 0.94, showing an outstanding per-
formance to accurately identify multiple possible sources of evidence in students’ responses. Descriptive statistics and case analysis
were used to determine how the tool improved students’ observation of the physical experiment and was compared between the two
design iterations.

Conceptual understanding for RQ3. Conceptual understanding was measured by students’ scientific explanations during the POE
cycle. Specific questions used are listed in Table 3. Based on the experience of the first iteration, we updated the POE prompts by
explicitly listing possible outcomes for selection in prediction and asking integrated questions in the explanation. Student answers
were scored by two independent raters on a scale of 0 (no answer) to 3 (fully correct). Inter-rater reliabilities were 0.80 and 0.84 for the

Table 4
Statistical test results of the first iteration and second iteration-lab major activities.
t-test First Iteration Second Iteration t df Sig.
Duration (second) 269.27 256.89 - 40.212 0.711
0.373
Repetition Times 1.68 2.36 2.543 37.638 0.015
Picture Taken 6.10 5.75 —0.581 52.917 0.564
Thermometer No. 9.73 8.68 —0.745 40.961 0.460
Chi-square test x? df Sig.
Use T(t) Graph Used Not Used 3.818 1 0.051
First Iteration 24 4
Second Iteration 25 16

* Note: The analysis contained different numbers of students from two iterations. This is because (1) The two iterations included a different total
number of students; (2) A different number of students that did not provide consent were excluded from the analysis; (3) We lost some student log data
due to the technical issues of the software.
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first iteration and second iteration, respectively. Scoring rubrics are provided in Appendix A. Paired-sample t-tests were used to
analyze the data to understand whether students’ conceptual understanding of the thermal concept improved after the experiment.

5. Results
5.1. Infrared Explorer usage for RQ1

Students’ usage of the tool is mainly reflected by several major indicators in the log data relevant to the experiment process. These
variables are: the duration of each experiment, repetition times showing each group’s number of attempts to perform the experiment
and to collect all the graphs as required in the lab report, number of pictures taken during the experiment, and number of thermometers
placed in the app to measure designated areas (see Table 4). The results showed that students spent about 5 min conducting the
experiment, took 5-6 infrared images, and placed 8-10 thermometers using the virtual tool. Students also used the T(t) graph to
support their understanding. Welch’s two-sample t-tests were conducted to analyze whether student activities from the two iterations
differ from each other. Only repetition times were found statistically significant between the two implementations (¢t (37.638) = 2.543,
p = 0.015), which showed that students of the later implementation tried significantly more times to complete the experiment. An
additional chi-square test of independence on whether students of both implementations turned on the temperature-time graph during
their experiment showed that there was a clear tendency for statistically significant association between the two implementations, X2
(1) = 3.818, p = 0.051.

Our explanation for the observed difference in retry times on the part of the students from the two iterations is that students were
more willing to reiterate the experiment steps to collect all the evidence required in the lab report, which corresponded to certain
features added in the latter implementation to facilitate data collection by allowing students to be able to review their recorded
observations and then adjust measurements rather than to redo the entire process. Such features eased up students’ cognitive load
(Mayer & Moreno, 2003) and might also explain why visibly more students turned on the T(t) graph to observe the temperature trend
over time during the first iteration.

5.2. Augmented observation for RQ2

Students were able to select evidence from multiple data sources to interpret the observed phenomena. The data sources include the
three representations provided by the app (heat map visualization, V; temperature reading, R; and T(t) graph, G) and their tactile
perceptions (P) and abstract concepts (A). A comparison was conducted on the evidence selection between the two iterations (Table 5).
The first part of Table 5 shows that, for student interpretations using one evidence source, students in the first iteration reported
notably more use of T(t) graph and slightly more temperature reading, while the students of the second iteration discussed apparently
more heat map visualization and slightly more temperature reading. Students from the second iteration were more likely to interpret
data using more than one resource from the app. When combining evidence from the app with perception, the two iterations showed
similar percentages.

Several examples were provided to show how exactly one or more pieces of evidence were used in data interpretation. When
interpreting the image taken for the state “the two rulers with the thumbs pressing on them for 1 min,” a student from the second iteration
used a single source, color map visualization, as the evidence. The student wrote (for Fig. 4a) that, “the metal rulers heat dispersed to
cover the whole ruler, but the wooden rulers heat stayed concentrated in the place where the thumb was.” Mentioning heat covering the whole
metal ruler but only concentrated on a spot of the wood ruler is a direct indicator of using visualization as evidence. The other evi-
dence, such as the temperature reading, was not mentioned in the description. In contrast, a student from the first iteration interprets
the same state (image as Fig. 4b) purely with temperature reading: “Towards the top of the computer the temperature was around 28 C,
towards the middle closer to where the thumbs were placed the temperature was starting to go up but only by a decimal difference. Down at the
bottom where the thumbs were placed the temperature had gone up to around 29.” The student did not mention any color differences
between the two rulers, even though they are obvious in the image.

A typical image interpretation using the T(t) graph as the single point of evidence is like this - “When the thumbs first began touching
the rulers the temperature began rising rapidly but the temperature increased more in the metal ruler than in the wooden ruler.” The corre-
sponding image is Fig. 4c. In the description, the student explicitly pointed out that the speed of temperature change over time is larger

Table 5
The percentage of different pieces of evidence used in students’ observation description.
Single source Multiple sources
\% R G P A O V/R/G P+ V/R/G
First Iteration 26.6% 16.6% 23.6% 7.4% 0.9% 0.4% 10.5% 14.0%
Second Iteration 48.8% 11.3% 3.8% 6.3% - - 16.3% 13.8%

Note 1. V = color map visualization; R = temperature reading; G = T(t) graph; P = perception; A = abstract concept; O = other uncategorized
evidence; V/R/G = any combination of V, R, and G; P + V/R/G = the combination of perception and any V, R, G.

Note 2: The percentages in this table do not represent the proportion of students who use a specific type of data source. It calculates the percentage of
image descriptions that use a particular type of single or combined source. A single unit in this analysis is the description of a single thermal image
saved in lab reports. Students should ideally describe 5 thermal images.
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With the thumbs pressing Right after the thumbs move away
f

Fig. 4. (a) and (b) are two example images taken by students for the state “the two rulers with the thumbs pressing on them for 1 min” (c) and (d)
are images for the state “two rulers immediately after the thumbs move away.”

on the metal ruler (i.e., “increase more”), which is clearly shown by the slope of the curves. Students also used more than one piece of
evidence to interpret the data. A student from the second iteration took an image for the two rulers immediately after the thumbs
moved away (Fig. 4d), and interpreted it as: “The temperature changed on the rulers. It only changed in the spot the thumb was on the wood
one, but it was more gradual on the metal one.” Mentioning there was a temperature change implies that he or she had interpreted the
temperature numbers. And pointing out the area of heat spread (e.g., “only ... in the spot”) shows that the student also used infor-
mation from visualization. In sum, students used various features in the virtual tool during their observation of the physical experiment
and interpretation.

Color map visualization (V) is the most popular type of data used by students to interpret the results (first iteration, 26.6%; second
iteration, 48.8%). This could be because of its intuitiveness and sensitivity to changes. First, the visualization is dynamic, displaying
emerging temperature changes with high color contrast. More importantly, students’ actions on rulers are directly responsible for the
changes. Students were most interested in this intuitive visualization of the causal relationship. When comparing two iterations,
students from the second iteration used more visual evidence. This could be because they were allowed to watch the video several
times after the operation, giving them more opportunities to observe the dynamic visualization. In contrast, in the first iteration,
students only had one opportunity to observe this dynamic when performing experimental steps on rulers. Some students’ attention to
the visualization is limited by competing tasks (operating on rulers vs. observing the outcome).

Given plenty of data sources, students seldom use abstract concepts (A) and other uncategorized evidence (O) as their evidence.
One example answer that is coded as an abstract concept is “It is showing that the metal ruler had a greater conductivity rate than the wood
one.” This answer directly quotes the concept of conduction, not mentioning any clues from their observation. One example answer
that is coded as uncategorized evidence is “the thermometers.” This answer lacks enough detail to be categorized into a V, R, G, P, or A

type.
5.3. Conceptual understanding for RQ3

Paired-sample t-tests were conducted to analyze whether students’ conceptual understanding was improved after the experiment.
Only the students who completed both the prediction and explanation questions were included in this analysis. In the first iteration,
there was an improvement in their conceptual learning, but the differences were only significant at the 0.1 level (prediction M = 2.27,
SD = 0.55; explanation M = 2.44, SD = 0.57; t (43) = 1.74, p = 0.089). In the second iteration, the improvements were larger and

Table 6
T-test results comparing before- and after-lab conceptual understanding.
Iteration Phase n Mean SD t-test df p
First Iteration Prediction 44 2.27 .55 1.74 43 .089
Explanation 44 2.44 .57
Second Iteration Prediction 19 1.60 .41 4.64 18 <.001
Explanation 19 2.37 .50

* Note: The total number of students analyzed for this research question is not identical to the number of students being analyzed for RQ1 (see
Table 4). This analysis contains all the students who answered the prediction and explanation questions. However, some of these students’ log data
were lost (especially from the first iteration) due to technical issues.
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statistically significant in the 0.05 level (prediction M = 1.60, SD = 0.41; explanation M = 2.37, SD = 0.50; t (18) = 4.64, p < 0.001).
Please see Table 6 for details.

Some students in the first iteration did not obtain accurate information from the experiment, probably due to a hurried observation
that occurred simultaneously with lab operations. Therefore, their post-observation explanation of the thermal concept was prob-
lematic. For instance, a student predicted that the metal ruler would feel colder than the wood one, and briefly explained that it was
“because it’s a better conductor.” A visualization of how heat flows in the rulers in the observation phase should help this student expand
this abstract explanation. However, this student’s observation seems to have an issue because the re-explanation of the same answer
after the observation became that “because it is conducting the cooler temperature,” which was the opposite of what was visually pre-
sented to the student - metal conducts heat.

The students in the second iteration improved their explanation after the lab observation by reasoning using evidence provided by
the app. For example, in the prediction phase, a student made a correct prediction that, after the thumbs touched two rulers for 1 min,
the metal one would be warmer than the wood one at the place 2 inches away from the thumb (prediction Q1). But he or she failed to
give an explanation. After visually observing how quickly heat transferred on metal with unaided eyes, he/she accurately explained
that “Yes, we know this because heat in metal disperses faster than heat in wood” (explanation Q1). On the same prediction question,
another student even made an incorrect prediction, claiming that the area on the wood ruler would be warmer. This student’s
explanation for the prediction was confusing - “The wood ruler is colder than the metal ruler meaning the wood ruler will continue to be hotter
than the metal ruler.” But his/her understanding of the concept improved after the experiment, by accurately explaining (for expla-
nation Q1) that “Yes it does, it depends on if it’s a conductor or not. If it is, then it would diffuse faster than an insulator because it’s easy to let
heat in.”

Students in the second interaction showed a lower prediction score (1.60) than the one of the first iteration (2.27). A possible reason
is that we revised the questions in the second iteration to prevent vagueness in student answers. Students had to select one answer from
three options and then explain the reason. This reduced the chance that students gave a vaguely right answer and got a higher score
than they should be.

6. Discussion

To answer the research questions regarding the usage of the Infrared Explorer, we found that students actively used the virtual tool
from the log data analysis. The activities included the collection of infrared images, placement of thermometers, and repetition of
experiments. Overall, students spent a significant amount of time doing these activities. By comparing the first and second iterations of
the design, we found that students’ repetition times were significantly increased, and students tended to use more additional features
(e.g., turn on the T(t) graph) and conduct experimental actions more effectively (e.g., fewer pictures taken, fewer thermometers
placed). One hypothesis is that because the students can analyze the recorded video after finishing the observation and experiment, the
experimental process is much simplified, and they are more likely to repeat the experiment more times to collect all the evidence for
the lab report. Also, because students are much more focused during the experimental phase and become more engaged in the tactile
experience (De Jong et al., 2013), they can use more features of the virtual tools and conduct the experiment more effectively.

For the augmented interaction, we found that almost all students used certain evidence from the virtual tool (e.g., heat map
visualization, temperature reading, T(g) graph) for the physical experiment. This is important because focusing on salient information
and removing confusing details (Kaminski & Sloutsky, 2009; Pei, Xing, Zhu, Antonyan, & Xie, 2022; Xing et al., 2021) is essential for
students to develop evidence-based scientific practices. By comparing the two iterations of design, students used more evidence in their
lab report and less perception and abstract ideas as evidence to support their observation and reasoning. They are also likely to use
more heat map visualization and much less T(g) graph as evidenced in the second iteration of the design. The difference between the
two iterations is probably because it is easier for students to understand images (iconic stage) than much more abstract graphs and
figures (abstract stage) as in concreteness fading (Fyfe & Nathan, 2019).

When it comes to scientific understanding of thermodynamics, this learning technology improves students’ learning of a set of
thermal concepts including heat and temperature. By analyzing the comparison between prediction and explanation, we found that
students’ conceptual learning improved in both iterations of design. Particularly, in the second iteration, the difference in prediction
and explanation is statistically significant. From the qualitative case analysis, we found that students relied on the infrared image and
data analytics techniques to quantify the heat amount that is carried in a specific direction. Such an explanation is based on the tactile
experience of feeling the metal ruler and wood rule combined with the iconic imaging and image analysis. Eventually, this explanation
is transformed into conceptual understanding facilitated by the abstract representation of the heat and temperature graph using
Infrared Explorer. The particularly significant increase of the conceptual understanding for the second iteration, post hoc analysis of
videos rather than live analysis, may be a result from students’ having more time to reflect (Denton, 2011) for the thermal concepts in
the concernedness fading process.

Through design-based research, this study contributes to domain understanding of concreteness fading in supporting thermody-
namics learning by demonstrating a number of factors as design considerations. The first factor to consider is cognitive load (Mayer &
Moreno, 2003). In designing learning technologies based on concreteness fading, students have the opportunity to work with both
physical and virtual objects. These objects will be further used to enhance conceptual understanding. The exposure of these various
objects and concepts may easily lead to students’ cognitive overload and reduce students’ thinking and reflection time. The second
factor to consider is the transition time between each concreteness fading stage. Little research illustrates how much time ought to be
spent in each stage, physical, iconic, and abstract in the concreteness fading process. In the first iteration of the experiment, students
can be easily moved from physical experimental to iconic and abstract representation of the experiment. In the second iteration,
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students are more focused on the physical experiment first and then engage in the iconic and abstract representations. The findings in
this study provide greater support to engage in the physical interaction for a certain period of time before transition to iconic and
abstract manipulations.

There are some possible limitations in this study. First, it is not fully fair to compare the first iteration and second iteration as
students, teachers, and class subjects are different in the two rounds of experiments. The demonstrated difference may result from
other factors, e.g., nature of the class, implementation quality, differences across teachers etc. Therefore, the findings should be
generalized with caution across contexts. Second, for the observation coding, while the first iteration is fully coded by researchers, the
coding for second iteration is conducted by machine learning algorithms. Though the performance for the machine learning model is
very robust, it may still produce errors and contaminate the comparisons for the two rounds of studies. Meanwhile, although automatic
text coding can provide valuable insights into students’ textual artifacts at scale, it might not fully reveal students’ actual learning.
Third, the derived design factors for concreteness fading are inducted from the single thermodynamic experiment. These principles and
factors may have limitations when apply to other situations as well.

7. Conclusion

Thermodynamics concepts are challenging for K-12 students to learn. Relying on the theory of concreteness fading, this paper
presented a technological tool, Infrared Explorer, to augment student’s interaction with physical materials with virtual manipulatives
to promote the learning of thermodynamics. Using infrared imaging and data analytics, this design-based research study showed that
the proposed technology to engage students’ and support their learning of thermal concepts. This research demonstrates the promise of
the concreteness fading framework to inform learning technology design and further identify important factors (e.g., cognitive load
and multitasking) to consider when integrating physical and virtual learning environments. For future research directions, it is
important to conduct control experiments to rigorously examine the effect of this technology and identify how to manage the time and
transition between different concreteness fading stages across contexts and topics.
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Appendix A. The rubric for scientific understanding

Score  Criteria Examples

0 No answer No response.

1 Prediction Q1-3; Explanation Q1: Both rulers after touching them for 1 min they feel the same temperature (First
Selection/claim is wrong or off-topic. iteration prediction Q2).

(@) Tthumb-on-metal > Tthumb-on-wood- Metal is a conductor of heat (second iteration
prediction Q3).
Explanation Q2-4 (claim is given): Explanation is the rephrasing ~ The temperature was different between the 2 inches of the thumbs because the heat
of question stem, off-topic, or containing big error(s). from the thumb cannot radiate the ruler all the way through using only a thumb (First
iteration explanation Q2).
Because the metal ruler is colder than the wooden one (second iteration explanation

Q2).
2 Prediction Q1-3; Explanation Q1: Selection/claim is correct but ~ The metal ruler will be cooler because heat leaves the ruler faster into your hand (First
the explanation is wrong, off-topic, or missing iteration prediction Q1).

(b) on the wood ruler will be warmer than that on the metal ruler. The metal ruler is
harder to warm up (second iteration prediction Q2).

Explanation Q2-4 (claim is given): Explanation is partial correct ~ One thumb was cooler than the other after touching two rulers, because it gave away

or having minor error(s). more heat to the metal ruler. The metal ruler started out with a cooler temperature but
is a conductor, which is why it took more heat from the fingers. While the wooden
ruler was the opposite which is why the temperature of the finger that touched the
wood was warmer, and the finger that touched the metal was cooler (First iteration
explanation Q4).

Because it is much better at conducting heat, and it has not been heated to any point
higher than room temperature (second iteration explanation Q2).
3 Prediction Q1-3; Explanation Q1: Selection/claim is correctand ~ The finger that touched the metal ruler will be cooler than the finger that touched the
explanation is correct. wood one because heat is leaving your finger to go to the ruler (First iteration
prediction Q1).
Yes, we know this because heat in metal disperses faster than heat in wood (second
iteration explanation Q1).

Explanation Q2-4 (claim is given): Explanation is correct. The spot on the metal ruler was cooler because the heat travelled up the ruler, because
metal is a good conductor. But the spot on the wooden ruler was warmer because the
heat stayed relatively in the same spot, because wood is a bad conductor (First
iteration explanation Q3).

Because the metal absorbed more heat than the wood (second iteration explanation

Q2).
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