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ABSTRACT: Molecularly imprinted polymers (MIPs), often
called “synthetic antibodies”, are highly attractive as artificial
receptors with tailored biomolecular recognition to construct
biosensors. Electropolymerization is a fast and facile method to
directly synthesize MIP sensing elements in situ on the working
electrode, enabling ultra-low-cost and easy-to-manufacture electro-
chemical biosensors. However, due to the high dimensional design
space of electropolymerized MIPs (e-MIPs), the development of e-
MIPs is challenging and lengthy based on trial and error without
proper guidelines. Leveraging machine learning techniques in
building the quantitative relationship between synthesis parameters
and corresponding sensing performance, e-MIPs’ development and
optimization can be facilitated. We herein demonstrate a case study

Synthesis Gaussian
Parameters Process
(SP) Model

MIP Sensing

>

~ Performance

y
°

o o
- X e X e
° °

e e
Electrode

Cortisol

)
@

8o

NErmaIized Sensitivit

e Polypyrrole (PPy)

20
S,QJ

""" 06
10 oz Mepr ® Redox Probe

on the synthesis of cortisol-imprinted polypyrrole for cortisol detection, where e-MIPs are fabricated with 72 sets of synthesis
parameters with replicates. Their sensing performances are measured using a 12-channel potentiostat to construct the subsequent
data-driven framework. The Gaussian process (GP) is employed as the mainstay of the integrated framework, which can account for
various uncertainties in the synthesis and measurements. The Sobol index-based global sensitivity is then performed upon the GP
surrogate model to elucidate the impact of e-MIPs’ synthesis parameters on sensing performance and interrelations among
parameters. Based on the prediction of the established GP model and local sensitivity analysis, synthesis parameters are optimized
and validated by experiment, which leads to remarkable sensing performance enhancement (1.5-fold increase in sensitivity). The
proposed framework is novel in biosensor development, which is expandable and also generally applicable to the development of

other sensing materials.

KEYWORDS: molecularly imprinted polymers, cortisol sensing, machine learning, Gaussian process, sensitivity analysis,

synthesis optimization

1. INTRODUCTION

Molecularly imprinted polymers (MIPs) with tailored
biomolecular recognition hold great promise to substitute
antibodies used in biosensors and bioassays, which have clear
advantages of low cost, easy fabrication, good stability,
excellent durability, and long lifetime."” MIPs are synthetic
receptors that mimic the “lock and key” mechanism in the
natural biological antigen—antibody system. Traditionally, they
are synthesized by polymerizing functional monomers, cross-
linkers, and initiator molecules in the presence of a chosen
“template” followed by a subsequent template removal process,
which creates cavities with selective binding affinity to the
template molecules.” MIPs synthesized by bulk polymerization
often suffer from deeply embedded cavities and poor
transduction efliciency, leading to incomplete removal of
template molecules, slow binding kinetics, and limited
sensitivity." Electropolymerization emerges as a highly
appealing method to synthesize MIPs as the recognition
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element for electrochemical sensors. It is a fast and facile
approach to directly construct MIPs in situ on the electrode’s
surface without cross-linkers and further electrode integration
or immobilization. It is a highly controllable synthesis process
with improved device-to-device reproducibility and real-time
monitoring capability of polymer growth.®

Though synthesizing electropolymerized MIPs (e-MIPs) is a
simple process, the rational design of e-MIPs for electro-
chemical sensors remains a challenge. There are two essential
parts in the design of e-MIPs-based electrochemical sensors to
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achieve desired sensing performance: (1) selection of func-
tional monomers that provide good interactions with the target
analyte, (2) optimization of synthesis parameters, which
control not only the formation, accessibility, and recognition
capability of imprinted cavities, but also the transduction
efficiency that turns the binding events to a measurable
electrochemical signal. For example, cyclic voltammetry (CV)
is a common method for electropolymerization, which offers
good control of polymer growth. The number of electro-
polymerization cycles, applied voltage range, scan rate, ratio/
concentration of monomer/template, solvents, and supporting
electrolytes all affect polymer film’s thickness and morphology,
which dictate the imprinting efficiency and sensing perform-
ance. While computational methods have been explored for
monomer selection by calculating the monomer/oligomer—
analyte binding energies,”” the optimization process heavily
relies on trial and error experiments without proper guidelines.
Current optimization processes are mainly based on univariate
methods, ie., varying a single parameter with others being
fixed. Prior knowledge is required to ensure that the initial
values of parameters selected are in the vicinity of the optimal
zone; otherwise, a blind search may take numerous iterations
and not necessarily lead to an optimal recipe. In addition, the
intrinsic correlation between synthesis parameters and sensing
performance is often poorly understood, and the couplings
among parameters are rarely captured. The conventional
design-of-experiment (DOE) method is also challenging to
implement due to the high dimensionality of the design space,
which requires an exponentially increasing number of trials
with an increasing number of factors and their levels. For
example, a full factorial design of S factors with 3 levels results
in 3° (243) runs plus replication, which is vastly time-
consuming and labor-intensive.

Along with the advancement of computational power,
machine learning techniques have become the mainstream to
facilitate various engineering applications through data-driven
surrogate modeling (or metamodeling), including but not
limited to drug discovery,® molecular chemistry,” and material
science.'’ As the generation of experimental data in material
science is often costly and time-consuming, most of the studies
develop surrogate models based on the computational data or
experimental data through text mining and data curation from
the literature,"' ~"* which allows a sufficiently large amount of
data to construct the surrogate model with high performance.
More recently, high-throughput experimental platforms have
been integrated with machine learning to develop new
materials and optimize synthesis to achieve desired proper-
ties.'41€ However, when it comes to sensing materials, the
sensing performance depends on not only the materials’
intrinsic properties that can be directly measured but also
materials’ interactions with analytes and signal transduction.
Therefore, the problem intrinsically is more complex, requiring
additional steps to quantify their performance effectively and
robustly. In this research, we employed a parallel 12-channel
potentiostat coupled with low-cost screen-printed carbon
electrodes (SPCEs) to synthesize e-MIPs and measure their
electrochemical performance, which efliciently generates
experimental data and ensures good reproducibility. SPCEs
offer great convenience, eﬂiciency, and cost-effectiveness to
synthesize a large number of electrodes in different conditions
and replication with minimum human handling to reduce labor
cost and human-introduced variations. Nevertheless, the data
set acquired from experiments still is of small size. While there

indeed exist a few previous studies that have achieved a certain
level of success in establishing surrogate models using small-
sized data sets,'” the challenge of data scarcity remains open,
depending on the target problem to be investigated.

In this research, we propose a systematic approach to
optimizing e-MIPs synthesis for electrochemical sensing
applications. This study is novel, as no one has reported
integrating the tailored machine learning approaches in the
sensing material design to guide material synthesis and
optimize sensor performance. Specifically, a unified data-driven
framework/platform was established upon the small-sized
experimental data. The mainstay of this framework is a
surrogate model, upon which tailored data analytics methods
can be further employed to quantify the relationship between
synthesis parameters of e-MIPs and resulting sensing perform-
ances, thereby providing guidelines for e-MIPs synthesis. As a
proof-of-concept, cortisol (template)—pyrrole (monomer)
system is selected in this research due to the following
reasons: (1) cortisol, popularly called “stress hormone”, is a
highly valuable biomarker to be measured for stress manage-
ment and personalized health monitoring,'® (2) pyrrole is a
widely used monomer for electropolymerization, and computa-
tional studies show that pyrrole can form more specific and
stronger interaction with cortisol than other interfering steroid
hormones (e.g, progesterone, prednisolone),'” (3) over-
oxidation of imprinted polypyrrole (PPy) can be used to
extract cortisol from the polymer matrix,””*" which is more
controllable and repeatable than other chemical removal
methods. While there are various surrogate models available
for elucidating the causative relation of input and output in the
experimental data set, in this research, we used the Gaussian
process (GP) because it is intrinsically probabilistic that it is
capable of accounting for the effects of inevitable measurement
variations and synthesis uncertainties when performing model
training and prediction.””** This tightly aligns with the
stochastic nature of real-world problems. The probabilistic
decision-making enabled by GP appears to be robust,
especially when the experimental data is small in size and
subject to various uncertainty sources. In conjunction with the
well-established GP, different sensitivity analyses were
incorporated to elucidate the importance of e-MIPs’ synthesis
parameters and explore optimal recipes for e-MIPs synthesis.

2. MATERIALS AND EXPERIMENTAL DETAILS

2.1. Chemicals and Instrumentation. Potassium chloride,
hydrocortisone, potassium (III) ferricyanide, potassium hexacyano-
ferrate (II) trihydrate, phosphate-buffered saline (PBS) tablets (1 M,
pH = 7.4) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Sulfuric acid (98%) was purchased from Fisher Scientific (Hampton,
NH, USA). Pyrrole (99%) was purchased from Acros Organics
(Fairlawn, NJ, USA). TE100 - RI Screen Printed Carbon Electrodes
(SPCE) featuring a carbon working electrode (3 mm diameter), a
carbon counter electrode, and an Ag/AgCl reference electrode were
purchased from Zensor (Taichung City, Taiwan, ROC). Electro-
chemical measurements were taken using a PalmSens EmStat3, a 12-
channel potentiostat (GA Houten, Netherlands). A Hitachi S-4700
field emission scanning electron microscope (FESEM) was used to
acquire the SEM images.

2.2. Synthesis of e-MIP-Based Cortisol Sensors. The screen-
printed carbon electrodes (SPCE), consisting of a carbon working
electrode (3 mm diameter), a carbon counter electrode, and an Ag/
AgCl reference electrode, were washed with 0.5 M H,SO, by cycling
the potential from —1.5 to 1.5 V for 10 cycles at a scan rate of 100
mV/s. The electrodes were rinsed with deionized water and left to dry
at room temperature. All MIP films were synthesized by electro-
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Figure 1. Schematics of e-MIPs’ synthesis, sensing mechanism, and the integrated data-driven framework.

polymerization using CV at —0.2 to +0.9 V potential range. The
polymerization solutions were prepared in 10 mM PBS (pH = 7.4)
with 0.1 M KCI and various concentrations of pyrrole and cortisol.
The number of polymerization CV cycles and the scan rate were
parameters to be tuned. After the electropolymerization process,
electrodes were rinsed with 10 mM PBS followed by overoxidation of
PPy to extract cortisol from the polymer matrix. Overoxidation was
carried out by CV at the potential range from —0.2 to +0.8 V in 10
mM PBS at a scan rate of S0 mV/s. The number of overoxidation CV
cycles is a tunable parameter. After overoxidation, all electrodes were
rinsed immediately with 10 mM PBS and left to dry at room
temperature. Non-imprinted polymers (NIPs) were prepared
following the same electropolymerization procedure and over-
oxidation without cortisol in the polymerization solution.

2.3. Sensor Electrochemical Characterization and Perform-
ance Evaluation. All sensors are subject to CV and a subsequent
DPV in 80 uL blank solution containing 10 mM PBS (pH 7.4) and 5
mM [Fe(CN)4]*/* as the redox probe. The electrochemical
detection was carried out by placing S uL of appropriate
concentrations of cortisol solution at the working electrode for 15
min. 80 uL PBS solution with S mM [Fe(CN)4]*”* was added to the
working electrode after incubation. The measurements were
performed using DPV at room temperature in the potential range
of —0.10 to +0.35 V under the following conditions: pulse amplitude:
50 mV; pulse width: 50 ms; pulse time: 0.05 s; and scan rate: 10 mV/
s.

3. RESULTS AND DISCUSSION

3.1. Overview of e-MIPs’ Sensing Mechanism and
Synthesis Framework for Cortisol Detection. e-MIPs-
based cortisol sensors were fabricated on screen-printed carbon
electrodes (SPCE) by electropolymerization of pyrrole in the
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presence of cortisol molecules and subsequent overoxidation of
polypyrrole (PPy) to extract cortisol from the PPy matrix, as
illustrated in Figure 1. Cyclic voltammetry (CV) was employed
for electropolymerization, where cortisol molecules get
imprinted in the PPy matrix through hydrogen bonding.
During overoxidation in PBS, hydroxyl (—OH), carbonyl (C=
0), and carboxylic groups (COOH) are formed at the f-
positions of the pyrrole ring due to high potential, which lessen
and weaken hydrogen bonding leading to cortisol elution.”!
This process creates cavities structurally complementary to
cortisol with sufficient binding affinity for the following cortisol
sensing. A redox probe, ferro/ferricyanide ([Fe(CN)q]*/*),
was used to signify the rebinding between cortisol molecules in
the testing samples and the imprinted PPy. With cortisol
molecules rebinding to imprinted PPy, the cavities were filled,
which blocks the access of the redox probe to the electrode
surface, thus reducing electron transfer resulting in a decreased
electrochemical signal. Differential pulse voltammetry (DPV)
was employed to quantify cortisol concentration in spiked
samples, as it is an effective method to suppress electro-
chemical interferences and increase sensor sensitivity by
eliminating the charging current.”* The calibration curve can
be established between cortisol concentrations and their
corresponding peak current change of DPV curves (AI),
which is the metric to evaluate e-MIPs’ sensing performance.
The higher the slope of the calibration curve is, the more
sensitive the sensor is to cortisol.

The sensing performance of e-MIPs-based cortisol sensors is
governed by the synthesis parameters (SPs). Based on the
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literature and prior experiments, the polymerization solution
was prepared with 10 mM PBS using 0.1 M KCI as a
supporting electrolyte. The CV potential range for electro-
polymerization was set from —0.2 to 0.9 V, and overoxidation
was performed in 10 mM PBS by cycling potential from —0.2
to 0.8 V at a fixed scan rate of 50 mV/s. Pyrrole concentration
(SP1) and cortisol concentration (SP2) in the polymerization
solution, the number of electropolymerization CV cycles (# of
EP cycles, SP3), the number of overoxidation CV cycles (# of
OX cycles, SP4), and the electropolymerization CV scan rate
(EP scan rate, SPS) are five synthesis parameters that we
investigated in our study. The samples of those synthesis
parameters were purposely designed, and the corresponding
sensing performances were then experimentally measured.
Building upon the paired relations between synthesis
parameters and measured sensor sensitivity, an integrated
data-driven framework was established to comprehensively
investigate the impact of e-MIPs’ synthesis parameters on
sensing performance. As shown in Figure 1, the GP surrogate
model was built as the backbone of the framework. Once the
GP surrogate model was well established via experimental data,
its efficient and reliable predictions were fully leveraged to
facilitate the subsequent global and local sensitivity analyses,
aiming at quantifying the parameter importance and providing
synthesis guidelines, respectively. The detailed results enabled
by this synthesis framework are subsequently introduced.

3.2. Synthesis Parameter Sampling. The purpose of the
experimental data acquisition is to guide the surrogate model
establishment. The accuracy of the surrogate model usually
hinges upon the size and quality of the available data set. While
a data set with a large size certainly can ensure the high fidelity
of the surrogate model, it substantially increases the data
acquisition cost. In this research, there are five synthesis
parameters involved, and their ranges are listed in Table 1

Table 1. Ranges of Synthesis Parameters (SP) Investigated

(values of SP3, SP4, and SPS$ are integers). Due to the high
dimensionality of the design space, adopting the conventional
design of experiment (DOE) that discretizes uniform grids
given the bounds of parameters and retrieves samples from all
possible parameter combinations will lead to a considerable
size of samples. Therefore, without prior knowledge, we
employed one space-filling sampling method, i.e., Latin
hypercube sampling, to generate the first group of synthesis
parameter samples from a multivariate uniform distribution
given the prespecified ranges (Table 1).*° For illustration, 32
generated samples in the first group are distributed in the low-
dimensional space with the marker “Blue dots” shown in
Figure 2. Consistent with the underlying idea of the Latin
hypercube sampling method, the distribution yield is relatively
uniform. It was found through the experimental testing that
more than two-thirds of fabricated sensors did not show any
CV or DPV peaks in the presence of [Fe(CN)s]*/* due to
either a large number of electropolymerization cycles (# of EP
cycles >20) or a large number of overoxidation cycles (# of OX
cycles >20), yielding a sensor sensitivity of zero. As mentioned,
sensor sensitivities are represented by the slope of the
calibration curve, which is a continuous variable. Therefore,
the surrogate model to be established essentially serves the
regression analysis. In order to improve the accuracy of the
surrogate model, more sensitive sensors are required to fill in
the workable space. While the surrogate model built upon the
first group of samples may not be adequately reliable for
quantifying the relationship between synthesis parameters and
sensor sensitivities over the entire space, it can be used to
qualitatively guide additional synthesis parameter sampling
toward working sensors, resulting in a second group of 40
samples of synthesis parameters marked with “Orange dots” in
Figure 2. The entire data set combines samples produced in
both groups, consisting of 72 samples of synthesis parameters
and corresponding measured sensor sensitivities. As will be
shown later, we will use this experimentally collected data set

Pyrrole Cortisol # of EP #of OX  EP Scan to construct the surrogate model instead of directly
Conc. Conc. Cycles Cycles Rate . . s . .
(SP1) (sp2) (sP3) (sp4) (SPS) implementing the sensitivity analysis, because the data set is
Range 003—1M 1-20 mM 440 S—40 10100 srpall—smed an.d prone to .ylelld different results when adopting
mV/s different metrics in a sub]ectlve manner.
3.3. Characterization of e-MIPs-Based Cortisol Sen-
sors, Sensing Performance, and Sensor Reproducibility.
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Figure 2. Three-dimensional illustration of the generated synthesis parameter samples from multivariate uniform distribution-based Latin
hypercube sampling (first Group, Blue dots) and additional sampling (second Group, Orange dots) (A) SP1 versus SP3 versus SPS; (B) SP1 versus

SP2 versus SP4.
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Table 2. Input (Synthesis Parameters) and Output (Sensor Sensitivity) of Representative Samples

Input Output

Sample Avg. Sensitivity (uA/

Index” Py Conc. (M) Cortisol Conc. (mM) # of EP Cycles # of OX Cycles EP SR” (mV/s) log;,C)“ SD?  Category
15 0.2 N 10 15 60 3.228 0.442 3
17 0.28 15 40 20 82 0 0 1
19 0.25 13 10 45 5.177 0.480 3
24 0.3 15 10 50 6.072 0.528 3
25 0.3 S 20 15 70 5.821 0.552 3
30 0.35 6 8 16 18 0 0 1
46 0.5 10 18 15 100 295§ 0.478 3
56 0.65 20 18 38 31 0 0 1
70 0.9 10 7 15 90 1.205 0.265 2

“Sample index is sorted by pyrrole concentration in ascending order. PSR — Scan rate. “log;oC — log;o(cortisol concentration). 4SD — Standard
deviation.
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Figure 3. (A) Overoxidation cyclic voltammogram of sample #56. (B) Electropolymerization cyclic voltammogram of sample #17. (C) Cyclic
voltammogram of sample #56 (green), #17 (red), and #30 (purple) in 10 mM PBS with 5 mM [Fe(CN)¢]** at 50 mV/s. (D)
Electropolymerization cyclic voltammogram of sample #24 and its corresponding NIP (no cortisol in polymerization). (E) Overoxidation cyclic
voltammogram of sample #24 and its NIP. (F) Cyclic voltammogram of bare SPCE, sample #24, and its NIP in 10 mM PBS with S mM
[Fe(CN)s]*/* at 50 mV/s. (G) DPV response of sample #24 to increasing cortisol concentration from 100 pM to 1 #M in 10 mM PBS with 5 mM
[Fe(CN),]>/*. (H) Calibration curve between DPV peak current response and logarithm of cortisol concentration with the linear regression
equation. (I) Illustration of sensor reproducibility where multiple replicates were made. (Cl: confidence level).

For each set of synthesis parameters (one sample), cyclic
voltammograms during the electropolymerization and over-
oxidation process were recorded, which reflect the status of
polymer growth and changes. After as-fabricated sensors were
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dried overnight, CVs were carried out to characterize the redox
behavior of [Fe(CN)4]*’* on e-MIPs-modified SPCEs, and
DPV was conducted to quantify sensor sensitivity to cortisol in
a series of spiked samples. There are three typical categories of
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e-MIPs’ electrochemical behaviors: (1) negligible or no DPV
peaks, (2) clear DPV peaks, but peak value does not change or
slightly reduces after introducing cortisol (sensor sensitivity
less than 2 pA per order of magnitude increase in cortisol
concentration), (3) DPV peak noticeably decreases with
increasing concentration of cortisol. The synthesis parameters
of representative samples and their corresponding sensitivities
are shown in Table 2.

For sensors in Category 1, a couple of scenarios can lead to
negligible or no DPV peaks in the presence of a redox probe
([Fe(CN)4]>/*). First of all, the extreme extent of over-
oxidation inserts carboxyl groups (COOH) and damages
pyrrole rings, which dramatically reduces the conductivity of
PPy and impedes electron transfer.”! For illustration, the
overoxidation voltammograms of an e-MIP-modified SPCE
(sample index #56 with 38 overoxidation cycles) are shown in
Figure 3A. One can notice that the cyclic voltammogram in
each scan holds its shape relatively well until the 20th scan, and
further overoxidation drastically changes the shape and reduces
the polymer film’s conductivity. The subsequent CV in the
presence of [Fe(CN)y]*>/* shows a very narrow voltammo-
gram without redox peaks (Figure 3C (green)). While the
sensors fabricated with different synthesis parameters have
different voltammogram shapes after electropolymerization,
the same trend was observed across the board after excessive
overoxidation. Similar phenomena were also observed during
the electropolymerization process with too many CV scans.
For example, as shown in Figure 3B (sample index #17 with 40
electropolymerization cycles at a scan rate of 82 mV/s), the
capacitive current during electropolymerization increases in
each scan initially until the 20th scan, indicating controlled
polymer growth. After the 25th scan, further CV scans result in
decreased capacitive current, which can be ascribed to the
termination of polymer growth and the start of overoxidation.
Besides, PPy’s growth also depends on the scan rate during
electropolymerization. Slow scan rate usually yields a tighter
and less porous film,”**” which completely blocks the access of
the redox probe to the electrode surface, leading to no redox
peaks in CV and DPV in the presence of [Fe(CN),]>/*. For a
typical e-MIP fabricated with a slow scan rate (sample index
#30 with 8 electropolymerization cycles at a scan rate of 18
mV/s), it preserves PPy’s high capacitive current but does not
show redox peaks of [Fe(CN),]*/#, as indicated in Figure 3C
(purple). The complete synthesis voltammograms of samples
#56, #17, and #30 are presented in Figure S1.

On the other hand, with few electropolymerization cycles, e-
MIP film becomes too thin or loose so that redox probe has
free access to electrode surface regardless of cortisol’s presence,
which results in prominent CV redox peaks and DPV peaks but
a limited response to cortisol molecules (Category 2), as
shown in Figure S2. Sensors in Category 1 usually have zero
sensitivity, and sensors in Category 2 have a limited sensitivity
of less than 2 pA/log;,C. Only sensors in Category 3 are
considered as working sensors.

For a typical working sensor, its corresponding non-
imprinted polymer (NIP)-modified SPCE can be fabricated
following the same electropolymerization and overoxidation
procedure without adding cortisol in the polymerization
solution. As an illustration, the synthesis, electrochemical
characterization, and cortisol sensing performance of one of
the best e-MIP-modified SPCEs (sample index #24) are shown
in Figure 3D—H with comparison to its corresponding NIP.
During electropolymerization, the capacitive current increases

in each scan, indicating the ongoing controlled formation of
PPy. While the NIP electropolymerization shares the same
voltammogram shape as MIP, its current is lower than that of
MIP, implying that the binding of electro-inactive cortisol
molecules increases the capacitive current of the PPy film
(Figure 3D). Ten cycles of overoxidation of MIP and NIP in
PBS maintains the voltammogram shape relatively well without
jeopardizing PPy’s conductivity, as shown in Figure 3E,
indicating that the partially overoxidized PPy was obtained
during the process. The electrochemical behavior of bare
SPCE and MIP- and NIP-modified SPCE was investigated by
CV in PBS in the presence of 5 mM [Fe(CN)¢]*/*. As shown
in Figure 3F (gray), a couple of well-defined reversible redox
peaks for the [Fe(CN)4]>/* redox probe were observed on
bare SPCE with an anodic peak current of 60 yA. The MIP-
modified SPCE shows an increase in capacitive currents with a
broad redox oxidation peak (I) and a reduction peak (II) as
shown in Figure 3F (blue), whereas negligible redox peaks
were observed on NIP-modified SPCE (Figure 3F (red)).
Their SEM images are presented in Figure S3, which shows
overall smaller NIP particles than MIP, indicating that pyrrole
forms a more compact film without a cortisol template. DPVs
were performed on MIP-modified SPCE to detect different
concentrations of cortisol (Figure 3G) with 15 min incubation
time, and a calibration curve can be established which shows a
linear relationship between AI (change of DPV peak current:
AI = Iy, — I) and the logarithm of cortisol concentration
(log;oC), as shown in Figure 3H. The slope value, defined as
sensor sensitivity, is used as the metric to evaluate sensing
performance, serving as the output of the surrogate model.

As data quality and credibility are essential to establish a
high-fidelity surrogate model, sensors were made in duplicate
to ensure reproducibility. When the sensitivity values of the
duplicates are close, the average is used as the output for this
sample. Due to inevitable manufacturing variation, exper-
imental uncertainties, and human handling variations, some
duplicates show certain differences in measured sensitivity. In
such cases, more sensors were fabricated using the same
synthesis parameters for these samples, and the mean value of
sensor sensitivities is used as the output. The statistical
properties of measured sensor sensitivities of these samples are
described using the box plot with fitted normal distributions, as
shown in Figure 3I, and their detailed information is listed in
Table 2. Overall, the result shows good reproducibility. Since
the measurement is probabilistic in nature, a surrogate model
that is capable of estimating the uncertainty effect and
accordingly performing the decision making with confidence
level is required. The synthesis parameters—sensitivity relations
can be deemed as input—output relations to establish the
surrogate model in the subsequent subsection.

3.4. Surrogate Model Establishment for Synthesis
Parameters-Sensing Performance Correlation Charac-
terization. In this subsection, the Gaussian process (GP)
surrogate model is constructed on the experimentally acquired
data set above. As mentioned, this surrogate model essentially
is a regression model because of the continuous output of
interest (sensor sensitivity). We hence can simply describe it as
a Gaussian process regression (GPR) model. The mathemat-
ical formulation of GPR is presented in the Supporting
Information, Note SI1.1. Generally, 72 samples are a small-sized
data set, and the regular training—testing data split based on
the specified ratio thus is no longer adequate for the systematic
model validation purpose. To take full advantage of limited
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data, here we adopt the leave-one-out cross validation,” in
which the number of emulations required equals the number of
samples, i.e,, 72. In each emulation, 1 out of 72 samples is
selected as the testing sample and the rest are training samples.
In this context, leave-one-out cross validation is an extreme
case of leave-p-out or k-fold cross validation.”® In order to
establish a reliable GPR model, the covariance function shown
in Equation (S1) needs to be tuned in light of the cross-
validation performance. The covariance functions available for
selection include those provided in Equation (S2) and their
automatic relevance determination (ARD) forms. In this
research, the best covariance function obtained via the cross-
validation-based grid search is the ARD squared exponential
function. The hyperparameters in the covariance function are
identified through Bayesian optimization-based model training.
Figure S4 gives the training accuracy of 4 representative
emulations. As highlighted in the Introduction, GPR is a
probabilistic machine learning method, which can yield the
probabilistic prediction result, ie., prediction means and
standard deviation. Note that the training data’s output
(sensor sensitivity) is normalized into the range [0,1] for
training stability. Therefore, the normalized sensitivity is used
for illustration throughout the manuscript unless otherwise
specified. The actual training outputs and corresponding
predicted outputs (i.e., prediction mean) have a good
agreement. The 95% confidence interval (£2 standard
deviations of mean) of predictions is also given in the result,
which essentially represents a range where the actual value will
fall in with 95% probability. The confidence interval usually
becomes larger when the prediction error, i.e., the discrepancy
between the prediction mean and actual measured sensitivity
value, is more significant. It is found that the 95% confidence
interval across the sample space generally is narrow, indicating
the high confidence of predictions. The probabilistic result
enabled by GPR essentially accounts for the uncertainties in
prediction and hence can allow one to incorporate the
judgment to further facilitate wise decision making. The
results overall illustrate adequate model training even under a
small-sized data set.

As mentioned, all samples will be consecutively tested at
different emulations in the leave-one-out cross validation. The
cross-validation result is shown in Figure 4. Compared with
Figure S4, the same probabilistic feature in the result can be
observed. While the testing errors between the predictions and
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Figure 4. Leave-one-out cross-validation testing result.

actual values become slightly more noticeable than the training
errors, and the confidence intervals expand accordingly, the
predictions overall match well with the actual values.

In order to highlight the excellent performance of GPR
under a small-sized data set, we involve other representative
surrogate models for result comparison, including support
vector regression (SVR),* decision tree (DT),” and multi-
layer perceptron (MLP) neural network (NN).*' Similar to
GPR, those models have some parameters that cannot be
directly optimized, which instead are subject to tuning. In this
research, we consider kernel, tree depth, and node number in
the hidden layer as the tunable parameters of SVR, DT, and
NN, respectively. The same cross-validation analysis and grid
search used above were carried out for all benchmark surrogate
models. For illustration, the normalized mean squared error
(NMSE) and coefficient of determination (also known as R
squared) of all testing samples are utilized to assess the cross-
validation accuracy comprehensively, and the results are
tabulated in Table 3. Clearly, given a small-sized data set,

Table 3. Comparison of Leave-One-out Cross-Validation
Accuracy of Different Surrogate Models

GPR SVR DT MLP-NN
NMSE 0.0120 0.0496 0.0364 0.0771
R squared” 0.8765 0.4877 0.6242 0.2038

“Note: R squared value is closer to 1, the more accurate the result is.

GPR significantly outperforms other surrogate models in terms
of cross-validation accuracy. The fundamental reasons for such
improvement lie in the probabilistic learning strategy and
configuration of GPR. Unlike the general regression models
that minimize the mean squared error (MSE) during training,
GP regression that fundamentally is built upon Bayesian
inference®® aims at maximizing the likelihood estimation
during training, which may perform more robustly under the
data with the correlation that is contaminated by uncertainties.
As shown in the Supporting Information, mathematically, the
covariance kernel allows one to incorporate a hyperparameter
to mimic the noise effect. Moreover, the different complicated
forms of kernel functions available make GP adequately flexible
and feasible to model various types of stochastic problems.

3.5. Investigation of Synthesis Parameter Impact to
Facilitate e-MIPs Synthesis Optimization. 3.5.1. Sobol
Index-Based Global Sensitivity Analysis for Synthesis
Parameter Importance Ranking. In order to gain a profound
understanding of the complex e-MIPs synthesis process, global
sensitivity can be carried out to quantify the importance of
synthesis parameters with respect to the sensing performance.
In this research, we particularly use the Sobel index, because it
can characterize the multivariate contribution, i.e., couplings of
synthesis parameters, which elucidates the nature of the actual
synthesis process. The mathematical formulation of this
method is in the Supporting Information, Note S1.2. The
Sobol index-based global sensitivity analysis is implemented
through the Monte Carlo simulation, where each simulation
run resorts to the well-established GPR for efficient sensitivity
prediction. The total number of Sobol indices in this research
is 31 (ie, 2° — 1), for each of which 20 000 Monte Carlo
simulation runs are carried out to generate 20000 paired
input—output relations.

Over the entire design space constructed upon the
parameter range specified in Table 1, Sobol indices with
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different orders can be calculated and shown in Figure 5. The
lower-order Sobol indices play more significant roles than
higher-order ones. The first-order Sobol index in Figure SA
indicates that the SP1 (Pyrrole concentration), SP3 (# of EP
cycles), and SP4 (# of OX cycles) have notable contributions
on the sensing performance, whereas the SP2 (Cortisol
concentration) and SPS (EP scan rate) appear to be
insignificant. As extremely large numbers of SP3 and SP4
completely disable the functionality of e-MIPs, SP3 and SP4
show significant impacts on sensing performance. It is
important to note that while the MIP and NIP comparison
study in Section 2.3 confirms the importance of cortisol’s
presence in the polymerization process, cortisol concentration
(SP2) may play an insignificant role in the sensing perform-
ance within the investigated concentration range of 1—20 mM.
Higher-order Sobol indices can be further computed to
examine the multivariate contribution. The second-order
Sobol index result shown in Figure 5B indicates that the
combination of SP1 (Pyrrole concentration) and SP3 (# of EP
cycles) is most influential to sensing performance, implying the
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strong coupling between SP1 and SP3. A higher-order Sobol
index with more different parameters involved generally shows
a less significant influence on the sensing performance (Figure
SC and D). However, the coupling among different parameters
can still be reflected. For example, while the individual SPS
(EP scan rate) is not influential, the effect of the combination
of SP1, SP3, and SPS5 represented by the respective third-order
Sobol index is evident, which can be ascribed to their strong
interrelation. The total-effect Sobol index is a more
comprehensive metric for parameter importance ranking,
which eventually can be obtained using Equation (S10). As
shown in Figure SE, the importance ranking in the total-effect
Sobol index is quite identical with that in the first-order Sobol
index, since the first-order Sobol index already accounts for the
main effect.

It is worth highlighting that one main contribution of this
research is to provide a generic framework, which allows one to
customize the analysis where possible. For example, to better
understand the impact of synthesis parameters in a more
workable design space, the global analysis can be performed
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equation.

with a narrowed design space. As excessive electropolymeriza-
tion and overoxidation cycles drastically reduce e-MIPs sensing
performance, SP3’s and SP4’s upper bounds can be intention-
ally reduced from 40 to 30. Following the same analysis
procedures, a new set of results are obtained and shown in
Figure SS. Compared to the results of the overall design space
(Figure SA), the first-order Sobol index (Figure SSA) shows
the utmost significance of SP1 on e-MIPs’ sensing performance
and reduced impact of SP3 and SP4 as expected. In addition,
the importance of the combination of SP1, SP3, and SPS on
the third-order Sobol index becomes more prominent.

3.5.2. Local Sensitivity Analysis for Synthesis Parameter
Optimization. While the overall importance of synthesis
parameters can be assessed using the above global analysis, the
local sensitivity analysis to examine the sensing performance
tendency with respect to the parameters of interest in local
parametric space provides more insights behind the synthesis
process to guide succeeding synthesis optimization. Following
the underlying idea of local sensitivity analysis given in the
Supporting Information, Note S1.3, in this research, 2 out of §
synthesis parameters were varied along the associated
dimensions of design space, and the rest were fixed to generate
a 3-dimensional surface of sensing performance with respect to
parameters of interest. As sample #24 shows the best sensing
performance among 72 samples, the local sensitivity analysis
was performed using its synthesis parameters as a starting
point. As SP1 and SP3 show the strongest intercorrelation in
the second-order Sobel index result (Figure SB), the surface is
generated with a fixed SP2 (Cortisol concentration) of 5 mM,
SP4 (# of OX cycles) of 10, and SPS (EP scan rate) of S0 mV/
s. As shown in Figure 6A, SP1 (Pyrrole concentration) of
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0.29—0.35 M and SP3 (# of EP cycles) of 15—20 are in the
optimal zone of e-MIPs synthesis, which exhibits the highest
sensitivity. From the third-order Sobel index result, the
combination of SP1, SP3, and SPS (EP scan rate) exhibits
the highest impact; therefore, the couplings between SP3 and
SPS are investigated at a fixed SP1 of 0.32 M pyrrole (highest
point in Figure 6A). As shown in Figure 6B, the workable scan
rate is from 40 to 75 mV/s, and the optimal zone is diagonal,
indicating that a higher scan rate should accompany more EP
cycles to achieve desired sensing performance. The predicted
sensing performance is quite close in the optimal zone;
therefore, 0.32 M pyrrole with 17 EP cycles at a scan rate of 52
mV/s was fixed to further examine the impact of SP2 (Cortisol
concentration) and SP4 (# of OX cycles) as shown in Figure
6C. For # of OX cycles, the sensor sensitivity increases initially
with each additional overoxidation scan and reaches the
optimal zone between 9 and 13. After that, it starts to decrease
and drops fast after the 20th cycle, which shows a great
agreement with experimental observation. Figure 6C also
provides the consistent observation shown in the previous
Sobol index result that the cortisol concentration is the least
influential parameter to sensing performance within the
concentration range (1—20 mM) of interest. Nevertheless, a
slight improvement in sensing performance is observed with
increasing cortisol concentration. The best sensing perform-
ance is obtained when cortisol concentration is around 10 mM.

3.6. Experimental Validation of the Desired Sensor
Obtained via Sensitivity Analysis. As shown in the above
cross-validation result, the GPR model established has high
fidelity. While the additional training data set will undoubtedly
improve the model’s predictive capability, the current model is
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adequate to capture the overall trend of sensing performance
with respect to the synthesis parameters, thus providing
guidelines for synthesis optimization. It was found that the
normalized sensor sensitivity of sample #24 was predicted as
high as 0.908 based on the well-established GPR model. In
theory, there is a better recipe that could achieve a higher
normalized sensor sensitivity. Based on the local sensitivity
study discussed in Section 3.5, the combination of 0.32 M
pyrrole and 10 mM cortisol with 17 electropolymerization
cycles at a scan rate of 52 mV/s and subsequent 10
overoxidation cycles was predicted to obtain a normalized
sensor sensitivity of 0.998, which shows the improvement as
compared with the best one #24 (with sensitivity 0.908) in
available 72 data samples. For validation, three e-MIPs-based
cortisol sensors were fabricated using this recipe, which yielded
an averaged sensor sensitivity of 9.47 uA/log,,C with a
standard deviation of 1.30. The averaged limit of detection
(LOD) is calculated to be 9.8 pM based on 3S,/S (S,: the
standard deviation of 3 blank samples. S: the slope of the
calibration curve). Compared with the best sensor sensitivity of
6.072 pA/log;oC and corresponding LOD of 202 pM in
sample #24, 1.5-fold sensitivity enhancement was realized with
a half lower limit of detection. Figure 6D—F shows the SEM
image, DPV detection curves, and calibration curve of the best
sensor synthesized via this recipe. The selectivity of the optimal
e-MIP-modified SPCE was evaluated with common interfering
species at physiologically relevant concentrations, including S
mM lactate, SO uM glucose, S0 uM ascorbic acid, 50 M uric
acid, 50 yM acetaminophen, and 5 mM urea. As shown in
Figure S6, the sensor shows no change in response after
incubation with these potential interferants and a well-defined
response to 1 nM cortisol, reflecting the high specificity of as-
prepared MIP for cortisol detection. The experimental
validation result clearly demonstrates the effectiveness of the
proposed framework for guiding the e-MIPs synthesis
optimization. While the discrepancy of GP prediction and
actual measured sensing performance of the optimized sensor
does exist, the overall tendency of sensing performance with
respect to synthesis parameters has been well characterized. It
is worth emphasizing that the main objective of the GP model
is to guide the e-MIPs synthesis optimization by suggesting the
optimal synthesis parameters (inputs) instead of precisely
predicting the sensitivity (output) of the e-MIPs-based sensors.
To further improve the predictive capability of GP model and
minimize such discrepancy, involving more data samples for
model training is required.

In order to illustrate the relative location of the optimized
sample in the design space, the synthesis parameters of the
optimized sample and the top 10 samples with the highest
sensitivities within the 72 samples are plotted in 3-dimensional
graphs, as shown in Figure S7. Figure S7A,B presents these
sample distributions in the test design space, where these best
sensors fall in a relatively small region, with the pyrrole
concentration from 0.2 to 0.4 M, # of EP cycles from 13 to 20,
a scan rate of 40—75 mV/s, and # of OX cycles from 8 to 17.
The only parameter with a rather spread distribution is the
cortisol concentration, which is consistent with the local
sensitivity analysis in Section 3.5. In the enlarged optimal
design space shown in Figure S7C and D, the sample locations
are randomly scattered with no clear trends with respect to
sensors’ sensitivity. The optimized sample locates in the
optimal space, but one can hardly predict its location based on
observation or human experience. This further illustrates the
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importance and potential of leveraging machine learning in
material design and optimization. Additionally, since the
framework developed in this research is generic, it allows the
synthesis optimization along with other influential factors of
interest, such as the pH values. They will be subject to future
research.

4. CONCLUSION

We developed an integrated data-driven framework built upon
experimental data to facilitate the optimization of e-MIPs
synthesis to maximize sensor sensitivity for cortisol detection.
As the mainstay of the framework, the Gaussian process (GP)
surrogate model with enabled probabilistic features was
developed to accommodate the e-MIPs synthesis that is
subject to various uncertainties. This further allows the
incorporation of sensitivity analyses to explore the inherent
relation between the sensing performance and synthesis
parameters. Specifically, based on the global sensitivity analysis,
it is found that pyrrole concentration, the number of
electropolymerization CV cycles, and the number of over-
oxidation CV cycles are the most influential parameters for e-
MIPs sensing performance. While the scan rate during
electropolymerization appears less influential, it shows strong
intercorrelation with pyrrole concentration and the number of
electropolymerization cycles. The presence of template
“cortisol” is essential in the molecular imprinting process;
however, the concentration of cortisol in the investigated range
(1 mM — 20 mM) appears to be the least influential. Through
local sensitivity analysis, one set of optimized synthesis
parameters was identified and tested by experiment. The e-
MIP-based cortisol sensor fabricated by the optimized
synthesis parameters outperforms the best sensor made in
the original parameter samples by 1.5-fold, indicating the
effectiveness of the proposed framework for guiding e-MIPs’
synthesis optimization.

The concept of molecular imprinting is universal for any
analytes in principle. The experimental data collected during
this study can be reused. The model built can be expanded to
incorporate other analytes or functional monomers by adding
molecular descriptors as inputs that account for analytes’ and
monomers’ properties and analyte—monomer interactions with
corresponding experimental data as outputs. The developed
methodology is also generally applicable to other sensing
material development.
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