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Abstract
Graph partitioning is commonly used for dividing graph data for
parallel processing. While they achieve good performance for the
traditional graph processing algorithms, the existing graph parti-
tioning methods are unsatisfactory for data-parallel GNN training
on GPUs. In this work, we rethink the graph data placement prob-
lem for large-scale GNN training on multiple GPUs. We !nd that
loading input features is a performance bottleneck for GNN training
on large graphs that cannot be stored on GPU. To reduce the data
loading overhead, we !rst propose a performance model of data
movement among CPU and GPUs in GNN training. Then, based on
the performance model, we provide an e"cient algorithm to divide
and distribute the graph data onto multiple GPUs so that the data
loading time is minimized. For cases where data placement alone
cannot achieve good performance, we propose a locality-aware
neighbor sampling technique to further reduce the data movement
overhead without losing accuracy. Our experiments with graphs of
di#erent sizes on di#erent numbers of GPUs show that our tech-
niques not only achieve smaller data loading time but also incur
much less preprocessing overhead than the existing graph parti-
tioning methods.

CCS Concepts: • Computing methodologies→ Parallel algo-
rithms; • Software and its engineering → Distributed mem-
ory.
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1 Introduction
Graph Neural Networks (GNNs) have emerged as the state-of-the-
art models for machine learning tasks on graphs [4, 6, 16, 31, 35,
36]. Due to their superior accuracy, GNNs play an important and
increasing role in many application domains, including content
recommendation [30], tra"c prediction [34], drug discovery [19],
and molecular property prediction [6].

Di#erent from the traditional graph processing algorithms, GNNs
make predictions on graphs with node features. The basic idea is to
learn a vector representation (also called embedding) of each node
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by recursively aggregating the features of neighboring nodes. The
embeddings are used for downstream tasks such as node classi!ca-
tion [4, 16] or link prediction [35, 36]. As the feature of each node
contains hundreds or thousands of attributes, the data processed
by GNNs are much larger than the graph structure itself. For in-
stance, a graph with 10M nodes and feature vector length of 1K
needs at least 40GB memory to store node features. This exceeds
the memory capacity of most GPUs, making it challenging to train
GNNs e"ciently on large graphs.

To support large graphs, a straightforward approach is to par-
tition the graph and distribute the node features onto multiple
GPUs. The current GNN systems either take an o#-the-shelf graph
partitioning method [21, 37] or propose heuristic partitioning meth-
ods [14, 20] for this task. For example, DGL [37] adopts METIS [15]
graph partitioning. It assumes that the graph can be entirely stored
onmultiple GPUs. PaGraph [20] uses a heuristic partitioningmethod
based on training nodes. For large graphs that exceed the memory
capacity of multiple GPUs, it stores the graph on CPU and bu#ers
the most frequently accessed nodes of each partition on GPU.

We !nd that the existing graph partitioning methods are unsat-
isfactory for GNN training in terms of both data loading e"ciency
and preprocessing overhead. Figure 1 shows the breakdown epoch
time of GNN training with the graph partitioning methods in Pa-
Graph [20] and DGL [37]. We assume that the GPU memory is
small and we can only store 20% of nodes that are most frequently
accessed on each GPU. The !gure shows that loading the input
features is a performance bottleneck in GNN training when the
graph data cannot be entirely put on GPU. (The data loading time
of DGL reported in PaGraph paper is even longer because they do
not use GPU bu#er for DGL.) With two GPUs, the data loading
time accounts for more than 40% of the total execution time. If we
add two more GPUs, we have 80% of nodes stored on four GPUs;
however, the data loading still takes about 40% of the total execu-
tion time. The results suggest that the existing graph partitioning
methods do not utilize the aggregate GPU memory e"ciently for
GNN training. The graph partitioning procedure is also expensive.
PaGraph partitioning has ! (" 2) time complexity where " is the
number of nodes in graph, and it takes a long time for large graphs.
DGL (METIS) partitioning is faster, but it runs out of memory for
the large graphs used in our experiments.

To overcome the limitations of the existing systems, we rethink
the graph data placement problem for data-parallel GNN training in
this work. The questionwe aim to answer is, given a large graph that
cannot be stored on a single device, how can we divide and place
the graph data across devices so that the overall data movement
overhead is minimized? We !rst present a performance model
of data movement among CPU and GPUs in GNN training and
formulate the data placement problem as an optimization problem.
Then, we propose an e"cient algorithm to !nd the optimal data
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Figure 1. Ratio of data loading time to total execution time in GNN
training with PaGraph (PG) and DGL.

placement strategy. Compared to the existing graph-partitioning-
based methods, our data placement strategy not only achieves a
lower data movement overhead but also allows global neighbor
aggregation and shu$ing, thus leading to better convergence of
the training algorithm. Moreover, our data placement algorithm is
fast, with ! (" ) time and space complexity. The algorithm is run
only once before the training process, and its overhead is negligible
compared to the total training time.

In cases where the performance with the optimal data placement
is still unsatisfactory (for example, when the GPU memory is small
and most nodes are stored on CPU), we propose a locality-aware
neighbor sampling technique to further reduce the data loading
overhead. The idea is to increase the access frequency of nodes
on GPU so that accesses to CPU are reduced. We show that our
sampling technique preserves the unbiased estimation of neighbor
aggregation result in each layer. By carefully adjusting the parame-
ters of our sampling method, we can reduce the data loading time
without impairing the convergence speed of the training algorithm.

We evaluate our technique with graphs of di#erent sizes on 2∼8
GPUs. The results show that our data placement strategy reduces
the data loading time by 1.2x to 3.3x compared with the existing
graph partitioning method. Combining our data placement strat-
egy with locality-aware neighbor sampling, we achieve up to 4.4x
speedup for data loading in large-scale GNN training.

2 Background
We now give a background on GNN and sampling-based GNN
training. Figure 2b shows the computation of a two-layer Graph
Convolutional Network (GCN) [16]. We use x(0)! to denote the
feature vector of node-# . The feature vectors of each node and its
neighboring nodes are !rst aggregated by a $%&' function, and
we use x(")! to denote the aggregation result of node-# in layer ( .
This aggregation operation is also called graph convolution and
is the key di#erence between di#erent GNN models. For example,
GraphSAGE [7] computes the$&) of the neighboring nodes, while
some othermodels use *+, [29]. The aggregation result is given to a
linear function (-#'%&. ) and an activation function (/%-0 ) to obtain
the intermediate embedding y(1)! . The intermediate embeddings are
further aggregated for a few layers to obtain the output embeddings.

To train a GNN, we sample a batch of training nodes and compute
their output embeddings in each iteration. The output embeddings
are used to make predictions, and the predicted values are com-
pared with the ground-truth labels to obtain a loss. The loss is then
back-propagated through the network to adjust the model parame-
ters. From Figure 2b, we can see that the number of nodes involved
in the computation in each training iteration is exponential w.r.t.

the number of layers. In this example, we need to load and aggre-
gate the features of all nodes in the graph to compute the output
embedding of a single node x3. This incurs a large data movement
and computation overhead when the graph is large.

To reduce the computation, various neighbor sampling methods
have been proposed for GNN training [2, 3, 7, 18, 30, 32, 41]. The
idea is to sample a subset of neighbors and estimate the aggregation
results based on the sampled nodes. As shown in Figure 2c, instead
of computing the accurate value of x(1)1 with all of x(0)0 , x(0)1 , x(0)2
and x(0)3 , we can estimate the mean of the four feature vectors by
randomly sample three of them. Suppose the sampling probabilities
of the four vectors are 10, 11, 12, 13 and node-0, 2, 3 are sampled. The
estimate can be computed as x(0)0 /(410) + x(0)2 /(412) + x(0)3 /(413).
More generally, to estimate the aggregation result of node #’s neigh-
bors i.e., ∑# ∈$%!&ℎ()* (!) 2! #x# where x# is the feature of node 3 in
a certain layer, and 2! # is the weight of edge-(#, 3 ), we can de!ne
a sequence of random variables 4 # ∼ Bernoulli(5 # ) where 5 # is the
probability that node 3 in the neighbor list is sampled. We can have
an unbiased estimate of the aggregation result as∑

# ∈$%!&ℎ()* (!)

1
5 #

4 #2! #x# . (1)

Di#erent sampling methods have di#erent ways of determining 5 # ,
but they all use this formula to estimate the results.

Neighbor sampling allows us to train GNNs on very large graphs
with millions to hundreds of millions of nodes. Due to the GPU
memory limitation, the graph has to be stored on CPU and copied
to GPU during the training process. There are mainly two types of
data need to be moved. One is the graph structure (i.e., the sampled
adjacency matrix); the other one is the input feature vectors. The
existing sampling-based GNN training systems [30, 32, 41] generate
the sampled adjacency matrices with multiple processes on CPU
and copy them to GPU asynchronously in each iteration. Since the
sampled adjacency matrices are small and sparse, the overhead of
copying the sampled adjacency matrices can be hidden by overlap-
ping the data transfer with the training procedure on GPU. The
main data movement overhead is for copying the input features.
As shown in Figure 1, loading the input features is a performance
bottleneck of sampling-based GNN training. The focus of this work
is to reduce this data loading overhead.

3 Minimizing Data Movement For Input
Features

We consider the data movement problem in data-parallel GNN
training with sampled neighbor aggregation on multiple GPUs
within a single machine. That is, each GPU maintains a copy of
the GNN model and computes a local gradient with sampled neigh-
bor aggregation, and the gradients are averaged among all GPU in
each iteration. This is the most common setup for training GNNs
on large graphs [9]. The GPUs can be organized into groups of
two connected through NVLink Bridge, as shown Figure 3a. Or
they can be connected all together through NVSwitch as shown in
Figure 3b. These are typical con!gurations of modern GPU server-
s/workstations for deep learning. The NVLinks among GPUs are
not necessary for our algorithm to work, but they allow us to use
the aggregate memory of multiple GPUs more e"ciently.

We assume that each GPU-# can only store the feature vectors
of a set of nodes 6! . If the memory of each GPU is large enough to
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(a) An example graph: x(0)! represents the feature
vector of node-!
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(b) Compute the output embedding of node-2 with full
neighbor aggregation
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(c) Estimate the output embedding of node-2 with sam-
pled neighbor aggregation

Figure 2. Computation of a two-layer GCN.
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(a) NVLink Bridge
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(b) NVSwitch

Figure 3. Typical con!gurations of multi-GPU systems with in-
terconnects among GPUs. We store the input features of a set of
nodes 6! on each GPU-# .

hold the entire graph along with the GNN model and intermediate
embeddings, the problem will be trivial. However, this is not the
case for large graphs and the current GPUs of 10∼30GB of memory.
With this setup, we now give a performance model of the data
movement of input features. Then, we will provide an e"cient
algorithm to minimize the data movement overhead.

3.1 Performance Model
Since GPU-# stores a set of nodes 6! , the nodes that are stored on
all GPUs are

6&+, = 61 ∪ . . . ∪ 6- .

We assume that the cost of reading a node on the same GPU is
zero, the cost of reading a node on a di#erent GPU is7&+, , and the
cost of reading from CPU is 7.+, . In every training iteration, each
GPU needs to read input features from either CPU or one of the
GPUs. Suppose GPU-# needs to read a set of nodes *! . We denote
the remote nodes that are not on GPU-# as

/! = *! \ 6! = *! − (*! ∩ 6! ) . (2)
For every node in /! , we need to decide whether to fetch it from
CPU or from a di#erent GPU. That is, we need to divide /! into two
sets /!,.+, and /!,&+, , where /!,.+, are the nodes read from CPU
and /!,&+, ∈ 681+ are the nodes read from other GPUs. The cost
of reading *! can then be written as

7.+, |/!,.+, | +7&+, |/!,&+, |.
If 7&+, < 7.+, , we should fetch as many nodes as possible from
GPUs. The minimum cost is achieved when /!,&+, = /! ∩ 6&+, . If
7&+, ≥ 7.+, , we should fetch all nodes from CPU, i.e., /!,&+, = ∅

and /!,.+, = /! . More formally, we de!ne the cost of reading *! by
GPU-# as

7! (6) =
{
7.+, |/! \ 6&+, | +7&+, |/! ∩ 6&+, |, if 7&+, < 7.+, ;
7.+, |/! |, if 7&+, ≥ 7.+, .

(3)
Note that7! is a function of6 = {61, . . . ,6-} and is dependent on *! .
The value we want to minimize is its expectation E/!∼D [7! ]. Since
the GPUs run in parallel, we minimize the maximum cost across
all GPUs. The problem can then be formulated as a constrained
optimization problem:

min max
!∈ [1,-]

(
E/!∼D [7! (6)]

)
,

subject to |6! | ≤ 6*9:;, # = 1, . . . ,' (4)
where 6*9:; is the maximum number of nodes that can be stored
on each GPU. Our goal is to !nd the optimal con!guration of 6!
that minimize max! (E/! [7! ]) within the memory size limit.

3.2 An E!cient Solution
To solve Problem (4), we !rst consider the trivial case where7&+, ≥
7.+, , i.e., the GPU is not connected with other GPUs through
NVLink. In this case, we should read data from CPU. According to
(3) and (2), the optimization objective can be written as

max
!

(E/! [7! ]) = 7.+, max
!

(E/! [|/! |]) (5)

= 7.+, max
!

(E/! [|*! \ 6! |])

= 7.+,E/ [|* |] −7.+, min
!
E/! [|*! ∩ 6! |])

where E/ [|* |] is the expected number of sampled input nodes
and is a constant number for all GPUs. It is easy to verify that,
when E/! [|*! ∩ 6! |] is maximized for every GPU-# , (5) achieves the
minimum value. Suppose there are " nodes in the graph. We can
represent 6! as a vector bi ∈ {0, 1}$ where bi [ 3] = 1 indicates that
node- 3 is stored on GPU-# . We can also represent *! as a vector
of random variables si = [41, 42, . . . 4$ ]0 where 4 # ∼ Bernoulli(1 # )
and 1 # is the probability of node 3 being sampled. Then, we can
rewrite the objective in (5) as

7.+,E[|s|] −7.+, min
!

(
|bi0E[si] |

)

where | · | represents the ℓ1 norm and E[si] = [11, 12, . . . , 1$ ]0 . To
minimize the cost, we need to maximize |bi0E[si] | for each GPU-# .
This leads to the !rst rule of our data placement strategy:

Rule 1: If a GPU is not connected to other GPUs, we store nodes
with the highest sampling probability on it.
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Algorithm 1: Distributing node features onto multiple
GPUs with fast interconnects
Input: 1 ; #nodes: $ ; #GPUs: -; Sampling probability: + ; Bu#er size:

2/345
Output: 2 = {21, . . . ,2" }
/* Sort nodes by probability + in descending order */

1 6 = sort_nodes($ ,+) ;
/* Initialize buffer on each GPU with nodes of highest

sampling probabilities */

2 for ! = 1 to - do
3 2! = [6 [0],6 [1], . . .6 [2/345 − 1] ];
4 +_7,8 = [0.0, . . . , 0.0];
5 for ! = 0 to (min($ ,- · 2/345) − 2/345 − 1) do
6 if ! mod - == 0 then

/* Sort GPUs by +_7,8 in ascending order */

7 )*9%*%9_9%:!.%7 = sort_device(-,+_7,8) ;
/* Do not change last device in each round */

8 if ! mod - == - − 1 then continue;
/* Get device in the sorted order */

9 9%:!.% = )*9%*%9_9%:!.%7 [! mod -];
/* Select the next node in 6 */

10 -%;_-)9% = 6 [! + 2/345 ] ;
/* Select a duplicate node on device */

11 )"9_-)9%_!9< = 2/345 − 1 − *!/-+;
12 )"9_-)9% = 6 [)"9_-)9%_!9< ];

/* Check if the replacement is beneficial */

13 if + ("#$_"%&# ) > 1 · + (%'&_"%&# ) then
/* Replace )"9_-)9% on device with -%;_-)9% */

14 2&#(!)# [)"9_-)9%_!9< ] = -%;_-)9% ;
/* Update +_7,8 */

15 +_7,8 [9%:!.% ]+ = + ("#$_"%&# )

16 else break;
17 return {21, . . . ,2" }

This rule is intuitive – For a standalone GPU, storing the nodes
that are most frequently accessed on the GPU gives us minimum
overall data loading time.

We next consider the case where 7&+, < 7.+, , i.e., the GPU is
connected with other GPUs through NVLink. According to (3) and
(2), the optimization objective can be written as

max
!

(
E/! [7! ]

)
(6)

=max
!

(
7.+,E/!

[))/! \ 6&+, ))] +7&+,E/! [))/! ∩ 6&+,
))] )

=max
!

(
7.+,E/! [|/! |] −

(
7.+, −7&+,

)
E/!

[))/! ∩ 6&+,
))] )

=7.+,E/ [|* |] −
(
7.+, −7&+,

)
E/

[
|* ∩ 6&+, |

]
−min

!

(
7&+,E/! [|*! ∩ 6! |]

)
.

To minimize the cost, we need to maximize the last two terms.
The last term suggests that each GPU stores the same set of nodes
with the highest sampling probability. This con!guration how-
ever hurts the overall performance because the second last term(
7.+, −7&+,

)
E/

[
|* ∩ 6&+, |

]
suggests that we should store as

many nodes as possible on all GPUs. The two terms illustrate a
tradeo# between the data access e"ciency on a single GPU and the
overall e"ciency on all GPUs. We now propose an algorithm that
explores the tradeo# and !nd an optimal con!guration.

As shown in Algorithm 1, we !rst obtain an ordered set of the
nodes (= ) such that 1 (6 [! ]) ≥ 1 (6 [!+1]) , and we store the nodes
with the highest sampling probability on each GPU (line 2 and 3).
This initial con!guration achieves the maximum value for the last
term in (6) but results in a small value for the second last term. To ex-
plore the tradeo# between the two terms, the algorithm tries to itera-
tively replace the duplicate nodes on di#erent GPUswith new nodes
from= [6*9:;] to= ["−1] (line 5). In the !rst iteration, it tries to re-
place= [6*9:;−1] in 61 with= [6*9:;]. By doing so, we decrease
the last term of (6) by7&+, (1 (6 [2/345−1])−1 (6 [2/345 ]) ). However,
it also increases the second last term by

(
7.+, −7&+,

)
1 (6 [2/345 ]) .

If the increase is greater than the decrease, i.e.,

7.+,1 (6 [2/345 ]) > 7&+,1 (6 [2/345−1]) ,

this replacement is bene!cial. More generally, in each iteration of
the algorithm, we try to replace the duplicate node that has the
lowest sampling probability (>(?_'>?%) on one of the GPUs with
the highest probability node that is not stored on GPU ('%2_'>?%).
If

1 (-%;_-)9%) >
7&+,
7.+,

1 ()"9_-)9%) , (7)

the replacement is bene!cial, and we perform the replacement (line
14). Otherwise, the algorithm stops (line 16). Note that in the actual
implementation we use a parameter @ ∈ [0, 1) to check the con-
dition in (7) because 7.+, and 7&+, are unknown. Since 7.+, and
7&+, are mostly determined by the hardware and are independent
from the workload, we can tune this @ for a hardware con!guration
once and use it for all the training tasks. To ensure each GPU has
a similar data movement cost, the algorithm maintains the sum
of sampling probabilities of the new nodes (1_A+,) on each GPU.
In each round of replacement, it selects the GPUs with 1_A+, in
ascending order (line 6,7,9). We try to replace the same node on
the !rst ' − 1 devices with new nodes in = . The last device is un-
changed because we need to keep at least one copy of the node on
GPU (line 8). Because the sampling probabilities of the new nodes
are decreasing, this replacement order ensures that di#erent GPUs
have similar values of 1_A+,.

Algorithm 1 has ! (" ) time complexity because it runs for at
most " iterations and each iteration takes a constant time (as-
suming the number of devices ' is a small constant). The space
complexity is also ! (" ).

Rule 2: For a group of GPUs with fast interconnects, we use
Algorithm 1 to distribute the nodes onto di#erent GPUs.

Note that Algorithm 1may put duplicate nodes on di#erent GPUs.
This is the main di#erence between our data placement strategy
and graph partitioning. Intuitively, for nodes with high sampling
probability, we should store a copy of them on each GPU so that
their features can be read locally. The number of duplicate nodes is
also a#ected by the parameter @ in the algorithm. A larger @ means
that the communication among GPUs is relatively expensive. The
larger the @ , the more likely the algorithm stops early, and thus the
more duplicate nodes we may have.
Example: Let us consider the graph in Figure 2a. According to
Figure 2b, to compute the output embedding of node-2 we need to
access all of the six nodes. Similarly, to compute the output embed-
ding of node-0 we need to access node-0, 1, 2, 3. It is easy to see that
the access frequency of a node is the number of training nodes in



Rethinking Graph Data Placement for Graph Neural Network Training on Multiple GPUs ICS ’22, June 28–30, 2022, Virtual Event, USA

its --hop neighbors where - is the number of GNN layers. In this
example, the access frequency of the six nodes is B = [4, 6, 6, 6, 5, 5].
We use B /"= ("= is the number of training nodes) as an estimation
of the sampling probability and give 1 = [4/6, 1, 1, 1, 5/6, 5/6] to Al-
gorithm 1. Suppose we have two GPUs connected with NVLink and
each GPU can store at most 2 nodes. The algorithm !rst sorts the
six nodes by 1 and obtain an ordered set of nodes= = [1, 2, 3, 4, 5, 0].
Initially, the algorithm stores the two nodes with highest sampling
probability on both GPUs, i.e., 61 = [1, 2] and 62 = [1, 2]. Suppose
we set @ to 0.3. In the !rst iteration of the algorithm, we try to
replace node-2 on GPU-1 with node-3 in = . Because 13 > @12
(1 > 0.3 ∗ 1), which means the replacement is bene!cial, we per-
form this replacement, and 61 becomes [1, 3]. The second iteration
is skipped by line 8 in the algorithm because we want to keep
node-2 on GPU-2. In the third iteration, we sort the two devices
based on their 1_A+,. The 1_A+, of GPU-2 is smaller, so we try
to replace node-1 on GPU-2 with node-4 in = . Because 14 > @11
(5/6 > 0.3 ∗ 1), we change 62 to [4, 2].

During the training process, each GPU loads the input features
from three places: its own memory, the memory of other GPUs in
the same group, or the CPU memory. Each GPU has a ?%C_'+,
array and a D+B _1>A array for locating the nodes: ?%C_'+,[#] indi-
cates which device we should read node-# from and D+B _1>A [#] is
the index of node-# in?%C_'+,[#]’s bu#er. In the above example, we
have ?%C_'+, = [−1, 1, 2, 1, 2,−1,−1], D+B _1>A = [0, 0, 1, 1, 0, 5, 6]
on GPU-1. Here, we use -1 as the CPU device number. The two
arrays indicate that node-0 should be read from location 0 of the
CPU bu#er, and node-1 should be read from location 0 of GPU-1’s
bu#er. The ?%C_'+, and D+B _1>A array could be di#erent on dif-
ferent GPUs. If two GPUs hold the same node, they will read the
node from their local memory. In this example, the two arrays are
the same on GPU-1 and GPU-2 because there is no duplicate nodes
on the two GPUs.

4 Locality-Aware Neighbor Sampling
The same as any caching system, our data placement strategy works
most e"ciently when the access frequency is skewed, i.e., most
accesses are made to a small number of nodes. This assumption
holds in most cases due to the irregularity of real-world graphs.
However, when the access frequency is less skewed and the GPU
memory is small, the data loading might be expensive even with
the optimal placement of graph data. To further reduce the data
movement overhead, we present a locality-aware neighbor sampling
technique in this section.

Our main idea is to increase the sampling probability of nodes on
GPU. If a GPU accesses its local nodes or nodes on other GPUs in
the same group more frequently, the overall data loading time will
be reduced. More speci!cally, suppose 6 is the set of nodes stored
on a group of GPUs. Our goal is to increase the access frequency of
6 in the input layer. To achieve this, we can directly increase the
5 # in Formula (1) for 3 in 6 in the input layer. This however may
not be e#ective because the nodes that are sampled in the input
layer are determined by the nodes sampled in the second layer. If
the second layer does not have nodes connected to nodes in 6, we
will not have 5 # to increase in the input layer. Therefore, to have
more nodes in 6 in the !rst layer, we can increase the 5 # for 3 in
"%#8ℎD>. (6) in the second layer. Similarly, to have more nodes in

Algorithm 2:Adjusting scale factor A based on data loading
overhead
Input: "= ; ,= ;>?@/ ; Ratio of data loading time to total execution

time in previous epoch: * ; Previous value of 7 : +*% ; Is 7
A !<%9

1 if A !<%9 == A B"7% then
2 if 7 ≥ >?@/ then A !<%9 = =*,% ;
3 else if * > ,= then +*% = 7 ; 7 = 7 ∗ 2 ;
4 else if * < "= and 7! = 1 then 7 = (7 + +*%)/2 ;
5 else A !<%9 = =*,% ;

"%#8ℎD>. (6) in the second layer, we want to increase the 5 # for
nodes in "%#8ℎD>. ("%#8ℎD>. (6)) in the third layer.

In order to preserve the relative importance of di#erent nodes,
we increase the sampling probability of nodes in the neighbor sets
by multiplying them with the same factor A . To ensure the same
number of neighbors are sampled in expectation, we need to re-
scale the new sampling probability so that their sum equals to
the sum of the original sampling probability. More formally, we
compute the new sampling probability of nodes with the following
formula:

5-%;# =

{
A5 #/$ if 3 ∈ F"

5 #/$ if 3 ∉ F"
(8)

where $ =
∑

# 5 #/
(∑

# ∈C'
A5 # +

∑
!∉C'

5 #
)
is the normalization

factor, andF" represents the neighbor set in layer-( . We haveF1 = 6
in the input layer, F2 = "%#8ℎD>. (6) in the second layer, and
so on. The formula ensures that 5-%;! /5-%;# = 5!/5 # = ),∀#, 3 ∈
F , meaning that node-# is still ) times more likely to sampled
than node- 3 after probability increasing. The normalization factor
ensures ∑# 5

-%;
# =

∑
# 5 # , so the same number of neighbors will

be sampled in expectation.
It is easy to see that our locality-aware neighbor sampling does

not a#ect the unbiasedness of the estimation result. That is, we
still have E

[∑
#

1
D *
4 #2! #x#

]
=
∑

# 2! #x# . However, as the sampling
probability is skewed towards the nodes on GPU, the estimation
variancemay increase, whichmay lead to slower convergence of the
training algorithm. We explore this tradeo# between data loading
e"ciency and convergence rate by adjusting A adaptively. Initially,
we set A = 1, and the original neighbor sampling method is used.
At the end of each epoch, we check if the ratio of data loading time
to total execution time is greater than an upper threshold +G . If it is
greater, we multiply A by 2. If not, we check if the ratio is smaller
than a lower threshold (G . If the ratio is greater than (G , we !x A and
use it for the rest of the training process. If the ratio is smaller than
(G , we set A to the average of its current value and its previous value.
Algorithm 2 summarize this procedure. We set a maximum value
$HI* for A to ensure good convergence of the training algorithm.
In our experiments, we !nd that if we set$HI* to 8, the model can
be trained to the same accuracy with the same number of training
iterations.

For large graphs, the neighbor setF" can grow fast as the neural
network goes deeper. Instead of maintaining all the neighboring
nodes, we only store a small subset F ′

" that have the most connec-
tions to 6 in each layer. This is because the nodes are multiplied
with the same scale factor and increasing the probability of many
nodes cannot concentrate the memory accesses to a small number
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Table 1. Graph datasets.

reddit yelp products papers100M MAG240M

#nodes 233K 717K 2.4M 111M 122M
#edges 11.6M 7.0M 62M 1.6B 1.3B
feat_size 535MB 820MB 934MB 53GB 174GB

of nodes. In the extreme case, if F" contains all the nodes in the
graph, the new sampling probability computed with (8) is the same
as the original sampling probability. To obtain F ′

" , we represent 6
as a vector C1 ∈ {0, 1}$ where C1 [#] = 1 indicates that node-# is in
6. In the input layer, we simply set F ′

1 = 6. In the second layer, we
multiply C1 with the adjacency matrix of the graph H and obtain
a vector C2 = C1H. The vector has " elements with C2 [#] being
the number of paths with one edge from node-# to the nodes in 6.
We sort the nodes based on C2 and add the nodes with the largest
values to F ′

2. Similarly, we can obtain C3 = C2H. Each element C3 [#]
is the number of paths with two edges from node-# to the nodes
in 6. The nodes with the largest values of C3 are added to F ′

3. This
procedure is done before the training process after Algorithm 1
returns 6. During the training process, we obtain the nodes to in-
crease sampling probability by computing the intersection of the
sampled nodes and the F ′

" in the corresponding layer. Since both
sets are small, our locality-aware sampling incurs little overhead
to the original sampling procedure.
Example: Let us consider again the graph in Figure 2a. Accord-
ing to the example in §3.2, node-1, 3 are stored on GPU-1 and
node-2, 4 are stored on GPU-2. This gives us F ′

1 = 1, 2, 3, 4 and
C1 = [0, 1, 1, 1, 1, 0]. For the second layer, We have C2 = C1H =
[1, 3, 4, 3, 2, 1]. Suppose the maximum number of nodes we can
store in F ′

" for ( > 1 is three. The three nodes with largest value of
C2 (i.e., node-2, 1, 3) are added to F ′

2.

5 Evaluation
This section presents an evaluation of our data placement strat-
egy and locality-aware sampling technique for GNN training on
multiple GPUs.

5.1 Experimental Setup
Platform: Our experiments are conducted on a GPU workstation
with two Intel Xeon Gold 6248 CPUs and eight Nvidia Tesla V100
GPUs connected all together throughNVSwitch. The CPURAM size
is 512GB, and GPU memory size is 32GB. We run the experiments
on 2∼8 GPUs with two types of interconnections. The !rst type has
every two GPUs connected to each other, as shown in Figure 3a.
By only allowing a GPU to read data from the GPU next to it,
we simulate systems with NVLink Bridges. We use ‘(2+2)GPU’ to
denote four GPUs with each two connected with NVLink, and
‘(2*4)GPU’ to denote eight GPUs with each two connected with
NVLink. The second interconnection type has all GPUs connected
together, similar to the con!guration in Figure 3b. We use ‘4GPU’
(‘8GPU’) to denote four (eight) all-connected GPUs.
Datasets: We evaluate our system on !ve graphs as listed in Ta-
ble 1. The !rst two graphs, reddit and yelp, are adopted from
GraphSAINT [32]. The other three graphs, products, papers100M
and MAG240M, are from the Open Graph Benchmark [10]. Among
the graphs, reddit, yelp and products are relatively small. While
they can be entirely put on our GPU, we use a limited bu#er size

0

1

2

3

4

5

6

N
ai

ve PG

M
ET

IS

O
ur

N
ai

ve PG

M
ET

IS

O
ur

O
ur

+L
AS

N
ai

ve PG

M
ET

IS

O
ur

N
ai

ve PG

M
ET

IS

O
ur

O
ur

+L
AS

N
ai

ve

M
ET

IS

O
ur

N
ai

ve

M
ET

IS

O
ur

0.1N 0.2N 0.1N 0.2N 0.1N N/4

2GPU (2+2)GPU 4GPU

Ex
ec

ut
io

n 
Ti

m
e 

pe
r E

po
ch

 (s
ec

)

Other DataLoad
20%

22% 18%

Figure 4. Breakdown execution time on reddit graph with feature
bu#er size 0.1N (53MB), 0.2N (107MB), and N/4 (134MB) on each
GPU.

on GPU to show how e#ective our techniques are on devices with
smaller memory. The papers100M and MAG240M are large graphs.
The original MAG240M graph is a heterogeneous graph with 122M
paper nodes and 122M author nodes. We only use the paper nodes
in our experiments since only the paper nodes have input features.
The feature vectors of the two graphs cannot be entirely put on a
GPU. We use them to show the e#ectiveness of our techniques for
large-scale GNN training.
Baseline:We compare our data placement strategy with four graph
partitioning methods: naive partitioning (NAIVE), random parti-
tioning (RAND), METIS partitioning [15], and PaGraph partitioning
(PG) [20]. Naive partitioning evenly divides graph nodes accord-
ing to their indices and puts nodes of consecutive indices in each
partition. Random partitioning performs random permutation to
nodes and then divides the permuted nodes with naive partitioning.
PaGraph partitions a graph based on training nodes. It iterates
over all training nodes and checks the connections between a node
and the nodes in previous iterations. Based on the connections,
PaGraph assigns the node to a partition so that the best load bal-
ance is achieved. Once it gets a partitioning of the training nodes,
it assigns all other nodes in L-hop neighbor of training nodes to
each partition. PaGraph does not use the interconnection among
GPUs – each GPU loads data either from its local memory or from
CPU.
Se!ings: Two GNN models are used in our evaluation. We train a
GraphSAGE model [7] on reddit, papers100M and MAG240M, and a
GCN model [16] on yelp and products, with layer-wise neighbor
sampling [41]. All the GNNs have three convolutional layers. The
number of sampled nodes in each layer is set to 8192. The dimension
of the intermediate embeddings is set to 512. We use Adam SGD
as the training algorithm and run it for 30 epochs. The batchsize is
set to 512 for reddit and products and 2048 for other graphs. The
learning rate is set to 0.01' where ' is the number of GPUs used
for training. For Algorithm 1, we set @ = 0.2 on ‘(2+2)GPU’ and
‘(2*4)GPU’ and @ = 0 on ‘2GPU’, ‘4GPU’ and ‘8GPU’. For locality-
aware neighbor sampling, we set (G = 0.15, +G = 0.2 and$HI* = 8
in Algorithm 2, and set the size of neighbor set F ′

" to 8192 in all
layers. We run the experiments for !ve times and report the average
execution time of !ve runs.

5.2 Results on Small Graphs
Figure 4 shows training time per epoch on reddit graph with
di#erent partitioning methods and bu#er sizes on 2 or 4 GPUs. We
can see that loading the input features is a performance bottleneck
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Figure 5. Breakdown execution time on yelp graph with feature
bu#er size 0.1N (82MB), 0.2N (164MB), and N/4 (205MB) on each
GPU.
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Figure 6. Breakdown execution time on products with feature
bu#er size N/8 (117MB) and 0.2N (187MB) on each GPU.

when the GPU bu#er is small. With naive partitioning, data loading
takes more than 50% of the total execution time if we use two GPUs
and store 10% of the most frequently accessed nodes on each GPU
(i.e., 6*9:; = 0.1" ). When the GPU bu#er size increases to 0.2" ,
the data loading time slightly decreases to 48% of the total execution
time. The ratios are similar on ‘(2+2)GPU’. PaGraph has almost the
same performance as naive partitioning. Because PaGraph does not
utilize the interconnects among GPUs, its performance on ‘4GPU’
is the same as on ‘(2+2)GPU’. With METIS partitioning, the data
loading time is slightly better but still takes about 40% of the total
execution.

Our data placement strategy achieves smaller data loading time
than other graph partitioning methods. On ‘2GPU’ and ‘(2+2)GPU’,
because only two GPU bu#ers are used together, data loading still
takes 30% of total execution time with our data placement strategy.
After applying locality-aware sampling in these two cases, the
data loading time is reduced to about 20% of total execution time
(shown as Our+LAS in the !gure). On ‘4GPU’, because most (or all)
of nodes are stored on GPU, our data placement alone is able to
achieve good performance. Note that even all nodes are stored on
GPUs in this case, our data placement strategy outperforms other
partitioning methods, which indicates that it utilizes aggregate
memory of multiple GPUs more e"ciently.

Figure 5 and 6 show training time per epoch with di#erent parti-
tioning methods on yelp and products. The results are similar to
reddit. Our data placement strategy achieves smaller data loading
time than both PaGraph and METIS partitioning. We do not include
the execution time of PaGraph on eight GPUs in Figure 6 because
it cannot partition the products graph into eight parts within !ve
hours. For cases where our data placement strategy alone cannot
reduce the data loading time to 20% of total execution time, we
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Figure 7. Training losses on reddit graph.
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Figure 8. Training losses on yelp graph.
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Figure 9. Training losses on products graph.

apply locality-aware sampling to further reduce the data loading
time. The results are shown as Our+LAS in the !gures.

The advantage of our techniques can be further veri!ed by the
CPU and GPU memory access sizes. For reddit graph on ‘2GPU’
with 0.2" feature bu#er, if METIS partitioning is used, each GPU
needs to access 40% of nodes from local GPU memory, 27% from
remote GPU memory, and 33% from CPU. Our data placement strat-
egy with locality-aware sampling increases local accesses to 51%
and reduces CPU accesses to 13%. On ‘4GPU’ with 0.1" feature
bu#er, our data placement strategy increases local accesses by 72%
and reduces CPU accesses by 51% compared with Naive, and in-
creases local accesses by 13% and reduces CPU accesses by 12%
compared with METIS. The same improvement is observed on yelp
and products graph.

To show how locality-aware sampling a#ects the training pro-
cess, we compare the training loss of di#erent sampling methods
for all the cases where locality-aware sampling is applied. Fig-
ure 7 shows the training loss over 30 epochs on reddit graph on
‘2GPU’ and ‘2+2GPU’. Compared to the original sampling method,
locality-aware sampling has almost the same convergence speed.
The training loss is even smaller than the original sampling method
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Table 2. Data preprocessing time in seconds with di#erent graph
partitioning methods.

reddit yelp products

PaGraph 382 1976 4753
METIS 17 15 83
Our 0.49 0.76 3.6

at the end of training. While the result seems surprising, it is ac-
tually possible because the original sampling does not guarantee
that the estimation variance for neighbor aggregation is always
minimized [2, 41]. We also collect the training loss with PaGraph.
PaGraph has slower convergence than our method because it only
allows local shu$ing of training nodes in order to achieve high
hit rates on GPU bu#ers. The local shu$ing violates the i.i.d. sam-
pling assumption for the training algorithm and often leads to
models with lower accuracy [25]. The results on yelp (Figure 8)
and products (Figure 9) follow a similar pattern. The test accuracy
of the models trained with locality-aware sampling is 0.964 (±0.001),
0.642 (±0.003), and 0.787 (±0.001) on reddit, yelp, and products,
which match the accuracy of same models reported in previous
work [32] and Open Graph Benchmark leaderboard.

Note that the above results are collected with $HI* = 8 for
locality-aware sampling. The results indicate that locality-aware
sampling is able to reduce the data loading time without a#ect-
ing the convergence speed when$HI* is small. However, when
$HI* is larger, the training will have slower convergence as
skewed sampling leads to larger estimation variance for neighbor
aggregation. In this sense, our locality-aware sampling illustrates
a tradeo# between data loading time and convergence speed of
training algorithm.

Besides the reduced data loading time, another advantage of our
technique is that our algorithm is much faster than the previous
graph partitioning algorithms. Table 2 lists the execution time of
di#erent graph partitioning methods for dividing the graphs into
four parts. The performance of PaGraph is dependant on the number
of partitions. It runs much longer for partitioning the graphs into
eight parts. The execution time of METIS and our algorithm is not
a#ected much by the number of partitions. The execution time
of our algorithm include the execution time of Algorithm 1 and
the time for computing an estimation of sampling probability 1 as
described in §3.2. PaGraph partitioning is extremely slow because
the algorithm has ! (" 2) time complexity. METIS has linear time
complexity w.r.t. the number of nodes and number of edges, and
thus it is much faster than PaGraph. Our algorithm is even faster.
This is because we encode the edge information in the sampling
probability 1 (which can be computed e"ciently as sparse matrix-
vector multiplication), and the partitioning procedure does nomuch
more work than iterating over an array of " elements. Compared
to the training time, the data preprocessing overhead with our
algorithm is negligible.

5.3 Results on Large Graphs
We next run experiments on papers100M and MAG240M. PaGraph
cannot !nish partitioning either of two graphs in !ve hours. METIS
partitioning aborts due to out-of-memory error. Our algorithm
takes 24 seconds to return a data placement strategy for paper100M
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Figure 10. Breakdown execution time on papers100M with feature
bu#er size 0.1N (5.3GB), N/8 (6.6GB), and 0.2N (10.6GB) on each
GPU.
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Figure 11. Breakdown execution time on MAG240M with feature
bu#er size 0.1N (17.4GB) and N/8 (21.8GB) on each GPU.
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Figure 12. Training losses on MAG240M graph.

and 27 seconds for MAG240M. To show the e#ectiveness of our tech-
niques, we run naive and random partitioning and compare the
data loading time.

Figure 10 shows the time per epoch on papers100M graph with
2∼8 GPUs. The graph has 53GB of node features. We set the 6*9:;
on each GPU to 0.1" and 0.2" . Although the bu#er size is smaller
than the GPUmemory size, we cannot allocate more memory for in-
put features because the GNNmodel and the intermediate variables
also take space. From the !gure, we can see that naive partitioning
and random partitioning have almost the same data loading time.
Our data placement strategy consistently outperforms both random
partitioning and naive partitioning, reducing the data loading time
by 2.4x to 4.0x on di#erent number of GPUs compared to random
partitioning. Our technique is most e#ective on ‘4GPU’ where the
GPUs are all connected together. On ‘(2+2)GPU’ and ‘(2*4)GPU’,
the ratio of data loading time to total execution time is slightly
higher but still lower than 20%.
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Figure 11 shows the performance results on MAG240M. The graph
has 174GB of node features. On ‘4GPU’ and ‘8GPU’, our data place-
ment strategy alone decreases the data loading time to less than
20% of total execution time. On ‘2GPU’ and ‘(2+2)GPU’, our data
placement strategy is also e#ective, achieving less than half data
loading time than random graph partitioning. However, because
the bu#er size is small (20% of nodes in total on two GPUs), the
data placement strategy alone cannot decrease data loading time to
less than 20% of total execution time. Thus, we apply locality-aware
sampling in these cases. With locality-aware sampling, the ratios
of data loading time to total execution time are reduced to 15%.
Figure 12 shows the training loss of locality-aware sampling and
the original sampling method in the two cases. The two lines almost
overlap. The test accuracy of trained model is 0.688 (±0.002), which
matches the accuracy of the same model in Open Graph Bench-
mark. The results again validate that our locality-aware sampling
has little e#ect to convergence speed of training when $HI* is
small.

6 Related Work
Many systems have been proposed for GNN training on GPUs. The
most popular two are PyG [5] and DGL [27]. PyG is a collection of
GNN models and their common components. It does not support
large-scale GNN training by itself because its implementation as-
sumes the data !t in a single GPU. DGL aims to provide a uniform
abstraction for building GNN models. It assumes that the entire
graph can be stored on multiple GPUs. To minimize communication
overhead among GPUs, DGL adopts METIS graph partitioning [15].
As shown in our experiments, our data placement strategy not only
achieves faster data loading than METIS but also has a smaller data
preprocessing overhead.

NeuGraph [21] is a system for GNN training with full neigh-
bor aggregation on multiple GPUs. It uses METIS for graph parti-
tioning. To support large graphs, it stores the graph on CPU and
streams edge blocks with their associated node features onto GPUs.
However, copying data from CPU to GPU incurs a large overhead.
ROC [14] is another system for GNN training with full neighbor
aggregation on multiple GPUs. It assumes that all the input features
can be stored on GPUs and does not consider data loading problem
for large-scale GNN training. It focuses on improving load balance
among GPUs by partitioning the graph dynamically. Di#erent from
these systems, our work targets data-parallel GNN training with
sampled neighbor aggregation, which is more commonly used for
large-scale GNN training [9]. In this setting, the computation time
is determined by the size of sampled subgraphs. Since the sampling
con!guration is the same on di#erent GPUs, load imbalance is less
of an issue. Graph partitioning is mainly designed for balancing
data movements among GPUs.

PaGraph [1, 20] aims to reduce the data loading time for GNN
training on large graphs that cannot be entirely stored on GPU.
The main idea is to bu#er the most frequently accessed nodes on
GPU. For training on multiple GPUs, PaGraph uses a partition
algorithm of quadratic time complexity. The partitioning procedure
is so expensive that the data preprocessing time can be much longer
than the GNN training time itself. Also, to achieve high hit rates on
the GPU bu#ers, PaGraph only allows locally shu$ing of training
nodes, which slows down the convergence of training process and
may lead to models with lower accuracy. Min et al. [22] also identify

the large data loading overhead issue in GNN training and propose
a GPU-oriented data communication technique to reduce the data
loading overhead. The idea is to allow the GPU threads to directly
access sparse features in CPU memory through zero-copy accesses
so that expense data gathering can saved. They do not consider data
partitioning and use DGL for evaluation. Our work is orthogonal to
and can be combined with their GPU-oriented data communication
technique.

Graph partitioning is also used for distributed GNN training on
CPUs [8, 26, 33, 39]. AliGraph [39] implements various graph par-
titioning methods for di#erent types of graphs. AGL [33] proposes
an edge-partitioning algorithm. Dorylus [26] partitions the input
graph with an edge-cut algorithm [40]. These systems perform
full-batch or large-batch neighbor aggregation and distribute the
aggregation operation on multiple machines. Graph partitioning is
used to reduce communication and improve load balance for the
distributed neighbor aggregation operation. Therefore, the problem
objective is di#erent from the objective of our work.

There are also many works on accelerating GNN computation
on GPUs [12, 13, 28]. These works mainly focus on improving the
data locality and load balance for the graph convolution operation.
FeatGraph [11] combines graph partitioningwith feature dimension
tiling to accelerate computations in GNNs. C-SAW [24] focuses on
accelerating graph sampling on GPUs; it partitions graph edges
for out-of-memory sampling. These works do not consider the
overhead for loading input features.

Data movement problem has also been studied for graph embed-
ding systems [17, 23, 38]. These systems also use graph partitioning
to handle large graphs with limited memory capacity. For example,
DGL-KE [38] adopts METIS graph partitioning, which has been
shown ine"cient for GNN training in our experiments. Because
graph embedding models have di#erent computation and memory
access patterns from GNNs, these systems cannot be used for GNN
training and cannot be directly compared with our work.

7 Conclusion
In this work, we aim to reduce the data loading overhead for large-
scale GNN training on multiple GPUs. We propose a performance
model of the data movement among CPU and GPUs in GNN train-
ing, and based on the performance model, we provide an e"cient
algorithm to !nd an optimal data placement strategy. We also pro-
pose a locality-aware neighbor sampling technique to further re-
duce the data loading overhead without a#ecting the accuracy. The
experiments show that our techniques outperform the existing
graph partitioning methods in terms of both data loading e"ciency
and preprocessing overhead.
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