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Abstract

Correlation for radio interferometer array applications, including Very Long Baseline Interferometry (VLBI), is a
multidisciplinary field that traditionally involves astronomy, geodesy, signal processing, and electronic design. In
recent years, however, high-performance computing has been taking over electronic design, complicating this mix
with the addition of network engineering, parallel programming, and resource scheduling, among others. High-
performance applications go a step further by using specialized hardware like Graphics Processing Units (GPUs) or
Field Programmable Gate Arrays (FPGAs), challenging engineers to build and maintain high-performance
correlators that efficiently use the available resources. Existing literature has generally benchmarked correlators
through narrow comparisons on specific scenarios, and the lack of a formal performance characterization prevents
a systematic comparison. This combination of ongoing increasing complexity in software correlation together with
the lack of performance models in the literature motivates the development of a performance model that allows us
not only to characterize existing correlators and predict their performance in different scenarios but, more
importantly, to provide an understanding of the trade-offs inherent to the decisions associated with their design. In
this paper, we present a model that achieves both objectives. We validate this model against benchmarking results
in the literature, and provide an example for its application for improving cost-effectiveness in the usage of cloud
resources.

Unified Astronomy Thesaurus concepts: Theoretical models (2107); Astronomy software (1855); Interferometric

correlation (807); Radio astronomy (1338); Radio interferometry (1346); Distributed computing (1971)

1. Introduction

Radio Interferometry for astronomy and geodesy Thompson
et al. (2017) is a radio technique that combines signals received
with many telescopes in a computational fashion, enabling
observations with high angular resolution and delay measurement
precision. High resolution is achieved by using a set of sparsely
distributed radio-telescopes, or ‘“stations”, pointing at the same
distant radio source and combining them to form a “virtual”
telescope that provides an angular resolution equivalent to that of
a dish with a diameter equal to the maximum separation of
telescopes. Each telescope acquires digitally sampled complex
voltage signals with picosecond precision (obtained by atomic
clocks); these data streams that are typically several to tens of
gigabits per second (Gbps) are then ingested into a correlator to
perform a Fourier-transformation and cross-multiplication among
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all the pairs of telescopes, followed by accumulation (summing)
of the results over an interval of time known as the “accumulation
period” Thompson et al. (2017). The noise portions of the signals
from each of these widely separated telescopes are uncorrelated,
and their complex product averages to zero. But since all the
telescopes are looking in the same direction, signals from a
compact, discrete radio source on the sky are correlated, and
average to a non-zero quantity. This is an interferometric fringe
pattern, whose amplitude and phase (known as the fringe
visibility) are measured using the correlation processing that is
the topic of this paper.

Radio interferometry applications, including VLBI, are numer-
ous and include astronomy, where scientists are interested in
imaging natural radio sources through sampling of large numbers
of spatially independent interferometric visibilities as the Earth
rotates. Another major application is geodesy, where regular
observations of distant quasars allow for millimeter-level determi-
nation of the Earth’s orientation and movement in space through
precise measurements of the relative delays of the signals received
at each telescope.

The computation-intensive signal correlation process has
been traditionally executed by dedicated hardware correlators,
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and more recently with the advent of high-performance
computing by software running in the cloud or on computer
clusters. The most important advantage of software correlation
is scalability, which is the ability to increase performance by
simply increasing the number of resources available to the
correlator. Achieving scalability is not trivial however due to
the multidimensional complexity of the correlation problem,
which includes at least: stations, channels, and signal duration.
For the sake of simplicity, in a worst-case scenario, we can
assume that the computations in the correlation problem grow
quadratically with the number of stations (that is, all the pairs
of stations) and linearly with the channels and duration of the
signal. (We will provide further detail in Section 2.1).
Different applications have different requirements not only
in terms of performance but also of scalability: the VLBI
Global Observing System (VGOS) mission plans on perform-
ing observations with 40 stations at 32 Gbps Niell et al. (2005),
the Event Horizon Telescope (EHT) with 11 stations already
(and more to come) at 64 Gbps Goddi et al. (2019), the Low
Frequency Array (LOFAR) with 40 stations at6 Gbps
Broekema (2018) (initially using a dedicated correlator devised
to run on IBM Blue Gene machines, currently running on a
GPU-based correlator), and the Canadian Hydrogen Intensity
Mapping Experiment (CHIME) Pathfinder with 256 stations
at3 Gbps Recnik et al. (2015) (using a dedicated correlator
based on GPUs). For such applications, there are choices to be
made for correlator cluster hardware (dedicated or cloud-based,
processor architectures, interconnects, etc.) and the software
that runs on that hardware. These choices can have major
implications for the tradeoff between cost and performance.
The wide range of instrumental configurations leads to some
questions: How can the performance of different correlators be
compared? Does doubling the size of the cluster double the
obtainable performance for a given scenario? How does this
depend on the software architecture and implementation? Can
existing software be made to run efficiently for specific target
configurations? Whether or not to reuse existing software or
develop new code is an important decision with significant cost
implications. This question is faced by astronomy and geodesy
projects and facilities during early development stages. The
literature available to such projects is mostly limited to specific
benchmarking (Deller et al. (2007), Keimpema et al. (2015),
Deller et al. (2011), Deller & Brisken (2009), Bertarini et al.
(2012), Brisken (2007), CSIRO’s Australia Telescope National
Facility (2009), Kettenis et al. (2009), Morgan (2008), Morgan
(2010), Phillips (2009), Stagni & Nanni (2013), Wu (2015), Gill
et al. (2019), Vazquez (2021)). Although some references Brisken
(2007), D’Addario (2001), Brisken & Deller (2007), provide
computation bounds and others Recnik et al. (2015); Wagner &
Ritakari (2007) detail the data flow rates through different parts of
the correlator, the lack of a systematic approach makes it difficult
to draw general conclusions relevant to diverse project circum-
stances. Consequently, approaching performance modeling for
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software correlators from a formal perspective is beneficial, not
only in the process of decision-making for the projects, but also in
the process of designing the correlators due to their inherent
complexity.

This document is organized as follows. In Section 2, we
describe in detail the development of the performance model.
In Section 3, we provide a preliminary validation of the model
against benchmarking results from previous literature. In
Section 4, we provide an application example of the model
for the identification of performance bottlenecks and optim-
ization of resources in a correlator. In Section 5, we summarize
the conclusions of this work.

2. Headroom Model

Traditionally, the evaluation of high-performance systems
has been done through benchmarking. However, considering
software correlators for VLBI specifically, there is a broad
range of scenarios associated with different projects, and the
configuration of clusters hosting these correlators. This makes
the standardization of benchmarking in software correlation a
formidable task with an impractically large parameter space to
cover.

On the other hand, bound-and-bottleneck models have proven
to be useful in the high-level characterization of performance in
the parallel-computing community for identifying bottlenecks in
software running on multicore architectures Williams et al. (2009).
These models, rather than providing a highly detailed character-
ization for specific cases, instead aim for a simple characterization
of performance bounds to provide designers with useful insight on
the limits and dependencies of the system.

In this work, we follow a hybrid approach that (i) leverages the
general architecture of these correlators to develop a formal
performance model and (ii) uses benchmarking to estimate certain
parameters that are specific to each correlator. Our approach
thereby minimizes benchmarking, while providing deeper insight
into the tradeoffs inherent to the design of these correlators
through a formal theoretical model. This allows us to estimate
actual performance results since it uses measured rates associated
with the cluster where the correlation software is running. We call
this model a “headroom” model (a term taken from audio signal
processing) since it allows one to calculate the limiting rates for
data flow at each part of the system as well as estimate the level of
saturation at each of them.

2.1. A Quick Introduction to Software Correlators

Independently of the architecture and implementation, there
are four main tasks to be performed by every correlator (e.g.,
Recnik et al. 2015; Deller et al. 2007; Keimpema et al. 2015,
Figure 1): (i) control or coordination of the correlation process,
(ii) data distribution or management and distribution of the
data into the nodes that will process it, (iii) processing or
correlation of the distributed data, and (iv) collection or



Publications of the Astronomical Society of the Pacific, 134:104501 (12pp), 2022 October

Data Proces oot

- Distribution — Tocessing —p | Collection —_
kA | R
4 4 :
I

Figure 1. Data flow in a software correlator. Data is read and distributed by the
data distribution tasks into the processing tasks, the results of which are then
gathered by the collection task. The whole process is managed by the control
task. Multiple blocks represent parallelization through multiple tasks. Blocks
represent the tasks, cylinders data and results, solid arrows data flow, and
dotted arrows control flow.

gathering and combination of all the results into output files
suitable for further reduction and analysis.

Taking into account the high-performance computing approach,
we first provide an informal description of the requirements for
these tasks, which we will later develop formally. Since these
tasks will be executed on a computer cluster, we will be talking
about (i) traffic (associated with the throughput at the network
interfaces) and (ii) computation (associated with operations done
in the processors).

The control task involves both light traffic and computation
loads, as it is generally associated with the processing and
distribution of metadata.

Data distribution usually involves both heavy traffic and
computation loads, in order to feed the rest of the chain with
multiple copies of each station data stream data as quickly as
possible. Note that in this document we generalize the radio
array architecture to include data recording and playback steps,
to logically separate telescope data acquisition and correlator
input data rates. This logical separation is manifested as a
physical one in the case of VLBI, historically a primary focus
area for software correlation.

Software correlators typically do FX-type correlation, as
described in Section 1, involving a Discrete Fourier Transform
(DFT) and then a multiply-accumulate operation Deller et al.
(2007); Keimpema et al. (2015), instead of the other way around
(ie., XF-type correlation). (A detailed comparison of both
processing types can be found in Thompson et al. 2017). Either
way, these operations are demanding both in terms of traffic and
computation. Note that how data is distributed will define a trade-
off between these demands, as we will show later.

Finally, collection often involves light traffic and computa-
tion loads, since even though results may be combined from
many processing tasks, the fact that results are accumulated
(into accumulation periods) during processing provides a large
reduction in data rates. Collection can, however, become a
bottleneck for cases where there are large numbers of stations,
or when a wide field of view needs to be preserved, which
limits the averaging that can be performed. We show the data
flow among these tasks in Figure 1.
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2.2. Scalability and Parallelization Strategies

Scalability is generally achieved through parallelization of
the data distribution and the processing tasks, yet designing a
correlator that is scalable is challenging due to the heavy traffic
and computation loads to be accommodated on the cluster.
These loads are inherent to the complexity of the correlation
problem, as we now describe.

Let S be the number of stations, and let W be the product of the
number of channels (or frequency bands) of each data stream and
the number of sub-accumulation periods. These sub-accumulation
periods are the divisions of the accumulation periods that are
distributed among the processing tasks. Each stream requires
some computation prior to being combined with other streams,
and each baseline (or pair of streams in this context) also has some
associated processing load. Then, we can assume that the
complexity of the correlation problem is of O((asS+ BB)W),
where B is the number of baselines computed as B = S(S — 1)/2,
and where o and 3 depend on the splitting strategies associated
with the architecture and implementation. (Lower-level details
including multiple polarizations and the computation of auto-
correlations are treated later in Section 2.5).

The challenge in the design of a software correlator is
breaking down this complexity into distribution and processing
tasks in a scalable way, requiring the selection of splitting and
parallelization strategies that allow for scalable performance.
Depending on how data is distributed and how processing tasks
are allocated, this complexity will affect traffic and computa-
tion loads in the nodes of the cluster.

The interrelation between traffic and computation load can also
be posed as an optimization problem. Consider a single sub-
accumulation period to be computed for all the baselines (or pairs
of stations). As we showed previously, there will be B processing
tasks per sub-accumulation period. In the context of mathematical
graph theory, it is then easy to see that we can represent these
tasks in a graph with one vertex per processing task, and one edge
between every pair of tasks that have a station in common, so that
the result will be an 2(S — 2)-regular graph (i.e., every vertex is
connected to 2(S — 2) vertices). Finding a splitting strategy would
be equivalent to finding a balanced partitioning of this graph into
subgraphs of Bt nodes (representing sets of tasks to be distributed
among the computation nodes). Balanced graph partitioning is an
active area of research (see e.g., Andreev & Racke 2004; Pacut
et al. 2021), so for the sake of simplicity, we will consider the two
trivial cases: (i) Bt = B (that is, each task does computations for
all the baselines and thus receives streams from S stations) and (ii)
Br=1 (that is, each task does computations for 1 baseline, and
thus receives streams from 2 stations). The number 2(S — 2) can
be understood by looking at the correlation matrix, where rows
and columns represent stations, and elements of the matrix
baselines; then if we pick a baseline, the ones sharing stations with
it will be those in the same row plus those in the same column
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minus the baseline itself and the auto-correlations (elements in the
main diagonal).

The implications of selecting among these splitting strategies
have not been formally addressed by previous literature, and
many correlators follow the first case approach (Bt = B)
regardless of the architecture and implementation: DiFX Deller
et al. (2007), SFXC Keimpema et al. (2015), CHIME
Pathfinder correlator Recnik et al. (2015), CorrelX MIT
Haystack (2016), CXS338 Viazquez (2021), etc. This fact
underscores the need to provide a formal model to understand
such implications.

For further clarification, the next three comments describe
the assumptions of our headroom model:

Comment 1: We assume that each node (also computer or
machine) of the cluster runs only one task simultaneously. Note
that if we considered many data distribution tasks per node, the
level of parallelization would decrease (since a single network
interface would be shared among these tasks). We also dismiss
other approaches that involve grouping different tasks into the
same node, as this would overcomplicate this model. These
extensions are left as future work.

Comment 2: The parallelization for data distribution can be
achieved mostly by partitioning the data, but splitting the work
into processing tasks is not trivial. Given that the radio array
correlation problem generally requires the combination of all
the pairs of streams, selecting a parallelization strategy is
equivalent to partitioning a 2(S — 2)-regular graph where each
vertex represents a baseline and each edge a station, aiming to
minimize the number of duplicated stations between subgraphs.
We will model this partition through three interrelated
variables: St the number of stations processed at each
processing task, Bt the number of baselines processed at each
processing task (that is Br = St(St— 1)/2), and some factor
G representing the increase in traffic due to the distribution of
data corresponding to the same station into different sub-
graphs (due to the overlap of vertices among them).

Comment 3: For the sake of simplicity, we will assume that
all the stations have visibility for the complete observation time
window. If this is not the case, the problem can be treated as
multiple separate correlations, each with a different duration
and number of stations S. More complex approaches are left as
future work.

2.3. Performance Metric

The first step to characterize performance is the selection of a
representative metric. We use throughput R, which represents the
amount of data processed per unit of time, for two reasons: (i) it is
directly comparable with performance metrics of cluster elements
(storage media, network interfaces, etc.), and (ii) it is the metric
widely used in the existing literature. This throughput or datarate
is calculated as R = D /T, with D; = R, Ty, where R is the rate of
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Figure 2. Traditional architecture for VLBI correlators. Throughput R is
measured relative to the data for one station. The resulting file size will be
D\B/F, given an input file size of Dy, and where F is the data reduction F,/F,.

the processed data for one station, 7 is the recording duration of
this data, and T, is the execution time of the correlation. That is,
the throughput of the whole system can be computed as the total
data to be processed for a single telescope over time for the
complete correlation. (Refer to Comment 3 for scenarios where
the data streams have different recording times.)

2.4. Model Description

The traditional architecture for software correlators is mainly
based on S data nodes (or S groups of P nodes if data reading is
parallelized) sending data to N computation nodes, which after
processing send the results to the collection node, as depicted in
Figure 2.

According to the two basic types of load introduced
previously (traffic and computation), we model the system
using a network model with queues representing throughput
limits inherent to certain parts of the system due to traffic
(network interface limits, disk drive reading limits, etc.) and
computation (data decoding, delay correction, DFT computa-
tion, etc.), as shown in Figure 3. Triangles are used to represent
scaling factors between O and some positive real number,
modeling traffic variations due to data stream splitting,
gathering, and data expansion and reduction operations.

The tasks described in Section 2.1 are to be allocated to the
multicore nodes of the cluster. Each of these nodes (as assumed
in Comment 1) runs one single task per node but parallelizes its
execution on the available processor cores. We start with data
distribution and describe the chain until collection. Each data
stream can be read through P tasks (assuming that recorded
data for a single telescope is partitioned into P parts). Each of
these tasks reads from disk (or playback system) at a rate Ry
(hard disk reading rate or playback rate), so that the data
distribution limit due to data reading is:

R < PRy. (1

Each of these data distribution tasks sends the data to the
processing nodes through the network interface, and will duplicate
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Figure 3. Performance model for a VLBI software correlator. Queues represent throughput limits in different parts of the system; triangles introduce multiplicative
scaling factors to account for traffic splitting, gathering, expansion, or reduction. The rate Ry represents the maximum rate for data reading, Ry is the maximum rate for
the network interface, Rt is the maximum rate for station-based computations, Rx the maximum rate for baseline-based computations, and Ry} the maximum rate for
results writing. These rates are associated with the main limits of the software correlator represented at the bottom of the figure. The scaling factors St and G are
associated with the selected parallelization strategy, P with the partitioning of the input data; N, is the number of effective nodes limited by splitting, S the number of
stations, k. the number of cores per node; F. is associated with the expansion of coarsely sampled values into floating point precision, and F, with the reduction due to

the accumulation of results.

data if By < B. From Comment 2, the traffic outgoing from each
station scales by a factor of G. Taking into account the two cases
introduced in Section 2.1, for generality we approximate Gt as
follows:

51
Sp— 1
Therefore, taking into account the partitioning and the limit

on the network interface, Ry, we have that:

P

R < —R. 3)
T

Gr 2<Sr<S. @)

Parallelization of the processing can be achieved by splitting
the data streams into time intervals and channels, and assigning
different splits to different processing tasks. It is easy to see that
all the traffic outgoing from data distribution tasks equals all
the incoming traffic to the processing tasks. Note that the
number of effective correlation nodes, N, is limited by the
nodes available for processing in the cluster but also by the
splitting strategy as N, = min{N, WB/(WyBt)}, where N is
the number of nodes (available for processing) in the cluster
and Wr is the fraction of W associated with each task, so that
for the two cases considered:

{W/WL Bt = B,

N: < 4
BW/Wr, By = 1. @

Therefore, although reducing the number of stations per task
increases traffic, it also increases scalability, and thus different
scenarios may call for different strategies. This motivates
further work on flexible parallelization strategies.

The data distribution limit can be obtained by comparing the
data outgoing from the stations (the rate R scaled by a factor
Gr, as explained above, multiplied by the number of stations S)
with that incoming to the processing nodes (at most the
network rate Ry times the number of effective processing nodes
N.), that is, RGtS < N.Ry, and therefore:

R< e g )
GtS

Each processing task involves station-based (e.g., DFT and
delay correction) and baseline-based (e.g., multiply-accumulate)

processing. Note that processing is generally done at a higher
precision than sampling, so that a factor F, is introduced to
account for this extension, which is roughly the precision of the
processing over the bit-depth of the stream. Let Rgr be the
maximum station-based throughput for a single station per
processor core and Ry, the baseline-based processing rate for a
single baseline per processor core. Note that the processing at each
core is done sequentially for each of the St stations and Br
baselines, respectively, so that these computation rates represent
the maximum data rate of each iteration of the (station or baseline-
based) processing loop at each core.

From the limits (3) and (4) and assuming computations are
distributed among the processors, we obtain the station-based
and baseline-based computation limits:

R < NCkC RFT’ (6)
GrS F,
Neke

R < Rxa. 7
Sp XA (7N

The output rate of each correlation node is divided
(compared to the input) by a factor F. which is roughly the
number of DFT windows per accumulation period. This
reduction will be higher if there is averaging (reduction of the
number of coefficients in the resulting spectrum) after the
sub-integration in the correlation nodes, so, except for very
specific cases, we can obviate this limit.

These limits (1-7) correspond to those informally reported
by previous literature as /0 (1), network (3-5), station-based
processing (6), and baseline-based processing (7). (These last
two are also often grouped together as CPU or computation.)
Table 1 defines all the symbols used in previous sections.

The objective of this performance model is to establish a
basic framework to support formal reasoning about these
limits: on how to improve them in cases where they are
bottlenecks, and to leverage them to optimize resources for
cost-effective processing.
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Table 1
Symbols Used in this Document
Symbol Description
B Number of baselines
Bt Number of baselines per computation task
D, Total data for station 1
F. Reduction in traffic associated with accumulations, roughly

number of FFTs per accumulation window (depends on accumu-
lation window and FFT size)
F. Ratio between the bit depths used in computation and in recording
(recording rate is usually a small fraction, and therefore the
unpacking implies an increase in traffic in the system)

Gr Increase in traffic due to the having By < B
k Number of cores per machine
ke Number of effective cores per machine (cannot be higher than &,
limited by computation parallelization)
N Number of computation nodes
N. Number of effective computation nodes (cannot be higher than N,
limited by data partitioning/computation parallelization)
P Number of data blocks per station (in case input data is partitioned)
R Throughput (correlator performance, total data rate for one station
divided by total execution time)
R, Datarate of recorded signal for station 1
Rer Maximum station-based throughput for a single station
per machine core (depends on the FFT size and the processor
performance)
Ry Playback data rate (hard disk read rate)
Ry Network bandwidth
Ry Results writing data rate (hard disk write rate)
Rxa Maximum baseline-based throughput for a single station per
machine core (depends on the FFT size and the processor
performance)
S Number of stations
St Number of stations corresponding to By
T, Signal duration time for station 1
T. Correlation time
w Number of channels times the number of sub-accumulation
windows
Wr Fraction of Wy associated to each computation task

2.5. Regarding Cluster, Experiment, and Implementation
of Specific Parameters of the Model

The rates Ry and Ry and the number of processors per node k.
can be obtained from the cluster specifications. The number of
effective correlation nodes, N,, is the minimum of the number of
nodes available in the cluster and the number of processing tasks
(that is, depends on the splitting strategy), as in Equation (4).

The rates Rrr and Rxa can be estimated through profiling. For
the typical case St=1S, Rgr can be obtained by assuming in
Equation (6) that R is roughly the input data D, over the total time
spent in station-based processing for a single core; and Rx can be
obtained similarly in Equation (7) by considering the total time
spent in baseline-based processing, again for a single core.

The number of stations S (and baselines B) depends on each
specific experiment. The factor F. is the precision for operations
(64 or 128 bits for floating-point complex) over the number of bits
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per sample (from 1 to 32 Whitney et al. 2009), and the factor F is
roughly the number of DFT windows per accumulation period, as
previously noted.

The number of baselines per task Bt depends on the
implementation. Regarding the parallelization strategy, an estima-
tion for the factor Gt has been provided in Equation (2).

2.6. Limitations of the Model

There are some limitations to be considered due to the
assumptions made in order to provide a simple but insightful
model, which we describe in this section.

Note that we provided approximations for some of the
parameters for the sake of simplicity. As an example, the
operational intensity of Rgr depends on the size of the DFT, and
although the model has been simplified so that Rgr and Ry, are
independent of the number of stations, different implementations
will involve different data memory schemes which could be
affected by the number of stations. Although previous literature
Clark et al. (2011) has addressed this topic, this level of detail
would overcomplicate this document, and therefore further details
like the relations between these computation rates and roofline
models Williams et al. (2009) of the machines hosting the
processing nodes are left as future work.

Polarizations have not been taken into account, but
depending on the experiment they can be easily introduced in
the model by simply considering them as stations or as an
increase in the input data size, depending on whether cross-
polarization correlations are required for the experiment.
Regarding autocorrelations, they only affect the baseline-based
processing, and they can be taken into account simply by
replacing B with (B 4 S) in Equation (7).

As previously noted, this model does not consider
inefficiencies due to the implementation, so the bounds
provided in Section 2.4 can be considered as the best-case
performance that can be provided by the system. Considering
actual benchmarks, at least two components can be expected to
reduce those limits: (i) some rate reduction due to fixed
overheads (e.g., data decoding) and (ii) some reduction that
increases with the number of nodes N due to variable overhead
(e.g., due to coordination of tasks).

3. Validation of the Model

In this section, we compare results from existing literature
with the estimations that the model yields based on the reported
configuration, providing a first step in assessing the utility of
the presented model.

3.1. Scalability Benchmarking

Scalability benchmarking in software correlators usually
reduces to measuring throughput in two-dimensions: number of
stations S, and number of correlation nodes N. Here, we consider
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Limits station/baseline-based processing (6,7
R \ \ \ \
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Limit data streaming (3)
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Figure 4. Performance regions in a scalability benchmarking plot showing
throughput, R, vs. the number of stations, S. As the number of nodes in the
cluster increases (curves from light-red toward dark-red), the computation
limits rise. Once the splitting limit is reached, depending on the number of
stations, throughput may be limited by I/O or by splitting.

only the case where each processing task processes all the
baselines (Br = B), which is the approach taken by widely used
correlators like DiFX Deller et al. (2007), SFEXC Keimpema et al.
(2015), or the CHIME correlator Recnik et al. (2015).

We provide in Figures 4 and 5 simple graphic representations
to show how these limits relate to the scalability benchmarks,
showing the three regions corresponding to the main limits
described in Section 2.4: I/O [Equation (1)], computation
[Equations (6), and (7)] and splitting [if N > N,, Equation (4)].
For illustrative purposes, we consider a typical case where the
reading rate dominates the data streaming rate (Ry < Ry), and the
computation rates (6) and (7) dominate the data distribution rate,
Equation (5), so that we can dismiss network limits in these
representations.

Benchmarking could also be represented in three-dimen-
sions, with the x-coordinate being the number of stations S, the
y-coordinate the number of computation nodes N, and the
z-coordinate measured performance R; then, a benchmarking
graph would correspond to a plane (either varying S with fixed
N, like in Figure 4, or vice-versa, like in Figure 5).

3.2. Estimation of the Computation Rates

Although available benchmarking reports (see list in
Section 1) usually provide some details regarding the
specifications of the hardware running the correlator, to the
best of our knowledge very few of them provide profiling
information with timing results for their code.

Reference Wagner & Ritakari (2007) provides timing
information for the DiFX correlator (for a DFT size of 1024),
reporting 21 s spent in the routine corresponding to the station
and baseline-based processing in the correlation node (out of
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Figure 5. Performance regions in a scalability benchmarking plot showing
throughput, R, vs. the number of nodes, N. As the number of stations increases
(curves from light-blue toward dark-blue), the slope of the computation limit
decreases. Note that if performance is limited by splitting, naive solutions like
increasing the rates of the playback units, disks, or network interfaces will not
increase throughput.

49 s total execution time from the list in Wagner & Ritakari
(2007), page 8) for an input data of 160 MB (corresponding to
4 stations with 40 MB per station) for a single-core Intel
Pentium 4 at 3.0 GHz. Following the method presented in
Section 2.5, the rate 160 MB / 21 s would correspond in the
model (Figure 3) to the rate measured just before the scaling-
block F. and, therefore, Rpr/F.~0.059 Gbps. For an Intel
Dual Core a total execution time of 15s is reported, which,
assuming linear scaling, would correspond to Rgr/F. = 0.097
Gbps for a single core. We take the average of both values as a
rough estimation for the computation rate, and thus we assume
that Rgr/F. ~ 0.08 Gbps.

However, it has been shown that this limit is strongly
dependent on the size of the DFT, and it can drop by a factor of
10 for very long sizes Van Straten & Bailes (2011). If we
consider another scenario Gill et al. (2019) with a DFT of
262144, and solve Equation (6) for Rgr/F. with S=2, we
obtain a best-case value that is one-fourth of the original,
Rpt/Fe~0.02. As the number of stations increases, baseline-
based processing becomes more limiting than station-based
processing (Gill et al. 2019 indicate that “the nonlinear term
begins to dominate at large S with a crossover point at § ~ 11”).
Therefore, for this case, we estimate Ry, in a similar way
solving Equation (7) for § = 20.

The DFT size (or the number of spectral channels in the
visibilities) depends on the experiment; as an example, whereas
VGOS Barrett et al. (2019) uses only 128 channels, the EHT
Gill et al. (2019) may have as many as 262144. We will use the
initially computed rate Rgy/F.~0.08 Gbps in all the
comparisons that we present in the following section, except
for the last two results (Figures 8 and 11, that employ the
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longer DFT size, 262144), where we will assume the reduced
rate Rgr/F. ~0.02.

A more precise characterization of these rates would provide
more accurate bounds, but such characterization is left as
future work.

3.3. Results for the Distributed FX Correlator (DiFX)

The Swinburne University of Technology’s DiFX correlator
Deller et al. (2007); DiFX Software Code (2016) is a widely
used software correlator for VLBI. This system, written in
C++, was initially devised to run on a commodity-computer
cluster (a.k.a Beowulf cluster) with the Message Passing
Interface (MPI) Barney (2015), and using highly-optimized-
processor, proprietary libraries for vector calculations. Its
architecture is defined by four kinds of entities that correspond
to the tasks described in Section 2.1, except that the control and
collection are performed at the same node. In this section, we
will compare the results presented in Deller & Brisken (2009);
Morgan (2010); Phillips (2009); Wu (2015) and Gill et al.
(2019) with the bounds estimated from the model.

Results in Deller & Brisken (2009) are for a cluster of 5 nodes,
each with two octa-core processors (in total 80 computer
processing units) connected through Gigabit Ethernet, so that
we assume N, =5, k.= 16 and Ry =1 Gbps. Figure 2 in Deller
& Brisken (2009) shows the ratio between correlated time and
observe time. From Section 2.3 it is easy to see that throughput
can be computed as the product of the stream rate and the inverse
of that ratio. Note that Deller & Brisken (2009) shows a boundary
attributed to the capacity of the network interconnection. We use
the estimate Rgr/F. = 0.08 Gbps from Section 3.2 given that this
parameter is not available in the reference. We plot these results in
Figure 6 along with the theoretical bounds estimated from the
model. As described in previous sections, the curves with the
lowest values define the limits for performance. In this case, the
data streaming limit (output network interface of the data
distribution nodes) limits performance until roughly S=4
stations, where this limit intersects the data distribution limit;
and for more stations, performance drops under this curve, limited
by the input network interfaces of the processing nodes.

Reference Phillips (2009) presents benchmarking results
varying the number of nodes for different numbers of cores for
S=06. We take the results for k. =8, assume a network of
Ry =1 Gbps, and use the same estimate for the computation
rate as in the previous case. We plot these results with the
estimated bounds from the model in Figure 9. The model
predicts that performance increases linearly with the number of
nodes N (limited by station-based processing) and stops scaling
where the station-based processing and the data streaming
limits cut, at roughly N=9, remaining constant for higher
values of N (limited by the data streaming limit).

We follow the same procedure for the results presented in
Wu (2015) and Morgan (2010), and display their results along
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Figure 6. Comparison of benchmarking results for DiFX presented in Deller &
Brisken (2009) in 2009 with the throughput boundaries estimated with the
model.

with the estimated bounds from the model in Figures 7 and 10
respectively. For Wu (2015) we consider N, =20, k.= 10
(number of cores reported in Intel® Xeon® Processor 2015 for
the processor used in Wu 2015) and for Morgan (2010) we take
the results for S =4 for their 10 Gbps interconnected cluster
(k. =8 and Ry = 10 Gbps from Morgan 2010). In both cases
the model shows that performance is limited by station-based
processing, that is the lowest curve visible in the plotted
sections, and the available data does not allow for the
observation of intersections with other limits. The differences
between the model’s estimations and the measurements could
be related to the selected station-based computation rate (the
same value estimated in Section 3.2 is applied to Figures 6—-10).
The most recent benchmark presented in this paper for DiFX
is taken from Gill et al. (2019). In that study they consider
laboratory-generated data for a number of stations that ranges
between 2 and 20, testing vertical scaling (increasing the
number of virtual cores for a single machine) between 16 and
96 in the cloud (Google GCP Google 2022). The network has a
limit of Ry = 6 Gbps, since there is only one machine we have
that N=1, and we show the results for k.= 16, with the
number of stations (S) varying between 2 and 5. This
experiment considers two polarizations for each station, so as
explained in Section 2.5 this is equivalent to considering twice
the number of stations for computing the limits. Again in this
case performance is limited by station-based processing (the
lowest curve) and the model predicts a stronger drop in
performance at roughly S =12, where the theoretical station
and baseline-based limits intersect, although in this case, the
measured performance drops a bit earlier at roughly S = 10.

3.4. Results for CorrelX on Spark (CXS)

MIT Haystack’s CorrelX MIT Haystack (2016), and the
recent fork CXS338 Vidzquez (2021), are alpha version
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Figure 7. Comparison of benchmarking results for DiFX presented in Wu
(2015) in 2015 with the throughput boundaries estimated with the model.
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Figure 8. Comparison of benchmarking results for DiFX presented in Gill et al.
(2019) in 2019 with the throughput boundaries estimated with the model. In
this case the reduced station-based limit is considered due to the DFT size.

software correlators designed to run in cloud environments,
specifically the Apache ecosystem: CorrelX on Hadoop Apache
(2022), and CXS on Spark Apache (2022). Both correlators are
written in Python, and released under an MIT license. Unlike
DiFX, these correlators do not require a careful configuration of
the topology of the system since the load is distributed among
the available nodes by the parallelization framework. Relying
on the framework simplifies the planning of the cluster, and
will allow the system to scale horizontally much more easily,
but it could also decrease performance, and this could be
challenging for the presented model.

Given that CXS has not yet undergone meaningful performance
optimization, one expects lower performance than with DiFX. It
was recently reported to run at about one-fourth of the speed
reached by DiFX for a recent experiment Vazquez (2021). Based
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Figure 9. Comparison of benchmarking results for DiFX presented in Phillips
(2009) in 2009 with the throughput boundaries estimated with the model.
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Figure 10. Comparison of benchmarking results for DiFX presented in Morgan
(2010) in 2010 with the throughput boundaries estimated with the model.

on this, we will assume that for the results that we show for CXS,
the station-based limit will be determined by one-fourth of the rate
Rgr/F, considered for DiFX in the previous section (Figure 8).
Reference Vazquez (2021) (Section 5.5.3) presents benchmarking
results running on the cloud (Amazon EMR Amazon Web
Services 2022) on machines (N, between 1 and 8) with k. =2
cores, with data that follows the description of the data set used in
Gill et al. (2019) but with a reduction in size (described in Section
5.5.1 in Vazquez 2021). As for the results in Figure 8, the number
of stations S=2 was adjusted to 4 to account for the dual-
polarizations. We show the results in Figure 11, where besides the
station-based limit displayed in other figures (with Rgy/F. =~ 0.02),
we also show the reduced station-based limit (Rgr/F. = 0.005). In
this case again, performance is limited by station-based processing,
and it is interesting to note that there is a performance plateau
starting at 7 nodes. This is because, unlike DiFX, CXS does not
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Figure 11. Comparison of benchmarking results for CXS presented in Vazquez
(2021) in 2021 with the throughput boundaries estimated with the model. In
this case, the reduced station-based limit is considered due to the DFT size.

incorporate yet the ability to perform sub-accumulation-window
calculations Vazquez (2021) (Section 7.2), and therefore perfor-
mance scales in a stepped way following the inverse of the ceiling
function of the ratio between the number of tasks and the total
number of cores (as described in Vazquez 2021 Section 5.5.3).

The reasons to add CXS into the comparison, despite this
difference in performance and the limited results available, are
twofold: (i) the potential of the project, written in a high-level
popular language such as Python and running on a popular cloud
framework that natively exploits cloud-based parallelization
systems and (ii) the architecture of the system, focused on
simplicity and scalability (correlation is performed in two stages
with batches of tasks distributed on all the available computation
infrastructure as opposed to “streaming” correlators that follow
more strictly the architecture presented in Figure 2). This last
reason is especially interesting, as this shows that the model is
valid for different correlator architectures.

3.5. Discussion

In the previous two subsections, we have presented multiple
examples with benchmarking results from existing literature,
and have compared measured and predicted performance with
the model presented in this paper (Figures 6-11). In all the
studied cases the model correctly reproduced the shape of the
performance curve and shed light on the performance bottle-
neck that applied in each case.

We have shown that the model fits the measurements despite
the variability of experiment configurations, for a reference
correlator widely used by the radio astronomy community
(Figures 6-10). We added a comparison with an alternative
alpha-version correlator with lower performance, showing that
the model supports performance comparisons between different
correlators (Figures 8 and 11). Using this model and adjusting
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parameters appropriately, it is anticipated that performance
comparison for different correlators based on different under-
lying technologies and architectures, and with different
experiment configurations, will be possible at low cost.
Further work will help in characterizing the model
parameters for specific correlators. This modeling approach
represents a step forward beyond the existing literature on
performance benchmarking, traditionally limited to curve
fitting (finding the transition in computation limits) and
conjecturing (trying to explain performance regions).

4. Application Example: Bottleneck Identification and
Cost Optimization

In this section, we provide an example to show the
applicability of the model with two objectives: (i) identifying
the performance bottleneck of the system and (ii) optimizing
the cost of a cloud correlation.

We will consider the scenario corresponding to the bench-
mark shown in Figure 9, taken from Deller & Brisken (2009),
but with four different variations changing the number of
stations S, the number of nodes &, and the number of cores per
node k.. This is shown in Figure 12, where we show the data
rate at all parts of the correlator. In this representation, the
scaling factors (triangles) define the load distribution, and the
throughput limits (queues) define the headroom for this
distribution. As explained previously, performance is measured
at the input of the system (first column in the diagram). For
these scenarios, the limits defined by the queues will be
constant but the slopes defined by the scaling factors will
change, as explained in previous sections.

Starting with the scenario S=4, N=35, and k. =8 and
duplicating the number of stations (switching from the gray to
the green distributions of loads) switches the system from being
limited by data-streaming to be limited by data-distribution (as
shown in Figure 9).

Now let us consider a case with more stations and higher
capacity machines: S=64, N=38, and k.= 32, represented in
Figure 12 in blue. In this case, performance is limited by baseline-
based processing. If at this point we continue to increase the
number of nodes, for example multiplying it by 8x (red curve in
Figure 12), this switches this limit to data-collection; at this point
the collection node’s input network is saturated.

It is easy to see for this last case that it is possible to reach the
same performance with a smaller number of nodes. This reduction
would imply a variation in the slopes of the fifth and thirteenth
sections of the throughput representation in Figure 12 (scaling
factors that depend on N, joining the data distribution, processing,
and collection blocks) until the system reaches the previous limit.
Although not represented in the graph, roughly halving the
number of nodes (setting N, = 28) transitions the system to be
limited by baseline-based processing, keeping the same through-
put but using only part of the available computing resources.
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Figure 12. Representation of the throughput (bottom plot) at different parts of the correlator (top plot), where the bounds obtained from the model (1-7) are displayed
as dashed lines following the same order as in the legend. The throughput R of the system corresponds to the value in the first column of the graph. The model
representation from Figure 3 is repeated on top of this figure for easy identification of the different parts of the correlator in the graph. The graph (bottom plot)

corresponds to a scenario similar to the one presented in Figure 9 with four different variations: (i) S = 4 stations, N = 5 nodes and k. =

16 cores in gray —limited by

data streaming—, (ii) a case that duplicates the number of stations (S) in green —limited by data distribution—, (iii) a case with S = 64 stations, N = 8 nodes and k. = 32
cores in blue —limited by baseline-based processing—, and another case (iv) that multiplies by 8x the number of nodes in red —limited by data collection—. This figure
has been generated using a simple implementation of the performance model equations described in Section 2.4 and illustrates how the headroom in each part of the

correlator can be represented visually.

This problem is relevant both to local and cloud-based
cluster environments, where cost is generally a concern Gill
et al. (2019), and it could be the case that depending on the type
of experiment to be processed, a cluster composed of low-
performance machines is able to do the job in the same time,
for a lower price. In this case, the model could be used to find
the machines with the lowest specifications that support the
desired processing rate.

Referring back to the variability in correlator architectures
introduced at the end of Section 3.4, it is worth noting that
commercial cloud infrastructure pricing varies with the type
of service, and the pricing for Elastic MapReduce (EMR)
services (specifically for Apache Spark) is roughly one-fourth
of those for the general purpose machines (EC2) Amazon
Web Services (2022). The EMR service supports running
correlators like CXS338, and even if an optimized version of
CXS338 has inherently lower performance than the standard
(Section 3.4), it is likely to be lower in cost due to the
reduction in cost per machine, resulting in a better
performance-cost ratio.

These simple examples show that, in practical scenarios,
deep knowledge of the performance of the correlator allows the
system designers and operators to make better decisions about
the sizing of the cluster and tuning of the correlator, therefore
allowing them to optimize processing times for higher
performance and better cost-effectiveness.

5. Conclusion

We have presented the first formal performance character-
ization of radio astronomy correlators. Although we have
focused on software correlators running on CPU clusters, this

modeling approach is readily extensible to correlators that use
hardware accelerators like FPGAs and GPUs as long as they
follow a similar processing architecture. This work represents a
step forward beyond conventional wisdom and informal
reasoning from previous literature.

We have tested the model with a widely used software
correlator from the VLBI community, and an alpha version of a
recently released cloud correlator, by comparing benchmarking
results from previous literature with the throughput limits
estimated by the model, showing promising results with only a
few parameters to feed the model. The model has been kept
simple enough to be insightful, so that bottlenecks along the
system can be identified without the need for extensive
benchmarking. Compared to previous work, the model
provides estimates of performance and scalability for the
general case, rather than reducing the results to the specific
benchmarked scenarios.

We have also shown the importance of performance modeling
for better cluster/cloud planning and cost-effectiveness,
presenting an example of how to use the model to understand
performance bottlenecks for different configurations.

We consider this work as the first steps in modeling software
correlators in radio astronomy, which we believe will help to
improve current systems, but also will provide better architectures
and designs for the next-generation systems.
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