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Abstract

Correlation for radio interferometer array applications, including Very Long Baseline Interferometry (VLBI), is a

multidisciplinary field that traditionally involves astronomy, geodesy, signal processing, and electronic design. In

recent years, however, high-performance computing has been taking over electronic design, complicating this mix

with the addition of network engineering, parallel programming, and resource scheduling, among others. High-

performance applications go a step further by using specialized hardware like Graphics Processing Units (GPUs) or

Field Programmable Gate Arrays (FPGAs), challenging engineers to build and maintain high-performance

correlators that efficiently use the available resources. Existing literature has generally benchmarked correlators

through narrow comparisons on specific scenarios, and the lack of a formal performance characterization prevents

a systematic comparison. This combination of ongoing increasing complexity in software correlation together with

the lack of performance models in the literature motivates the development of a performance model that allows us

not only to characterize existing correlators and predict their performance in different scenarios but, more

importantly, to provide an understanding of the trade-offs inherent to the decisions associated with their design. In

this paper, we present a model that achieves both objectives. We validate this model against benchmarking results

in the literature, and provide an example for its application for improving cost-effectiveness in the usage of cloud

resources.

Unified Astronomy Thesaurus concepts: Theoretical models (2107); Astronomy software (1855); Interferometric

correlation (807); Radio astronomy (1338); Radio interferometry (1346); Distributed computing (1971)

1. Introduction

Radio Interferometry for astronomy and geodesy Thompson

et al. (2017) is a radio technique that combines signals received

with many telescopes in a computational fashion, enabling

observations with high angular resolution and delay measurement

precision. High resolution is achieved by using a set of sparsely

distributed radio-telescopes, or “stations”, pointing at the same

distant radio source and combining them to form a “virtual”

telescope that provides an angular resolution equivalent to that of

a dish with a diameter equal to the maximum separation of

telescopes. Each telescope acquires digitally sampled complex

voltage signals with picosecond precision (obtained by atomic

clocks); these data streams that are typically several to tens of

gigabits per second (Gbps) are then ingested into a correlator to

perform a Fourier-transformation and cross-multiplication among

all the pairs of telescopes, followed by accumulation (summing)

of the results over an interval of time known as the “accumulation

period” Thompson et al. (2017). The noise portions of the signals

from each of these widely separated telescopes are uncorrelated,

and their complex product averages to zero. But since all the

telescopes are looking in the same direction, signals from a

compact, discrete radio source on the sky are correlated, and

average to a non-zero quantity. This is an interferometric fringe

pattern, whose amplitude and phase (known as the fringe

visibility) are measured using the correlation processing that is

the topic of this paper.

Radio interferometry applications, including VLBI, are numer-

ous and include astronomy, where scientists are interested in

imaging natural radio sources through sampling of large numbers

of spatially independent interferometric visibilities as the Earth

rotates. Another major application is geodesy, where regular

observations of distant quasars allow for millimeter-level determi-

nation of the Earth’s orientation and movement in space through

precise measurements of the relative delays of the signals received

at each telescope.

The computation-intensive signal correlation process has

been traditionally executed by dedicated hardware correlators,
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and more recently with the advent of high-performance

computing by software running in the cloud or on computer

clusters. The most important advantage of software correlation

is scalability, which is the ability to increase performance by

simply increasing the number of resources available to the

correlator. Achieving scalability is not trivial however due to

the multidimensional complexity of the correlation problem,

which includes at least: stations, channels, and signal duration.

For the sake of simplicity, in a worst-case scenario, we can

assume that the computations in the correlation problem grow

quadratically with the number of stations (that is, all the pairs

of stations) and linearly with the channels and duration of the

signal. (We will provide further detail in Section 2.1).

Different applications have different requirements not only

in terms of performance but also of scalability: the VLBI

Global Observing System (VGOS) mission plans on perform-

ing observations with 40 stations at 32 Gbps Niell et al. (2005),

the Event Horizon Telescope (EHT) with 11 stations already

(and more to come) at 64 Gbps Goddi et al. (2019), the Low

Frequency Array (LOFAR) with 40 stations at 6 Gbps

Broekema (2018) (initially using a dedicated correlator devised

to run on IBM Blue Gene machines, currently running on a

GPU-based correlator), and the Canadian Hydrogen Intensity

Mapping Experiment (CHIME) Pathfinder with 256 stations

at 3 Gbps Recnik et al. (2015) (using a dedicated correlator

based on GPUs). For such applications, there are choices to be

made for correlator cluster hardware (dedicated or cloud-based,

processor architectures, interconnects, etc.) and the software

that runs on that hardware. These choices can have major

implications for the tradeoff between cost and performance.

The wide range of instrumental configurations leads to some

questions: How can the performance of different correlators be

compared? Does doubling the size of the cluster double the

obtainable performance for a given scenario? How does this

depend on the software architecture and implementation? Can

existing software be made to run efficiently for specific target

configurations? Whether or not to reuse existing software or

develop new code is an important decision with significant cost

implications. This question is faced by astronomy and geodesy

projects and facilities during early development stages. The

literature available to such projects is mostly limited to specific

benchmarking (Deller et al. (2007), Keimpema et al. (2015),

Deller et al. (2011), Deller & Brisken (2009), Bertarini et al.

(2012), Brisken (2007), CSIROʼs Australia Telescope National

Facility (2009), Kettenis et al. (2009), Morgan (2008), Morgan

(2010), Phillips (2009), Stagni & Nanni (2013), Wu (2015), Gill

et al. (2019), Vázquez (2021)). Although some references Brisken

(2007), D’Addario (2001), Brisken & Deller (2007), provide

computation bounds and others Recnik et al. (2015); Wagner &

Ritakari (2007) detail the data flow rates through different parts of

the correlator, the lack of a systematic approach makes it difficult

to draw general conclusions relevant to diverse project circum-

stances. Consequently, approaching performance modeling for

software correlators from a formal perspective is beneficial, not

only in the process of decision-making for the projects, but also in

the process of designing the correlators due to their inherent

complexity.

This document is organized as follows. In Section 2, we

describe in detail the development of the performance model.

In Section 3, we provide a preliminary validation of the model

against benchmarking results from previous literature. In

Section 4, we provide an application example of the model

for the identification of performance bottlenecks and optim-

ization of resources in a correlator. In Section 5, we summarize

the conclusions of this work.

2. Headroom Model

Traditionally, the evaluation of high-performance systems

has been done through benchmarking. However, considering

software correlators for VLBI specifically, there is a broad

range of scenarios associated with different projects, and the

configuration of clusters hosting these correlators. This makes

the standardization of benchmarking in software correlation a

formidable task with an impractically large parameter space to

cover.

On the other hand, bound-and-bottleneck models have proven

to be useful in the high-level characterization of performance in

the parallel-computing community for identifying bottlenecks in

software running on multicore architectures Williams et al. (2009).

These models, rather than providing a highly detailed character-

ization for specific cases, instead aim for a simple characterization

of performance bounds to provide designers with useful insight on

the limits and dependencies of the system.

In this work, we follow a hybrid approach that (i) leverages the

general architecture of these correlators to develop a formal

performance model and (ii) uses benchmarking to estimate certain

parameters that are specific to each correlator. Our approach

thereby minimizes benchmarking, while providing deeper insight

into the tradeoffs inherent to the design of these correlators

through a formal theoretical model. This allows us to estimate

actual performance results since it uses measured rates associated

with the cluster where the correlation software is running. We call

this model a “headroom” model (a term taken from audio signal

processing) since it allows one to calculate the limiting rates for

data flow at each part of the system as well as estimate the level of

saturation at each of them.

2.1. A Quick Introduction to Software Correlators

Independently of the architecture and implementation, there

are four main tasks to be performed by every correlator (e.g.,

Recnik et al. 2015; Deller et al. 2007; Keimpema et al. 2015,

Figure 1): (i) control or coordination of the correlation process,

(ii) data distribution or management and distribution of the

data into the nodes that will process it, (iii) processing or

correlation of the distributed data, and (iv) collection or
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gathering and combination of all the results into output files

suitable for further reduction and analysis.

Taking into account the high-performance computing approach,

we first provide an informal description of the requirements for

these tasks, which we will later develop formally. Since these

tasks will be executed on a computer cluster, we will be talking

about (i) traffic (associated with the throughput at the network

interfaces) and (ii) computation (associated with operations done

in the processors).

The control task involves both light traffic and computation

loads, as it is generally associated with the processing and

distribution of metadata.

Data distribution usually involves both heavy traffic and

computation loads, in order to feed the rest of the chain with

multiple copies of each station data stream data as quickly as

possible. Note that in this document we generalize the radio

array architecture to include data recording and playback steps,

to logically separate telescope data acquisition and correlator

input data rates. This logical separation is manifested as a

physical one in the case of VLBI, historically a primary focus

area for software correlation.

Software correlators typically do FX-type correlation, as

described in Section 1, involving a Discrete Fourier Transform

(DFT) and then a multiply-accumulate operation Deller et al.

(2007); Keimpema et al. (2015), instead of the other way around

(i.e., XF-type correlation). (A detailed comparison of both

processing types can be found in Thompson et al. 2017). Either

way, these operations are demanding both in terms of traffic and

computation. Note that how data is distributed will define a trade-

off between these demands, as we will show later.

Finally, collection often involves light traffic and computa-

tion loads, since even though results may be combined from

many processing tasks, the fact that results are accumulated

(into accumulation periods) during processing provides a large

reduction in data rates. Collection can, however, become a

bottleneck for cases where there are large numbers of stations,

or when a wide field of view needs to be preserved, which

limits the averaging that can be performed. We show the data

flow among these tasks in Figure 1.

2.2. Scalability and Parallelization Strategies

Scalability is generally achieved through parallelization of

the data distribution and the processing tasks, yet designing a

correlator that is scalable is challenging due to the heavy traffic

and computation loads to be accommodated on the cluster.

These loads are inherent to the complexity of the correlation

problem, as we now describe.

Let S be the number of stations, and letW be the product of the

number of channels (or frequency bands) of each data stream and

the number of sub-accumulation periods. These sub-accumulation

periods are the divisions of the accumulation periods that are

distributed among the processing tasks. Each stream requires

some computation prior to being combined with other streams,

and each baseline (or pair of streams in this context) also has some

associated processing load. Then, we can assume that the

complexity of the correlation problem is of O((αS+ βB)W),

where B is the number of baselines computed as B= S(S− 1)/2,
and where α and β depend on the splitting strategies associated

with the architecture and implementation. (Lower-level details

including multiple polarizations and the computation of auto-

correlations are treated later in Section 2.5).

The challenge in the design of a software correlator is

breaking down this complexity into distribution and processing

tasks in a scalable way, requiring the selection of splitting and

parallelization strategies that allow for scalable performance.

Depending on how data is distributed and how processing tasks

are allocated, this complexity will affect traffic and computa-

tion loads in the nodes of the cluster.

The interrelation between traffic and computation load can also

be posed as an optimization problem. Consider a single sub-

accumulation period to be computed for all the baselines (or pairs

of stations). As we showed previously, there will be B processing

tasks per sub-accumulation period. In the context of mathematical

graph theory, it is then easy to see that we can represent these

tasks in a graph with one vertex per processing task, and one edge

between every pair of tasks that have a station in common, so that

the result will be an 2(S− 2)-regular graph (i.e., every vertex is

connected to 2(S− 2) vertices). Finding a splitting strategy would

be equivalent to finding a balanced partitioning of this graph into

subgraphs of BT nodes (representing sets of tasks to be distributed

among the computation nodes). Balanced graph partitioning is an

active area of research (see e.g., Andreev & Racke 2004; Pacut

et al. 2021), so for the sake of simplicity, we will consider the two

trivial cases: (i) BT= B (that is, each task does computations for

all the baselines and thus receives streams from S stations) and (ii)

BT= 1 (that is, each task does computations for 1 baseline, and

thus receives streams from 2 stations). The number 2(S− 2) can

be understood by looking at the correlation matrix, where rows

and columns represent stations, and elements of the matrix

baselines; then if we pick a baseline, the ones sharing stations with

it will be those in the same row plus those in the same column

Figure 1. Data flow in a software correlator. Data is read and distributed by the

data distribution tasks into the processing tasks, the results of which are then

gathered by the collection task. The whole process is managed by the control

task. Multiple blocks represent parallelization through multiple tasks. Blocks

represent the tasks, cylinders data and results, solid arrows data flow, and

dotted arrows control flow.
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minus the baseline itself and the auto-correlations (elements in the

main diagonal).

The implications of selecting among these splitting strategies

have not been formally addressed by previous literature, and

many correlators follow the first case approach (BT= B)

regardless of the architecture and implementation: DiFX Deller

et al. (2007), SFXC Keimpema et al. (2015), CHIME

Pathfinder correlator Recnik et al. (2015), CorrelX MIT

Haystack (2016), CXS338 Vázquez (2021), etc. This fact

underscores the need to provide a formal model to understand

such implications.

For further clarification, the next three comments describe

the assumptions of our headroom model:

Comment 1: We assume that each node (also computer or

machine) of the cluster runs only one task simultaneously. Note

that if we considered many data distribution tasks per node, the

level of parallelization would decrease (since a single network

interface would be shared among these tasks). We also dismiss

other approaches that involve grouping different tasks into the

same node, as this would overcomplicate this model. These

extensions are left as future work.

Comment 2: The parallelization for data distribution can be

achieved mostly by partitioning the data, but splitting the work

into processing tasks is not trivial. Given that the radio array

correlation problem generally requires the combination of all

the pairs of streams, selecting a parallelization strategy is

equivalent to partitioning a 2(S− 2)-regular graph where each

vertex represents a baseline and each edge a station, aiming to

minimize the number of duplicated stations between subgraphs.

We will model this partition through three interrelated

variables: ST the number of stations processed at each

processing task, BT the number of baselines processed at each

processing task (that is BT= ST(ST− 1)/2), and some factor

GT representing the increase in traffic due to the distribution of

data corresponding to the same station into different sub-

graphs (due to the overlap of vertices among them).

Comment 3: For the sake of simplicity, we will assume that

all the stations have visibility for the complete observation time

window. If this is not the case, the problem can be treated as

multiple separate correlations, each with a different duration

and number of stations S. More complex approaches are left as

future work.

2.3. Performance Metric

The first step to characterize performance is the selection of a

representative metric. We use throughput R, which represents the

amount of data processed per unit of time, for two reasons: (i) it is

directly comparable with performance metrics of cluster elements

(storage media, network interfaces, etc.), and (ii) it is the metric

widely used in the existing literature. This throughput or datarate

is calculated as R=D1/Tc with D1=R1T1, where R1 is the rate of

the processed data for one station, T1 is the recording duration of

this data, and Tc is the execution time of the correlation. That is,

the throughput of the whole system can be computed as the total

data to be processed for a single telescope over time for the

complete correlation. (Refer to Comment 3 for scenarios where

the data streams have different recording times.)

2.4. Model Description

The traditional architecture for software correlators is mainly

based on S data nodes (or S groups of P nodes if data reading is

parallelized) sending data to N computation nodes, which after

processing send the results to the collection node, as depicted in

Figure 2.

According to the two basic types of load introduced

previously (traffic and computation), we model the system

using a network model with queues representing throughput

limits inherent to certain parts of the system due to traffic

(network interface limits, disk drive reading limits, etc.) and

computation (data decoding, delay correction, DFT computa-

tion, etc.), as shown in Figure 3. Triangles are used to represent

scaling factors between 0 and some positive real number,

modeling traffic variations due to data stream splitting,

gathering, and data expansion and reduction operations.

The tasks described in Section 2.1 are to be allocated to the

multicore nodes of the cluster. Each of these nodes (as assumed

in Comment 1) runs one single task per node but parallelizes its

execution on the available processor cores. We start with data

distribution and describe the chain until collection. Each data

stream can be read through P tasks (assuming that recorded

data for a single telescope is partitioned into P parts). Each of

these tasks reads from disk (or playback system) at a rate RH

(hard disk reading rate or playback rate), so that the data

distribution limit due to data reading is:

( )R PR . 1H

Each of these data distribution tasks sends the data to the

processing nodes through the network interface, and will duplicate

Figure 2. Traditional architecture for VLBI correlators. Throughput R is

measured relative to the data for one station. The resulting file size will be

D1B/F, given an input file size of D1, and where F is the data reduction Fc/Fe.
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data if BT<B. From Comment 2, the traffic outgoing from each

station scales by a factor of GT. Taking into account the two cases

introduced in Section 2.1, for generality we approximate GT as

follows:

( )G
S

S
S S

1

1
, 2 . 2T

T

T

Therefore, taking into account the partitioning and the limit

on the network interface, RN, we have that:

( )R
P

G
R . 3

T

N

Parallelization of the processing can be achieved by splitting

the data streams into time intervals and channels, and assigning

different splits to different processing tasks. It is easy to see that

all the traffic outgoing from data distribution tasks equals all

the incoming traffic to the processing tasks. Note that the

number of effective correlation nodes, Nc, is limited by the

nodes available for processing in the cluster but also by the

splitting strategy as { ( )}N N WB W Bmin ,c T T , where N is

the number of nodes (available for processing) in the cluster

and WT is the fraction of W associated with each task, so that

for the two cases considered:

⎧⎨⎩ ( )N
W W B B

BW W B

, ,

, 1.
4c

T T

T T

Therefore, although reducing the number of stations per task

increases traffic, it also increases scalability, and thus different

scenarios may call for different strategies. This motivates

further work on flexible parallelization strategies.

The data distribution limit can be obtained by comparing the

data outgoing from the stations (the rate R scaled by a factor

GT, as explained above, multiplied by the number of stations S)

with that incoming to the processing nodes (at most the

network rate RN times the number of effective processing nodes

Nc), that is, RGTS� NcRN, and therefore:

( )R
N

G S
R . 5

c

T

N

Each processing task involves station-based (e.g., DFT and

delay correction) and baseline-based (e.g., multiply-accumulate)

processing. Note that processing is generally done at a higher

precision than sampling, so that a factor Fe is introduced to

account for this extension, which is roughly the precision of the

processing over the bit-depth of the stream. Let RFT be the

maximum station-based throughput for a single station per

processor core and RXA the baseline-based processing rate for a

single baseline per processor core. Note that the processing at each

core is done sequentially for each of the ST stations and BT
baselines, respectively, so that these computation rates represent

the maximum data rate of each iteration of the (station or baseline-

based) processing loop at each core.

From the limits (3) and (4) and assuming computations are

distributed among the processors, we obtain the station-based

and baseline-based computation limits:

( )R
N k

G S

R

F
, 6

c c

T

FT

e

( )R
N k

B
R

2
. 7

c c
XA

The output rate of each correlation node is divided

(compared to the input) by a factor Fc which is roughly the

number of DFT windows per accumulation period. This

reduction will be higher if there is averaging (reduction of the

number of coefficients in the resulting spectrum) after the

sub-integration in the correlation nodes, so, except for very

specific cases, we can obviate this limit.

These limits (1–7) correspond to those informally reported

by previous literature as I/O (1), network (3–5), station-based

processing (6), and baseline-based processing (7). (These last

two are also often grouped together as CPU or computation.)

Table 1 defines all the symbols used in previous sections.

The objective of this performance model is to establish a

basic framework to support formal reasoning about these

limits: on how to improve them in cases where they are

bottlenecks, and to leverage them to optimize resources for

cost-effective processing.

Figure 3. Performance model for a VLBI software correlator. Queues represent throughput limits in different parts of the system; triangles introduce multiplicative

scaling factors to account for traffic splitting, gathering, expansion, or reduction. The rate RH represents the maximum rate for data reading, RN is the maximum rate for

the network interface, RFT is the maximum rate for station-based computations, RXA the maximum rate for baseline-based computations, and RH
w the maximum rate for

results writing. These rates are associated with the main limits of the software correlator represented at the bottom of the figure. The scaling factors ST and GT are

associated with the selected parallelization strategy, P with the partitioning of the input data; Nc is the number of effective nodes limited by splitting, S the number of

stations, kc the number of cores per node; Fe is associated with the expansion of coarsely sampled values into floating point precision, and Fc with the reduction due to

the accumulation of results.
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2.5. Regarding Cluster, Experiment, and Implementation
of Specific Parameters of the Model

The rates RH and RN and the number of processors per node kc
can be obtained from the cluster specifications. The number of

effective correlation nodes, Nc, is the minimum of the number of

nodes available in the cluster and the number of processing tasks

(that is, depends on the splitting strategy), as in Equation (4).

The rates RFT and RXA can be estimated through profiling. For

the typical case ST= S, RFT can be obtained by assuming in

Equation (6) that R is roughly the input data D1 over the total time

spent in station-based processing for a single core; and RXA can be

obtained similarly in Equation (7) by considering the total time

spent in baseline-based processing, again for a single core.

The number of stations S (and baselines B) depends on each

specific experiment. The factor Fe is the precision for operations

(64 or 128 bits for floating-point complex) over the number of bits

per sample (from 1 to 32 Whitney et al. 2009), and the factor Fc is

roughly the number of DFT windows per accumulation period, as

previously noted.

The number of baselines per task BT depends on the

implementation. Regarding the parallelization strategy, an estima-

tion for the factor GT has been provided in Equation (2).

2.6. Limitations of the Model

There are some limitations to be considered due to the

assumptions made in order to provide a simple but insightful

model, which we describe in this section.

Note that we provided approximations for some of the

parameters for the sake of simplicity. As an example, the

operational intensity of RFT depends on the size of the DFT, and

although the model has been simplified so that RFT and RXA are

independent of the number of stations, different implementations

will involve different data memory schemes which could be

affected by the number of stations. Although previous literature

Clark et al. (2011) has addressed this topic, this level of detail

would overcomplicate this document, and therefore further details

like the relations between these computation rates and roofline

models Williams et al. (2009) of the machines hosting the

processing nodes are left as future work.

Polarizations have not been taken into account, but

depending on the experiment they can be easily introduced in

the model by simply considering them as stations or as an

increase in the input data size, depending on whether cross-

polarization correlations are required for the experiment.

Regarding autocorrelations, they only affect the baseline-based

processing, and they can be taken into account simply by

replacing B with (B+ S) in Equation (7).

As previously noted, this model does not consider

inefficiencies due to the implementation, so the bounds

provided in Section 2.4 can be considered as the best-case

performance that can be provided by the system. Considering

actual benchmarks, at least two components can be expected to

reduce those limits: (i) some rate reduction due to fixed

overheads (e.g., data decoding) and (ii) some reduction that

increases with the number of nodes N due to variable overhead

(e.g., due to coordination of tasks).

3. Validation of the Model

In this section, we compare results from existing literature

with the estimations that the model yields based on the reported

configuration, providing a first step in assessing the utility of

the presented model.

3.1. Scalability Benchmarking

Scalability benchmarking in software correlators usually

reduces to measuring throughput in two-dimensions: number of

stations S, and number of correlation nodes N. Here, we consider

Table 1

Symbols Used in this Document

Symbol Description

B Number of baselines

BT Number of baselines per computation task

D1 Total data for station 1

Fc Reduction in traffic associated with accumulations, roughly

number of FFTs per accumulation window (depends on accumu-

lation window and FFT size)

Fe Ratio between the bit depths used in computation and in recording

(recording rate is usually a small fraction, and therefore the

unpacking implies an increase in traffic in the system)

GT Increase in traffic due to the having BT < B

k Number of cores per machine

kc Number of effective cores per machine (cannot be higher than k,

limited by computation parallelization)

N Number of computation nodes

Nc Number of effective computation nodes (cannot be higher than N,

limited by data partitioning/computation parallelization)

P Number of data blocks per station (in case input data is partitioned)

R Throughput (correlator performance, total data rate for one station

divided by total execution time)

R1 Datarate of recorded signal for station 1

RFT Maximum station-based throughput for a single station

per machine core (depends on the FFT size and the processor

performance)

RH Playback data rate (hard disk read rate)

RN Network bandwidth

RW Results writing data rate (hard disk write rate)

RXA Maximum baseline-based throughput for a single station per

machine core (depends on the FFT size and the processor

performance)

S Number of stations

ST Number of stations corresponding to BT

T1 Signal duration time for station 1

Tc Correlation time

W Number of channels times the number of sub-accumulation

windows

WT Fraction of WT associated to each computation task
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only the case where each processing task processes all the

baselines (BT= B), which is the approach taken by widely used

correlators like DiFX Deller et al. (2007), SFXC Keimpema et al.

(2015), or the CHIME correlator Recnik et al. (2015).

We provide in Figures 4 and 5 simple graphic representations

to show how these limits relate to the scalability benchmarks,

showing the three regions corresponding to the main limits

described in Section 2.4: I/O [Equation (1)], computation

[Equations (6), and (7)] and splitting [if N� Nc, Equation (4)].

For illustrative purposes, we consider a typical case where the

reading rate dominates the data streaming rate (RH<RN), and the

computation rates (6) and (7) dominate the data distribution rate,

Equation (5), so that we can dismiss network limits in these

representations.

Benchmarking could also be represented in three-dimen-

sions, with the x-coordinate being the number of stations S, the

y-coordinate the number of computation nodes N, and the

z-coordinate measured performance R; then, a benchmarking

graph would correspond to a plane (either varying S with fixed

N, like in Figure 4, or vice-versa, like in Figure 5).

3.2. Estimation of the Computation Rates

Although available benchmarking reports (see list in

Section 1) usually provide some details regarding the

specifications of the hardware running the correlator, to the

best of our knowledge very few of them provide profiling

information with timing results for their code.

Reference Wagner & Ritakari (2007) provides timing

information for the DiFX correlator (for a DFT size of 1024),

reporting 21 s spent in the routine corresponding to the station

and baseline-based processing in the correlation node (out of

49 s total execution time from the list in Wagner & Ritakari

(2007), page 8) for an input data of 160MB (corresponding to

4 stations with 40MB per station) for a single-core Intel

Pentium 4 at 3.0 GHz. Following the method presented in

Section 2.5, the rate 160MB / 21 s would correspond in the

model (Figure 3) to the rate measured just before the scaling-

block Fe and, therefore, RFT/Fe≈ 0.059 Gbps. For an Intel

Dual Core a total execution time of 15 s is reported, which,

assuming linear scaling, would correspond to RFT/Fe≈ 0.097

Gbps for a single core. We take the average of both values as a

rough estimation for the computation rate, and thus we assume

that RFT/Fe≈ 0.08 Gbps.

However, it has been shown that this limit is strongly

dependent on the size of the DFT, and it can drop by a factor of

10 for very long sizes Van Straten & Bailes (2011). If we

consider another scenario Gill et al. (2019) with a DFT of

262144, and solve Equation (6) for RFT/Fe with S= 2, we

obtain a best-case value that is one-fourth of the original,

RFT/Fe≈ 0.02. As the number of stations increases, baseline-

based processing becomes more limiting than station-based

processing (Gill et al. 2019 indicate that “the nonlinear term

begins to dominate at large S with a crossover point at S≈ 11″).

Therefore, for this case, we estimate RXA in a similar way

solving Equation (7) for S= 20.

The DFT size (or the number of spectral channels in the

visibilities) depends on the experiment; as an example, whereas

VGOS Barrett et al. (2019) uses only 128 channels, the EHT

Gill et al. (2019) may have as many as 262144. We will use the

initially computed rate RFT/Fe≈ 0.08 Gbps in all the

comparisons that we present in the following section, except

for the last two results (Figures 8 and 11, that employ the

Figure 4. Performance regions in a scalability benchmarking plot showing

throughput, R, vs. the number of stations, S. As the number of nodes in the

cluster increases (curves from light-red toward dark-red), the computation

limits rise. Once the splitting limit is reached, depending on the number of

stations, throughput may be limited by I/O or by splitting.

Figure 5. Performance regions in a scalability benchmarking plot showing

throughput, R, vs. the number of nodes, N. As the number of stations increases

(curves from light-blue toward dark-blue), the slope of the computation limit

decreases. Note that if performance is limited by splitting, naive solutions like

increasing the rates of the playback units, disks, or network interfaces will not

increase throughput.
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longer DFT size, 262144), where we will assume the reduced

rate RFT/Fe≈ 0.02.

A more precise characterization of these rates would provide

more accurate bounds, but such characterization is left as

future work.

3.3. Results for the Distributed FX Correlator (DiFX)

The Swinburne University of Technology’s DiFX correlator

Deller et al. (2007); DiFX Software Code (2016) is a widely

used software correlator for VLBI. This system, written in

C++, was initially devised to run on a commodity-computer

cluster (a.k.a Beowulf cluster) with the Message Passing

Interface (MPI) Barney (2015), and using highly-optimized-

processor, proprietary libraries for vector calculations. Its

architecture is defined by four kinds of entities that correspond

to the tasks described in Section 2.1, except that the control and

collection are performed at the same node. In this section, we

will compare the results presented in Deller & Brisken (2009);

Morgan (2010); Phillips (2009); Wu (2015) and Gill et al.

(2019) with the bounds estimated from the model.

Results in Deller & Brisken (2009) are for a cluster of 5 nodes,

each with two octa-core processors (in total 80 computer

processing units) connected through Gigabit Ethernet, so that

we assume Nc= 5, kc= 16 and RN= 1 Gbps. Figure 2 in Deller

& Brisken (2009) shows the ratio between correlated time and

observe time. From Section 2.3 it is easy to see that throughput

can be computed as the product of the stream rate and the inverse

of that ratio. Note that Deller & Brisken (2009) shows a boundary

attributed to the capacity of the network interconnection. We use

the estimate RFT/Fe≈ 0.08 Gbps from Section 3.2 given that this

parameter is not available in the reference. We plot these results in

Figure 6 along with the theoretical bounds estimated from the

model. As described in previous sections, the curves with the

lowest values define the limits for performance. In this case, the

data streaming limit (output network interface of the data

distribution nodes) limits performance until roughly S= 4

stations, where this limit intersects the data distribution limit;

and for more stations, performance drops under this curve, limited

by the input network interfaces of the processing nodes.

Reference Phillips (2009) presents benchmarking results

varying the number of nodes for different numbers of cores for

S= 6. We take the results for kc= 8, assume a network of

RN= 1 Gbps, and use the same estimate for the computation

rate as in the previous case. We plot these results with the

estimated bounds from the model in Figure 9. The model

predicts that performance increases linearly with the number of

nodes N (limited by station-based processing) and stops scaling

where the station-based processing and the data streaming

limits cut, at roughly N= 9, remaining constant for higher

values of N (limited by the data streaming limit).

We follow the same procedure for the results presented in

Wu (2015) and Morgan (2010), and display their results along

with the estimated bounds from the model in Figures 7 and 10

respectively. For Wu (2015) we consider Nc= 20, kc= 10

(number of cores reported in Intel® Xeon® Processor 2015 for

the processor used in Wu 2015) and for Morgan (2010) we take

the results for S= 4 for their 10 Gbps interconnected cluster

(kc= 8 and RN= 10 Gbps from Morgan 2010). In both cases

the model shows that performance is limited by station-based

processing, that is the lowest curve visible in the plotted

sections, and the available data does not allow for the

observation of intersections with other limits. The differences

between the model’s estimations and the measurements could

be related to the selected station-based computation rate (the

same value estimated in Section 3.2 is applied to Figures 6–10).

The most recent benchmark presented in this paper for DiFX

is taken from Gill et al. (2019). In that study they consider

laboratory-generated data for a number of stations that ranges

between 2 and 20, testing vertical scaling (increasing the

number of virtual cores for a single machine) between 16 and

96 in the cloud (Google GCP Google 2022). The network has a

limit of RN= 6 Gbps, since there is only one machine we have

that N= 1, and we show the results for kc= 16, with the

number of stations (S) varying between 2 and 5. This

experiment considers two polarizations for each station, so as

explained in Section 2.5 this is equivalent to considering twice

the number of stations for computing the limits. Again in this

case performance is limited by station-based processing (the

lowest curve) and the model predicts a stronger drop in

performance at roughly S= 12, where the theoretical station

and baseline-based limits intersect, although in this case, the

measured performance drops a bit earlier at roughly S= 10.

3.4. Results for CorrelX on Spark (CXS)

MIT Haystack’s CorrelX MIT Haystack (2016), and the

recent fork CXS338 Vázquez (2021), are alpha version

Figure 6. Comparison of benchmarking results for DiFX presented in Deller &

Brisken (2009) in 2009 with the throughput boundaries estimated with the

model.
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software correlators designed to run in cloud environments,

specifically the Apache ecosystem: CorrelX on Hadoop Apache

(2022), and CXS on Spark Apache (2022). Both correlators are

written in Python, and released under an MIT license. Unlike

DiFX, these correlators do not require a careful configuration of

the topology of the system since the load is distributed among

the available nodes by the parallelization framework. Relying

on the framework simplifies the planning of the cluster, and

will allow the system to scale horizontally much more easily,

but it could also decrease performance, and this could be

challenging for the presented model.

Given that CXS has not yet undergone meaningful performance

optimization, one expects lower performance than with DiFX. It

was recently reported to run at about one-fourth of the speed

reached by DiFX for a recent experiment Vázquez (2021). Based

on this, we will assume that for the results that we show for CXS,

the station-based limit will be determined by one-fourth of the rate

RFT/Fe considered for DiFX in the previous section (Figure 8).

Reference Vázquez (2021) (Section 5.5.3) presents benchmarking

results running on the cloud (Amazon EMR Amazon Web

Services 2022) on machines (Nc between 1 and 8) with kc= 2

cores, with data that follows the description of the data set used in

Gill et al. (2019) but with a reduction in size (described in Section

5.5.1 in Vázquez 2021). As for the results in Figure 8, the number

of stations S= 2 was adjusted to 4 to account for the dual-

polarizations. We show the results in Figure 11, where besides the

station-based limit displayed in other figures (with RFT/Fe≈ 0.02),

we also show the reduced station-based limit (RFT/Fe≈ 0.005). In

this case again, performance is limited by station-based processing,

and it is interesting to note that there is a performance plateau

starting at 7 nodes. This is because, unlike DiFX, CXS does not

Figure 7. Comparison of benchmarking results for DiFX presented in Wu

(2015) in 2015 with the throughput boundaries estimated with the model.

Figure 8. Comparison of benchmarking results for DiFX presented in Gill et al.

(2019) in 2019 with the throughput boundaries estimated with the model. In

this case the reduced station-based limit is considered due to the DFT size.

Figure 9. Comparison of benchmarking results for DiFX presented in Phillips

(2009) in 2009 with the throughput boundaries estimated with the model.

Figure 10. Comparison of benchmarking results for DiFX presented in Morgan

(2010) in 2010 with the throughput boundaries estimated with the model.
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incorporate yet the ability to perform sub-accumulation-window

calculations Vázquez (2021) (Section 7.2), and therefore perfor-

mance scales in a stepped way following the inverse of the ceiling

function of the ratio between the number of tasks and the total

number of cores (as described in Vázquez 2021 Section 5.5.3).

The reasons to add CXS into the comparison, despite this

difference in performance and the limited results available, are

twofold: (i) the potential of the project, written in a high-level

popular language such as Python and running on a popular cloud

framework that natively exploits cloud-based parallelization

systems and (ii) the architecture of the system, focused on

simplicity and scalability (correlation is performed in two stages

with batches of tasks distributed on all the available computation

infrastructure as opposed to “streaming” correlators that follow

more strictly the architecture presented in Figure 2). This last

reason is especially interesting, as this shows that the model is

valid for different correlator architectures.

3.5. Discussion

In the previous two subsections, we have presented multiple

examples with benchmarking results from existing literature,

and have compared measured and predicted performance with

the model presented in this paper (Figures 6–11). In all the

studied cases the model correctly reproduced the shape of the

performance curve and shed light on the performance bottle-

neck that applied in each case.

We have shown that the model fits the measurements despite

the variability of experiment configurations, for a reference

correlator widely used by the radio astronomy community

(Figures 6–10). We added a comparison with an alternative

alpha-version correlator with lower performance, showing that

the model supports performance comparisons between different

correlators (Figures 8 and 11). Using this model and adjusting

parameters appropriately, it is anticipated that performance

comparison for different correlators based on different under-

lying technologies and architectures, and with different

experiment configurations, will be possible at low cost.

Further work will help in characterizing the model

parameters for specific correlators. This modeling approach

represents a step forward beyond the existing literature on

performance benchmarking, traditionally limited to curve

fitting (finding the transition in computation limits) and

conjecturing (trying to explain performance regions).

4. Application Example: Bottleneck Identification and
Cost Optimization

In this section, we provide an example to show the

applicability of the model with two objectives: (i) identifying

the performance bottleneck of the system and (ii) optimizing

the cost of a cloud correlation.

We will consider the scenario corresponding to the bench-

mark shown in Figure 9, taken from Deller & Brisken (2009),

but with four different variations changing the number of

stations S, the number of nodes N, and the number of cores per

node kc. This is shown in Figure 12, where we show the data

rate at all parts of the correlator. In this representation, the

scaling factors (triangles) define the load distribution, and the

throughput limits (queues) define the headroom for this

distribution. As explained previously, performance is measured

at the input of the system (first column in the diagram). For

these scenarios, the limits defined by the queues will be

constant but the slopes defined by the scaling factors will

change, as explained in previous sections.

Starting with the scenario S= 4, N= 5, and kc= 8 and

duplicating the number of stations (switching from the gray to

the green distributions of loads) switches the system from being

limited by data-streaming to be limited by data-distribution (as

shown in Figure 9).

Now let us consider a case with more stations and higher

capacity machines: S= 64, N= 8, and kc= 32, represented in

Figure 12 in blue. In this case, performance is limited by baseline-

based processing. If at this point we continue to increase the

number of nodes, for example multiplying it by 8x (red curve in

Figure 12), this switches this limit to data-collection; at this point

the collection node’s input network is saturated.

It is easy to see for this last case that it is possible to reach the

same performance with a smaller number of nodes. This reduction

would imply a variation in the slopes of the fifth and thirteenth

sections of the throughput representation in Figure 12 (scaling

factors that depend on Nc, joining the data distribution, processing,

and collection blocks) until the system reaches the previous limit.

Although not represented in the graph, roughly halving the

number of nodes (setting Nc= 28) transitions the system to be

limited by baseline-based processing, keeping the same through-

put but using only part of the available computing resources.

Figure 11. Comparison of benchmarking results for CXS presented in Vázquez

(2021) in 2021 with the throughput boundaries estimated with the model. In

this case, the reduced station-based limit is considered due to the DFT size.
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This problem is relevant both to local and cloud-based

cluster environments, where cost is generally a concern Gill

et al. (2019), and it could be the case that depending on the type

of experiment to be processed, a cluster composed of low-

performance machines is able to do the job in the same time,

for a lower price. In this case, the model could be used to find

the machines with the lowest specifications that support the

desired processing rate.

Referring back to the variability in correlator architectures

introduced at the end of Section 3.4, it is worth noting that

commercial cloud infrastructure pricing varies with the type

of service, and the pricing for Elastic MapReduce (EMR)

services (specifically for Apache Spark) is roughly one-fourth

of those for the general purpose machines (EC2) Amazon

Web Services (2022). The EMR service supports running

correlators like CXS338, and even if an optimized version of

CXS338 has inherently lower performance than the standard

(Section 3.4), it is likely to be lower in cost due to the

reduction in cost per machine, resulting in a better

performance-cost ratio.

These simple examples show that, in practical scenarios,

deep knowledge of the performance of the correlator allows the

system designers and operators to make better decisions about

the sizing of the cluster and tuning of the correlator, therefore

allowing them to optimize processing times for higher

performance and better cost-effectiveness.

5. Conclusion

We have presented the first formal performance character-

ization of radio astronomy correlators. Although we have

focused on software correlators running on CPU clusters, this

modeling approach is readily extensible to correlators that use

hardware accelerators like FPGAs and GPUs as long as they

follow a similar processing architecture. This work represents a

step forward beyond conventional wisdom and informal

reasoning from previous literature.

We have tested the model with a widely used software

correlator from the VLBI community, and an alpha version of a

recently released cloud correlator, by comparing benchmarking

results from previous literature with the throughput limits

estimated by the model, showing promising results with only a

few parameters to feed the model. The model has been kept

simple enough to be insightful, so that bottlenecks along the

system can be identified without the need for extensive

benchmarking. Compared to previous work, the model

provides estimates of performance and scalability for the

general case, rather than reducing the results to the specific

benchmarked scenarios.

We have also shown the importance of performance modeling

for better cluster/cloud planning and cost-effectiveness,

presenting an example of how to use the model to understand

performance bottlenecks for different configurations.

We consider this work as the first steps in modeling software

correlators in radio astronomy, which we believe will help to

improve current systems, but also will provide better architectures

and designs for the next-generation systems.
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thank V. Pankratius for providing feedback on an early draft of

this paper, and also an anonymous reviewer whose constructive

suggestions helped improve the manuscript.

Figure 12. Representation of the throughput (bottom plot) at different parts of the correlator (top plot), where the bounds obtained from the model (1–7) are displayed

as dashed lines following the same order as in the legend. The throughput R of the system corresponds to the value in the first column of the graph. The model

representation from Figure 3 is repeated on top of this figure for easy identification of the different parts of the correlator in the graph. The graph (bottom plot)

corresponds to a scenario similar to the one presented in Figure 9 with four different variations: (i) S = 4 stations, N = 5 nodes and kc = 16 cores in gray –limited by

data streaming–, (ii) a case that duplicates the number of stations (S) in green –limited by data distribution–, (iii) a case with S = 64 stations, N = 8 nodes and kc = 32

cores in blue –limited by baseline-based processing–, and another case (iv) that multiplies by 8x the number of nodes in red –limited by data collection–. This figure

has been generated using a simple implementation of the performance model equations described in Section 2.4 and illustrates how the headroom in each part of the

correlator can be represented visually.
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