
Jeffrey Glabe
Department of Aerospace and Mechanical

Engineering,
University of Notre Dame,
Notre Dame, IN 46556

e-mail: jeffrey.glabe@pnnl.gov

Mark Plecnik1

Department of Aerospace and Mechanical
Engineering,

University of Notre Dame,
Notre Dame, IN 46556

e-mail: plecnikmark@nd.edu

Combining Uneliminated
Algebraic Formulations With
Sparse Linear Solvers to Increase
the Speed and Accuracy
of Homotopy Path Tracking
for Kinematic Synthesis
The method of kinematic synthesis requires finding the solution set of a system of polynomi-
als. Parameter homotopy continuation is used to solve these systems and requires repeat-
edly solving systems of linear equations. For kinematic synthesis, the associated linear
systems become ill-conditioned, resulting in a marked decrease in the number of solutions
found due to path tracking failures. This unavoidable ill-conditioning places a premium on
accurate function and matrix evaluations. Traditionally, variables are eliminated to reduce
the dimension of the problem. However, this greatly increases the computational cost of
evaluating the resulting functions and matrices and introduces numerical instability. We
propose avoiding the elimination of variables to reduce required computations, increasing
the dimension of the linear systems, but resulting in matrices that are quite sparse. We then
solve these systems with sparse solvers to save memory and increase speed. We found that
this combination resulted in a speedup of up to 250× over traditional methods while main-
taining the same accuracy. [DOI: 10.1115/1.4055241]

Keywords: homotopy continuation, sparse systems, predictor–corrector methods,
kinematic synthesis, computational speed, computational accuracy

1 Introduction
Many problems arising in science and engineering require

solving a system of polynomial equations. The equations relevant
to this paper are complex and with many roots. To this end, there
are many possible methods for finding these roots: Newton’s
method [1], interval analysis [2], and Gröbner bases [3] to name a
few. However, the method of homotopy continuation [4] is often
chosen for large polynomial systems due to its ability to be split
into a series of independent subproblems. This makes homotopy
continuation an attractive choice for parallel computing.
Homotopy continuation solves a polynomial system by first

solving a similar polynomial system but with easy to find roots,
then continuously deforms these start points into the roots of a
target system. The deformation of each root can occur indepen-
dently of every other root, leading to the method being termed
“embarrassingly parallel” and affording itself attractively to multi-
threaded computing.
Kinematic synthesis of robotic devices and mechanisms requires

finding the values of physical dimensions that satisfy a number of
constraints specified on position, velocity, acceleration, or some
combination of the three. Finding the dimension values (i.e., roots
of polynomial systems that form constraints) is typically achieved
through either optimization or solving the algebraic equations
directly. Homotopy continuation is often applied in the exact synth-
esis of mechanisms. The synthesis equations associated with such

problems grow exponentially as more sophisticated mechanical
systems are designed [5].
Traditionally in kinematic synthesis, the rotation operators are

algebraically eliminated to reduce the dimensionality of the
problem. The result is fewer equations and variables, but with the
tradeoff of increasing the complexity of the resulting equations.
For this paper, we will refer to “uneliminated” as forgoing algebraic
elimination of the original kinematic synthesis equations. We refer
to “eliminated” as having performed the necessary algebraic elimi-
nation to reduce the number of equations and variables of the poly-
nomial systems to be solved.
When computing all roots to a system of polynomials for the first

time, the prior art has devised several sophisticated methods of con-
structing start systems and start points. Some of these include multi-
homogeneous homotopy [6], polyhedral homotopies [7], regenera-
tion [8], statistics-based accumulations of roots [9], or monodromy
methods [10]. However, once an initial minimal set of roots has
been found, then the method of parameter homotopy continuation
is known to be the most efficient [11]. This method first selects a
parameterization of the polynomial variety of interest (which may
be the monomial coefficient themselves, but generally is not),
then forms a homotopy directly on those parameters. This is
opposed to forming a homotopy on the constituent polynomials
directly (which would be identical to selecting monomial coeffi-
cients as parameters). The efficiency of such an approach stems
from the fact that it applies to homotopy paths corresponding
with the minimal number of finite start points that, for numerically
general [12] parameters, maintain their finiteness and multiplicity
over the entirety of the homotopy. To start with such a minimal
number of paths, parameter homotopy leverages solutions found
from other forms of homotopy to simplify proceeding computa-
tions, constituting what is termed a numerical reduction of the poly-
nomial system. Systems having the same structure with different

1Corresponding author.
Contributed by the Computers and Information Division of ASME for publication

in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received January 27, 2022; final manuscript received July 25, 2022; published
online September 15, 2022. Assoc. Editor: Anurag Purwar.

Journal of Computing and Information Science in Engineering DECEMBER 2022, Vol. 22 / 061007-1
Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

mailto:jeffrey.glabe@pnnl.gov
mailto:plecnikmark@nd.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4055241&domain=pdf&date_stamp=2022-09-15

parameters occur often in science and engineering, making param-
eter homotopy continuation suitable for many applications.
A common practical usage of homotopy continuation involves

two phases of computation. In the first phase, an ab initio computa-
tion is performed using a generic set of parameters. This initial com-
putation might be a multi-homogeneous homotopy, a polyhedral
homotopy, regeneration homotopy, or a monodromy-based accu-
mulation. This step has been generally understood as a
resource-intense, one-time computation. In the second phase, the
end points from an ab initio computation are repurposed as start
points for repeated parameter homotopy computations. These
parameter homotopies are repeated for different target parameters
as necessarily required by some science or engineering application.
These ensuing parameter homotopies are expected to compute
quickly.
This expectation is true for systems that track from numerically

general start parameters to numerically general final parameters.
Numerically general refers to randomly generated complex
numbers that have no special relation to one another. But science
and engineering applications often require tracking to less general
final parameters, stemming from physical problems that impart
some pattern on these parameters. For these systems, using final
parameters that have physical meaning leads to severe ill-
conditioning that overwhelms the accuracy of path tracking when
native precision [13]. Higher precision may overcome this, but at
the cost of increasing computation time.
In homotopy continuation, ill-conditioning can occur when paths

become sufficiently close in the tracking space when two or more
points are merging to create a solution of higher multiplicity.
Special techniques such as the gamma trick [14] have been devel-
oped to avoid ill-conditioning at midpoints during path tracking.
Additionally, it can be shown with the Theorem of Sard [15] that
careful choice of start parameters yields paths that have a very
low chance of being ill-conditioned at a midpoint. Most of the ill-
conditioning, however, occurs towards the end of the path, near
the target system. Traditionally, special endgame methods [16]
are used to successfully approximate these singular solutions and
have been implemented in softwares such as HOMPACK90 [17],
PHCPACK [18], POLSYS_PLP [19] and POLSYS_GLP [20]. The methodol-
ogy presented in this paper applies to finding ill-conditioned, but
nonetheless, nonsingular and isolated roots relevant to kinematic
synthesis with 64-bit precision. This differs from the endgame tech-
niques [16], which were developed to compute singular roots of
high multiplicity.
Endgame methods function in an “operating zone” between a ball

defined by the nearest branch point and a zone of ill-conditioning
[21,22]. When the ill-conditioning zone expands beyond the
nearest branch point, then the operating zone is nonexistent and
the endgame will fail. Increasing working precision effectively
decreases the size of ill-conditioning zone. However, using non-
native precision (>64 bits on modern CPUs) leads to a huge
decrease in floating point throughput, about 10 × slower. One of
the contributions of this paper is to compute these endpoints in
the absence of higher precision libraries.

1.1 The Use of Polynomial Homotopy Continuation in
Kinematic Synthesis. For kinematic synthesis, the number of
paths required to track for problems affects the amount of ill-
conditioning. For problems with fewer paths, the degree of ill-
conditioning seems to be much less. Problems in kinematics such
as those studied in Ref. [23] have been able to successfully track
all paths. However, for problems such as those found in this
paper, both the number of paths required to track and the nonline-
arity of the equations increase, where this ill-conditioning reaches
the point that practical usage for engineering design becomes intrac-
table. The problem studied by Newkirk et al. required tracking 128
paths for a system of seven quadratic equations, whereas for the
scale for one of the problems investigated in this paper, we
require tracking 1,122,022 paths for a system of seven quartic

and 14 quintic equations. High failure rates have additionally
been previously observed in similar problems with a large
number of paths in kinematic synthesis [10,24,25]. The correlation
between the number of paths required to track and condition
number is special to kinematic synthesis. The number of paths to
track and conditioning are two independent properties. It is entirely
possible to conceive of small, ill-conditioned problems as well as
large, well-conditioned problems outside the realm of kinematic
synthesis.
We make this point in the conceptual diagrams of Fig. 1: param-

eter homotopy continuation works well when working with prob-
lems with fewer paths, but when pulling from data in exercises
taken from Sec. 4 of this paper, numerical failures increased by
26% and compute time increased by 63% when parameter homoto-
pies were executed with physical parameters rather than numeri-
cally generic parameters. This effect greatly hinders the efficiency
that parameter homotopy is expected to have.
To further prove this point, we performed a perturbation analysis

study on the same problem. Starting with two sets: one generic set
of parameters selected at random and one set of physical parame-
ters. We found the solutions to these sets and then generated 10
sets of randomly perturbed parameters using a random noise of ±
0.001 selected from a uniform distribution, with each parameter
being individually perturbed. As tracking all 1,122,022 solutions
of the original sets would prove infeasable, a representative set of
1000 solutions were chosen at random and used for all runs in
this analysis instead. Solutions were found with Bertini [22] in
quad precision and using the power-series endgame method. The
solutions of the perturbed parameters were then identified and com-
pared element-wise against the unperturbed solutions and the
average norm of the deviation between the two was calculated.
This average deviation was taken over all complex solutions for
both generic and physical parameters.
The result was that, for the generic set of parameters, an average

deviation of 2.6 was calculated between the perturbed and unper-
turbed sets. To construct this for sets of physical parameters, an
average deviation of 1.612 × 1011 was observed. It is clear that,
for the same problem, changing from generic to physical parameters
greatly increased the sensitivity even though the fundamental poly-
nomial structure of the problem was unchanged.
The effect is pronounced enough that many would-be practical

implementations of parameter homotopy are pushed out of reach
based on the need to integrate non-native higher precision floating
point operations (FLOPS). By our experience, the transition from
64-bit (double) to 128-bit (quad) arithmetic accounts for at least a
10 × increase in compute times. The contribution of this paper is
to show how to surmount such barriers through the combination
of a specific algebraic setup and sparse linear algebra routines.
Our resulting algorithms compute with the speed of doubles, but
the success of quads. Kinematic synthesis is one class of engineer-
ing problems that stand to benefit from this work.

2 Background
2.1 Parameter Homotopy Continuation. Consider a well-

determined polynomial system f(z; q) where z is a vector of n var-
iables and q is a vector of m parameters. We seek to find the solu-
tions

{z∗ ∣ f(z∗; q) = 0} (1)

We define q0 as the set of start parameters, whose solutions have
been already calculated in a previous “ab initio” step, and q1 as
the set of target parameters for the system whose roots we wish
to find. To do this, we must continuously deform each point z0 of
the start system that satisfies f(z0; q0)= 0 into a point of the target
system that satisfies f(z1; q1)= 0. To that end, we must construct
the homotopy function:

f(z; q(t)) = 0 (2)

061007-2 / Vol. 22, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

where q(t) = (1 − t)q0 + tq1 (3)

The tracking variable t is introduced to change from the start system
at t= 0 to the target system at t= 1. For 0≤ t≤ 1, we have a linear
combination of the parameters defining the two systems.

2.2 Path Tracking. To understand the process of tracking z
from the start to the target system, we must derive the method of
path tracking by understanding how a point z changes with
respect to t. Taking the derivative of (2) with respect to t yields

∂f
∂z

dz
dt

+
∂f
∂q

dq
dt

= 0 (4)

where
∂f
∂z

∈ C
n×n,

∂f
∂q

∈ C
m×n, and

∂q
∂t

∈ C
m×1. For brevity, rename

∂f
∂z

= Jv and
∂f
∂q

= Jp, that is the variable Jacobian and parameter

Jacobian, respectively. The problem of path tracking therefore
involves integrating the ordinary differential equation:

Jv
dz
dt

= −Jp
dq
dt

(5)

where
dq
dt

= (q1 − q0) (6)

in conjunction with correction steps based on applying Newton’s
method to (2). The choice of integrator depends on the complexity
of the polynomial system. For the polynomials described in
this paper, a choice of Runge–Kutta–Fehlberg [26] and
Dormand–Prince [27] fourth-order methods was used.
The process of path tracking involves iteratively predicting the

next point zk+1 as tk increments from 0 to 1. Path tracking is per-
formed with a predictor–corrector technique. Nominally, at tk, a
Runge–Kutta iteration computes an estimate of zk+1 at tk+1. This
estimate is corrected by cycling it through a few iterations of
Newton’s method applied to (2).

Good prediction points are usually favored over increasing the
number of correction steps due to path jumping. Path jumping
occurs when a prediction point is placed in the zone of convergence
of a different yet nearby path. The correction steps then cause the
current path to converge to the solution curve of the nearby path,
resulting in a repeated solution rather than two distinct solutions.
Placing emphasis on good predictions helps mitigate this risk.
Predicted points that are not a good estimate of a root at tk+1 can

be corrected by observing that the constraint (2) must be obeyed for
all t∈ [0, 1]. Therefore, it is possible to implement a root finding
method to place the predicted point back onto the curve defined
by (2). One popular choice is to iteratively execute Newton’s
method:

zc+1 = zc − Jv−1f(zc; q(tk+1)) (7)

until the predicted point has converged sufficiently to a solution of
f(zc; q(tk)). Various heuristic steps are taken to adaptively adjust
step sizes and in case path tracking deviates from the nominal pre-
dictor–corrector process.
Path tracking is therefore the process of executing prediction

and correction steps iteratively as t is perturbed from t= 0 to
t = 1. At t= 1, there are three possible outcomes for a path:

(1) The path becomes a distinct root f(z*; q(1))= 0.
(2) Two or more paths converge to the same root to become a

root of multiplicity > 1.
(3) Variable values tend toward infinity, termed points at

infinity.

A path that does not reach one of these outcomes is considered to be
a failed path. Paths fail for a variety of reasons. Relevant to this
work, the most common reason is an inability for Newton’s
method to converge during a corrector step due to a shortage of
floating point precision.
Most of computation spent during path tracking is spent solving

linear systems of equations. Depending on the choice of integrator,
(5) must be solved multiple times for each prediction step: six times
for Runge–Kutta–Fehlberg and eight times for Dormand–Prince.
Additionally, the correction equation (7) must be solved once for

Fig. 1 Comparing the expected and actual performance of the parameter homotopy using generic parameters selected at
random versus parameters chosen that have physical meaning to the designer. When using generic parameters, the
process computes relatively quickly with a high success rate (number of solutions). To contrast, when using physical param-
eters, both the speed and accuracy of the parameter homotopy are impacted for problems with millions of paths, resulting in a
marked drop in success rate and an increase in runtime. The numbers displayed in this figure were obtained from numerical
exercises corresponding to the six-bar problem (Sec. 4) of this paper.

Journal of Computing and Information Science in Engineering DECEMBER 2022, Vol. 22 / 061007-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

every iteration. To give an estimate, a path tracker taking 200 pre-
diction–correction steps using Dormand–Prince for the prediction
with two iterations of Newton’s method to correct must solve
200 × (8+ 2)= 2000 linear systems to track a path from t from 0
to 1. Solving these linear systems therefore is the heart of path
tracking.

2.3 Path Failures and Numerical Precision. Paths whose
outcomes do not fall under the conditions listed in the previous
section can be considered as failures. Path failures can happen for a
variety of reasons, but the most common and relevant reason is ill-
conditioning of the matrices involved in solving the linear systems.
In homotopy continuation, ill-conditioning occurs at t* when
f(z; q(t*)) approaches near singular conditions, even if an actual sin-
gularity does not occur. It is important to note that in most homotopy
continuation settings, the choice of start parameters q0 is specially
chosen such that there is a very low probability that the polynomial
system truly has a root of multiplicity higher than one [12].
In the correction step, solving the linear system with a matrix of

condition number C, it is generally expected that log 10(C) digits of
precision are lost [13]. Numbers stored in double precision can
expect 15–17 significant decimal digits [28]. When path tracking,
ill-conditioned matrices often prevent a path from converging
back to the curve (2) by restricting the number of digits that
Newton’s method is able to correct. The path is then not a good esti-
mate of a root for the next prediction step. This causes the path to
rapidly diverge from (2), preventing it from tracking successfully.
A natural remedy for this issue is to simply increase the working

precision. Quad precision numbers can expect 33–36 significant
decimal digits [28], with the possibility of extending that number
further using multiprecision libraries. However, on the current hard-
ware, special routines are required in order to perform arithmetic in
precision higher than that of a double. As a general rule, using quad
math results in a runtime approximately five times longer than
double math [29].
As solving linear systems is a major computational cost of path

tracking, it is important to observe the structure of the linear
systems to be solved. A generic system of equations has a complex-
ity of O(n3), where n is the number of variables. Therefore, the
number of variables of the system has a great impact on the time
it takes to solve them. For the problem of kinematic synthesis, it
is possible to influence the number of equations of the resulting
system of equations.

2.4 Application: Kinematic Synthesis of Mechanisms.
Kinematics is the geometry of motion. The goal of kinematic synth-
esis of linkages is to discover the dimensions, the lengths, and
angles of a mechanism that produces a desired motion designated
by a set of tasks. These tasks are defined as constraints on position,
velocity, acceleration, or some combination of the three.
The dimensions of the mechanism are found by first defining the

loop equations. These are a set of vector equations that define
the geometry that must be conserved throughout the motion of
the linkage. This geometry consists of a sequence of rotation and
translation operations with sets of moving and fixed points. There
are multiple ways to define these rotations and translations. One
way is to use the addition of vectors to define translations, and ele-
ments of SO(2) for rotations. Alternatively, Wampler [30] used iso-
tropic coordinates which reduce the problem to the addition and
multiplication of complex numbers, leading to a more direct formu-
lation of polynomials. This paper uses isotropic coordinates to
define all of the loop equations.
In essence, the isotropic coordinates (z, �z) of a planar point are

related to the (x, y) coordinates of a planar point by the invertible
linear transformation

z
�z

{ }
=

1 i
1 −i

[]
x
y

{ }

In other words, a complex number and its conjugate are used in
lieu of its real and imaginary components. The same goes for
complex rotation operators, which are simply unit complex
numbers, eiϕ= cosϕ+ isinϕ. Defining Q= eiϕ, see that Qz rotates
z by ϕ about the origin of the complex plane. Note that Q is
related to its complex conjugate through the algebraic equation
Q�Q = 1, meanwhile, no such algebraic equation exists for z and
z*. Therefore, as a necessary condition for complex numbers to rep-
resent rotations, equations of the form Q�Q = 1, termed normaliza-
tion conditions, are used in conjunction with isotropic coordinates.
Rotation operators can be eliminated by solving the loop equa-

tions for a rotation operator and its conjugate, then substituting
the result into the normalization conditions. Rotation operators
are usually eliminated whenever possible to reduce the number of
variables, and thus the time it takes to solve the corresponding
linear systems.
However, the resulting equations grow in complexity as opera-

tors are eliminated, rapidly increasing the cost of evaluating
f(z; q(t)), Jv, and Jp. Additionally, the exponential increase in oper-
ations introduces instability due to the intrinsic propagating error of
floating point operations. Leaving the equations uneliminated
reduces the number of floating point operations to evaluate Jacobi-
ans but increases the dimension of the linear systems that need to be
solved (computation time scales by a cube of dimension for dense
linear solving). For the problem of kinematic synthesis in particular,
we know that leaving the equations in their uneliminated form
means that Jv and Jp are particularly sparse matrices. Much work
has been done in creating special routines for solving sparse
linear systems that save memory and operations by working only
with the nonzero elements of the matrix [31].
In this paper, we demonstrate how to overcome the numerical

failures and slow compute times of parameter homotopies aimed
at physical parameters. This is done by opting for equivalent formu-
lations of polynomial systems that comprise of more equations and
variables, and writing predictor–corrector tracking routines that
implement sparse libraries. Such a setup carries more information
from step to step across a homotopy through more variables
rather than by representing few variables with more bits. Our tech-
nique appreciably reduces numerical failures without needing to
resort to higher precision arithmetic. The latter point is important
because the throughput of floating point operations on non-native
(>64-bit) numbers is dramatically slower than native precision.
The usage of more equations and variables naturally leads to
sparse Jacobians, which we handle inside our path tracking algo-
rithm with appropriate sparse routines. Else, our proposed benefit
would be more than canceled by the cubic scaling of compute
times to solve linear systems of increasing dimension.

2.5 Sparse Linear Solvers. Matrices with a large percentage
of zeros occur in many areas of science and engineering. These
include structural analysis, analysis of network and power distribu-
tion systems, and numerically solving differential equations [32].
Typically these matrices are very large as to justify special
methods to deal only with nonzero elements.
Whether dense or sparse, a linear system of the form

Ax = b (8)

is typically solved directly by decomposing A into the product of an
upper U and lower L matrix:

PA = LU (9)

where P is a permutation matrix that re-arranges the rows or
columns of A. This yields the decomposed linear system:

LUx = Pb (10)

which can be solved consecutively as two triangular linear systems,
Ly=Pb and Ux= y. For dense solving, linear systems with trian-
gular matrices are a special case which has a complexity of

061007-4 / Vol. 22, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

O(n2), while performing an LU decomposition which has a com-
plexity of O((2/3)n3). Thus, solving a dense linear system is
O((2/3)n3 + 2n2) or O(n3) for large n.
Sparse matrices are typically described in triplet form where the

row, column, and value of all nonzero entities are specified. Any
row and column not specified is assumed to be zero. This data struc-
ture is easily converted into other data structures such as
compressed-column or compressed-row forms to allow for
memory savings. Special algorithms are tuned for these data
structures to facilitate matrix–matrix or matrix–vector
computations [31].
Factoring a sparse matrix into L and U components must be done

carefully to avoid fill-ins. A fill-in is the generation of a new nonzero
element in a position in either L or U that is otherwise zero in the
corresponding position of A. Sparse matrices gain their speedup
in computation in part by avoiding superfluous fill-in operations.
Rose and Tarjan [33] were first to describe a process for factoring
A to reduce fill-ins. To do this, they created a directed graph from
A where edge (i, j) exists if aij≠ 0. This adjacency graph can
then be re-ordered which has the effect of permuting the rows
and columns of A. This re-ordering is done in a way that the
number of fill-ins is reduced, but not necessarily minimal as
finding an ordering that produces a minimal amount of fill-ins is
an NP-complete problem [33,34].
There exists many methods of re-ordering the adjacency graph to

find an ordering that reduces fill-ins. Some popular orderings
include Cuthill–McKee [35], minimum degree [36,37], minimum
deficiency [38], and nested dissection [39]. This re-ordering is
also known as symbolic factorization, after which numerical factor-
ization is performed to actually compute the L and U components.
Numerical factorization routines include supernodal [40], frontal

[41], and multifrontal [42] methods. Numerical factorization must
be performed for each decomposition, however, if multipleAmatri-
ces have the same sparsity pattern but different coefficients, the
symbolic factorization only needs to be performed once.

3 Implementation
In this section, we detail the implementation of our proposed

method. The code was written in C++, using Eigen 3 [43] as the
linear algebra library for the matrices and solvers, both sparse and
dense. We chose the SuperLU [44] package for our sparse solver
using a minimum degree ordering for symbolic factorization. This
ordering is performed once, and then used in all subsequent numer-
ical factorizations. Microsoft’s Visual Studio was used as the devel-
opment environment. The code was compiled using the Microsoft
Visual C++ 14.2 compiler to run on Windows x64 architecture.

The elements of Jv were calculated using Mathematica 12, with
the resulting expressions being converted to C++. From these
expressions, we were able to evaluate the number of FLOPS
required to evaluate Jv. This was done by computing the number
of mathematical operations (addition, subtraction, multiplication,
division, and power) in each expression. Then, knowing the
number of FLOPS required for each operation when using
complex numbers (two for addition/subtraction and six for multipli-
cation/division), we calculated the total number of FLOPS from all
the operations. The results and sparsity pattern for the four-bar
problem can be found in Fig. 2. For the first example problem
below (four-bar synthesis), for the four-bar problem the eliminated
Jv required 64 × more FLOPS to evaluate than its uneliminated
counterpart. For the second example problem below (six-bar synth-
esis), the eliminated Jv required 3 × operations to evaluate (see
Fig. 3).
In order to shorten homotopy path lengths and easily represent

points at infinity where they should arise [6], all the path tracking
was done in projective space. This was accomplished by introduc-
ing a homogeneous coordinate to the variable set. The tracker then
tracks the ratio of all other variables {z1, z2, …, zn} to the reference
coordinate by generating the n+ 1 vector:

Z = {Z0, Z1, . . . , Zn} where
1
z

{ }
=

Z
Z0

(11)

A point is considered to be at infinity when Z0= 0. Numerically, this
is evaluated as the metric

Z0 < ε (12)

for a sufficiently small ϵ. The homogeneous coordinate must also be
introduced to the variables of f(z; q(t)) by replacing each variable zj

with zj =
Zj
Z0

and clearing the denominator to generate the new

homogeneous polynomial system F(Z; q(t)). This is a system of n
equations in n+ 1 variables, including Z0.
To square the system up, the Euclidean projective patch equation

is added

u · Z
t

{ }
− 1 = 0 (13)

to the end of F(Z q(t)), where u is an n+ 2 vector of random
complex coefficients. This equation defines a linear form that all
other points are referenced to in projective space [21]. For conve-
nience, we can combine Z and t into a single vector Y= {Z, t}

Fig. 2 Percentage of nonzero elements and patterns for Jv for both the eliminated and
uneliminated formulation of the four-bar problem as well as the total number of FLOPS
required to evaluate the matrices: (a) eliminated problem and (b) uneliminated problem

Journal of Computing and Information Science in Engineering DECEMBER 2022, Vol. 22 / 061007-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

and create the new projective homotopy system:

H(Y) =
F(Z; q(t))
u · Y − 1

{ }
= 0 (14)

Rather than working with t, we consider Y as a function of the
path’s arc length s. Evaluating the derivative of H with respect to
s yields

∂H
∂Y

dY
ds

= 0 (15)

where
∂H
∂Y

is an (n+ 1) × (n+ 2) matrix with the form:

∂H
∂Y

=
∂F
∂Z

[]
dF
dt

· · · uT · · ·

⎡
⎣

⎤
⎦ where

dF
dt

=
∂F
∂q

dq
dt

(16)

dq
dt

is defined in (3). In the projective case,

[
∂F
∂Z

]
is an n× (n + 1)

matrix,
dF
dt

an n× 1 vector,

[
∂F
∂q

]
an n×m matrix, and

dq
dt

an

m × 1 vector.
Equation (15) is solved to calculate the next predicted point Ỹn in

the sequence using a chosen integration method for a given step size

Δs. A row of n+ 1 random coefficients is appended to
∂H
∂Y

to square

it up, and an extra 1 is appended to the vector of zeros on the right-
hand side.
The predicted point is then corrected by solving (14) using

Newton’s method with Ỹn as an initial value. To square up (14),
we append the equation

Ĥ(Y) =
H(Y)

Ṽn · (Y − δỸn)

[]
(17)

where Ṽn is an estimate of the tangent vector obtained by solving
(15) with Ỹn. The appended equation describes a plane that is
almost coincident with Ỹn and is normal to Ṽn. The correction
factor δ is a small complex number used to ensure that t monoton-
ically increases to t= 1.
Newton’s method is therefore iteratively executed as

Yk+1 = Yk − Γ
[]

kĤ(Y)k (18)

where Γ
[]

k =

∂H
∂Yk

[]

ṼT
n

⎡
⎢⎣

⎤
⎥⎦

−1

(19)

The last element of (18) can be isolated and written as

tk+1 = tk − Γk,n+2 · H(Yk)
Ṽn·(Yk−δỸn)

{ }
(20)

where Γk,n+2 is that last row of Γk. At tk, everything in (21) is known
except for tk+1 and δ. Setting tk+1 equal to the last element of Ỹn

yields δ. Next, we can solve (18) for Yk+1 and iteratively execute
Newton’s method until convergence. It is in this way that the predic-
tion and correction steps are computed in projective space.
One of the advantages of projective space is that the projective

patch can be exchanged for another at any point. Switching
patches alter the condition number of the Jacobian in (16). As the
projective patch only defines one row of the Jacobian, it only has
so much sway over its condition number. But at times when
Newton’s method is struggling to converge, altering it can
improve conditioning enough to enable convergence. When
Newton’s method fails to converge, the path can be modified by
generating a new random patch unew= {u0, u1, …, un, ut} and
rescaling Z so that it satisfies the patch equation (13):

unew · σZ
t

{ }
− 1 = 0 (21)

Solving (22) for σ yields

σ =
1 − utt

unew · Z
0

{ } (22)

The point that failed to converge is then updated as

Y =
σZ
t

{ }
(23)

and path tracking can attempt to continue after switching patches.
Using this method, paths that would otherwise fail can be poten-
tially salvaged to continue on to become solutions.
For the predictor, we chose to implement Dormand–Prince [27]

from the Runge–Kutta family of integrators. This method provides
a fourth-order R4 as well as a fifth-order R5 prediction of the next
point. We define the local truncation error (LTE) for the prediction

Fig. 3 Percentage of nonzero elements and patterns for Jv for both the eliminated
and uneliminated formulation of the six-bar problem as well as the total number of
FLOPS required to evaluate the matrices: (a) eliminated problem and (b) uneliminated
problem

061007-6 / Vol. 22, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

to be

LTE = ‖R5 − R4‖ (24)

The LTE is a metric for the confidence of a prediction. In our imple-
mentation, we define ξ to be the maximum allowable LTE for the
prediction step. If LTE> ξ, then the prediction is rejected and a
new prediction is made using a smaller step size.
For the correction step, we test for convergence by setting a con-

vergence minimum ν and using the metric

ν < Γ
[]

kĤ(Y)k
∥∥∥ ∥∥∥ (25)

to test for convergence. The right-hand side of the equation comes
from (18). The number of Newton’s method iterations is logged and
the correction step is rejected if a specified maximum number of
iterations has occurred. For this paper, we decided on a maximum
of 10 Newton’s method iterations. If a correction step is rejected,
then a new patch is randomly generated and the point is updated
using (24) and Newton’s method is attempted again. If Newton’s
method still fails to converge after five consecutive path switches,
the path is rejected and tracking is terminated.
Finally, the number of prediction–correction steps is logged and

if a path exceeds a prescribed number of steps, tracking halts and the
path are declared a failure. This is to keep very poorly behaving
paths from using excessive computation time.

4 Demonstration
In this section, we demonstrate our method on two kinematic

synthesis problems. The first is the four-bar synthesis problem for
nine path points. This is a classical problem in kinematic synthesis,
making it a nice benchmark. The first ab initio solution to this
problem found 8652 roots and was computed in 1992 by
Wampler et al. [14]. Despite this landmark result, subsequent
parameter homotopies directed at physical parameters still present
a computational bog, as we illustrate below, albeit at a smaller
scale. The second problem is the Stephenson IIB timed curve synth-
esis, which seeks to design a planar six-bar mechanism. This
problem is larger (estimated to have 1,122,022 roots) and was
solved for the first time in 2020 [10].
For both these problems, the number of solutions found and the

runtime are compared for dense and sparse implementations, elim-
inated (small) and uneliminated (large) equation sets. Additionally,
we will compare our method to that of BERTINI [22], a sophisti-
cated homotopy continuation solver that represents the state of
the art. All computations referenced in this section were executed
on an Intel i7-8700K 3.7GHz processor running on a single thread.

4.1 Four-Bar Synthesis for Nine Path Points. The goal is to
design a four-bar linkage that guides a trace point attached to its
coupler link through a set of N points Pj, j= 0, …, N− 1. In a
complex plane, we seek to find the two points of fixed pivots A=
Ax+ iAy and B=Bx+ iBy as well as the locations of the moving
pivots C=Cx+ iCy and D=Dx+ iDy that define the mechanism.
The points C and D connect to the first task position P0 to define
how the trace point connects to the coupler link.

4.1.1 Loop Equations. The displacement of the linkage from
its original configuration at P0 requires moving the three links
AC, BD, and CDP. We define the orientation of each link in the
jth position by the angles ϕj, ψj, and θj, respectively. In the
complex plane, these rotations are represented by complex
numbers as

Qj = eiϕj , Sj = eiψ j , Tj = eiθj , j = 1, . . . , N − 1 (26)

These orientations are relative to the first position, thus Q0= S0=
T0 = 1. This yields the two loop equations that define the geometry

that must be preserved throughout the motion as

A + Qj(C − A) + Tj(P0 − C) − Pj = 0

B + Sj(D − B) + Tj(P0 − D) − Pj = 0
(27)

j = 1, . . . , N − 1 (28)

See Fig. 4. Since points are represented as isotropic coordinates, we
must also append the conjugate loop equations:

�A + �Qj(�C − �A) + �Tj(�P0 − �C) − �Pj = 0
�B + �Sj(�D − �B) + �Tj(�P0 − �D) − �Pj = 0

(29)

j = 1, . . . , N − 1 (30)

where the overbar denotes the complex conjugate. Additionally, the
rotation operators Qj, Sj, and Tj are required to have unit magnitude,
forming the normalization conditions:

Qj �Qj = 1 (31)

Sj�Sj = 1 (32)

Tj�Tj = 1, j = 1, . . . , N − 1 (33)

Equations (28)–(34) form a system of 7(N− 1) equations in 8+
6(N − 1) variables, which is well defined when N= 9 task positions.
This square uneliminated system results in 56 equations and vari-
ables: {A, �A, B, �B, C, �C, D, �D, Qj, �Qj, Sj, �Sj, Tj, �Tj}, j= 1, …, 8,
parameterized by 18 values, {P0, �P0, P1, �P1, . . . , P8, �P8}.

4.1.2 Algebraic Elimination. The rotation operators (Qj, �Qj)
are eliminated by solving (28) and (30) for Qj and �Qj, respectively,
and substituting the results into (32). Similarly, (Sj, �Sj) are elimi-
nated by solving (29) and (31) for Sj and �Sj with the results substi-
tuted into (33) to obtain the equations:

(C − A)(�C − �A) = (A − Pj + Tj(P0 − C))

(�A − �Pj + �Tj(�P0 − �C))

(D − B)(�D − �B) = (B − Pj + Tj(P0 − D))

(�B − �Pj + �Tj(�P0 − �D))

(34)

j = 1, . . . , N − 1 (35)

The final rotation operators (Tj, �Tj) are eliminated by expanding
(35)–(36) and writing the result as the linear system:

a�bj �abj
c�dj �cdj

[]
Tj
�Tj

{ }
= f �f − a�a − bj�bj

g�g − c�c − dj�dj

{ }
(36)

where

a = P0 − C, bj = A − Pj, f = C − A

c = P0 − D, dj = B − Pj, g = D − B

Fig. 4 A four-bar linkage displacing from P0 to Pj

Journal of Computing and Information Science in Engineering DECEMBER 2022, Vol. 22 / 061007-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

Solving (37) for (Tj, �Tj) and substituting the results into (34) yields

(a�bj(g�g − c�c − dj�dj) − c�dj(f �f − a�a − bj�bj))

× (�abj(g�g − c�c − dj�dj) − �cdj(f �f − a�a − bj�bj))

+ (a�bj�cdj − �abjc�dj)
2 = 0 (37)

This eliminated system (38) forms a group of N− 1 equations in
variables {A, �A, B, �B, C, �C, D, �D}, which again is well defined
when N= 9 task positions. This forms a system of eight equations
in eight variables, parameterized by 18 values
{P0, �P0, P1, �P1, . . . , P8, �P8}.

4.1.3 Ab Initio. In a previous work, Plecnik and Fearing [45]
were able to generate the complete starting set of 8652 roots
using their finite root generation method. This set was used as the
{A, �A, B, �B, C, �C, D, �D} starting values for the eliminated
problem, rather than re-computing the set again in an ab initio
run. Additionally, we note that although it is well known that solu-
tions may be organized into sets of six that reduce the required
number of startpoints to 1442, we chose to benchmark on the full
set of 8652.
The uneliminated problem used the same set as its starting values.

However, it was necessary to find the {Qj, �Qj, SJ , �Sj, Tj, �Tj},
j = 1, …, 8, for each root as well. To do this, we solved the
inverse kinematics problem by substituting the known starting
values into (35) as well as the starting parameters {P0, Pj, �Pj}, j=
1,…, 8. We then solved the substituted system and (34) for the cor-
responding set of two {Tj, �Tj} values. Similar substitutions were
performed on (36) and solved with (34) to find a second set of
{Tj, �Tj} pairs. The (Tj, �Tj) values that matched between the
two sets were chosen as the correct value for the jth parameter,
j = 1, …, 8.
Then, for each (Tj, �Tj) value, the corresponding (Qj, �Qj) values

were found by substituting the known values into (28) and (30)
and solving the resulting equations for (Qj, �Qj). Similar substitu-
tions into (29) and (31) yielded (Sj, �Sj). It was in this way that the
8652 roots of the starting uneliminated system were generated
from the eliminated set.

4.1.4 Path Tracking Results. Both the eliminated and unelimi-
nated polynomial systems were solved using the same set of target
parameters, taken from problem 1 in Ref. [14]. Each of the 8652
paths were tracked single-threaded on the same hardware. A path
at z* was declared a success at t= 1 if ‖f (z∗; q(1))‖ < σ with a
cutoff value of σ= 1 × 10−12. The results can be found in Table 1.

Solving the eliminated system with a dense linear solver achieved
an 89.4% success rate when using double precision in 2413 s (≈
40.2min). In contrast, solving the uneliminated system with a
sparse solver took longer of 3002 s (≈ 50min) but achieved a
success rate of 96.4%.

4.2 Stephenson IIB Timed Curve Generator. The ab initio
solutions of all six-bar timed curve path generators were first com-
puted by Baskar and Plecnik [10]. We select one six-bar timed
curve generator, the Stephenson IIB, to further benchmark our tech-
nique contributed in this work. The synthesis of timed curve path
generation refers to finding linkage dimensions that move a trace
through desired points as coordinated with the angle of an input
link. Such a synthesis approach enables a designer to prescribe
the transmission ratio of forces as well as the motion of the
mechanism.

4.2.1 Loop Equations. The goal of the synthesis is to find the
location of fixed pivots {F, H} as well as the set of moving
pivots {A, B, C, D, G}. Similar to the four-bar path synthesis
problem, these points are also complex numbers. In this case, the
designer specifies N task positions Pj, as well as N input angles,
ρj, j= 0, …, N. We consider displacements relative to the initial
position P0. As this is a more complicated mechanism, three loop
equations are required to define the geometry that must be pre-
served. These equations are defined as

H + Vj(G − H) + Sj(P0 − G) = Pj (38)

F + Rj(A − F) + Qj(B − A) + Sj(P0 − B) = Pj

F + Rj(C − F) + Tj(D − C) + Sj(P0 − D) = Pj
(39)

j = 1, . . . , N − 1 (40)

where {Qj, Rj, Sj, Tj, Vj} are rotation operators defined as

Qj = eiϕj , Rj = eiρj , Sj = eiψ j , Tj = eiθj , Vj = eiνj

See Fig. 5. Without loss of generality, P0 is eliminated by consider-
ing all displacements to be relative to the first position.

Wj = Pj − P0, j = 1, . . . , N − 1 (41)

This results in the set of simpler equations

H + Vj(G − H) − SjG =Wj (42)

F + Rj(A − F) + Qj(B − A) − SjB =Wj

F + Rj(C − F) + Tj(D − C) − SjD =Wj
(43)

j = 1, . . . , N − 1 (44)

Table 1 Performance results for the four-bar path synthesis
example

Equation type
Linear solver

type Precision
Success rate

(%) Time (s)

Eliminated Dense Double 89.4% 2413
Eliminated Dense Quad 98.4% 751,305
Eliminated Sparse Double 82.8% 9536
Uneliminated Dense Double 95.1% 16,001
Uneliminated Sparse Double 96.4% 3002

Notes: The baseline performance of using the eliminated equations with a
dense linear solver in double precision yielded a modest success rate. This
success rate was improved by increasing precision from double to quads,
but doing so greatly increased the runtime. Using the eliminated equations
with a sparse solver did not improve performance or accuracy, likely due
to the associated linear systems being solved being fully dense. To
contrast this, using the uneliminated formulation with a dense linear
solver had a good success rate, but a longer runtime due to the increase in
dimensionality over the eliminated formulation. Finally, our proposed
methodology of using the uneliminated formulation with a sparse linear
solver (highlighted) yielded a success rate comparable to using the
eliminated formulation and quad math, but with a greatly improved runtime. Fig. 5 A Stephenson II-B six-bar linkage displacing from P0 to Pj

061007-8 / Vol. 22, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

Using isotropic coordinates, the conjugate equations must also be
added

�H + �Vj(�G − �H) − �Sj �G = �Wj (45)

�F + �Rj(�A − �F) + �Qj(�B − �A) − �Sj�B = �Wj

�F + �Rj(�C − �F) + �Tj(�D − �C) − �Sj �D = �Wj
(46)

j = 1, . . . , N − 1 (47)

As well as the normalization conditions:

Qj �Qj = 1 (48)

Sj�Sj = 1 (49)

Tj�Tj = 1 (50)

Vj �Vj = 1, j = 1, . . . , N − 1 (51)

Note that (Rj, �Rj) do not appear in the normalization equations as
they are part of the {P0, �P0, Pj, �Pj, Rj, �Rj} parameters specified
by the designer. The complex conjugates of the rotation operators
{�Qj, �Sj, �Tj, �Vj} are eliminated in this problem first by establishing
the identities

�Qj =
1
Qj

, �Sj =
1
Sj
, �Tj =

1
Tj
, �Vj =

1
Vj

(52)

from (49) to (52) and substituting the results into (46)–(48) and
clearing the denominators. This elimination results in the equations:

�HSjVj + Sj(�G − �H) − Vj �G = �WjSjVj (53)

�FQjSj + �RjQjSj(�A − �F) + Sj(�B − �A) − Qj�B = �WjQjSj (54)

�FSjTj + �RjSjTj(�C − �F) + Sj(�D − �C) − Tj �D = �WjSjTj (55)

Equations (42)–(44) and (53)–(55) represent a system of
6(N − 1) equations in 14+ 4(N− 1) variables {A, �A, B, �B, C, �C,
D, �D, F, �F, G, �G, H, �H, Qj, Sj, Tj, Vj}, which is square for N=8
task positions. This yields the uneliminated system of 42 equations

in 42 variables parameterized by 28 values {W1, �W1, . . . , W7,
�W7, R1, �R1, . . . , R7, �R7}.

4.2.2 Algebraic Elimination. Similar to the previous problem,
we seek to further simplify the system by eliminating the rotation
operators {Qj, Tj, Vj}. This is done by solving (42) and (53) for
Vj and setting the results equal to each other to eliminate Vj. Qj is
eliminated in a similar manner using (43) and (54). Finally, Tj is
eliminated by equating the results of (44) and (55). This results in
the set of eliminated equations:

(Wj − H + SjG)(�HSj − �G − �WjSj) = −Sj(�G − �H)(G − H) (56)

(Wj − F − Rj(A − F) + SjB)

× (�FSj + �RjSj(�A − �F) − �B − �WjSj)

= −Sj(�B − �A)(B − A) (57)

(Wj − F − Rj(C − F) + SjB)

× (�FSj + �RjSj(�C − �F) − �D − �WjSj)

= −Sj(�D − �C)(D − C) j = 1, . . . , (N − 1) (58)

Equations (56)–(58) represent a system of 3(N− 1) equations in
14 + (N− 1) variables: {A, �A,B, �B,C, �C,D, �D,F, �F,G, �G,H, �H, Sj},
which again is square for N=8 task positions. This results in an
eliminated polynomial system of 21 equations in 21 variables in
28 parameters {W1, �W1, . . . , W7, �W7, R1, �R1, . . . , R7, �R7}.

4.2.3 Ab Initio. The set of starting roots for the uneliminated
problem has been previously computed in Ref. [10]. This set was
found using a monodromy method to find 1,122,022 roots. For
the eliminated problem, the same set can be used directly by omit-
ting {Qj, Tj, Vj} from each root of the uneliminated start set. This
subset satisfies the eliminated equations (56)–(58).

4.2.4 Path Tracking Results. To quantify the advantage of our
approach, it is sufficient to select a representative subset from the
1,122,022 roots and extrapolate. A random selection of 10,000
roots was made to serve as start points for parameter homotopies
for benchmarking. This randomized set was used for both the une-
liminated and the eliminated problems. All 10,000 paths were
tracked single-threaded on the same hardware. The task positions
were taken from problem T-1 in Ref. [10]. As in the previous
problem, a path at z* was declared a success at t= 1 if
‖f (z∗; q(1))‖ < σ with a cutoff value of σ= 1 × 10−12. The results
can be found in Table 2.
The smaller eliminated system running a dense linear solver in

double precision took 2654 s (≈ 44.2min) to successfully track
75.8% of the 10,000 paths. Running the uneliminated system
with a sparse solver took 3394 s (≈ 56.6min) but achieved a
success rate of 97.2%. Quad precision was required to achieve a
similar success rate for the eliminated system, achieving a 97.8%
success rate in 184,569 s (≈ 2.1 days) of computation time. Our
approach combining uneliminated algebraic systems with sparse
linear solvers created a 54 × speedup over quad precision while
maintaining a comparable accuracy level.

5 Discussion
For both problems, the eliminated version ran faster than the une-

liminated version when both used dense linear solvers. This is
expected as the linear systems in the uneliminated problems are
larger than those of the eliminated. However, path tracking the une-
liminated problem with sparse linear solvers was more accurate than
tracking the eliminated problem with dense methods, with the dif-
ference becoming more pronounced in the more complex Stephen-
son IIB timed curve problem. Achieving a similar level of accuracy
in the eliminated problem required moving to quad precision, but
doing so paid a heavy penalty in runtime.

Table 2 Performance results for the six-bar path synthesis
example using the same randomly chosen subset of 10,000
paths of the original 1,122,022 roots

Equation type
Linear solver

type Precision
Success rate

(%)
Runtime

(s)

Eliminated Dense Double 75.8% 2654
Eliminated Dense Quad 97.8% 184,569
Eliminated Sparse Double 72.2% 1923
Uneliminated Dense Double 88.1% 12,033
Uneliminated Sparse Double 97.2% 3394

Notes: The baseline performance of using the eliminated equations with a
dense linear solver in double precision yielded a poor success rate. This
success rate was improved by increasing precision from double to quads,
but doing so greatly increased the runtime. Using the eliminated equations
with a sparse solver did not improve accuracy but had a slight
improvement in runtime, likely due to the semi-sparse structure of the
linear systems for the eliminated problem (see Fig. 3(a)). Using the
uneliminated formulation with a dense linear solver had improved success
rate, but a longer runtime due to the increase in dimensionality over the
eliminated formulation. Finally, our proposed methodology of using the
uneliminated formulation with a sparse linear solver (highlighted) again
yielded a success rate comparable to using the eliminated formulation and
quad math, but with a greatly improved runtime.

Journal of Computing and Information Science in Engineering DECEMBER 2022, Vol. 22 / 061007-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

To highlight the necessity of using both the uneliminated equa-
tions and sparse routines, the success rates and times for elimi-
nated/sparse and uneliminated/dense implementations have also
been reported. For both problems, simply using a sparse solver
did not increase the accuracy and runtime. The eliminated/sparse
implementation saw a decrease in accuracy over its eliminated/
dense counterpart. For the four-bar problem, there was an increase
in runtime while for there was a decrease in runtime for the six-bar
problem. This is likely due to the fact that the eliminated Jv in the
six-bar problem is still relatively sparse, while in the four-bar
problem the eliminated matrix is fully dense. Additionally, for the
uneliminated implementation of both problems, switching from a
sparse to a dense linear solver resulted in a decrease in success
rate and an increase in runtime.
When comparing the performance of our implementation with

that of BERTINI, we found that for the four-bar path synthesis
problem, BERTINI was able to successfully track 83% of paths
in 218 s (≈ 3.6min) using double precision. Using quad precision,
BERTINI successfully tracked 96% of paths in 19237 s (≈ 5.3 h).
For the Stephenson IIB timing problem, BERTINI was able to

find 8523 solutions in 338 s (≈ 5.6min) for a success rate of 85%
using double precision, and 9670 solutions in 55,652 s (≈ 15.5 h)
for a success rate of 97% using quad precision. At this higher
success rate, our uneliminated/sparse implementation had a
speedup over BERTINI of 6.4 × for the four-bar problem and
16.4 × for the Stephenson IIB problem.
Extrapolating the results for 10,000 paths to the full 1,122,022

paths required for the Stephenson IIB problem, we estimate that
our method of sparse solvers and uneliminated systems distributed
over an high-performance computing cluster of 192 processors
would take 1983 s (≈ 33min). Similarly, we estimate that
BERTINI would take 6,244,277 (≈ 9 h) to solve the same set to a
comparable accuracy using quad precision.
It is important to note that Bertini implements additional sophisti-

cated features that boost speed and accuracy which are not included
in our basic sparse/unelimminated implementation. These features
include automatic differentiation and endgame algorithms [22]. In
light of this, the comparisons made in Tables 1 and 2 are experimen-
tally more controlled and meaningful. BERTINI exclusively uses
dense linear solvers as it is intended to solve any general system of
polynomials with no guarantee on any special structure.

6 Conclusion
This paper presents a novel methodology for quickly and accu-

rately solving kinematics equations without requiring non-native
precision by both solving the original, uneliminated equations and
using sparse linear solvers on the systems associated with path
tracking. This provides a novel method for calculating the roots
of a polynomial system using parameters associated with physical
problems. These parameters are known to cause associated matrices
to become ill-conditioned enough such that practical implementa-
tions of parameter homotopy on physical problems is greatly com-
promised by speed and precision setbacks. The increase in
numerical failures can be alleviated by using 128-bit precision,
but this greatly increases runtime as current hardware is not
designed to natively run quad precision. For the problem of kine-
matic synthesis, the rotation operators of the loop equations are tra-
ditionally algebraically eliminated to decrease the size of the linear
system to be solved. This has the effect of increasing the complexity
and thus the number of floating point operations in evaluating the
function and its corresponding Jacobian matrices. Leaving the rota-
tion operators uneliminated decreases the cost of evaluating the
functions and Jacobians but increases the size of the corresponding
linear system. These uneliminated linear systems, while larger in
dimension, end up being quite sparse in nature over their eliminated
counterparts. By coupling the uneliminated kinematic synthesis
equations with a sparse linear solver, we obtained a path tracking
success rate comparable to running the eliminated system in quad

math while keeping the speed of performing all calculations in
double precision. This resulted in a maximum of 54.4 × speedup
over conventional methods.

Acknowledgment
This paper is based upon work supported by the National Science

Foundation under Grant No. CMMI-2144732.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request.

References
[1] Lipson, J. D., 1976, “Newtons Method,” Proceedings of the Third ACM

Symposium on Symbolic and Algebraic Computation—SYMSAC 76,
Yorktown Heights, NY, Aug. 10–12, ACM Press.

[2] Kolev, L., 2000, “An Interval Method for Global Nonlinear Analysis,” IEEE
Trans. Circ. Syst. I Fundam. Theory Appl., 47(5), pp. 675–683.

[3] Boege, W., Gebauer, R., and Kredel, H., 1986, “Some Examples for Solving
Systems of Algebraic Equations by Calculating Groebner Bases,” J. Symbol.
Comput., 2(1), pp. 83–98.

[4] Freudenstein, F., and Roth, B., 1963, “Numerical Solution of Systems of
Nonlinear Equations,” J. ACM, 10(4), pp. 550–556.

[5] Plecnik, M. M., 2015, “The Kinematic Design of Six-Bar Linkages Using
Polynomial Homotopy Continuation,” Ph.D. thesis, Department of Mechanical
and Aerospace Engineering, University of California, Irvine, CA.

[6] Morgan, A., and Sommese, A., 1987, “A Homotopy for Solving General
Polynomial Systems That Respects M-Homogeneous Structures,” Appl. Math.
Comput., 24(2), pp. 101–113.

[7] Huber, B., and Sturmfels, B., 1995, “A Polyhedral Method for Solving Sparse
Polynomial Systems,” Math. Comput., 64(212), pp. 1541–1541.

[8] Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., 2010, “Regeneration
Homotopies for Solving Systems of Polynomials,” Math. Comput., 80(273),
pp. 345–377.

[9] Plecnik, M. M., and Fearing, R. S., 2017, “Finding Only Finite Roots to Large
Kinematic Synthesis Systems,” ASME J. Mech. Rob., 9(2), p. 021005.

[10] Baskar, A., and Plecnik, M., 2020, “Synthesis of Six-Bar Timed Curve Generators
of Stephenson-Type Using Random Monodromy Loops,” ASME J. Mech. Rob.,
13(1), p. 011005.

[11] Morgan, A. P., and Sommese, A. J., 1989, “Coefficient-Parameter Polynomial
Continuation,” Appl. Math. Comput., 29(2), pp. 123–160.

[12] Bates, D. J., Sommese, A. J., Hauenstein, J. D., and Wampler, C. W., 2013,
Numerically Solving Polynomial Systems With Bertini, Society for Industrial
and Applied Mathematics, Philadelphia, PA.

[13] Higham, N. J., 2002, Accuracy and Stability of Numerical Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, PA.

[14] Wampler, C. W., Morgan, A. P., and Sommese, A. J., 1992, “Complete Solution
of the Nine-Point Path Synthesis Problem for Four-Bar Linkages,” J. Mech. Des.,
114(1), pp. 153–159.

[15] Schreiber, H., Meer, K., and Schmitt, B., 2002, “Dimensional Synthesis of Planar
Stephenson Mechanisms for Motion Generation Using Circlepoint Search and
Homotopy Methods,” Mech. Mach. Theory, 37(7), pp. 717–737.

[16] Morgan, A. P., Sommese, A. J., and Wampler, C. W., 1990, “Computing Singular
Solutions to Nonlinear Analytic Systems,” Numer. Math., 58(1), pp. 669–684.

[17] Watson, L. T., Sosonkina, M., Melville, R. C., Morgan, A. P., and Walker, H. F.,
1997, “Algorithm 777: HOMPACK90,” ACM Trans. Math. Softw., 23(4),
pp. 514–549.

[18] Verschelde, J., 1999, “Algorithm 795,” ACM Trans. Math. Softw., 25(2),
pp. 251–276.

[19] Wise, S. M., Sommese, A. J., and Watson, L. T., 2000, “Algorithm 801:
POLSYS_PLP,” ACM Trans. Math. Softw., 26(1), pp. 176–200.

[20] Su, H.-J., McCarthy, J. M., Sosonkina, M., and Watson, L. T., 2006, “Algorithm
857,” ACM Trans. Math. Softw., 32(4), pp. 561–579.

[21] Sommese, A. J., and Wampler, C. W., 2005, The Numerical Solution of Systems
of Polynomials Arising in Engineering and Science, World Scientific, Singapore.

[22] Bates, D. J., Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., 2007,
“Bertini: Software for Numerical Algebraic Geometry,” bertini.nd.edu.

[23] Newkirk, J. T., Watson, L. T., and Stanišic , M. M., 2010, “Determining the
Number of Inverse Kinematic Solutions of a Constrained Parallel Mechanism
Using a Homotopy Algorithm,” ASME J. Mech. Rob., 2(2), p. 024502.

[24] Plecnik, M. M., and Fearing, R. S., 2020, “Designing Dynamic Machines With
Large-Scale Root Finding,” IEEE Trans. Robot., 36(4), pp. 1135–1152.

061007-10 / Vol. 22, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

http://dx.doi.org/10.1109/81.847873
http://dx.doi.org/10.1109/81.847873
http://dx.doi.org/10.1016/S0747-7171(86)80014-1
http://dx.doi.org/10.1016/S0747-7171(86)80014-1
http://dx.doi.org/10.1145/321186.321200
http://dx.doi.org/10.1090/S0025-5718-1995-1297471-4
http://dx.doi.org/10.1090/S0025-5718-2010-02399-3
https://doi.org/10.1115/1.4035967
https://doi.org/10.1115/1.4047871
http://dx.doi.org/10.1115/1.2916909
http://dx.doi.org/10.1016/S0094-114X(02)00016-2
http://dx.doi.org/10.1007/BF01385648
http://dx.doi.org/10.1145/279232.279235
http://dx.doi.org/10.1145/317275.317286
http://dx.doi.org/10.1145/347837.347885
http://dx.doi.org/10.1145/1186785.1186789
http://dx.doi.org/10.7274/R0H41PB5
https://doi.org/10.1115/1.4001127
http://dx.doi.org/10.1109/TRO.2020.2975425

[25] Baskar, A., and Plecnik, M., 2021, “Synthesis of Watt-Type Timed Curve
Generators and Selection From Continuous Cognate Spaces,” ASME J. Mech.
Rob., 13(5), p. 051003.

[26] Fehlberg, E., 1968, “Classical Fifth-, Sixth-, Seventh-, and Eighth-Order
Runge–Kutta Formulas With Stepsize Control,” NASA Technical Report R-287.

[27] Dormand, J., and Prince, P., 1980, “A Family of Embedded Runge–Kutta
Formulae,” J. Comput. Appl. Math., 6(1), pp. 19–26.

[28] IEEE Std 754-2019, 2019, “IEEE Standard for Floating-Point Arithmetic”
(Revision of IEEE 754-2008), pp. 1–84.

[29] Bailey, D., 2005, “High-Precision Floating-Point Arithmetic in Scientific
Computation,” Comput. Sci. Eng., 7(3), pp. 54–61.

[30] Wampler, C. W., 1996, “Isotropic Coordinates, Circularity, and Bezout Numbers:
Planar Kinematics From a New Perspective,” Proceedings of the ASME Design
Engineering Technical Conference, Irvine, CA, Aug. 18–22.

[31] Davis, T. A., Rajamanickam, S., and Sid-Lakhdar, W. M., 2016, “A Survey of
Direct Methods for Sparse Linear Systems,” Acta Numer., 25, pp. 383–566.

[32] Tewarson, R. P., 1970, “Computations With Sparse Matrices,” SIAM Rev., 12(4),
pp. 527–543.

[33] Rose, D. J., and Tarjan, R. E., 1978, “Algorithmic Aspects of Vertex Elimination
on Directed Graphs,” SIAM J. Appl. Math., 34(1), pp. 176–197.

[34] Gilbert, J. R., 1980, “A Note on the NP-Completeness of Vertex Elimination
on Directed Graphs,” SIAM J. Algebraic Discret. Methods, 1(3), pp. 292–
294.

[35] Cuthill, E., and McKee, J., 1969, “Reducing the Bandwidth of Sparse Symmetric
Matrices,” Proceedings of the 1969 24th National Conference, New York, NY,
Aug. 26–28, ACM Press.

[36] Markowitz, H. M., 1957, “The Elimination Form of the Inverse and Its
Application to Linear Programming,” Manage. Sci., 3(3), pp. 255–269.

[37] George, A., and McIntyre, D. R., 1978, “On the Application of the Minimum
Degree Algorithm to Finite Element Systems,” SIAM J. Numer. Anal., 15(1),
pp. 90–112.

[38] Berry, R., 1971, “An Optimal Ordering of Electronic Circuit
Equations for a Sparse Matrix Solution,” IEEE Trans. Circuit Theory, 18(1),
pp. 40–50.

[39] Kernighan, B. W., and Lin, S., 1970, “An Efficient Heuristic Procedure for
Partitioning Graphs,” Bell Syst. Tech. J., 49(2), pp. 291–307.

[40] Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H., 1999,
“A Supernodal Approach to Sparse Partial Pivoting,” SIAM J. Matrix Anal.
Appl., 20(3), pp. 720–755.

[41] Irons, B. M., 1970, “A Frontal Solution Program for Finite Element Analysis,”
Int. J. Numer. Methods Eng., 2(1), pp. 5–32.

[42] Duff, I. S., and Reid, J. K., 1983, “The Multifrontal Solution of Indefinite Sparse
Symmetric Linear,” ACM Trans. Math. Softw., 9(3), pp. 302–325.

[43] Guennebaud, G., and Jacob, B., 2010, “Eigen v3,”
[44] Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H., 1999,

“A Supernodal Approach to Sparse Partial Pivoting,” SIAM J. Matrix Anal.
Appl., 20(3), pp. 720–755.

[45] Plecnik, M. M., and Fearing, R. S., 2017, “A Study on Finding Finite Roots
for Kinematic Synthesis,” Volume 5B: 41st Mechanisms and Robotics
Conference, Cleveland, OH, Aug. 6–9, American Society of Mechanical
Engineers.

Journal of Computing and Information Science in Engineering DECEMBER 2022, Vol. 22 / 061007-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/6/061007/6916985/jcise_22_6_061007.pdf?casa_token=AzjEw
8ddsxAAAAAA:65JlSM

zzO
w

TeKSG
lTZusblLprK-tncAU

SyPdBJN
M

O
01U

YFR
4fP5C

-rdXO
5ivw

hQ
G

kSs by U
niversity O

f N
otre D

am
e user on 12 January 2023

https://doi.org/10.1115/1.4050197
https://doi.org/10.1115/1.4050197
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1109/MCSE.2005.52
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1137/1012103
http://dx.doi.org/10.1137/0134014
http://dx.doi.org/10.1137/0601033
http://dx.doi.org/10.1287/mnsc.3.3.255
http://dx.doi.org/10.1137/0715006
http://dx.doi.org/10.1109/TCT.1971.1083215
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1137/S0895479895291765
http://dx.doi.org/10.1137/S0895479895291765
http://dx.doi.org/10.1002/nme.1620020104
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1137/S0895479895291765
http://dx.doi.org/10.1137/S0895479895291765

	1 Introduction
	1.1 The Use of Polynomial Homotopy Continuation in Kinematic Synthesis

	2 Background
	2.1 Parameter Homotopy Continuation
	2.2 Path Tracking
	2.3 Path Failures and Numerical Precision
	2.4 Application: Kinematic Synthesis of Mechanisms
	2.5 Sparse Linear Solvers

	3 Implementation
	4 Demonstration
	4.1 Four-Bar Synthesis for Nine Path Points
	4.1.1 Loop Equations
	4.1.2 Algebraic Elimination
	4.1.3 Ab Initio
	4.1.4 Path Tracking Results

	4.2 Stephenson IIB Timed Curve Generator
	4.2.1 Loop Equations
	4.2.2 Algebraic Elimination
	4.2.3 Ab Initio
	4.2.4 Path Tracking Results

	5 Discussion
	6 Conclusion
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

