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ABSTRACT
This paper formulates synthesis equations for a two degree-

of-freedom planar five-bar linkage to reproduce specified veloc-
ity ellipses at specified points in its workspace. The synthesis pro-
cedure finds a mechanism that exactly reproduces two ellipses,
and affords the designer the free choice of one ground pivot. This
paper shows how four solutions to these synthesis equations can
be obtained in closed form. Each solution describes a five-bar
linkage. The solution procedure reveals shared structure between
these five-bars. The new synthesis procedure is applied to a few
examples.

INTRODUCTION
This paper presents a new way to think about the synthesis of

multi-degree-of-freedom mechanisms. That is to use the ellipses
produced by Jacobian transformations as constraints that form
synthesis equations. These synthesis equations can be solved to
find the dimensions of mechanisms that reproduce specified el-
lipses. This paper deals with exact ellipse reproduction. Such
a procedure can be used to synthesize multi-degree-of-freedom
mechanisms that exhibit tailored directional velocity and force
characteristics at different parts of its workspace. The synthe-
sis equations are formulated for a planar five-bar linkage to ex-
actly reproduce two specified velocity ellipses. The designer is
afforded the choice of one ground pivot. Four solutions of the
synthesis equations are found in closed form, each describing a
five-bar linkage.

The study of mechanism Jacobians as transformations from

spheres/circles in an input space to ellipsoids/ellipses in an out-
put space is an old topic in robotics [1–5]. Similar results exist
on both velocity and force/torque production. The literature on
this topic suggests many different performance indices derived
from Jacobians to assess a mechanism’s kinematic design [6–12],
mostly geared toward optimization. This work poses Jacobian
ellipses themselves as constraints that form synthesis equations.
From this perspective, this work is more similar to four-bar mo-
tion generation problems of Burmester [13] rather than the per-
formance index literature.

ELLIPSES and JACOBIANS
To specify ellipses, the theory of the singular value decom-

position of matrices is leveraged. That is that any real, square
matrix [ J ] can be decomposed into the product,

[ J ] = [U ][Σ][V ]T (1)
where [U ] = [R(θu)]

[Σ] = diag(σx,σy)

[V ] = [R(θv)] or [R̂(θv)].

Interpreting [J ] as a transformation, it can be seen that if it trans-
forms the points belonging to a circle in an input space to an
ellipse in an output space. The matrix [U ] sets the orientation
of that ellipse, the matrix [Σ] sets its semi-axis lengths, and the
matrix [V ] sets the orientation of the coordinate transformation
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onto the ellipse. To explain the last one, note that the image
of {1,0} and {0,1} generally do not lie on the semi-axes of the
transformed ellipse. [V ] can either be a rotation [R] or a reflection
[R̂].

[R(θ)] :=
[

cosθ −sinθ

sinθ cosθ

]
[R̂(θ)] :=

[
−cos2θ −sin2θ

−sin2θ cos2θ

]

If [V ] is a reflection, the small angle between the image of {1,0}
and {0,1} reverses, i.e. the handedness of the transformation
reverses. We will define variable η = |V | to denote whether [V ]
is a rotation (η = 1) or a reflection (η =−1).

In this way all real 2× 2 matrices, and their underlying el-
lipse transformations, are parameterized by θu, σx, σy, θv, and η .
If [ J ] is a velocity Jacobian, then this parameterization has phys-
ical significance. It describes how the movements of input actu-
ators multiply into movements at an output end-effector. A long
semi-axis indicates a direction which may be moved at faster
velocities (at the cost of force production), and a short semi-
axis indicates the opposite. Note that force ellipses share the
same orientation as velocity ellipses, but with reciprocal semi-
axis lengths. Therefore, the results of this paper are as equally
important to synthesizing multi-degree-of-freedom force produc-
tion as they are to synthesizing velocity production.

In this work, the aim is to synthesize specified velocity el-
lipses at points throughout the workspace, P j, j = 0,1, . . . ,N−1.
Geometric ellipse information is used to define Jacobian matri-
ces [J j] at each P j via Eqn. (1). Therefore, instantiating desired
velocity ellipses is accomplished by finding mechanism dimen-
sions that satisfy constraints imposed by Jacobian elements.
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FIGURE 1. A FIVE-BAR LINKAGE DISPLACED FROM A REF-
ERENCE CONFIGURATION.

SYNTHESIS SOLUTION
A five-bar linkage is shown in Fig. 1. Its dimensions are

given by six points specified in a reference configuration: A0, B0,
C0, D0, F0, and P0. To begin the formulation, first the velocity
Jacobian is represented. The loop equations are formed,

A0 +[R(φ)](C0−A0)+ [R(ρ)](F0−C0) =

B0 +[R(ψ)](D0−B0)+ [R(θ)](F0−D0) (2)
A0 +[R(φ)](C0−A0)+ [R(ρ)](P0−C0) = P, (3)

To write this more concisely, the following vector functions are
introduced,

rAC(φ) := [R(φ)](C0−A0) rCF(ρ) := [R(ρ)](F0−C0)

rBD(ψ) := [R(ψ)](D0−B0) rDF(θ) := [R(θ)](F0−D0)

rCP(ρ) := [R(ρ)](P0−C0) rBA = A0−B0 (4)

Then the loop equations take the form,

A0 + rAC(φ)+ rCF(ρ) = B0 + rBD(ψ)+ rDF(θ) (5)
A0 + rAC(φ)+ rCP(ρ) = P, (6)

Taking the derivative of these equations yields,

φ̇ [ i ]rAC(φ)+ ρ̇[ i ]rCF(ρ) = ψ̇[ i ]rBD(ψ)+ θ̇ [ i ]rDF(θ) (7)

φ̇ [ i ]rAC(φ)+ ρ̇[ i ]rCP(ρ) = Ṗ (8)

where [ i ] is the 90◦ rotation matrix
[

0 −1
1 0

]
with the property

[ i ]2 =−[ I ]. Eqn. (7) may be rewritten as{
ρ̇

θ̇

}
= (9)

1
rDF(θ)× rCF(ρ)

[
([ i ]rDF(θ))

T

([ i ]rCF(ρ))
T

][
− rAC(φ) rBD(ψ)

]{
φ̇

ψ̇

}
where the “×” operator defines v1× v2 = |v1 v2|, i.e. the deter-
minant of a matrix formed by two vectors.

The expression for ρ̇ from Eqn. (9) can be substituted into
Eqn. (8) to obtain the Jacobian transformation,[

J1 J2

]{
φ̇

ψ̇

}
= Ṗ (10)

where J1 = [ i ]
(

rAC(φ)−
rDF(θ)× rAC(φ)

rDF(θ)× rCF(ρ)
rCP(ρ)

)
(11)

J2 =
rDF(θ)× rBD(ψ)

rDF(θ)× rCF(ρ)
[ i ]rCP(ρ) (12)
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The synthesis equations are formed by repeating Eqns. (5),
(6), (11), and (12) for N task positions, indexed by j =
0,1, . . . ,N−1.

A0 + rAC(φ j)+ rCF(ρ j) = B0 + rBD(ψ j)+ rDF(θ j) (13)
A0 + rAC(φ j)+ rCP(ρ j) = P j, (14)

[ i ]
(

rAC(φ j)−
rDF(θ j)× rAC(φ j)

rDF(θ j)× rCF(ρ j)
rCP(ρ j)

)
= J1, j (15)

rDF(θ j)× rBD(ψ j)

rDF(θ j)× rCF(ρ j)
[ i ]rCP(ρ j) = J2, j j = 0,1, . . . ,N−1 (16)

The input data to this design problem is a list of point lo-
cations P j, j = 0,1, . . . ,N−1, and the Jacobian information that
should be reproduced at each point, that is J1, j and J2, j. The de-
sign parameters are the unknown reference pivot positions A0,
B0, C0, D0, and F0. Along for the ride, are also several un-
known intermediate angle values: φ j, ρ j, ψ j, and θ j. At the ref-
erence configuration, φ0 =ρ0 =ψ0 =θ0 = 0, making Eqns. (13)
and (14) identically equal. For exact two position synthesis,
i.e. j = 0,1, this makes for 12 equations and 14 unknowns.
The system is made square by redesignating the components of
B0 = {Bx0, By0} as free choices rather than unknown variables.

To embark on the solution procedure for two position syn-
thesis, first multiply both sides of Eqns. (15) and (16) by −[ i ],
then solve for rCP(ρ j) in (16) and substitute into (15). After sim-
plification, (15) and (16) become

rAC(φ j) =−[ i ]J1, j−
rDF(θ j)× rAC(φ j)

rDF(θ j)× rBD(ψ j)
[ i ]J2, j (17)

rCP(ρ j) =−
rDF(θ j)× rCF(ρ j)

rDF(θ j)× rBD(ψ j)
[ i ]J2, j (18)

Eqns. (17) and (18) can be substituted in to (14) to obtain

A0− [ i ]J1, j−α j[ i ]J2, j = P j j = 0,1 (19)
where α j = β1, j +β2, j (20)

β1, j =
rDF(θ j)× rAC(φ j)

rDF(θ j)× rBD(ψ j)
(21)

β2, j =
rDF(θ j)× rCF(ρ j)

rDF(θ j)× rBD(ψ j)
(22)

Eqn. (19) consists of four equations which are linear in the four
unknowns Ax0, Ay0, α0, and α1. The linear system takes the form,

1 0 −[ i ]J2,0
0

0 1 0
1 0 0 −[ i ]J2,10 1 0




Ax0
Ay0
α0
α1

=

[
P0 +[ i ]J1,0
P1 +[ i ]J1,1

]
(23)

and can be solved outright, yielding numeric values for A0, α0,
and α1.

Upon introducing the new β coefficients, Eqns. (17) and
(18) can be rewritten as

rAC(φ j) =−[ i ]J1, j−β1, j[ i ]J2, j (24)
rCP(ρ j) =−β2, j[ i ]J2, j (25)

Angles φ j and ρ j can be eliminated from (24) and (25), respec-
tively, by taking the dot product of each side of each equation
with itself. The result is

(C0−A0) · (C0−A0) = (J1, j +β1, jJ2, j) · (J1, j +β1, jJ2, j) (26)

(P0−C0) · (P0−C0) = β
2
2, jJ2, j ·J2, j j = 0,1 (27)

Eqns. (20), (26), and (27) form a subsystem of six equations in
the six unknowns Cx0, Cy0, β1,0, β1,1, β2,0, and β2,1. To elimi-
nate the β coefficients, solve for β1, j and β2, j in (26) and (27),
respectively,

β1, j =−
J1, j ·J2, j

J2, j ·J2, j
(28)

±
√

(J1, j ·J2, j)2− (J2, j ·J2, j)(J1, j ·J1, j−(C0−A0)·(C0−A0))

J2, j ·J2, j

β2, j =±

√
(P0−C0) · (P0−C0)

J2, j ·J2, j
j = 0,1 (29)

Substitution into (20) yields an equation of the form,

a j =
√

b j +
√

c j , j = 0,1 (30)

where a j, b j, and c j are introduced to aid in equation manipula-
tion,

a j = α j +
J1, j ·J2, j

J2, j ·J2, j
(31)

b j =
(J1, j ·J2, j)

2− (J2, j ·J2, j)(J1, j ·J1, j−(C0−A0)·(C0−A0))

(J2, j ·J2, j)2

(32)

c j =
(P0−C0) · (P0−C0)

J2, j ·J2, j
j = 0,1 (33)

Eqn. (30) may be converted to a polynomial. To do so, square
both sides. There will still be a leftover radical. Isolate it to one
side of the equation and square both sides again. Then expand
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the result, witness some cancellations, and do some factoring.
The result will yield,

a2
j(a

2
j −2(b j + c j))+(b j− c j)

2 = 0 , j = 0,1 (34)

Eqn. (34) looks to be quartic in terms of Cx0 and Cy0 in light of
(31)–(33). But upon closer inspection of the last term, it can be
found that expansion of b j−c j according to (32) and (33) leads
to the term C0 ·C0 cancelling out. Because of this, Eqn. (34)
is quadratic, and the system, j = 0,1, has four solutions for C0,
which may be obtained numerically. Once values of C0 are ob-
tained, then values of the β variables are obtained through back-
substitution into Eqns. (28) and (29). However, note that it is
unclear whether “+” or “−” solutions should be used in (28)
and (29). Across these equations, and considering j = 0,1, there
are 16 cases of different sign combinations from which β coeffi-
cients can be calculated. All 16 cases were evaluated and tested
for satisfaction of (20). During the numerical exercises of this
work, it was always the case that only one of the 16 sign combi-
nations lead to satisfaction of (20) for every C0 solution, and this
combination was not the same every time.

Next, the numeric values of C0, β1, j, β2, j are back-
substituted into Eqns. (24) and (25) to obtain unique solutions
of φ j and ρ j, j = 0,1 (not considering 2π periodicity),

{
cosφ j
sinφ j

}
= (35)

1
|C0−A0|2

[
C0−A0 [ i ](C0−A0)

]T

[ i ]
(
−J1, j−β1, jJ2, j

)
{

cosρ j
sinρ j

}
=

1
|P0−C0|2

[
P0−C0 [ i ](P0−C0)

]T

[ i ]
(
−β2, jJ2, j

)
(36)

where the arctan function is used to compute the angles.
At this point, four solutions of the ACP dyad have been

computed and can be analyzed. In all numeric exercises, it was
found that four unique values of C0 were computed (generally),
but dyad link lengths occurred in identical pairs. Within each
pair, only one solution (generally) had a zero value for φ0 and
ρ0, which is expected given the design space parameterization.
The other partner solution described the same dyad but measured
from a different reference configuration and rotated onto the ref-
erence configuration of the first solution. Therefore, these part-
ner solutions do not satisfy Eqn. (14) when φ0 = ρ0 = 0, leaving
only two unique ACP dyad solutions going forward. To solve
for the remaining pivots of the five-bar, there is left Eqns. (13),
(21), and (22), which amounts to eight equations in the eight un-
knowns Dx0, Dy0, Fx0, Fy0, ψ0, ψ1, θ0, θ1,

Next, manipulate Eqns. (13), (21), and (22) to find θ j. Apply
the “×” operation between rDF(θ j) and the terms of Eqn. (13).

This cancels out the last term, resulting in

rDF(θ j)× (A0−B0) + rDF(θ j)× rAC(φ j) + (37)
rDF(θ j)× rCF(ρ j) = rDF(θ j)× rBD(ψ j)

Divide both sides by the right hand side to obtain,

rDF(θ j)× (A0−B0)

rDF(θ j)× rBD(ψ j)
+β1, j +β2, j = 1 (38)

considering the β definitions of (21), and (22). Solve for
rDF(θ j)× rBD(ψ j) in (22), and substitute in to (38) to obtain

rDF(θ j)× rBA

rDF(θ j)× rAC(φ j)
β1, j = 1−α j (39)

considering (20) and defining rBA = A0−B0. Clear the denomi-
nator of (39) and factor out rDF(θ j) to obtain,

rDF(θ j)×δδδ j = 0 (40)
where δδδ j = β1, j rBA− (1−α j)rAC(φ j) (41)

This statement requires colinearity of link DF with the known
vector δδδ j Define rDF to be the length of link DF and θ̂ to be its
angle measured from horizontal such that

[R(θ j)](F0−D0) = rDF

{
cos θ̂ j

sin θ̂ j

}
and θ̂ j = θ̂0 +θ j (42)

For each position, j = 0,1, there are two possible values for θ̂ j,

θ̂0 = arctan δy0
δx0

+mπ

case m n
I 0 0

θ̂1 = arctan δy1
δx1

+nπ

II 1 1
III 1 0
IV 0 1

(43)

leading to four sets of {θ̂0, θ̂1} solutions per every ACP dyad, of
which there are two. The proceeding steps of the solution process
are performed for all eight sets of solution variables generated at
this point. From Eqn. (42), transform back to reference configu-
ration angles, θ0 = 0 and θ1 = θ̂1−θ̂0.
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Next, define new variables γ1, j, γ2, j, and γ3, j,

γ1, j =

{
cos θ̂ j

sin θ̂ j

}
×
(
[R(φ j)](C0−A0)

)
(44)

γ2, j =

{
cos θ̂ j

sin θ̂ j

}
×
(
[R(ρ j)](F0−C0)

)
(45)

γ3, j =

{
cos θ̂ j

sin θ̂ j

}
×
(
[R(ψ j)](D0−B0)

)
j = 0,1 (46)

which were chosen to set up

β1, j =
γ1, j

γ3, j
and β2, j =

γ2, j

γ3, j
(47)

See that γ1, j is fully defined as the right hand side of
Eqn. (44) is completely known at this point. Next, γ3, j and then
γ2, j are found sequentially using (47). F0 remains as the sole
unknown in (45) and can be solved for across j = 0,1. To do
so, expand and rearrange (45), replacing {cos θ̂ j,sin θ̂ j}T with
[R(θ̂ j)]{1,0}T ,

[R(θ̂ j)]

{
1
0

}
× [R(ρ j)]F0 = γ2, j +[R(θ̂ j)]

{
1
0

}
× [R(ρ j)]C0

j = 0,1 (48)

Note that the “×” product may be rewritten as a dot product, i.e.
a× b = [ i ]a · b, which is invariant to rotation of its operands.
Therefore, the left hand side of (48) can be rewritten as

[ i ][R(θ̂ j−ρ j)]

{
1
0

}
·F0 j = 0,1 (49)

Combining j = 0 and j = 1 equations, the first operand of (49)
forms the rows of a matrix which may be inverted to yield nu-
meric values of F0,

F0 =
1

sin(θ̂1−θ̂0−ρ1+ρ0)

[
cos(θ̂1−ρ1) −cos(θ̂0−ρ0)

sin(θ̂1−ρ1) −sin(θ̂0−ρ0)

]

×


γ2,0 +[R(θ̂0)]

{
1
0

}
× [R(ρ0)]C0

γ2,1 +[R(θ̂1)]

{
1
0

}
× [R(ρ1)]C0


(50)

Note that ρ0 = 0, but it is left in to illustrate the equations pat-
tern. To find the remaining unknown pivot D0, combine the j = 1

equation of (13) and the j = 0 equation of (46), that is

εεε1− [R(θ1)](F0−D0) = [R(ψ1)](D0−B0) (51)

γ3,0 =

{
cos θ̂0

sin θ̂0

}
× (D0−B0) (52)

where εεε1 = rBA + rAC(φ1)+ rCF(ρ1) (53)

and where εεε1 is introduced to represent several known terms and
shorten the length of equations. The angle ψ1 is eliminated from
(51) by taking the dot product of each side with itself. Expansion
of the resulting equation cancels out D0 ·D0 and yields,

2
(
[R(θ1)]

T
εεε1−F0 +B0

)
·D0 = (54)

2εεε1 · [R(θ1)]F0− εεε1 · εεε1−F0 ·F0 +B0 ·B0

Expansion of (52) yields

(
[ i ][R(θ̂0)]

{
1
0

})
·D0 = γ3,0 +[R(θ̂0)]

{
1
0

}
×B0 (55)

The first operands of the dot product on the left hand sides of
Eqns. (54) and (55) can be stacked into a matrix that is inverted
to solve for D0,

D0 =
1

2
(
[R(θ1)]T εεε1−F0 +B0

)
× [ i ][R(θ̂0)]

{
1
0

} [ i ] (56)

×
[
− [ i ][R(θ̂0)]

{
1
0

}
2
(
[R(θ1)]

T
εεε1−F0 +B0

)]

×

2 εεε1 · [R(θ1)]F0− εεε1 · εεε1−F0 ·F0 +B0 ·B0

γ3,0 +[R(θ̂0)]

{
1
0

}
×B0


Finally, all pivot locations are now known. The remaining un-
known angle ψ j is determined from Eqn. (51),

{
cosψ j
sinψ j

}
=

1
|D0−B0|2

[
D0−B0 [ i ](D0−B0)

]T

(εεε j− rDF(θ j))

j = 0,1 (57)

where the arctan function is called on the left hand side of (57).
The number of solutions computed at this point is eight: that
is four stemming from the combinations of arctan solutions for
{θ̂0, θ̂1}, Eqn. (43), for each of the two ACP dyads. However,
for each ACP dyad only two unique values of F0 were found for
all examples. Therefore, for each of the two dyad ACP solutions,
there are two dyad BDF solutions, yielding four five-bar solu-
tions in total.
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TABLE 1. ELLIPSE SPECIFICATION AND SYNTHESIS SOLU-
TIONS FOR THE FIRST EXAMPLE. ELLIPSES AND SYNTHESIS
SOLUTIONS ARE DRAWN IN FIG. 2.

Ellipse specification

j 0 1

Px 0.260000 −0.320000

Py 0.256000 −0.040000

θu −0.291457 −0.117109

σx 0.352477 0.122066

σy 0.104403 0.342345

θv −1.395103 −1.234371

η 1 1

Synthesis solutions

1 2 3 4

A0

0.355430 0.355430 0.355430 0.355430

0.836371 0.836371 0.836371 0.836371

B0

0.260000 0.260000 0.260000 0.260000

−0.400000 −0.400000 −0.400000 −0.400000

C0

0.557885 0.557885 0.170474 0.170474

1.087540 1.087540 0.006091 0.006091

D0

0.609264 0.341047 0.379773 0.242951

−0.405995 0.024940 −0.145966 0.255987

F0

0.451863 0.451863 0.247668 0.247668

−0.153103 −0.153103 0.242130 0.242130

EXAMPLES
To validate the solution procedure for the two position el-

lipse synthesis procedure for a five-bar linkage, it was applied to
three example synthesis tasks. Ellipse specifications for each of
the synthesis tasks are given in Tables 1, 2, and 3. The ellipse
parameters, i.e. θu, σx, σy, θv, and η , define Jacobian matrices
according to Eqn. (1). The four corresponding synthesis solu-
tions also appear in Tables 1, 2, and 3. The target ellipses and
five-bar solutions are drawn in Figs. 2, 3, and 4. Task ellipse
input data was specified by mouse clicks through an interactive
interface.

The first example demonstrates four five-bar linkages capa-
ble of reproducing two generically selected ellipses. Of the four
solutions, a workspace check shows that three would be practi-
cally useful. The fourth solution, Figs. 2g-h, possesses a very
small link length, such that it is practically a four-bar linkage.
That being the case, it has a very narrow workspace.

TABLE 2. ELLIPSE SPECIFICATION AND SYNTHESIS SOLU-
TIONS FOR THE SECOND EXAMPLE. ELLIPSES AND SYNTHE-
SIS SOLUTIONS ARE DRAWN IN FIG. 3.

Ellipse specification

j 0 1

Px 0.006000 0.012000

Py −0.006000 0.008000

θu −1.561894 0.004843

σx 0.678955 0.822000

σy 0.074673 0.070114

θv 1.411372 −0.283472

η −1 1

Synthesis solutions

1 2 3 4

A0

−0.345764 −0.345764 −0.345764 −0.345764

−0.365612 −0.365612 −0.365612 −0.365612

B0

−0.460000 −0.460000 −0.460000 −0.460000

−0.860000 −0.860000 −0.860000 −0.860000

C0

−0.801636 −0.801636 0.013569 0.013569

−0.283086 −0.283086 −0.003403 −0.003403

D0

−0.621189 −1.163860 −0.409607 0.013118

−0.932387 −0.676899 −0.833723 −0.001692

F0

−1.288407 −1.288407 0.012703 0.012703

−0.618262 −0.618262 −0.002509 −0.002509

The second example attempted to select ellipses that share
the same center point, but have long semi-axis lengths nearly
perpendicular to each. A mechanism with a high aspect ratio ve-
locity ellipse has great velocity production (and poor force pro-
duction) in one direction, and poor velocity production (and great
force production) in the orthogonal direction. The task specifica-
tion tests whether a five-bar can be found that can reconfigure to
completely flip such anisotropic velocity/force characteristics at
the same workspace point. Two five-bar solutions capable of this
are shown in Fig. 3.

The third example aimed to find five-bar linkages that pos-
sess a “floor,” so to say, of high aspect ratio ellipses that favor
force in the vertical direction and velocity in the horizontal di-
rection. Such a five-bar might be useful for mobile robots that
need to resist their own weight in the vertical direction, but oth-
erwise favor fast motions. Of the four synthesis solutions, two of
them (Fig. 4a-d) possessed pivots in favorable locations, and the
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TABLE 3. ELLIPSE SPECIFICATION AND SYNTHESIS SOLU-
TIONS FOR THE THIRD EXAMPLE. ELLIPSES AND SYNTHESIS
SOLUTIONS ARE DRAWN IN FIG. 4.

Ellipse specification

j 0 1

Px 0.398000 −0.462000

Py −0.235000 −0.220000

θu 0.000000 −0.022862

σx 0.640078 0.656305

σy 0.070711 0.070114

θv −2.984176 −1.087663

η 1 1

Synthesis solutions

1 2 3 4

A0

−0.492586 −0.492586 −0.492586 −0.492586

0.396535 0.396535 0.396535 0.396535

B0

0.260000 0.260000 0.260000 0.260000

0.480000 0.480000 0.480000 0.480000

C0

−0.160275 −0.160275 0.256709 0.256709

0.567150 0.567150 −0.031988 −0.031988

D0

0.332286 0.063780 0.349471 0.488824

0.707879 0.215627 0.038313 −0.380754

F0

0.163433 0.163433 0.571720 0.571720

0.398321 0.398321 −0.630043 −0.630043

other two (Fig. 4e-h) did not. A workspace check shows that the
first two solutions are generally tenable. However, what Figs. 4a-
d does not show is that in between the two specified ellipses, the
velocity ellipses are not high aspect ratio, which thwarts the ef-
fort to find a so-called “floor.”

CONCLUSION
In this paper, the formulation was presented for the synthesis

of a five-bar linkage capable of exactly achieving two specified
velocity ellipses at two points of its workspace. Four solutions
to the synthesis equations were found, where each describes the
dimensions of a five-bar linkage. The synthesis procedure was
illustrated with a variety of examples. This work represents a
new way of performing the synthesis of multi-degree-of-freedom
linkages that consider velocity ellipses directly into constraint
equations, rather than parsed for performance indices.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 2. The five-bar linkages computed for the first example.
Drawings correspond to ellipses and solutions of Table 1. (a), (b) depict
Solution 1 achieving each ellipsoid. (c), (d) depict Solution 2 achieving
each ellipsoid. (e), (f) depict Solution 3 achieving each ellipsoid. (g),
(h) depict Solution 4 achieving each ellipsoid.

(a) (b) (c) (d)

FIGURE 3. The five-bar linkages computed for the second example.
Drawings correspond to ellipses and solutions of Table 2. (a), (b) depict
Solution 1 achieving each ellipsoid. (c), (d) depict Solution 2 achiev-
ing each ellipsoid. The third and fourth solutions were omitted as they
possessed small link lengths that made them practically useless.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4. The five-bar linkages computed for the third example.
Drawings correspond to ellipses and solutions of Table 3. (a), (b) depict
Solution 1 achieving each ellipsoid. (c), (d) depict Solution 2 achieving
each ellipsoid. (e), (f) depict Solution 3 achieving each ellipsoid. (g),
(h) depict Solution 4 achieving each ellipsoid.
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