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ABSTRACT

This paper formulates synthesis equations for a two degree-
of-freedom planar five-bar linkage to reproduce specified veloc-
ity ellipses at specified points in its workspace. The synthesis pro-
cedure finds a mechanism that exactly reproduces two ellipses,
and affords the designer the free choice of one ground pivot. This
paper shows how four solutions to these synthesis equations can
be obtained in closed form. Each solution describes a five-bar
linkage. The solution procedure reveals shared structure between
these five-bars. The new synthesis procedure is applied to a few
examples.

INTRODUCTION

This paper presents a new way to think about the synthesis of
multi-degree-of-freedom mechanisms. That is to use the ellipses
produced by Jacobian transformations as constraints that form
synthesis equations. These synthesis equations can be solved to
find the dimensions of mechanisms that reproduce specified el-
lipses. This paper deals with exact ellipse reproduction. Such
a procedure can be used to synthesize multi-degree-of-freedom
mechanisms that exhibit tailored directional velocity and force
characteristics at different parts of its workspace. The synthe-
sis equations are formulated for a planar five-bar linkage to ex-
actly reproduce two specified velocity ellipses. The designer is
afforded the choice of one ground pivot. Four solutions of the
synthesis equations are found in closed form, each describing a
five-bar linkage.

The study of mechanism Jacobians as transformations from

spheres/circles in an input space to ellipsoids/ellipses in an out-
put space is an old topic in robotics [1-5]. Similar results exist
on both velocity and force/torque production. The literature on
this topic suggests many different performance indices derived
from Jacobians to assess a mechanism’s kinematic design [6—12],
mostly geared toward optimization. This work poses Jacobian
ellipses themselves as constraints that form synthesis equations.
From this perspective, this work is more similar to four-bar mo-
tion generation problems of Burmester [13] rather than the per-
formance index literature.

ELLIPSES and JACOBIANS

To specify ellipses, the theory of the singular value decom-
position of matrices is leveraged. That is that any real, square
matrix [J] can be decomposed into the product,

[J]=U]EVv])" )

Interpreting [J] as a transformation, it can be seen that if it trans-
forms the points belonging to a circle in an input space to an
ellipse in an output space. The matrix [U] sets the orientation
of that ellipse, the matrix [X] sets its semi-axis lengths, and the
matrix [V] sets the orientation of the coordinate transformation
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onto the ellipse. To explain the last one, note that the image
of {1,0} and {0,1} generally do not lie on the semi-axes of the
transformed ellipse. [V] can either be a rotation [R] or a reflection

A

[R].

[R(6)] := {0086 —sine}

sin@ cos6

A —co0s260 —sin20
[R(8)]:= {—sinZG cos29}

If [V] is a reflection, the small angle between the image of {1,0}
and {0, 1} reverses, i.e. the handedness of the transformation
reverses. We will define variable 1 = |V| to denote whether [V]
is a rotation (1] = 1) or a reflection (n = —1).

In this way all real 2 x 2 matrices, and their underlying el-
lipse transformations, are parameterized by 6, o, Oy, 6,, and 1.
If [ J ] is a velocity Jacobian, then this parameterization has phys-
ical significance. It describes how the movements of input actu-
ators multiply into movements at an output end-effector. A long
semi-axis indicates a direction which may be moved at faster
velocities (at the cost of force production), and a short semi-
axis indicates the opposite. Note that force ellipses share the
same orientation as velocity ellipses, but with reciprocal semi-
axis lengths. Therefore, the results of this paper are as equally
important to synthesizing multi-degree-of-freedom force produc-
tion as they are to synthesizing velocity production.

In this work, the aim is to synthesize specified velocity el-
lipses at points throughout the workspace, P;, j=0,1,...,N—1.
Geometric ellipse information is used to define Jacobian matri-
ces [J;] at each P; via Eqn. (1). Therefore, instantiating desired
velocity ellipses is accomplished by finding mechanism dimen-
sions that satisfy constraints imposed by Jacobian elements.

FIGURE 1. A FIVE-BAR LINKAGE DISPLACED FROM A REF-
ERENCE CONFIGURATION.

SYNTHESIS SOLUTION

A five-bar linkage is shown in Fig. 1. Its dimensions are
given by six points specified in a reference configuration: Ay, By,
Co, Dy, Fy, and Py. To begin the formulation, first the velocity
Jacobian is represented. The loop equations are formed,

Ao+ [R(9)](Co—Ag) + [R(p)](Fo—Co) =
By + [R(y)](Do—Bo) + [R(0)](Fo—Dy) 2
Ao +[R(9)](Co—Ap) + [R(p)](Po—Co) =P, 3)

To write this more concisely, the following vector functions are
introduced,

rac(9) :=[R(#)[(Co—Ao) rcr(p):=[R(p)|(Fo—Co)
rap (V) := [R(y)](Do—Bo) rpr(0) :=[R(6)](Fo—Dyo)
rcp(p) := [R(p)](Po—Co) rpa =A¢—Bo O]

=

Then the loop equations take the form,

Ao +rac(9)+rcr(p) =Bo+rpp(Y)+rpr(0) )
Ao +rac(9)+rcp(p) =P, (6)

Taking the derivative of these equations yields,

Olilrac(9)+plilrcr(p) = Wlilrap(w)+6[ilrpr(6) (7)
¢l ilrac(¢) +plilrcr(p) =P ®)

where [ 7] is the 90° rotation matrix [(1) _(ﬂ with the property

[i]> = —[I]. Eqn. (7) may be rewritten as

16)-
o) [ menty] [~ o] {3}

where the “Xx” operator defines v| X v, = |v] v,
minant of a matrix formed by two vectors.

The expression for p from Eqn. (9) can be substituted into
Eqn. (8) to obtain the Jacobian transformation,

g

where le[i](rAc(q))—mrcp(P)) a1

_ rpr(0) xXrpp(Y)., .
1= rpr(0) xrcr(p) [Flrcr () (2

, 1.e. the deter-
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The synthesis equations are formed by repeating Eqns. (5),
(6), (11), and (12) for N task positions, indexed by j =
0,1,....,N—1.

Ao +rac(9;) +rcr(pj) = Bo+rsp(Y)) +1F(6)) (13)

Ao+rac(9)) +rep(pj) =Py, (14)
. rpr(0)) X rac(9)) o

el =y rer(pyer®)) =T 09

rpr(6;) X rep (Y
rpr(0)) X rer(p;

))[i]rCP(pj):JZ,j J=0,1,...,N—1 (16)

The input data to this design problem is a list of point lo-
cations P;, j =0,1,...,N—1, and the Jacobian information that
should be reproduced at each point, that is J; ; and J> ;. The de-
sign parameters are the unknown reference pivot positions Ay,
By, Co, Do, and Fy. Along for the ride, are also several un-
known intermediate angle values: ¢;, p;, ¥;, and 6;. At the ref-
erence configuration, ¢o =po =y =6y = 0, making Eqns. (13)
and (14) identically equal. For exact two position synthesis,
ie. j=0,1, this makes for 12 equations and 14 unknowns.
The system is made square by redesignating the components of
B = {B.0, Byo} as free choices rather than unknown variables.

To embark on the solution procedure for two position syn-
thesis, first multiply both sides of Eqns. (15) and (16) by —[i],
then solve for rcp(p;) in (16) and substitute into (15). After sim-
plification, (15) and (16) become

racld)) = {110~ e
\_ _ror(0)) xrcr(p)) I,
rCP(pJ) - rDF(ej) « rBD(‘I/j) [ ]J2-,] (18)

Eqns. (17) and (18) can be substituted in to (14) to obtain

Ao—[ilJij—oyi)J;=P;  j=0,1 (19)
where o =B i+ B (20)
) rDF(Gj) XI‘AC((D/’) 21
Pri= rpr(6;) X rpp(Y)) @D

rpr(6;) x rer(p;))
- 22
P2 = o (0 % van(w)) .

Eqn. (19) consists of four equations which are linear in the four
unknowns Ao, Ayo, 0, and o;. The linear system takes the form,

1 0 7[1.]'] 0 Ao
0 1 2,0 0 Aol l:PoJr[i]Jl,0:|
1 0 0 . o [ P1+[i]J1,1
0 1 —[i]J21 o

(23)

and can be solved outright, yielding numeric values for A, 0y,
and 0.

Upon introducing the new f coefficients, Eqns. (17) and
(18) can be rewritten as

rac(9;) = —[i]Ji;—Bij[i]J2,; (24)
rep(p)) = —Ba,j[ 12, (25)

Angles ¢; and p; can be eliminated from (24) and (25), respec-
tively, by taking the dot product of each side of each equation
with itself. The result is

(Co—Ao¢) - (Co—Ao) = (J1,j+Br.jJaj) - (J1j+ Prdz;) (26)
(Po—Co) - (Po—Co) = B3 32, - J2, j=01 @7

Eqgns. (20), (26), and (27) form a subsystem of six equations in
the six unknowns Cyo, Cyo, P10, P11, P20, and B 1. To elimi-
nate the B coefficients, solve for B; ;j and f3, ; in (26) and (27),
respectively,

Jij-Jo,
A VY 28
Pry Joji-J2j 28)
N VI1jd2,)? = J2,5-32,)J1,;-J1,,— (Co—Ag)-(Co—Ag))
Jo,ji-J2j
A (Po—Cyp) - (Po—Co) =01 (9
’ Joj-Jo;
Substitution into (20) yields an equation of the form,
aj=+/bj+yc;i. j=0,1 (30)

where a;, bj, and c; are introduced to aid in equation manipula-
tion,

Ji,j-Jo,j

. 31
aj aj+J27j'J27j 3D
p— J1i32,0)* = (J202,5) (J1,j-J1,; = (Co—Ao)-(Co—Av))
! (J2,j - J2,5)?
(32)
S (Po—Co) - (Po—Co) =01 (3
Joi-J2

Eqn. (30) may be converted to a polynomial. To do so, square
both sides. There will still be a leftover radical. Isolate it to one
side of the equation and square both sides again. Then expand
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the result, witness some cancellations, and do some factoring.
The result will yield,

aj(ai=2bj+c)) +(bj—c;)*=0,  j=01  (34)
Eqn. (34) looks to be quartic in terms of Cyo and Cy in light of
(31)—(33). But upon closer inspection of the last term, it can be
found that expansion of b;—c; according to (32) and (33) leads
to the term Cy - Cy cancelling out. Because of this, Eqn. (34)
is quadratic, and the system, j = 0, 1, has four solutions for Cy,
which may be obtained numerically. Once values of Cy are ob-
tained, then values of the 8 variables are obtained through back-
substitution into Eqns. (28) and (29). However, note that it is
unclear whether “4” or “—” solutions should be used in (28)
and (29). Across these equations, and considering j = 0, 1, there
are 16 cases of different sign combinations from which f coeffi-
cients can be calculated. All 16 cases were evaluated and tested
for satisfaction of (20). During the numerical exercises of this
work, it was always the case that only one of the 16 sign combi-
nations lead to satisfaction of (20) for every Cy solution, and this
combination was not the same every time.

Next, the numeric values of Co, B, B, are back-
substituted into Eqns. (24) and (25) to obtain unique solutions
of ¢; and p;, j = 0,1 (not considering 27 periodicity),

cos¢;|
Line) = o

1 T
[Co— AP [CO—AO [i](Co—Ao)] [i1( =1 Biid2,)

fonrl s [meco 10-co] 101~ osm)
(36)

where the arctan function is used to compute the angles.

At this point, four solutions of the ACP dyad have been
computed and can be analyzed. In all numeric exercises, it was
found that four unique values of Cy were computed (generally),
but dyad link lengths occurred in identical pairs. Within each
pair, only one solution (generally) had a zero value for ¢o and
Po, which is expected given the design space parameterization.
The other partner solution described the same dyad but measured
from a different reference configuration and rotated onto the ref-
erence configuration of the first solution. Therefore, these part-
ner solutions do not satisfy Eqn. (14) when @9 = po = 0, leaving
only two unique ACP dyad solutions going forward. To solve
for the remaining pivots of the five-bar, there is left Eqns. (13),
(21), and (22), which amounts to eight equations in the eight un-
knowns Dy, Dyo, Fxo, Fyo, Yo, W1, 6o, 01,

Next, manipulate Eqns. (13), (21), and (22) to find 6;. Apply
the “x” operation between rpr(6;) and the terms of Eqn. (13).

This cancels out the last term, resulting in

I‘DF(GJ‘) X (AO—BO) + I'DF(ej) X rAC(¢j) + (37
rpr(6;) X rer(pj) = rpr(6;) X rpp(W))

Divide both sides by the right hand side to obtain,

rpr(6;) x (Ag—Bo)
rpr(0;) X rep(Y))

+B1j+Brj=1 (38)

considering the f definitions of (21), and (22). Solve for
rpr(0;) x rpp(y;) in (22), and substitute in to (38) to obtain

rpr(6)) X rpa
rpr(0;) X rac(9;

)Bl’jzl—aj (39)

considering (20) and defining rzgqa = Ag—Bg. Clear the denomi-
nator of (39) and factor out rpr(6;) to obtain,

rDF(Gj) X 5j =0 (40)
where 8, = 1 jrpa — (1 — &j)rac(9;) (41

This statement requires colinearity of link DF with the known
vector & ;j Define rpr to be the length of link DF and 6 to be its
angle measured from horizontal such that

COSé' A A
[R(Gj)](F()*D()) =TIDpF { sin é]} and 9]' =6y + 9]' 42)
J

For each position, j = 0, 1, there are two possible values for ) i

case | m | n
éo = arctan % +mr 1 01]0
II 1|1 (43)
61 = arctan g* + nm m 10
’ IV |0 |1

leading to four sets of {6, ; } solutions per every ACP dyad, of
which there are two. The proceeding steps of the solution process
are performed for all eight sets of solution variables generated at
this point. From Eqn. (42), transform back to reference configu-
ration angles, 6p = 0 and 6, = 0,— 6.
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Next, define new variables y; ;, 1>, j, and 73 ;,

N = {C"S i } % ([R(9;)](Co—Ao)) (44)

sin 0;

hj= {“’s 0 } x ([R(p;)](Fo—Co)) (45)

sin 6;

Ys.f:{C“é’}x([ﬂ%wf)](no—lso)) j=0,1  (46)

sin 6;
which were chosen to set up

Bi=T4  and By = @7
V. 1.j

See that y;; is fully defined as the right hand side of
Eqn. (44) is completely known at this point. Next, y3 ; and then
2, are found sequentially using (47). Fo remains as the sole
unknown in (45) and can be solved for across j = 0,1. To do
so, expand and rearrange (45), replacing {cos éj,sin éj}T with

[R(6,)){1,0}".

~

%(0)1{g } < [R(pF0 =1+ O { o | x R(pr1CH

Jj=0,1 (48)
Note that the “x” product may be rewritten as a dot product, i.e.

ax b =/[i]a-b, which is invariant to rotation of its operands.
Therefore, the left hand side of (48) can be rewritten as

@ -p {gh R0 =01 @)

Combining j = 0 and j = 1 equations, the first operand of (49)
forms the rows of a matrix which may be inverted to yield nu-
meric values of Fy,

Fo— 1 [cos(él—pl) —cos(éo—po)}
sin(6; —6y—p1+po) [sin(61—p1) —sin(6o—po)
o+ [R(80) { §} x [R(po)]Co
X
P +[RO)] 4 0 ¢ % [R(p1ICo
(50)

Note that py = 0, but it is left in to illustrate the equations pat-
tern. To find the remaining unknown pivot Dy, combine the j =1

equation of (13) and the j = 0 equation of (46), that is

€1 —[R(61)](Fo—Do) = [R(y1)](Do—By) (51)
1o= {‘;fj gg} x (Do —By) (52)
where &) =rgy +rac(d1) +rer(pr) (53)

and where € is introduced to represent several known terms and
shorten the length of equations. The angle y is eliminated from
(51) by taking the dot product of each side with itself. Expansion
of the resulting equation cancels out Dy - Dg and yields,

2([R(61)]" &1 —Fo+By) - Do = (54)
2€; - [:R(el)]Fo —&1-& —Fy-Fyp+By-By

Expansion of (52) yields

(1@ {g}) o= o r@) {of <m0 59

The first operands of the dot product on the left hand sides of
Eqns. (54) and (55) can be stacked into a matrix that is inverted
to solve for Dy,

1

]
2 (2060761 ~Fo-+ o) x (1 [2(0)] { |

D) = (56)

«|-Uim@{o} 2(%@0Te - Fo+Bo)|
2€- [R(B])]Fo —€1-& —Fy-Fp+By-By
mo+ A { o} By

Finally, all pivot locations are now known. The remaining un-
known angle y; is determined from Eqn. (51),

{coswj}_ 1 [D B (i1(De_B ]Ts'_ o
sin y; _m 0o—Bo [i](Do—Bo)| (&;—rpr(6;))

j=0,1 (57)

where the arctan function is called on the left hand side of (57).
The number of solutions computed at this point is eight: that
is four stemming from the combinations of arctan solutions for
{éo, él}, Eqn. (43), for each of the two ACP dyads. However,
for each ACP dyad only two unique values of Fy were found for
all examples. Therefore, for each of the two dyad ACP solutions,
there are two dyad BDF solutions, yielding four five-bar solu-
tions in total.
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TABLE 1.

ELLIPSE SPECIFICATION AND SYNTHESIS SOLU-
TIONS FOR THE FIRST EXAMPLE. ELLIPSES AND SYNTHESIS

SOLUTIONS ARE DRAWN IN FIG. 2.

Ellipse specification

TABLE 2. ELLIPSE SPECIFICATION AND SYNTHESIS SOLU-
TIONS FOR THE SECOND EXAMPLE. ELLIPSES AND SYNTHE-

SIS SOLUTIONS ARE DRAWN IN FIG. 3.

Ellipse specification

J 0 1
P, 0.006000 0.012000
P, | —0.006000 0.008000
0, | —1.561894 0.004843
Oy 0.678955 0.822000
Oy 0.074673 0.070114
0, 1.411372 | —0.283472
n —1 1
Synthesis solutions
1 2 3 4
—0.345764 | —0.345764 | —0.345764 | —0.345764
Ao —0.365612 | —0.365612 | —0.365612 | —0.365612
—0.460000 | —0.460000 | —0.460000 | —0.460000
Bo —0.860000 | —0.860000 | —0.860000 | —0.860000
—0.801636 | —0.801636 0.013569 0.013569
Co —0.283086 | —0.283086 | —0.003403 | —0.003403
—0.621189 | —1.163860 | —0.409607 0.013118
Do —0.932387 | —0.676899 | —0.833723 | —0.001692
—1.288407 | —1.288407 0.012703 0.012703
Fo —0.618262 | —0.618262 | —0.002509 | —0.002509

j 0 1
P, 0.260000 | —0.320000
P, 0.256000 | —0.040000
0, | —0.291457 | —0.117109
Oy 0.352477 0.122066
oy 0.104403 0.342345
0, | —1.395103 | —1.234371
n 1 1
Synthesis solutions

1 2 3 4

0.355430 0.355430 0.355430 0.355430

Ao 0.836371 0.836371 0.836371 0.836371

0.260000 0.260000 0.260000 0.260000

Bo —0.400000 | —0.400000 | —0.400000 | —0.400000

0.557885 0.557885 0.170474 0.170474

Co 1.087540 1.087540 0.006091 0.006091

0.609264 0.341047 0.379773 0.242951

Do —0.405995 0.024940 | —0.145966 0.255987

0.451863 0.451863 0.247668 0.247668

Fo —0.153103 | —0.153103 0.242130 0.242130

EXAMPLES

To validate the solution procedure for the two position el-
lipse synthesis procedure for a five-bar linkage, it was applied to
three example synthesis tasks. Ellipse specifications for each of
the synthesis tasks are given in Tables 1, 2, and 3. The ellipse
parameters, i.e. 6,, Oy, Oy, 6,, and 1, define Jacobian matrices
according to Eqn. (1). The four corresponding synthesis solu-
tions also appear in Tables 1, 2, and 3. The target ellipses and
five-bar solutions are drawn in Figs. 2, 3, and 4. Task ellipse
input data was specified by mouse clicks through an interactive
interface.

The first example demonstrates four five-bar linkages capa-
ble of reproducing two generically selected ellipses. Of the four
solutions, a workspace check shows that three would be practi-
cally useful. The fourth solution, Figs. 2g-h, possesses a very
small link length, such that it is practically a four-bar linkage.
That being the case, it has a very narrow workspace.

The second example attempted to select ellipses that share
the same center point, but have long semi-axis lengths nearly
perpendicular to each. A mechanism with a high aspect ratio ve-
locity ellipse has great velocity production (and poor force pro-
duction) in one direction, and poor velocity production (and great
force production) in the orthogonal direction. The task specifica-
tion tests whether a five-bar can be found that can reconfigure to
completely flip such anisotropic velocity/force characteristics at
the same workspace point. Two five-bar solutions capable of this
are shown in Fig. 3.

The third example aimed to find five-bar linkages that pos-
sess a “floor,” so to say, of high aspect ratio ellipses that favor
force in the vertical direction and velocity in the horizontal di-
rection. Such a five-bar might be useful for mobile robots that
need to resist their own weight in the vertical direction, but oth-
erwise favor fast motions. Of the four synthesis solutions, two of
them (Fig. 4a-d) possessed pivots in favorable locations, and the

Copyright (© 2022 by ASME



TABLE 3. ELLIPSE SPECIFICATION AND SYNTHESIS SOLU-
TIONS FOR THE THIRD EXAMPLE. ELLIPSES AND SYNTHESIS
SOLUTIONS ARE DRAWN IN FIG. 4.

Ellipse specification

j 0 1
P. | 0.398000 | —0.462000
P, | —0.235000 | —0.220000

0, 0.000000 | —0.022862

Oy 0.640078 0.656305
Oy 0.070711 0.070114
6, | —2.984176 | —1.087663
n 1 1

Synthesis solutions

1 2 3 4

—0.492586 | —0.492586 | —0.492586 | —0.492586

Ao 0.396535 0.396535 0.396535 0.396535
0.260000 0.260000 0.260000 0.260000

Bo 0.480000 0.480000 0.480000 0.480000
—0.160275 | —0.160275 0.256709 0.256709

Co 0.567150 0.567150 | —0.031988 | —0.031988
0.332286 0.063780 0.349471 0.488824

Do 0.707879 0.215627 0.038313 | —0.380754
0.163433 0.163433 0.571720 0.571720

Fo 0.398321 0.398321 | —0.630043 | —0.630043

other two (Fig. 4e-h) did not. A workspace check shows that the
first two solutions are generally tenable. However, what Figs. 4a-
d does not show is that in between the two specified ellipses, the
velocity ellipses are not high aspect ratio, which thwarts the ef-
fort to find a so-called “floor.”

CONCLUSION

In this paper, the formulation was presented for the synthesis
of a five-bar linkage capable of exactly achieving two specified
velocity ellipses at two points of its workspace. Four solutions
to the synthesis equations were found, where each describes the
dimensions of a five-bar linkage. The synthesis procedure was
illustrated with a variety of examples. This work represents a
new way of performing the synthesis of multi-degree-of-freedom
linkages that consider velocity ellipses directly into constraint
equations, rather than parsed for performance indices.

(a) (c)

P

© (9]
FIGURE 2. The five-bar linkages computed for the first example.
Drawings correspond to ellipses and solutions of Table 1. (a), (b) depict
Solution 1 achieving each ellipsoid. (c), (d) depict Solution 2 achieving
each ellipsoid. (e), (f) depict Solution 3 achieving each ellipsoid. (g),
(h) depict Solution 4 achieving each ellipsoid.

77

(®)
FIGURE 3. The five-bar linkages computed for the second example.
Drawings correspond to ellipses and solutions of Table 2. (a), (b) depict

(d

Solution 1 achieving each ellipsoid. (c), (d) depict Solution 2 achiev-
ing each ellipsoid. The third and fourth solutions were omitted as they
possessed small link lengths that made them practically useless.

T X r X

() (b) (© (d)

T

FIGURE 4. The five-bar linkages computed for the third example.
Drawings correspond to ellipses and solutions of Table 3. (a), (b) depict

(O]

Solution 1 achieving each ellipsoid. (c), (d) depict Solution 2 achieving
each ellipsoid. (e), (f) depict Solution 3 achieving each ellipsoid. (g),
(h) depict Solution 4 achieving each ellipsoid.

Copyright (© 2022 by ASME



ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. CMMI-2144732.

REFERENCES

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

[9]

(10]

(1]

[12]

[13]

Murray, R. M., Li, Z., and Sastry, S. S., 1994. A Mathemat-
ical Introduction to Robotic Manipulation. CRC Press.
Tsai, L.-W., 1999. Robot Analysis: The Mechanics of Serial
and Parallel Manipulators. John Wiley & Sons, Inc., New
York.

Merlet, J. P.,, 2006. Parallel Robots, second ed. Springer,
Dordrecht, The Netherlands.

Angeles, J., 2014. Fundamentals of Robotic Mechanical
Systems: Theory, Methods, and Algorithms, fourth ed. Me-
chanical Engineering Series. Springer International Pub-
lishing.

Lynch, K. M., and Park, F. C., 2017. Modern Robotics:
Mechanics, Planning, and Control. Cambridge University
Press, May.

Gosselin, C., and Angeles, J., 1991. “A Global Performance
Index for the Kinematic Optimization of Robotic Manip-
ulators”. Journal of Mechanical Design, 113(3), Sept.,
pp- 220-226.

Lee, M.-Y., Erdman, A. G., and Gutman, Y., 1993. “Devel-
opment of Kinematic/Kinetic Performance Tools in Syn-
thesis of Multi-DOF Mechanisms”. Journal of Mechanical
Design, 115(3), Sept., pp. 462-471.

Lee, M.-Y., Erdman, A. G., and Gutman, Y., 1993. “Kine-
matic/kinetic performance analysis and synthesis measures
of multi-DOF mechanisms”. Mechanism and Machine The-
ory, 28(5), Sept., pp. 651-670.

Singh, J. R., and Rastegar, J., 1995. “Optimal synthesis of
robot manipulators based on global kinematic parameters”.
Mechanism and Machine Theory, 30(4), May, pp. 569—
580.

Sun, T., Song, Y., Li, Y., and Liu, L., 2010. “Dimensional
synthesis of a 3-DOF parallel manipulator based on dimen-
sionally homogeneous Jacobian matrix”. Science in China
Series E: Technological Sciences, 53(1), Jan., pp. 168—174.
Saadatzi, M. H., Masouleh, M. T., Taghirad, H. D., Gos-
selin, C., and Cardou, P, 2011. “Geometric analysis of
the kinematic sensitivity of planar parallel mechanisms”.
Transactions of the Canadian Society for Mechanical En-
gineering, 35(4), Dec., pp. 477—490.

Zhang, P., Yao, Z., and Du, Z., 2013. “Global Per-
formance Index System for Kinematic Optimization of

Robotic Mechanism”.  Journal of Mechanical Design,
136(3), Dec.
Burmester, L., 1886. Lehrbuch Der Kinematik. Verlag von

Arthur Felix, Leipzig.

Copyright (© 2022 by ASME



