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Abstract

The Event Horizon Telescope (EHT) images of the supermassive black hole at the center of the galaxy M87 provided
the first image of the accretion environment on horizon scales. General relativity (GR) predicts that the image of the
shadow should be nearly circular given the inclination angle of the black hole M87*. A robust detection of ellipticity
in image reconstructions of M87* could signal new gravitational physics on horizon scales. Here we analyze whether
the imaging parameters used in EHT analyses are sensitive to ring ellipticity, and measure the constraints on the
ellipticity of M87*. We find that the top set is unable to recover ellipticity. Even for simple geometric models, the true
ellipticity is biased low, preferring circular rings. Therefore, to place a constraint on the ellipticity of M87*, we
measure the ellipticity of 550 synthetic data sets produced from GRMHD simulations. We find that images with
intrinsic axis ratios of 2:1 are consistent with the ellipticity seen from EHT image reconstructions.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Submillimeter astronomy (1647); Astronomy
data analysis (1858); Astronomy image processing (2306)

1. Introduction

The Event Horizon Telescope (EHT) can resolve the
emission around the event horizon of the supermassive black
hole M87*, and it directly measured its mass for the first time in
2019 (Event Horizon Telescope Collaboration et al. 2019a,
2019b, 2019c, 2019d, 2019e, 2019f, hereafter Paper I, Paper II,
Paper III, Paper IV, Paper V, Paper VI, respectively). Using
both imaging and modeling techniques, a ringlike emission
structure was observed. The measured ring radius is consistent
with a central black hole with mass 6.5× 109Me. The direct
mass measurement was the first direct observation of the
accretion disk on horizon scales. In addition to the size of the
ring, which correlates to the mass (Paper VI), the shape or
ellipticity of the ring is theoretically interesting.

There are a number of factors that could cause ellipticity in
the measured ring. First are the shadow (Falcke et al. 2000) and
n= 1 photon ring8 (Gralla et al. 2020; Johnson et al. 2020),
both of which are related to the existence of spherical photon
orbits around Kerr black holes. Given the low inclination of
M87* (Mertens et al. 2016), general relativity (GR) predicts
that the observed shadow and photon ring should be highly
symmetric. Due to this symmetry, it has been suggested that
image ellipticity be used to constrain deviations from GR near
the event horizon. If the no-hair theorem breaks down near the
event horizon of supermassive black holes, the shadow may
appear more elliptic (see, e.g., Johannsen & Psaltis 2010;

Broderick et al. 2014; Johannsen et al. 2016; Medeiros et al.
2020).
A second source of noncircularity could be the imprint of the

horizon on the image and has been called the inner shadow
(Dokuchaev & Nazarova 2019; Chael et al. 2021). The inner
shadow occurs from light rays that do not pass through the
equatorial plane before hitting the horizon. Generally, the
emission from the black hole must be concentrated in the
equatorial plane for the inner shadow to be visible. For instance,
magnetically arrested disk general relativistic magnetohydro-
dynamic (GRMHD) simulations, which are preferred for M87*

(Event Horizon Telescope Collaboration et al. 2021), tend to
display the inner shadow feature (Chael et al. 2021). Interest-
ingly, the location of the inner shadow relative to the photon ring
is a function of spin and inclination. During image reconstruc-
tions, the displacement of the inner shadow could manifest as a
source of noncircularity in the image reconstruction.
A third, more mundane origin of noncircularity is the

accretion flow itself. The accretion flow is expected to be
highly turbulent and can cause extended features in the image,
creating highly elliptical ring reconstructions. Therefore, any
measurement of ring ellipticity needs to account for the
accretion through calibration or other means.
To constrain the ellipticity of M87* there are two forms of

uncertainty that need to be considered: astrophysical/accre-
tion noise and image uncertainty. While the EHT can resolve
the horizon-scale structure, its dynamic range and visibility
coverage are poor (Paper II, Paper III). Therefore, there are
infinitely many images that can reproduce observations. This
uncertainty makes measuring the ellipticity of the ring
uncertain, and requires measuring an ensemble of images to
quantify how well we can constrain ellipticity. In Paper IV,
regularized maximum likelihood (RML) methods were
applied to the M87* data. RML introduces additional
assumptions through regularizers that enforce features such
as image smoothness (Bouman et al. 2016; Chael et al. 2016;
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Kuramochi et al. 2018), sparseness (Wiaux et al. 2009a,
2009b; Honma et al. 2014; Akiyama et al. 2017), and
similarity to some fiducial image (Narayan & Nityananda
1986). However, how best to choose the weights and
functional forms of these regularizers is unknown. To combat
this problem, Paper IV performed a parameter survey using
simulated data sets similar in quality to the 2017 M87* data.
The parameter surveys were then used to assess the relative
performance of the different regularizer weights and cuts were
placed on different choices based on reconstructed image
fidelity metrics to give the optimal “top set.” The final set of
images was considered the set on which feature extraction
should be applied and ring ellipticity should be measured. We
note that while these images do give a distribution of images,
they do not form a posterior. As a result, interpreting
quantitative measurements often requires some a priori
calibration to assess the reliability.

In Paper VI, a preliminary attempt at measuring the
ellipticity of image reconstructions of M87* was presented in
Figure 18. To measure the ellipticity the authors measured the
fractional spread in the ring radius from the reconstructions and
found it was similar to that of the intrinsic images having an
axis ratio of 4:3. This axis ratio suggests that the M87* images
were highly symmetric. However, there are two potential
issues. First, the parameter survey used in Paper IV did not
include an elliptic ring in the simulated tests. Therefore, the
reliability of the ellipticity measured in the images is unclear.
Second, the results presented in Figure 18 of Paper IV were
based not on the measured ellipticity of the reconstructed
GRMHD images, but rather on that of the actual true image
blurred to 20 μas. Whether the imaging parameter survey used
in Paper IV can reliably recover ellipticity, and how to interpret
the measured ellipticity of M87* are then open questions.

In this paper, we assess whether the M87* top set used in
Paper IV can constrain the ellipticity of the M87* shadow across a
set of simulated data tests. To evaluate whether the surveys can
reliably recover image ellipticity, we consider a new set of
geometric tests specifically targeted to measure ellipticity. We then
use the image feature extraction tools REx (Chael 2019) and
VIDA (Tiede et al. 2022) to measure the ellipticity of the
reconstructions. In the first part of the paper we show that the
measured ellipticity of image reconstructions does not reliably
recover the true on-sky value. To overcome this issue, we then run
the imaging surveys on a set of GRMHD simulations to calibrate
for the imaging ellipticity bias. This is similar in spirit to the mass
calibration procedure done in Paper VI, and is necessary to
interpret the ellipticity results from the imaging pipelines.

The layout of the paper is as follows: In Section 2 we review
the M87* imaging top set, feature extraction techniques, and
M87* results. In Section 3 we explore whether the current
parameter survey used in M87* is able to recover an elliptical
geometric ring. Afterward, we use a set of GRMHD
simulations to calibrate the image reconstruction ellipticity of
the M87* results. In Section 5 we review the results and
provide an ellipticity constraint for M87*.

2. Background

This section will review the standard image reconstruction
techniques used by the EHT in Paper IV. The imaging
techniques used in this paper will be identical to the eht-

imaging pipeline used in Paper IV. We will then review the
two feature extraction techniques used in this paper, REx and

VIDA. These feature extraction techniques are needed since
imaging is nonparametric. Therefore, an additional processing
step is needed to extract image features of interest, e.g., ring
ellipticity. Finally, we will apply REx and VIDA to the M87*

top set. We will reproduce the results from Paper VI and
extend the analysis to include the orientation of M87*ʼs
ellipticity.

2.1. Image Reconstructions and the M87* Top Set

In this paper, we will focus on the RML methods used in
Paper IV. These methods attempt to make imaging tractable by
forward-modeling the image, I, and minimizing the objective
function:

J I I S I . 1d d r r

data

2

regularizers

( ) ( ) ( ) ( )

Following Paper IV, each χ2 is defined solely from the data
products from the EHT, e.g., complex visibilities. The second
term encapsulates our additional assumptions or regularizers
that are placed on the image. The variables αd and βr are the
“hyperparameters” that control the relative weighting of the
data products and regularizers. For a list of the regularizers
used, see Paper IV.
The regularizers are important for the EHT, given its sparse

coverage (see Figure 1) and poor dynamic range (Paper II,
Paper III). Unfortunately, there is no canonical statistical
framework9 for how to choose the relative weights αd and βr.
Instead, a series of heuristics and data quality metrics across a
parameter survey of different regularizers are employed. In
Paper IV, a survey of different hyperparameters was performed
for each imaging method: the DIFMAP, the SMILI, and the
eht-imaging pipeline. This paper will focus on the

Figure 1. UV coverage of the EHT 2017 array on April 11. The blue dots show
where the 2017 array samples in the UV plane in units of Gλ. The gray dashed
circles show the characteristic location of the image features of 50 μas and
25 μas in the UV domain. The red circles highlight the coverage gap in M87*

in the north–south direction.

9 See Akiyama et al. (2017) for an approach using cross-validation that
requires more data than currently available for the EHT.
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eht-imaging pipeline, but we have found similar results for
SMILI. The parameter surveys are run on a set of simple
geometric models—a ring, a crescent, a disk, and a pair of
small Gaussians—to find an appropriate set of hyperparameters
for the M87* observations. These synthetic models are
constructed with angular scales that approximately mimic the
scale inferred from the EHT, thereby providing a test of
whether the pipelines can differentiate complex structures at
equivalent angular scales.

Every combination of parameters in the survey is mapped to
an effective resolution on each geometric model by interpolat-
ing normalized cross-correlations to the true image. The
median performance across all M87* observation days is used.
This process enables comparisons of parameter performance
across models; the effective resolution for each parameter
combination is then averaged across models and used to rank
all sets of parameters. The sets of parameters that produce an
average effective resolution better than the EHT nominal
resolution are used to form a “top set.” This top set is the
effective set of parameters that we will use to construct our
ensembles of image reconstructions.

2.2. Review of Feature Extraction Techniques

2.2.1. Variational Image Domain Analysis

Variational image domain analysis (VIDA) (Tiede et al.
2022) requires three ingredients: an image I, a template image
fθ, and a probability divergence that measures the difference
between f and I. VIDA relies on the template function fθ being a
reasonable approximation to the true image. Given that we are
interested in ring morphologies, we will use the CosineRing
{N, M} template (see Figure 2 for a visualization).10 The
CosineRing{N, M} template is an elliptical Gaussian ring
template whose azimuthal brightness and thickness are

described by a cosine expansion. More specifically, the model
is described by

1. a diameter d ab0 , where a and b are the semiminor
and semimajor axes, respectively;

2. a thickness function

w w w ncos ; 2
n

N

n m
w

0

1

( ) [ ( )] ( )( )

3. an ellipticity τ= 1− b/a, with the orientation ξτ
measured east of north;

4. a slash function

S s m1 cos ; 3
m

M

m m
s

1

( ) [ ( )] ( )( )

5. x0, y0, as the center of the ring.

How to pick N and M is left to the user and the imaging
problem at hand. Section 3 is interested in recovering the
profile for a simple elliptical ring with a slash. Therefore, we
will take N= 0 and M= 1. We also try higher-order mode
expansions and find that they are typically much smaller than
the first mode and do not change the results. For the GRMHD
reconstructions in Section 4 we take N= 1, M= 4, given their
complicated azimuthal structure. This template has 16
parameters in total. Typically, when we refer to the thickness
or slash strength of the template, we are referring to the w0 or s1
parameter, respectively. In addition to the ring template, we
include a constant-intensity background, where the background
intensity is also a parameter. This intensity floor models the
diffuse intensity that is typically deposited across the image in
reconstructions.
The optimal template is found by minimizing the divergence

between the image reconstruction, normalized to the unit flux,
and the specified template. We will use the Bhattacharyya

Figure 2. A visualization of the VIDA CosineRing{1, 2} template with parameters d0 = 42 μas, w0 = 11.8 μas, w1 = 4.7 μas, 0w
1
( ) , τ = 0.2, ξτ = π/4,

s1 = 0.75, s2 = −0.25, 2s
1
( ) , and 4

2
2( ) . The left panel shows the visual appearance of the template normalized to have unit flux. The top right panel is

the width profile as a function of the azimuthal angle of the N = 1 expansion in Equation (2), where the black dotted line gives the ring width w0. The bottom right
panel is the brightness profile as a function of the azimuthal angle of the M = 2 expansion given in Equation (3).

10 For information about other templates present in VIDA, please see https://
github.com/ptiede/VIDA.jl.
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divergence,

f f x y x y dxdyBh log , , , 4( ∣∣ ) ( ) ( ) ( )

in all analyses below. To minimize the Bh divergence we use
the Julia package BlackBoxOptim.jl,11 which uses an adaptive
genetic algorithm for optimization. For more information on
the validation of VIDA and the optimization strategy see Tiede
et al. (2022).

2.2.2. REx

The other image feature extraction method used in this paper
is the ring extractor or REx algorithm used in Paper IV and
described in detail in Chael (2019). The first step in REx (see
Paper IV for details) is to identify the dominant ring in the
image. First, for each pixel xi, yj in the image, an intensity map
I(r, θ|xi, yj) with radius and angle is defined relative to xi, yj. For
each map, the “radius” of the image is given by

r x y I r x y

r r x y

, argmax , ,

, . 5

rpk

pk pk 0,2

( ∣ ) [ ( ∣ )]

¯ ( ∣ ) ( )[ ]

This provides a radius for each pixel center. The optimal center
is then selected according to

⎡
⎣⎢

⎤
⎦⎥

x y
r x y

, argmin
,

, 6
r x y

0 0

,

pk

( )
¯ ( )

( )
¯( )

where x y r x y r, ,r pk pk
2( ) ( ( ∣ ) ¯ )¯ is the radial dispersion.

This specifies the image center and all future quantities will be
defined relative to this center.

The diameter of the image is

d r x y2 , . 7pk 0 0¯ ( ) ( )

Following Paper VI, REx characterizes the ellipticity of the
ring structure by the radial fractional dispersion:

f
r

. 8d
r

pk¯
( )

¯

The width of the ring is defined by finding the FWHM at a
fixed θ ray, and then averaging over θ:

w I r x y IFWHM , , . 9r 0 0 floor[ ( ∣ ) ] ( )

The intensity floor is given by I I r 50 as,floor ( )
and is included to avoid biasing the measurement due to the
low-level intensity present in the image. This is similar to
including the constant-intensity template during the VIDA

extraction.
To characterize the azimuthal profile of the ring (ξs and s for

VIDA) we consider the azimuthal moments of the ring. As in
VIDA we will only be interested in the first azimuthal moment.
The orientation, ξs, of the first moment is given by

⎡
⎣

⎤
⎦

I r x y e dArg , , , 10s
i

r r r
0

2

0 0

,in out

( ∣ ) ( )

[ ]

where rin= (d− w)/2 and rout= (d+ w)/2. The coefficient of
the first moment or slash is given by

s

I r x y e d

I r x y d
2
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. 11

i

0

2

0 0

0

2

0 0

( ∣ )
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2.2.3. Relating VIDA and REx Parameters

VIDA and REx assume different parameterizations of the
intrinsic structure, and use different optimization strategies.
Therefore, we expect the resulting distributions to differ
slightly. One prominent difference between VIDA and REx is
how they parameterize ellipticity. To compare both VIDA’s and
REx’s ellipticity measurements, we need to relate REx’s
fractional dispersion fd to VIDA’s ellipticity τ. To accomplish
this we will convert REx’s fractional diameter spread fd into
VIDA’s τ. First, we consider an ellipse with semimajor axis a
and semiminor axis b. Then VIDA parameterizes this ellipse
with d r ab2 20 0 and τ= 1− b/a. It can then be shown
(see Tiede et al. 2022, Appendix A, for a derivation) that the
fractional dispersion is related to ellipticity τ through

f
E1 4

1
, 12d

2 2 2

( )
( ) ( ( ))

( )

where E(x) is the complete elliptic integral of the second kind
and 1 1 2( ) ( ) is the orbital eccentricity. Using
linear interpolation we invert the function achieving a map
from fd to τ.
This relation assumes that the image feature is a perfect

ellipse. Given that REx defines the radius of the ring in terms of
its peak, we expect that the shape will not be a perfect ellipse.
This additional nonellipticity will cause REx’s ellipticity to be
typically greater than VIDA’s, which we empirically find below.

2.3. Review of M87* Ellipticity Measurement

Figure 18 of Paper VI showed the measured M87* fractional
deviation from REx applied to the eht-imaging top-set
parameters. To reproduce these results, we apply VIDA and
REx to the eht-imaging top set. The results are shown in
Figure 3. The top row shows the fiducial image reconstruction
from the eht-imaging top set across each observation day.
The ellipticity of the top-set images is shown in the middle row.
We find identical results to those in Paper VI for REx. The
VIDA results are systematically lower than the REx results, as
expected from the discussion in the previous section. The
bottom row presents, for the first time, the orientation of this
ellipticity from VIDA. Note that REx cannot currently measure
this orientation. Overall, we find that the ellipticity measure-
ment is stable across all four days, giving τ= 0.05–0.2, and
orientation ξτ=−75°–0° east of north.
While it is interesting that the ellipticity measurements are

consistent across days, it is not clear whether this result is
intrinsic to the source. In Tiede et al. (2022), we found
statistically identical ellipticities and orientations for the
symmetric crescent models and GRMHD models. Given that
the crescent models are symmetric, the measured ellipticity
may be an imaging artifact. Furthermore, the ellipticity
orientation does align with a coverage gap (see the red circles
in Figure 1). Finally, since the top set used for M87* did not11 https://github.com/robertfeldt/BlackBoxOptim.jl
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include an elliptical ring, it is not clear whether ellipticity can
reliably be recovered. To investigate the fidelity of ellipticity
reconstruction using the reported top set, we will apply it to
simple elliptical ring images in the next section.

3. Geometric Test

One of the potential issues with the M87* top set is that no
elliptical rings were included in the simulated data tests. Given
that the identification of the top set was defined by its
performance on simulated data tests, the top set may not
accurately recover ring ellipticity even in simple cases. This
section will analyze simulated data from an elliptical ring
model using the M87* top set.

3.1. Elliptical Image Test

For the elliptical image, we use the CosineRing{0, 1}
template described in Section 2.2.1, with parameters
d0= 37.56 μas, w= 7.9 μas, τ= 0.187, and s= 0.5. The ring
flux is set to 0.6 Jy, matching the measured compact flux of
M87*. We also align the orientation of the slash and ellipse,
i.e., we set ξs= ξτ= ξ. To test the impact of different
orientations of the ellipticity we consider ξ= 0°–360° in steps
of 45°. A subset of the ground-truth images are shown in the

top row of Figure 4. For each rotated ring we use the eht-

imaging top-set pipeline from Paper IV to create 1572
reconstructions.

3.2. Geometric Results

Given the elliptical ring reconstructions, we use VIDA and
REx to extract the relevant image features. Since the VIDA

template is identical to the on-sky image, we expect that the
true parameter value will lie within the distribution of
recovered image features. The results for each orientation are
summarized in Table 1. The ring diameter and width are
consistent across the rotation angles, and are consistent with the
truth. The slash and its orientation are similarly recovered.
However, the ellipticity, τ, is significantly biased when

ξτ= 90°, i.e., when the semimajor axis of the ellipse is aligned
in the east–west direction. Furthermore, looking at the bottom
row of Figure 4, we see that the orientation of the ellipticity is
consistently biased toward ξτ= 0, i.e., the north–south
direction. This bias can be visually confirmed by looking at
the reconstructions, e.g., the middle row of Figure 4.
Furthermore, we see that the true ellipticity and orientation
are only recovered in the ξ= 0 case.

Figure 3. The eht-imaging reconstructions and ellipticity features of M87* from the Paper IV top set across the different observations during the 2017 EHT
campaign. The top row shows the fiducial eht-imaging image from Paper IV. The middle row shows the measured ellipticity of the eht-imaging top set from
VIDA (blue) and REx (orange). The bottom row shows the measured ellipticity orientation angle east of north from VIDA. Note that REx is not currently able to
measure the orientation angle. Overall we see that M87* has consistent ellipticity around τ = 0.05–0.2, around −50°–0° east of north.
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Therefore, it appears that imaging creates a preferred
ellipticity direction ξτ≈ 0, τ. That is, as τ increases, the
ellipticity orientation tends to point in the north–south
direction. This orientation does approximately align with the
large gap in EHT coverage for M87* (see the red circles in
Figure 1).

Given the inability of the top-set images to faithfully recover
the ellipticity in our geometric tests, it is not clear that the
measurement found in Figure 3 represents a constraint on the
intrinsic ellipticity and not simply an artifact of the top set
itself. To address this possibility, we will calibrate the
procedure applied above to a large number of GRMHD
simulations.

4. Calibrating the M87* Ellipticity Measurement

To calibrate for the uncertainty in the M87* top-set
ellipticity, we will use a similar procedure to the mass
calibration done in Paper VI. First, we select a number of
GRMHD simulations from the Paper V library to provide
physically motivated images. Second, we construct simulated
data matching the 2017 M87* observations and reconstruct the
images using the M87* eht-imaging top set. Using this set

of reconstructions, we measure the ellipticity of each
reconstruction and compare it to the ground truth constructing
a “theoretical” uncertainty budget for the ellipticity. This
uncertainty is then included in the uncertainty of M87*ʼs
ellipticity.

4.1. Scaled Set

To construct the GRMHD images used in this paper, we first
cut the simulations from Paper V based on whether the total jet
power is consistent with the observed jet power of M87 (Table
2 of Paper V). From the remaining set of simulations, we
randomly select 100 snapshots and randomly assign them to a
2017 M87* observation day. Each selected snapshot is rescaled
to its best-fit value (according to the average image-scoring
results of Paper VI), and randomly rotated. To include the
effects of the mass uncertainty of M87*, we then further scale
the intrinsic image by a factor of 0.8, 0.9, 1.1, and 1.2 in both
the x- and y-direction. The net result is 500 images uniformly
sampled over days and orientations and gridded in mass
relative to the M87* best-fit value. We will refer to this list as
the scaled set.

Figure 4. Examples of image reconstructions and VIDA fits for different elliptical rings. The top row shows the truth images at position angles ξs = 0°, 45°, 90°, 135°
north of east. The middle row shows an example reconstruction from the M87* top set for each ring orientation. The bottom row shows the VIDA results for the
ellipticity and its position angle from the top set. We find significant bias in τ and ξτ for rings whose semimajor axis is aligned in the east–west direction.
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4.2. Stretched Set

While the scaled set measures the expected ellipticity due to
imaging and accretion turbulence, it does not measure how
sensitive imaging is to additional intrinsic ellipticity that may
occur from, e.g., non-GR spacetimes. To assess the ability to
measure an elliptical shadow, we randomly select 10 additional
GRMHD snapshots that fit M87ʼs jet power. For each image
we scale it to its best-fit mass, and randomly rotate it. Ellipticity
is added by picking two random orthogonal directions in the
image rx and ry and applying the transformation rx→ αrx and
ry→ ry/α. To create different amounts of ellipticity we let
α= 0.8, 0.9, 1.0, 1.1, 1.2, giving a τ= 0.36, 0.19, 0.0, 0.17,
0.31, respectively. We will refer to this as the stretched set in
the remainder of the paper.

4.3. Removing Failed Top-set Reconstructions

While inspecting the top-set reconstructions of the scaled and
stretched GRMHD simulations we notice that a large number of
images fail to show a ringlike feature. Instead the image
reconstructions have intensity distributed across the image in a
pattern similar to that of the EHT dirty beam. This is commonly
known as “waffling” and is symptomatic of a poorly chosen set
of hyperparameters. For these reconstructions, VIDA and REx

would give nonsensical results since no dominant ring feature
exists. To remove this bias these reconstructions need to be
removed. Unfortunately, no single set of hyperparameters is
identified to have caused the waffling. Therefore, we turn to
machine-learning techniques to remove any waffled images.

We create a deep convolutional neural network (CNN)
implemented in Flux.jl (Innes et al. 2018) to classify and
remove the waffled images. More details about the network and

image classification are given in the Appendix. The trained
neural network outputs a number γ between 0 and 1 that
measures the confidence that the image has waffled. We then cut
any image reconstructions where γ> γthresh= 0.1. This thresh-
old cuts 42% of the images in the scaled set and 21% of the
images in the stretched set. Some image classification examples
are shown in Figure 8. The impact of the value of γthresh is
shown in Figure 9. As an additional test of the network, we run
the classifier on the elliptical Gaussian reconstructions. We find
that only ∼5% of the elliptical images are cut, which is
consistent with our visual inspection.

4.4. Scaled Set Results

To analyze the scaled set of images, we use VIDA’s
CosineRing{1,4} template and Bh divergence. Using the
CNN image classifier (Section 4.3) we remove the “bad”
reconstructions, leaving 454,888 images. To compare the
results to the GRMHD simulations’ ellipticity we first blur the
ground-truth snapshots with a Gaussian kernel with FWHM 15
μas to model the finite resolution of the EHT array. Then we fit
the blurred images with the VIDA CosineRing{1,4}

template. This forms our ground-truth ellipticity to which we
will compare all results below.
The results for ξτ and ellipticity τ for the entire scaled set are

shown in the upper left panel of Figure 5. We find that the
ellipticity is quite uncertain in both VIDA and REx extending to
τ= 0.3, which is approximately a 5:3 axis ratio. This ellipticity
is larger than the ground-truth ellipticity measured from VIDA

(right panel of Figure 5), which is quite concentrated at τ≈ 0.1
and extends up to τ= 0.25. As mentioned in Section 1, the spin
of the black hole is expected to add a small amount of ellipticity
to the on-sky image. We find no evidence for any ellipticity–spin

Table 1

Recovered Parameters for the Slashed Elliptical Ring Test Set

Image d0 w τ ξτ (deg) s ξs (deg)

ξs = 90° ξτ = 90° REx 37.3 1.0
1.2 12.4 4.4

4.4 0.09 0.04
0.07 ... 0.54 0.09

0.07 90.68 7.8
3.9

VIDA 37.5 1.2
1.3 11.1 4.0

3.5 0.07 0.05
0.09 12.6 22.8

48.8 0.54 0.07
0.05 91.4 10.4

3.9

ξs = 45° ξτ = 45° REx 37.2 1.2
0.8 11.2 3.6

4.7 0.20 0.04
0.04 ... 0.52 0.12

0.11 48.9 7.8
5.3

VIDA 37.7 1.4
0.9 10.0 3.4

3.9 0.23 0.03
0.04 21.9 7.2

8.1 0.52 0.12
0.18 48.0 9.8

6.5

ξs = 0° ξτ = 0° REx 37.0 1.3
0.9 11.2 3.7

4.3 0.24 0.03
0.05 ... 0.45 0.07

0.15 5.7 20.6
33.3

VIDA 37.5 1.3
0.7 9.8 3.3

3.8 0.25 0.04
0.04 3.4 3.6

5.3 0.45 0.07
0.13 3.4 18.0

27.1

ξs = −45° ξτ = −45° REx 37.5 1.1
1.1 11.7 3.9

4.3 0.18 0.04
0.04 ... 0.52 0.09

0.09 49.4 5.6
22.1

VIDA 38.3 1.3
0.9 10.5 3.5

3.5 0.17 0.05
0.06 15.8 9.2

8.8 0.53 0.04
0.13 50.7 6.0

19.8

ξs = −90° ξτ = 90° REx 37.5 1.2
1.1 12.4 4.4

4.4 0.09 0.05
0.07 ... 0.54 0.12

0.07 90.3 6.6
6.4

VIDA 37.8 1.2
1.2 11.1 3.9

3.5 0.06 0.05
0.09 12.6 18.6

42.4 0.54 0.08
0.06 90.0 8.6

6.2

ξ = −135° ξτ = 45° REx 37.1 1.2
0.7 11.2 3.6

4.6 0.20 0.03
0.15 ... 0.47 0.09

0.12 131.4 6.0
5.4

VIDA 37.6 1.2
0.8 9.9 3.5

3.8 0.22 0.03
0.04 21.3 7.1

8.8 0.52 0.09
0.19 134.4 7.7

4.4

ξ = −180° ξτ = 0° REx 37.0 1.3
0.9 11.1 3.7

4.2 0.24 0.04
0.04 ... 0.47 0.08

0.16 184.1.2 27.0
20.4

VIDA 37.6 1.2
0.8 9.8 3.3

3.9 0.25 0.03
0.03 4.3 3.5

3.7 0.49 0.07
0.16 183.1 12.9

32.6

ξ = 135° ξτ = −45° REx 37.6 1.1
1.2 11.9 4.3

4.0 0.18 0.03
0.04 ... 0.53 0.05

0.08 127.9 5.3
8.3

VIDA 38.3 1.2
0.8 10.5 3.3

3.9 0.17 0.03
0.03 13.2 3.5

3.7 0.56 0.07
0.16 127.9 6.1

7.5

Truth 37.56 7.9 0.187 ... 0.5 ...

Note. The parameters are the median value and the 95% interval around the median. REx and VIDA give very similar results for all parameters, although no results for
ξτ are given for REx since it cannot recover it. All the parameters except the ellipticity τ and its orientation ξτ contain the true values.
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correlation. The lack of correlation provides evidence that the
dominant source of ellipticity in the reconstructions is the
accretion flow itself.

Focusing on the ellipticity orientation ξτ, we find the
ellipticity is strongly biased in the north–south direction.
Furthermore, when ξτ≈ 90°, τ extends to its highest values.
This orientation distribution is inconsistent with the GRMHD
distribution (right panel of Figure 5), which is uniform in ξτ. A
uniform distribution is the expected result since each simula-
tion is randomly rotated before imaging. The north–south bias
is similar to the results found for the elliptical ring in Section 3,
and for the circular crescents in Figure 3.

Taken together, the measured ellipticity and orientation bias
suggests that the imaging algorithms create a preferred ellipticity
orientation, and along this direction the ellipticity uncertainty is
maximized. This is shown in the bottom panel of Figure 5. Here
we see that when the ellipticity orientation is aligned in the north–
south direction, the recovered ellipticity is very uncertain, and can
be quite different from the truth. Additionally, for ξτ approaching
±90°, the top set tends to prefer overly circular images.

To add this ellipticity uncertainty to the results for M87* we
take each recovered ellipticity and orientation from the M87*

top set and add the theoretical uncertainty. This gives an
ellipticity for M87* of τä [0.0, 0.3]. Note that this result
assumes the accretion flow around M87* is well described by a
GRMHD simulation, and there are no non-Kerr effects that add
ellipticity to the image. In the next section, we will analyze
what happens for the stretched set of GRMHD simulations,
which include additional ellipticity.

4.5. Stretched Set Results

While the results from the scaled set of GRMHD simulations
suggest an upper bound of τ 0.35, they do not answer what
happens when there is additional ellipticity not due to the
accretion disk. For instance, non-GR metrics (e.g., Johannsen
& Psaltis 2010) can cause the black hole photon ring and/or
event horizon to appear more elliptical than what the Kerr
metric would predict. To test this, we will use the GRMHD
stretched data set described above. To extract ellipticity and
orientation from the stretched set, we again use VIDA’s

Figure 5. Joint marginal distribution between τ and ξτ, where the contours are the 68% and 95% regions. The upper left panel shows the results for the entire
reconstructed scaled GRMHD set that satisfies the awaffle < athresh = 0.1 threshold. The upper right panel is when VIDA is applied directly to the GRMHD snapshot
blurred with a 15 μas FWHM Gaussian kernel. As in the geometric results, we see a preference for ξτ ≈ 0°, i.e., the north–south direction, regardless of the intrinsic
image distribution. The bottom figure shows the measured ellipticity orientation on the x-axis with the measured ellipticity residual distribution.
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CosineRing{1,4} template with a constant background and
the Bh divergence. However, we find that a small subset of the
image reconstructions have an additional circular blob present.
Due to the second component, VIDA would sometimes report
an artificially high ellipticity since the ring template would try
to cover both the central ring and the Gaussian blob. To remedy
this issue, we add a Gaussian component to the template to
model the nonring intensity. We find that this works as
expected and the ring template gives a more reliable ellipticity
measurement.

The residuals for the ellipticity position angle are shown in
Figure 6. Note that we only show the results for VIDA since
REx is unable to measure the position angle of the ellipticity.
Looking at the bottom panel we see that for intrinsic τ 0.2,
the position angle residuals are very broad, and can be
significantly biased from zero. However, as the intrinsic τ
increases we find that the residuals improve. This bias for
smaller ellipticity is due to ξτ being strongly biased toward 0°,
and therefore away from a small residual. This bias continues
as τ increases but its impact is lessened.

The left panel of Figure 7 shows a map from the recovered τ
on the x-axis and the intrinsic τ. The horizontal bars are the
95% confidence regions about the median of the top-set
images. From this we see that the recovered ellipticity is largely
independent of the intrinsic ellipticity when the intrinsic
τ 0.325. Furthermore, even a GRMHD simulation with
intrinsic τ= 0.475 can have a recovered τ= 0.1, which is
similar to the value obtained for the M87* top set.

To quantify the maximum allowed ellipticity that is
consistent with M87* we first make two cuts on the stretched
GRMHD reconstructions—namely, we remove any reconstruc-
tions where τ> 0.2 or 75 , 0[ ]. The remaining
simulations, therefore, match the M87* top-set measurements.
The intrinsic ellipticity distribution from the remaining
simulations is shown in the right panel of Figure 7. From this
distribution we see that stretched simulations with ellipticity as
high as 0.5 can have ellipticity similar to the observed M87*

results. Note that this is the highest intrinsic ellipticity
considered in the stretched set.

5. Summary and Conclusions

The ellipticity of the accretion flow around M87* is a
theoretically interesting property related to the nature of the
accretion flow and structure of spacetime. While the results in
Paper VI measured ellipticity in the image reconstruction of
M87*, no attempt was made to interpret or calibrate this result.
However, we have shown that the top set used for the M87*

images cannot directly measure the on-sky image ellipticity.
We demonstrated that even for simple geometric models, the
eht-imaging top set fails to recover the correct ellipticity in
8/10 test cases.
To account for ellipticity bias, we calibrated the M87*

ellipticity using a set of 550 GRMHD images. Assuming that
the ellipticity in the reconstructions is due to accretion
turbulence, we found that accounting for imaging bias the
ellipticity of M87* could be anywhere from τ= 0 to τ= 0.3.
However, if there is additional non-accretion-induced ellipticity
from, for example, some non-GR effect, we found that
ellipticity as high as τ≈ 0.5 could have a recovered ellipticity
similar to the M87* results.
The reason for the ellipticity uncertainty is twofold. First, the

UV coverage for the EHT 2017 data is very sparse, having
significant gaps in the north–south direction. Second, the top
set used for M87* is inadequate for both the geometric and
GRMHD simulations analyzed in this paper. This can be seen
from the strong north–south ellipticity bias. Further evidence of
the top-set inadequacy comes from the roughly 20%–40% of
reconstructed images that needed to be removed from the
results as detailed in Section 4.3.
The results of this paper also stress the importance of defining

parameter surveys that include image features that are of interest.
If the survey does not include the impact of these image features,
it is not clear whether the resulting reconstruction measurements
of those features will be reliable predictors of the true on-sky
image. This partially requires some preliminary understanding of
the true on-sky image features. Unfortunately, this is often
unclear for the EHT, making designing parameter surveys
difficult. Fundamentally, the reason for this difficulty is that
while the top set provides an ensemble of image reconstructions,
they are decidedly not a posterior over image structures. Instead,
they rely on training sets to decide which set of images meet
some heuristic threshold. Using such heuristics can cause the
resulting distribution of recovered image features to be biased
from the true values. Therefore, any quantity of interest derived
from the top set needs careful validation to assess the fidelity of
the measurement. In general, this validation is necessary for any
imaging technique (e.g., inverse imaging (DIFMAP), RML, and
Bayesian imaging), given the ill-posed nature of VLBI imaging.
Future observations will greatly help reduce the ellipticity

uncertainty and disentangle the different potential causes of any

Figure 6. Residual distributions of the stretched GRMHD data set for the
ellipticity position angle ξτ. The top panel shows the marginal distribution of
the ellipticity residuals across the entire stretched GRMHD set. The bottom
panel shows the 95% probability interval of the position angle residuals for
each simulation, separated by the intrinsic τ on the y-axis. The intrinsic τ and ξτ
are found by applying VIDA to the GRMHD snapshots blurred by a Gaussian
with an FWHM of 10 μas. The large residuals for small τ are a result of the ξτ
being heavily biased north–south, similar to the elliptical ring, and to the scaled
GRMHD results.
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measured ellipticity and increase our knowledge of black hole
parameters and accretion (Roelofs et al. 2021). The Next-
generation EHT (ngEHT) will potentially add 10 more sites
across the globe, significantly increasing coverage and dynamic
range. By improving the dynamic range, detection of the inner
shadow with the ngEHT (Doeleman et al. 2019; Raymond et al.
2021) may be possible (Chael et al. 2021). The improved
coverage will also reduce the need for the ellipticity calibration
that is required due to image artifacts. Proposed space-based
arrays like the Event Horizon Explorer (Kurczynski et al. 2022)
will also have the potential to greatly deepen our understanding
of accretion (Gurvits et al. 2022), directly model or image the
n= 1 photon ring (Gralla et al. 2020; Paugnat et al. 2022), and
constrain its shape.
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Appendix
Image Reconstruction Classification Using CNNs

While analyzing the image reconstructions of the GRMHD
simulations, we find that a significant portion of the images fail
to show a dominant ringlike feature. This failure can occur
when the training set of images used in the top set’s
construction is different from the true image (e.g., the scaled
GRMHD images). When this occurs, the reconstruction will
appear to “waffle.” The waffling results in flux being spread
throughout the imaging plane, in a pattern similar to that of the
EHT’s dirty beam. Unfortunately, no global section of the top
set is able to remove the waffled images. Therefore, we turn to
machine-learning techniques to classify the reconstructions as
having succeeded or failed.
Machine learning and neural networks have been used

numerous times in astrophysical settings to classify images
(e.g., Dieleman et al. 2015; Davelaar et al. 2017). To classify
our images we have decided to use CNNs (e.g., Goodfellow
et al. 2016). CNNs break the images into features of different
scales and then group these features to classify the image.
For our neural network we use the Julia package Flux
(Innes 2018b; Innes et al. 2018).

Figure 7. Left: Intrinsic ellipticity τ vs. recovered ellipticity of the stretched GRMHD images. The intrinsic ellipticity is found by applying VIDA to the GRMHD
snapshot images blurred with a 15 μas Gaussian kernel. The solid line shows the median recovered ellipticity from VIDA (blue) and REx (orange). The filled bars are
the 95% confidence intervals around the median. Right: The resulting intrinsic ellipticity distribution (measured by VIDA) for reconstructions with ellipticity and
orientation similar to the observed M87* top-set values.
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For our image classifier we use a relatively shallow network
using three convolutional layers with a 2× 2 max pooling. For
the final layer we use a fully connected network to the two-
dimensional classification space. Between each convolutional
layer we use the ReLu activation function: f x xmax 0,( ) ( ).
For the final fully connected layer no activation function is
used. Since we are interested in binary classification we use
logitbinarycrossentropy in Flux, which is given by

H q y q y qlog 1 log 1 , 13
i

N

i i
1

( ) ( ( )) ( ) ( ( )) ( )

where x e1 x 1( ) ( ) and yi are the labels (1 for an image
that waffles and 0 otherwise). This choice of the loss function is
equivalent to using a sigmoid activation function in the last
layer of the neural network but has better numerical stability.

CNNs are a form of supervised learning. Therefore, we first
have to label a subset of the image reconstructions by hand. To
find the labels, yi, we analyze 5000 random images from the
scaled GRMHD set and an additional 500 from the stretched set.
We then classify each image by whether it visually has a
dominant ringlike feature or not. Some examples of images that
pass or fail are shown in Figure 8. Two-thirds of these classified
images are used for training, and the rest are used for our test
set. To combat overfitting, we also augment the images by
adding Gaussian random noise to each image when evaluating
the loss function. Finally, ADAM (Kingma & Ba 2014) is used
to optimize the network using the options defined in the Flux
model zoo package12 with some minor changes—namely, we
break our images into batches, with each batch containing 256
images, and use a learning rate of 3× 10−3. However, if
predictive performance on the training set does not improve
after 10 epochs we drop the learning rate by a factor of 10. The
optimizer is run for 100 epochs and achieves an accuracy of
94% and 92% on the training and testing sets, respectively.
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