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A B S T R A C T   

Fly ash (FA) – an industrial byproduct – is used to partially substitute Portland cement (PC) in concrete to 
mitigate concrete's environmental impact. Chemical composition and structure of FAs significantly impact hy-
dration kinetics and compressive strength of concrete. Due to the substantial diversity in these physicochemical 
attributes of FAs, it has been challenging to develop a generic theoretical framework – and, therefore, theory- 
based analytical models – that could produce reliable, a priori predictions of properties of [PC + FA] binders. 
In recent years, machine learning (ML) – which is purely data-driven, as opposed to being derived from theorical 
underpinnings – has emerged as a promising tool to predict and optimize properties of complex, heterogenous 
materials, including the aforesaid binders. That said, there are two issues that stand in the way of widespread use 
of ML models: (1) ML models require thousands of data-records to learn input-output correlations and developing 
such a large, yet consistent database is impractical; and (2) ML models – while good at producing predictions – 

are unable to reveal the underlying correlation between composition/structure of material and its properties. 
This study employs a deep forest (DF) model to predict composition- and time-dependent hydration kinetics and 
compressive strength of [PC + FA] binders. Data dimensionality-reduction and segmentation techniques – pre-
mised on theoretical understanding of composition-structure correlations in FAs, and hydration mechanism of PC 
– are used to boost the DF model's prediction performance. And, finally, through inference of the intermediate 
and final outputs of the DF model, a simple, closed-form analytical model is developed to predict compressive 
strength, and reveal the correlations between mixture design and compressive strength of [PC + FA] binders.   

1. Introduction 

Fly ash (FA) is a byproduct of coal combustion, and, generally, 
treated as landfill waste. In the past decades, researchers have discov-
ered that FA can be used to partially replace Portland cement (PC) in 
cementitious binders (i.e., pastes; mortars; and concrete). This is sig-
nificant for reducing the carbon footprint of the PC industry. To put this 
in context: The manufacture of PC emits ~4–9 % of anthropogenic CO2 
emissions [1–3]; and, due to the global population growth (~82 million 
per year [4]), the demand for PC is expected to continually increase, thus 
exacerbating greenhouse gas emissions. Clean energy can be introduced 

to the PC manufacturing process to reduce the use of fossil fuels. How-
ever, due to technological barriers and costs/return-on-investment risks of 
upgrading manufacturing infrastructure, widespread adoption of clean 
energy is at least a few decades away. In 2020, clean energy made up 
only ~20 % [5] of utility-scale U.S. electricity generation; in developing 
countries, the clean energy share is even lower (i.e., <5 % [6]). 
Furthermore, in the PC manufacturing process, 65 % of CO2 is released 
from the decomposition of CaCO3; which cannot be avoided by adopting 
clean energy. Considering the state-of-the-art of PC manufacturing, 
partial substitution of PC with supplementary cementitious materials 
(SCMs: FA; limestone; slag; metakaolin; quartz; etc. [7–11]) is currently 
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the most promising and practical solution to reduce PC's environmental 
impact. Among the SCMs, the use of FAs is more appealing, since it is an 
industrial waste, and its large-scale use would reduce the over-
exploitation of geological minerals (e.g., limestone and quartz). We 
acknowledge that the hastening pace of coal-power plant closures – 

mainly due to abating costs and low carbon-footprint of renewable solar 
and wind energy – is fast diminishing production/reserves of FAs 
nationwide, thus resulting in major seasonal supply gaps, and, in turn, 
escalating prices. That said, based on conservative estimates of current 
production and historical reserves of FA, there are millions of tonnes of 
FA feedstocks that could be used as SCMs to formulate concrete at scale 
for decades to come. 

Compared to other SCMs (e.g., limestone; quartz; silica fume; met-
akaolin; etc.), FA is arguably more complex, because of the significant 
batch-to-batch variations in its chemical composition; whereas, other 
SCMs are compositionally more consistent. FA consists of SiO2 (abbre-
viate as S in cement chemistry notation), Al2O3 (A), CaO (C), SO3 ($), 
and other metal oxides. During hydration (i.e., the reaction of PC with 
water [12]), FA not only provides additional surfaces (filler effect) for 
heterogeneous nucleation and growth [13,14] of calcium-silicate- 
hydrate (C–S–H; H2O abbreviate as H), but also undergoes pozzo-
lanic reaction with portlandite (CH; a hydration product) to form 
additional C–S–H [15]. Moreover, $ in FA – which is typically not 
found in other SCMs – can react with C3A (a highly-reactive phase in PC) 
to form ettringite early on, and monosulfoaluminate at later ages. The 
aqueous reactivity of FAs vary over wide ranges due to disparities in 
their amorphous phase contents (50-to-90%mass [16–18]) as well as their 
molecular structure (i.e., topology and connectivity of the glassy 
network). While ASTM C618 [19] categorizes FAs into just two classes – 

Class C and Class F – based on their calcium content, many studies 
[18,20,21] have shown that this classification is not correlated with the 
FAs' aqueous reactivity. In recent studies, topological constraint theory 
(TCT) [22,23] has been used to evaluate the reactivity of amorphous 
materials, including FAs, based on their chemical composition and 
atomic structure. TCT uses the chemical composition of a dominantly 
amorphous material to produce a singular parameter [number of con-
straints (nc)]; which represents the connectivity (or lack thereof) of the 
material's glassy network and can serve as a as a proxy for its reactivity. 
In our previous studies [24,25], we have shown that nc is a reliable 
parameter to represent the reactivities of FAs. 

Many studies [26–29] have replaced PC (in binders) with FA; and 
investigated their hydration behavior, and the resultant evolutions of 
the microstructure and properties. While these studies have shed light 
on many previously-unknown aspects of PC-FA interactions, they have 
been unable to fully describe the underlying correlations between 
composition, reaction (i.e., hydration), and properties in [PC + FA] 
binders. In the absence of a comprehensive theoretical framework, the 
route to developing reliable, theory-based analytical models remains 
unclear. Past studies [13,14,30–33] have shown that in PC and [PC +
SCM] binders, the hydration kinetics – generally measured as time- 
dependent heat evolution profiles from isothermal calorimetry [34,35] 
– are very well correlated with properties (e.g., compressive strength). 
Therefore – at least in theory – if the hydration kinetics of [PC + FA] 
binders could be modeled, the time-dependent development of proper-
ties could be estimated, crudely if not accurately. But, on account of the 
compositional/structural degrees of freedom associated with FA, the 
complex, temporally-varying interactions between FA, PC, and hydra-
tion products (e.g., portlandite) are not well understood. This 
knowledge-gap – in essence – prevents the development of models that 
can reliably predict hydration kinetics of [PC + FA] binders. Therefore, 
new modeling techniques – preferably based on the data (since the 
theory is still unclear) – are needed to produce a priori predictions of 
hydration kinetics and properties of [PC + FA]. 

Machine learning (ML) is a promising tool for producing a priori 
predictions of properties of cementitious binders. Our recent studies 
[24,25,35–40] have shown that several ML models – including random 

forests, artificial neural networks, and support vector regressions models 
– can produce reliable predictions of heat evolution profiles and me-
chanical properties of cementitious materials. Although those studies 
have demonstrated the predictive ability of ML models, there are still a 
few issues that need to be addressed. (1) SCMs used in previous studies 
[35–37] are geological minerals (e.g., limestone; and quartz) or indus-
trial wastes (e.g., silica fume) with consistent chemical compositions. As 
stated above, due to batch-to-batch variations in compositions and 
molecular structure, each FA affects the properties of PC binders with a 
distinct footprint. The prediction performance of ML models on such 
highly heterogeneous systems (i.e., [PC + FA] binders), especially in terms 
of predicting time-dependent hydration kinetics, has not been investi-
gated. (2) Our previous papers [24,25] used TCT along with ML to 
predict the properties of FA-based alkali-activated binders. However, it 
remains unclear if TCT can serve as a useful data-distillation tool to 
extract critical information on [PC + FA] binders to enhance the 
learning-efficacy of ML models. Furthermore, FAs used in these prior 
studies were mostly devoid of $; whereas FAs in this study have up to 
~8 % $ content. As mentioned before, $ in FAs can exert substantial 
effects on both fresh and hardened properties of PC binders. This study 
introduces an additional input variable to account for $ content; which 
TCT – in the way it has been formulated and used in prior studies 
[18,24,25,41] – is unable to account for. (3) Han et al. [36] have shown 
that Fourier transform can reduce the degrees of freedom of the training 
database; thus enhancing the learning-efficacy of ML models. That said, 
the Fourier transform is a purely mathematical tool used, primarily, to 
process nonlinear sensor signals; and, thus, remains completely divorced 
from properties of the material. In materials-based research, it would 
arguably be useful if the mathematical tools were based on, or derived 
from, materials-based theories. Therefore, this study develops a hydra-
tion theory-guided approach (i.e., segmentation) to simplify the data-
base of hydration kinetics of [PC + FA] binders. The segmentation 
technique allows ML models to produce reliable predictions by learning 
from a small dataset. 

In this study, a deep forest (DF) model is utilized to predict time- and 
composition-dependent hydration kinetics and compressive strength in 
relation to the mixture design of [PC + FA] binders and physicochemical 
properties of 10 FAs. The DF model is coupled with the segmentation 
technique to enhance the prediction performance. Finally, through 
inference of the intermediate and final outputs of the DF model, a sim-
ple, closed-form analytical model is developed to predict compressive 
strength, and reveal the correlations between mixture design and 
compressive strength of [PC + FA] binders. 

2. Experimental methods 

All precursors used in this study were obtained from commercial 
suppliers. Two PCs (i.e., PC-1 and PC-2) were used as base material, and 
10 FAs (Boral Resources) were used as supplementary cementitious 
materials to substitute PCs at different replacement levels. Based on 
ASTM C150 [42], PC-1 and PC-2 were classified in Type I/II. All pre-
cursors were received in a powder form. 

According to ASTM D4326-13 [43], the chemical compositions of 
PCs and FAs were quantified using the x-ray fluorescence (XRF; Oxford 
X-supreme 8000). Here, XRF – a simple, easy-to-use characterization 
tool—is used to evaluate FAs; because the goal of this study to demon-
strate that bulk oxide composition of FAs can be used—as the sole and 
primary input—to not only estimate its chemo-structural attributes (i.e., 
number of constraints), but also to predict its influence of hydration ki-
netics and mechanical properties. The phase compositions (Table 1) of 
two PCs were calculated by the modified Bogue method [44] based on 
their XRF compositions. The oxide compositions of FAs are shown in 
Table 2. The particle size distributions of the PCs and FAs were measured 
by a static light scattering particle size analyzer (Microtrac S3500). All 
particles were assumed to be spherical shape [45]. During the mea-
surement, the PCs and FAs were suspended in isopropanol and deionized 
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water, respectively. The suspended powders were treated with ultra-
sonic pulses to avoid agglomeration. The specific surface areas (SSA) of 
the PCs and FAs were estimated from their particle size distributions 
[13,46]. We assumed that all particles had a spherical morphology, 
limited surface roughness, and zero internal porosity. The density of the 
PCs is 3.15 g.cm−3, and SSAs are shown in Table 1. The densities (pro-
vided by the supplier) and SSAs of the FAs are shown in Table 2. 

The heat evolution profiles of [PC + FA] binders were measured by 
the I-Cal 8000 isothermal calorimetry for 72 h at 20 ◦C. The binders were 
prepared by mixing solid with deionized water in a constant liquid-to- 
solid ratio (0.4). Isothermal calorimetry was used to measure heat 
flow rate and cumulative heat from 102 unique mixture designs (i.e., 50 
[PC-1 + FA] binders, 50 [PC-2 + FA] binders, and 2 plain PC binders). 
The replacement levels of FAs varied from 10-to-50 % by mass with 10 % 
intervals. 

The compressive strength was tested in accordance with the ASTM 
C109 [47] standard. The compressive strength for each binder was 
calculated as the average of measurements of 3-to-4 specimens. The 
testing specimens included all binders for which calorimetry experi-
ments were also conducted; except for the [PC + FA-10] binder. All 
specimens were cured at >98 % relative humidity and 22 ◦C for 3, 7, and 
28 days. The data obtained from calorimetry and compressive strength 
test are used to train and validate the DF model. 

3. Modeling methods 

3.1. Network topology 

A singular, numerical parameter (number of constraints) obtained 
from the network topology of FAs is employed to replace all chemical 
descriptors (i.e., XRF composition) of FAs in the ML database; which not 
only reduces the complexity of the database (by substantially reducing 
the number of input variables associated with FAs), but also produces a 
singular parameter encapsulating information regarding the molecular 
structure and aqueous reactivity of the FAs. This section demonstrates a 
concise description of number of constraints derived from the TCT; 
further details can be found in our recent publications [24,25]. 

FAs consist of three components: S; C; and A. Other minor compo-

nents are ignored within the TCT framework. The normalized chemical 
composition of FA is CxAyS1-x-y, where x and y are the molar fraction. 
Two chemical constraints exist in FAs: angular bond-bending (BB) and 
radial bonding-stretching (BS) constraints [41,48,49]. Si/Al tetrahe-
drons provide 4 BS constraints and 5 BB constraints, O atoms connected 
with Si/Al tetrahedrons have 1 BB constraint, and O atoms connected 
with Ca atoms carry 1 BS constraint [41,49–52]. Ca atoms do not have 
constraints. In TCT, the chemical structure of the FAs can be divided into 
three groups based on their chemical compositions: depolymerized 
regime (y− x ≤ − 2

3); partially depolymerized regime (− 2
3 ≤ y− x ≤ 0); 

and fully polymerized regime (0 ≤ y − x). In the fully depolymerized 
regime, calcium (Ca) becomes the dominant compositional descriptor 
(vis-à-vis other atoms present within the structure). This regime, typi-
cally, features the isolation of the Si and Al tetrahedrons from each other 
because of interactions with Ca and O to form abundant non-bridging 
oxygens (NBOs). The NBOs reduce long-range order structures, 
thereby enhancing aqueous reactivity of the material upon contact with 
alkaline solutions (e.g., concrete pore-solution). In the partially depo-
lymerized regime, Si is the dominant component dictating network 
connectivity (or lack thereof). This regime consists of both bridging 
oxygen (BOs) atoms and NBOs. Due to the presence of BOs, the Si and Al 
tetrahedrons form rigid structures, resulting in an increase in crystalline 
content and a reduction of reactivity. In the case of the fully polymerized 
regime, Al atoms are the most dominant. To form Al tetrahedrons, Ca 
needs to compensate charge from Al atom. Due to insufficient free Ca 
atoms, few non-bridging oxygens are present in the structure. This leads 
to a highly crystalline structure, leading to the lowest reactivity. Among 
the three regimes, fully depolymerized regime has the highest reactivity, 
whereas fully polymerized regime has the lowest reactivity. 

The methods used to calculate the number of constraints (nc) in each 
regime are shown in Eqs. (1a), (1b) and (1c). In this study, the FAs are in 
partially depolymerized and fully polymerized regimes. The number of 
constraints for each FA is itemized in Table 2. 

nc =
11 + y − 10x

3 − 2x + 2y
(Fully depolymerized) (1a)  

nc =
11 + 10y − 10x

3 − 2x + 2y
(Partially depolymerized) (1b)  

nc =
11 + 13y − 13x

3 − 2x + 2y
(Fully polymerized) (1c)  

3.2. Deep forest (DF) model 

DF model is a modified version of the classification-and-regression 
trees (CARTs) model converged with the bagging algorithm [53,54]. 

Table 1 
Phase composition and specific surface area (SSA) of the PCs used in this study.  

Cement 
type 

C3S C2S C3A C4AF Gypsum d50 SSA 
%mass %mass %mass %mass %mass μm cm2. 

g−1 

PC-1  71.98  6.05  5.48  11.07  5.41  40.57  1726 
PC-2  52.61  24.88  5.61  10.21  6.67  38.21  1814  

Table 2 
Oxide composition, density, specific surface area (SSA), and number of constraints (nc) of FAs used in this study.  

Oxide composition FA-1 FA-2 FA-3 FA-4 FA-5 FA-6 FA-7 FA-8 FA-9 FA-10 
(%mass) (%mass) (%mass) (%mass) (%mass) (%mass) (%mass) (%mass) (%mass) (%mass) 

SiO2  51.9  43.6  22.3  77.1  56.8  57.7  30.3  37.7  33.6  53.8 
Al2O3  20.4  19.0  10.2  11.1  19.2  19.9  16.8  20.9  18.1  15.4 
CaO  15.6  4.6  45.6  2.4  6.2  10.7  32.6  24.7  30.4  14.0 
SO3  1.5  4.0  7.4  0.0  1.3  0.4  2.8  1.2  2.0  1.0 
Na2O  0.0  0.0  0.9  1.3  0.7  0.1  1.1  1.3  1.2  2.4 
MgO  1.7  0.0  2.6  0.0  1.6  2.2  7.9  4.3  5.2  3.3 
Fe2O3  5.5  23.5  8.7  2.4  10.2  6.0  5.6  6.3  6.4  6.5 
Others  3.4  5.3  2.3  5.7  4.0  2.9  3.0  3.6  3.1  3.5 
Density 

(g.cm−3)  
2.32  2.51  2.77  2.50  2.42  2.59  2.90  2.76  2.86  2.64 

d50 (μm)  34.77  35.56  16.62  8.69  24.79  12.57  11.55  7.45  9.11  18.43 
SSA 

(cm2.g−1)  
2889  2022  3350  5657  3301  4419  4565  6378  5259  3505 

nc 
(unitless)  

3.6128  3.8519  2.8831  3.7510  3.7810  3.6740  3.2870  3.4791  3.3546  3.5953  
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At the training stage, the DF model randomly extracts data-records from 
the training dataset to construct many small datasets named bootstraps. 
Then, the bootstraps are used as roots to grow independent CARTs; here, 
each bootstrap only grows one tree. The DF model can grow hundreds to 
thousands of CARTs. Binary split is the mechanism of growing CARTs. At 
each node, the tree randomly chooses a subset of input variables, and 
ranks them based on their costs for the split. The optimal split (global 
minimum cost) is estimated; and the tree is allowed to grow until the 
homogeneity of terminal leaves cannot be further improved (i.e., 
convergence is reached). The DF model allows all trees to grow as deep 
as they can without smoothing and pruning. At the testing stage, the DF 
model averages parallel outputs from trees to calculate the final output. 
The DF model involves two-stage randomization [54,55]: data selection 
for bootstrap and variable selection at each split. Owing to this feature, 
CARTs in the forest decorrelate with one another, leading to a minimi-
zation of bias and variance errors [56,57]. In this study, to optimize the 
hyperparameters of the DF model, the 10-fold cross-validation (CV) 
method [39,58] integrated with the grid-search method [36,39] is 
applied to the model. This allows the DF model to archive the ideal 
prediction performance. 

3.3. Database collection 

The heat evolution profiles of [PC + FA] binders were obtained from 
isothermal calorimetry (see description of the method in Section 2). The 
parent database consists of time-dependent heat flow rates from 111 
distinct [PC + FA] binders. It should be noted that calorimetry experi-
ments of select [PC + FA] binders were repeated to verify the repeat-
ability and reproducibility of the method; as well as to estimate the 
standard deviation (<0.005 mW/gcement) associated with each mea-
surement. But, in the parent database, results from such duplicate 
measurements were not included. The testing dataset comprises of 10 
randomly-selected binders from the parent database; and the remaining 
binders are consolidated into the training dataset. It is worth pointing 
out, here, that the binders included in the testing dataset were not 
included in the training dataset. This was done to ensure that the pre-
diction performance of the DF model could be evaluated in “blind-tests”. 
The DF model establishes the underlying input-output relationships 
from the training dataset. The testing dataset is then used to evaluate the 
prediction-performance of the DF model. Both the training and testing 
datasets comprise binders formulated using 2 PCs and 10 FAs. The input 
variables are: C3S content (%mass); C2S content (%mass); C3A content 
(%mass); C4AF content (%mass); gypsum content (%mass); FA content 
(%mass); number of constraints (unitless); $ content in FA (%mass in FA); 
SSA of PC (cm2. g−1); SSA of FA (cm2. g−1); and time (hour). The output 
is the heat flow rate (mW.gcem−1 ) from 0-to-72 h, with a 1-h time interval 
between successive steps. Statistical parameters pertaining to the 
training and testing datasets are itemized in Tables S1 and S2. 

The compressive strengths of [PC + FA] binders were obtained from 
tests described in Section 2. The database including compressive 
strengths of 92 unique [PC + FA] binders (i.e., 2 plain PC and 90 PCs 
replaced by FAs). For each binder, at least 4 samples were evaluated to 
estimate the standard deviation (i.e., <4.2 MPa); and the average of 
these measurements were used in the parent database. The database is 
randomly split into training and testing dataset. The training dataset 
includes 75 % of the parent database, and the remaining data-records 
are included in the testing dataset. The input variables include: C3S 
content (%mass); C2S content (%mass); C3A content (%mass); C4AF content 
(%mass); gypsum content (%mass); FA content (%mass); number of con-
straints (unitless); $ content in FA (%mass in FA); SSA of PC (cm2. g−1); 
SSA of FA (cm2. g−1); and age (day). The output is compressive strength 
(MPa) at 3, 7, and 28 days. Statistical parameters pertaining to the 
training and testing datasets are itemized in Table S3. 

Five statistical parameters are calculated to assess the accuracy of 
predictions of the DF model on the testing datasets: mean absolute 
percentage error (MAPE); mean absolute error (MAE); Pearson 

correlation coefficient (R); root mean squared error (RMSE); and coef-
ficient of determination (R2). Equations for statistical parameters were 
shown in prior research [39,59,60]. 

4. Results and discussion 

4.1. Isothermal calorimetry of [PC + FA] binders 

Heat evolution profiles of [PC + FA] binders were measured by 
isothermal calorimetry. Fig. 1 demonstrates the representative heat 
evolution profiles of PC replaced by 40 % FAs. The 40 % replacement 
level was chosen because it adequately exhibits both the physical and 
chemical influences of FAs on the hydration kinetics of PC. Fig. 1a and c 
show the influences of fully polymerized FAs on heat flow rate and cu-
mulative heat, and Fig. 1b and d show the influences of partially 
depolymerized FAs. 

In Fig. 1a, it is clear that PC-1 replaced by FA-4 has the shortest in-
duction period and the highest heat flow peak. This is because FA-4 does 
not contain $ (which would be manifested as delayed hydration peak 
due to retardation of C3S hydration); but has the highest S content 
(77.1%mass), which enhances—albeit, to a limited degree—the forma-
tion of pozzolanic C–S–H. Furthermore, the additional surfaces pro-
vided by FA-4 accelerate the nucleation and growth of C–S–H formed 
from the hydration of the alite phase in PC. Owing to these factors, the 
[PC-1 + FA-4] binder releases more heat than plain PC paste (shown in 
Fig. 1c). The hydration peak of [PC-1 + FA-2] binder appears late and 
broader compared to other binders. This broadening of the hydration 
peak (and, thus, greater area under the differential heat curve) is also 
why the [PC-1 + FA-2] binder releases slightly more heat than the [PC-1 
+ FA-4] binder (shown in Fig. 1c). These differences in the hydration 
profile of [PC-1 + FA-2] binder with respect to [PC-1 + FA-4] binder 
arise primarily because of the relatively higher $ content (4 %) in FA-2. 
To be clear: Both [PC-1 + FA-2] and [PC-1 + FA-4] binders comprise FAs 
with high pozzolanic potential; but FA-2 comprises more $ to react with 
C3A (in PC) to form ettringite and monosulfoaluminate, thus releasing 
more heat, while also suppressing the hydration of C3S (and, thus, 
resulting in delayed hydration peak). Furthermore, the formation of 
C–S–H (via hydration of alite and belite, or via pozzolanic reaction) 
releases less (cumulative) heat compared to the formation of ettringite 
and monosulfoaluminate (via hydration of calcium aluminate + sulfate 
phases) [12,61]. Therefore, FAs with higher $ content, typically, result 
in greater cumulative heat release at later ages. 

The fully polymerized FAs have rigid molecular structures; which, in 
turn, makes then less reactive, and less susceptible to dissolving and 
releasing ions into the contiguous aqueous solutions. Upon comparison 
of heat flow rates between PC binders replaced by FA-2 (Fig. 1a) and FA- 
9 (Fig. 1b), it is found that FA-9 (a partially depolymerized FA) sup-
presses the hydration of PC for a longer time, although it has approxi-
mately half of the $ content as FA-2. The partially depolymerized FAs – 

including FA-9 –have more amorphous content, and are typically more 
reactive, than fully polymerized FAs [18,49]. Therefore, a larger abun-
dance of ions (including $, which could suppress C3S hydration) are 
expected to be released from partially depolymerized FAs compared to 
fully polymerized ones. In Fig. 1b, the PC replaced by FA-3 shows the 
highest hydration peak. This is because FA-3 has the lowest number of 
constraints (2.88), which entails it has the highest amorphous content 
among all FAs. This implies that FA-3 is the most reactive among all FAs; 
and can release ions at a faster rate upon contact with the solution. 
However, the S content in FA-3 is low; as such, its ability to partake in 
pozzolanic reaction is expected to be limited (despite faster release of 
silicate ions), especially at later ages; thereby, resulting in moderate 
cumulative heat release (Fig. 1d). In fact, in general, partially depoly-
merized FAs have lower S content than fully polymerized FAs; and, 
therefore, have limited potential to partake in pozzolanic reactions 
(shown in Fig. 1c and d). Another important point to note is that the 
aluminate ions from FAs – especially in FAs with high Al2O3 content – 
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could suppress the growth of C–S–H [15]. This can be verified by a 
sharper heat flow rate decline after the hydration peaks (Fig. 1b) in the 
binder containing FA-8 as compared to the binder formulated using FA- 
3. 

Fig. 2 shows heat evolution profiles of PC-2 replaced by FA-4 at 
different replacement levels; so as to demonstrate the influence of FA 

content on hydration kinetics. Here, [PC-2 + FA-4] binder has been 
chosen as the representative binder because the composition of FA-4 is 
that of typical, commercial FA (rich in aluminosilicate content, and 
devoid of $). With increasing FA-4 content, the filler effect becomes 
more pronounced, which manifests as heat flow rate progressively 
shifting to the left, slope for hydration peak becoming steeper, and 

Fig. 1. Hydration kinetic profiles of [PC-1 + 40 % FA] binders, that is, (a) heat flow rate of PC-1 replaced by fully polymerized FA; (b) heat flow rate of PC-1 replaced 
by partially depolymerized FA; (c) cumulative heat of PC replaced by fully polymerized FA; and (d) cumulative heat of PC replaced by partially depolymerized FA. 
The FA type is shown in the legends. All measurements were recorded for initial 72 h of hydration. 

Fig. 2. Hydration kinetic profiles of [PC-2 + FA-4] binders, that is, (a) heat flow rate and (b) of PC replaced by different amount of FA. The replacement level of FA is 
shown in the legends. All measurements were recorded for initial 72 h of hydration. 
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induction period getting shortened. High replacement level of FA-4 
provides additional surfaces for heterogeneous nucleation of C–S–H. 
The increment of hydration peak intensity, and cumulative heat also 
indicates that the high replacement level enhances the kinetics of pre-
cipitation of C–S–H. 

4.2. Predictions of hydration kinetics 

The DF model is used to predict heat flow rate profiles of 10 
randomly-selected [PC + FA] binders for a 72-h hydration period. Fig. 3 
shows predicted heat flow rate profiles of representative [PC + FA] 
binders as produced by the standalone DF model against experimental 
measurements. In order to visually compare the predicted and measured 
values, the entire heat flow rate spectrums are included. The statistical 
parameters pertaining to the prediction performance of 72 h hydration 
period on the testing dataset are itemized in Table 3. 

As can be seen in Table 3, predictions of heat flow rate as produced 
by DF model show reasonable accuracy, with R2 being 0.89 and RMSE 
being 0.24 mW.gcem−1 . In Fig. 3, it is worth pointing out that the pre-
dictions at early ages, especially at the hydration peak, show lower ac-
curacy than at later ages. At early ages, the heat flow rate changes 
rapidly; sharply declining from very high to very low values, and sub-
sequently rising quickly until the peak. Each FA – in relation to its 
content and physicochemical properties – influences heat flow rate in a 
unique way. Because those factors act coherently and simultaneously 
within a very short span of time (a few hours), the DF is unable to fully 

capture the cause-effect correlations during its training; which essen-
tially diminishes its ability to predict early-age hydration kinetics of [PC 
+ FA] binders in a high-fidelity manner. 

It is important to further finetune the DF model to produce reliable 
predictions of heat flow rate, especially for a small volume database. 
Towards this end, the hydration theory-guided segmentation technique 
is developed to reduce the complexity of the database and enhance the 
prediction accuracy. The segmentation technique is based on the hy-
pothesis that, in the same segment, the hydration behavior of all [PC +
FA] binders should be driven by the same mechanisms, and therefore 
should manifest as similar kinetic (heat evolution) profiles. Here, the PC 
hydration can be divided into four stages [62]: initial dissolution period; 
induction period; acceleration period; and deceleration period. The 
dissolution period is a very short stage, where the PC particles come into 
contact with water, and release a large amount of heat. After ions are 
released from the PC particles, the dissolution rate of the PC particles 
significantly reduces (i.e., 17 orders of magnitude [43,44]) while the 

Fig. 3. The standalone DF model predictions of heat flow rate of representative [PC + FA] binders: (a) PC-1 + 20 % FA-2; (b) PC-1 + 50 % FA-6; (c) PC-2 + 30 % FA- 
1; and (d) PC-2 + 40 % FA-5 compared against experimental measurements in the testing database. Root mean square errors (RMSE) of predictions are shown 
in legends. 

Table 3 
Statistical parameters pertaining the prediction performance of DF and [DF +
Segmentation] models on 72-h heat flow rate.  

ML model R R2 MAE MAPE RMSE 
Unitless Unitless mW. gcem−1 % mW. gcem−1 

DF  0.9476  0.8981  0.1471  13.27  0.2463 
DF + Segmentation  0.9871  0.9743  0.0701  7.43  0.1197  
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solution is still undersaturated. The slow dissolution period is the in-
duction period. During this period, nuclei of hydrates form on the sur-
faces of PC particles. When the solution is supersaturated with respect to 
the hydrates (portlandite and C–S–H), the rate of nucleation and 
growth accelerates. The heat evolution profile of PC shows a large 
exothermic heat release peak for the nucleation and growth. The post- 
peak period represents decelerating hydration kinetics. In the deceler-
ation period, several factors reduce the hydration rate [62]: (1) Only 
large anhydrous particles contribute to hydration; (2) Lack of space and 
exponentially-declining supersaturation of C–S–H constrain the rate of 
growth of C–S–H nuclei; and (3) Insufficient water in the system limits 
hydration rates of anhydrous phases present within PC particles. 

In accordance with the above description of stages of PC hydration, 
the heat flow rate can be divided into three segments with respect to 
time. The first segment includes the initial dissolution and induction 
periods. In this segment, high heat release is observed in the first hour, 
and the heat flow rate for the remaining duration is low. The second 
segment is the acceleration period, where the hydration kinetics is the 
fastest. One or two hydration peaks – depending on the chemical com-
positions of FAs and PC – appear in this segment. The third segment is 
the deceleration period, where the heat flow rate progressively di-
minishes after the peak, due to the continued decline in the kinetics of 
hydration. We developed a MATLAB algorithm to find the optimal 
thresholds for the segmentation. To obtain these thresholds, the algo-
rithm obtains the second derivates of heat flow rate profiles, and de-
termines the inflection points. The hours corresponding to the majority 
of inflection points (across all binders) are determined as segmentation 
thresholds. Fig. 4 shows the thresholds for the different segments in 
representative binders. The induction period for all [PC + FA] binders 
end before 5 h. All hydration peaks appear no later than 22 h, and the 
deceleration periods start after 24 h. Accordingly, the three segments are 
0-to-4, 5-to-24, and 25-to-72 h. 

The DF model integrated with segmentation technique is developed 
in this study. When the [DF + Segmentation] model processes the 
training dataset, the segmentation algorithm separates the training 
dataset into three sub-datasets with respect to the abovementioned 
times. Then, three parallel DF models are independently trained with 
three sub-datasets to find the input-output correlations for each 
segment. When the model is used to produce predictions of hydration 
kinetics of binders in the testing dataset, three parallel DF models pre-
dict the heat flow rate of [PC + FA] binders with respect to their seg-
ments. Later, the segmentation algorithm combines the outcomes from 
DF models (employed for the different segments) to produce the entire 
heat evaluation profile from the time of mixing to 72 h. 

Fig. 5 shows predicted heat flow rate profiles of representative [PC +
FA] binders as produced by the [DF + Segmentation] model compared 
against experimental measurements. In order to visually compare the 

predicted and measured values, the entire heat flow rate spectrums are 
included. The statistical parameters pertaining to the prediction per-
formance of 72 h hydration period on the testing dataset are itemized in 
Table 3. To better compare the prediction performance between the 
standalone DF model and [DF + Segmentation] model, Fig. 6 demon-
strates the prediction accuracy (evaluated by five statistical parameters) 
of both models for every hour. 

As can be seen in Table 3, predictions of heat flow rate as produced 
by DF model show high accuracy, with R2 being 0.97 and RMSE being 
0.11 mW.gcem−1 . The errors – in terms of MAE, MAPE, and RMSE – of [DF 
+ Segmentation] model are halved when compared with the standalone 
DF model. In Figs. 5 and 6, it can be observed that the [DF + Segmen-
tation] model is able to capture cause-effect correlations and produce 
reliable trends during the acceleration period, especially the hydration 
peaks. The segmentation technique reduces the degree of freedom of the 
database by splitting the complex, highly non-monotonous heat evolu-
tion profiles into segments with more-or-less similar profiles. Following 
the segmentation of the training database, the DF model can learn input- 
output correlations (hydration behavior) in each segment; and, later, 
consolidate them into global composition-hydration kinetics correlations. 
It must also be noted that the use of TCT to reduce the number of input 
variables (i.e., content of each oxide) associated with each FA into a 
singular parameter also contributes to the prediction performance of the 
models. 

In the context of modeling heat evolution profiles of cementitious 
systems, it is essential to capture the heat evolution behaviors at peaks; 
this is because these peaks represent a critical juncture of PC hydration, 
and are indicative of the time when the PC binders rapidly gain strength 
due to the massive formation of hydrates [12,32,62,63,64]. Due to the 
importance of hydration peaks, previous studies [13,34,65] have uti-
lized the ability to capture hydration peaks as an exclusive indicator to 
assess the accuracy of kinetic models. Since the standalone DF model is 
unable to produce reliable predictions at hydration peaks, it is justified 
to say that the [DF + Segmentation] model is a more suitable tool to 
predict heat evaluation profiles of complex PC binders. For some binders 
(Fig. 5b), the [DF + Segmentation] still has some issues in predicting 
peaks in a high-fidelity manner. The database used to train the DF model 
is relatively small, containing only 101 binders. A larger and more 
diverse database could significantly enhance the prediction accuracy of 
the model. 

4.3. Predictions of compressive strength 

The database of compressive strength was split into training (75 % of 
parent database) and testing (25 % of parent database) datasets. The 
predictions of compressive strength of [PC + FA] binders as produced by 
the DF model against measurements, including both training and testing 

Fig. 4. Heat flow rate profiles of randomly selected [PC + FA] binders. Based on their kinetic behaviors, the profiles are divided into three segments: I. Initial and 
induction periods; II. Acceleration period; and III. Deceleration period. 
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datasets, are shown in Fig. 7. Predictions for the training dataset are 
more accurate than the testing dataset; this is because the model was 
trained with an emphasis on reducing overfitting. Statistical parameters 
evaluating the prediction performance of the DF model are itemized in 
Table 4. 

As can be seen in Fig. 7 and Table 4, predictions of compressive 
strength against the testing dataset are reliable, with R2 being and RMSE 
being 5.22 MPa. The typical measurement error of compressive strength 
is 5 MPa [66], where the prediction error is close to the experimental 
error. The prediction accuracy of the DF model can be attributed to its 
intrinsic structure, especially of the decision-trees in the ensemble. The 
forest contains hundreds of independent trees, and each of them pro-
duces one output, thereby minimizing error associated with variance. 
Due to the two-stage randomization [54,55], and the unpruned structure 
of all the trees, each tree can grow with unique structures, which 
eliminates bias (overfitting). Lastly, the use of the TCT significantly 
minimizes the number of input variables pertaining to FAs; which, in 
turn, improves the learning-efficiency of the model during its training, 
and ultimately bolsters its prediction performance. 

One major issue of ML models is that they cannot quantitatively 
reveal correlations between inputs and output. Consequently, re-
searchers cannot decipher the complex mixture design-compressive 
strength relationships of [PC + FA] binders through ML models. To 
expand the use of ML, herein, a simple, closed-form analytical model is 
developed to predict compressive strength of [PC + FA] binders through 

inference of the intermediate and final outputs of the DF model. 
The most important step in developing an analytical model is to 

carefully select input variables. The exclusion of insignificant input 
variables reduces the complexity of model without lowering prediction 
accuracy. The DF model can quantify the impacts of the input variables 
on the output based on the Gini score [40,54,59,67,68]. Fig. 8 shows the 
impact (importance) of input variables on the compressive strength of 
[PC + FA] binders. This outcome is in good agreement with findings 
from prior literature. Age is the most important variable because 
compressive strength monotonically increases with the time of hydra-
tion [69–71]. C3S and C3A are significant input variables because their 
hydration products are the main phases that contribute to microstruc-
tural evolution, solid-to-solid phase connectivity, and therefore 
strength. Surprisingly, C4AF exhibits more importance than C3S. Due to 
the large content of C3S in PC, all binders gain high compressive 
strength. The variation of compressive strength with respect to C3S 
content is smaller than the variation with respect to C4AF. FA replace-
ment level is the fourth important input variable. Fu et al. [72] have 
shown that compressive strength of PC is inversely correlated with 
aggregate content. Although FAs can react with PC through pozzolanic 
reaction, the major fraction of FAs do not partake in chemical reaction 
(akin to aggregates). Due to the low concentration, $ in FA show 
insignificant influence on the compressive strength. 

The importance of input variables can be used as a guideline to select 
features for the analytical model. Previous studies [73,74] have found 

Fig. 5. The [DF + Segmentation] model predictions of heat flow rate of representative [PC+ FA] binders: (a) PC-1 + 20 % FA-2; (b) PC-1 + 50 % FA-6; (c) PC-2 + 30 
% FA-1; and (d) PC-2 + 40 % FA-5 compared against experimental measurements in the testing database. Root mean square errors (RMSE) of predictions are shown 
in legends. 
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that the age-compressive strength relationship is exponential for 
cementitious materials. The correlation between content of binder and 
compressive strength exhibits linearity [75,76]. All chemical phases of 
PC are included in the analytical model. Owing to the influences of C4AF 
and C3S, they are assigned greater weight (i.e., higher exponent) in the 
analytical model. Considering the pozzolanic reaction of FAs, the number 
of constraints is added as an input to the analytical model. $ in FA has a 

similar role as gypsum, and, thus, it is combined with the gypsum con-
tent in the analytical model. SSAs of PC and FA are excluded from the 
analytical model because they show less influence on compressive 
strength. A combination of weighted linear, polynomial, and exponen-
tial functions is utilized to develop the general form of the analytical 
model, which is shown in Eq. (2). Here, CS is compressive strength 
(MPa); Ci is coefficient; Xi is chemical content (%mass) of [PC + FA] 
binder; xso3 is mass fraction of $ content in FA (unitless); T is age (days); 
and nc is number of constraints (unitless). The coefficients and constant 
in the equation are optimized through Nelder-Mead multi-dimensional 
simplex algorithm [77,78] and a nonlinear, gradient-descent scheme 
[40,59,79,80]. The optimized values of coefficients and constant are 
itemized in Table 5. 
CS =C1X2

C3S +C2XC2S +C3XC3A +C4X2
C4AF +C5

(

Xgypsum +XFAxSO3

)

+C6XFANc +C7exp

(

C8

T

)

+C9

(2) 

R

R2

MAE

MAPE

Fig. 6. The statistical parameters interpreting prediction performance of DF and [DF + Segmentation] model on heat flow rate over 72 h period in the testing 
database: (a) Pearson correlation coefficient (R); (b) coefficient of determination (R2); (c) mean absolute error (MAE); (d) root mean squared error (RMSE); and (e) 
mean absolute percentage error (MAPE) as functions of time. 

Fig. 7. The predictions of compressive strength of [PC + FA] binders as produced by the DF model against the testing dataset. Root mean square error (RMSE) is 
shown in the legend. The dashed line is the ideal prediction. The solid lines are ±10 % error bounds. 

Table 4 
The statistical parameters pertaining to the prediction performance of the DF 
and analytical models on [PC+ FA] binders' compressive strength.  

ML model R R2 MAE MAPE RMSE 
Unitless Unitless MPa % MPa 

DF  0.9368  0.8775  3.939  11.34  5.221 
Analytical model  0.9031  0.8156  4.051  11.6  5.322  
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Fig. 9 shows the predicted compressive strength as produced by the 
analytical model against experimental measurements. Statistical pa-
rameters evaluating the prediction performance of the analytical model 
are summarized in Table 4. The analytical model predicts the 
compressive strength of [PC + FA] binders in a high-fidelity manner. 
The RMSE obtained from predictions of the analytical model is 5.32 
MPa, which—expectedly—is slightly larger than predictions from the 
DF model. It should be noted that the redundant variables were identi-
fied and excluded from the analytical model; and, then, coefficients and 
constant were rigorously optimized. As a result, the analytical model 
uses fewer input variables without sacrificing much accuracy. The major 
advantage of the analytical model is to uncover the underlying corre-
lations between input variables and compressive strength. Importantly, 
this analytical model accounts for physicochemical properties and $ 
content of FAs. This helps researchers to understand the role of FAs on 
the compressive strength of PC in a quantitative manner. 

5. Conclusions 

FA is a type of industry waste used to partially substitute PC in 
concrete to mitigate concrete's environmental impact. FAs – depending 
on chemical composition; molecular structure; and replacement level – 

show disparate influences on hydration kinetics and compressive 
strength of PC binders. Due to the complexities associated with FAs' 
highly-heterogenous composition, and our piecemeal understanding of 
material theories, researchers have been unable to develop reliable 
analytical models to predict properties of [PC + FA] binders. 

In this study, we harnessed the power of the deep forest (DF) model 
to produce a priori, reliable predictions of hydration kinetics and 
compressive strength of [PC + FA] binders. The DF model can autono-
mously learn cause-effect relationships from a training dataset, and then 
capitalize on such knowledge to produce predictions on new data do-
mains. Additionally, this study developed a material theory-guided 
segmentation technique to enhance the prediction accuracy of hydra-
tion kinetics. The segmentation method classified the heat flow rate 
profiles into three regions based on the time-dependent hydration 
behavior of cement. Next, after the DF model discovered the input- 
compressive strength correlations, key outcomes (i.e., quantitative 
ranking of influence of each variable on compressive strength) were 
used as guidelines for developing a simple, closed-form analytical 
model. Results from the analytical model demonstrated that it was a 
reliable tool to produce a priori predictions of compressive strength by 
using fewer input variables than ML. Researchers could use correlations 
shown in the analytical model to investigate mechanisms that the origins 
of property-development in [PC + FA] binders. 

In summary, the DF model with the segmentation technique dem-
onstrates the possibility of using a small volume database to produce 
reliable predictions of complex cementitious materials. The prediction 
accuracy can be improved by training the DF model with a larger 
database. One limitation of this study is that the segmentation is a 
mathematical method, which provides little-to-no insight into aspects of 
cement chemistry that could affect hydration kinetics. In an upcoming 
study, the ML model will be integrated with a phase boundary 
nucleation-and-growth based kinetic model to produce hydration ki-
netics for cementitious binders. 
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Table 5 
Coefficients and constant for the analyt-
ical model to achieve optimal predictions 
of compressive strength of [PC + FA] 
binders.  

C1  −0.0031 
C2  −0.7886 
C3  5.286 
C4  −0.3974 
C5  −1.9971 
C6  −0.3068 
C7  7.2686 
C8  −9.9688 
C9  109.6953  
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