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Abstract: Calcium aluminate cement (CAC) has been explored as a sustainable alternative to Port-
land cement, the most widely used type of cement. However, the hydration reaction and mechanical
properties of CAC can be influenced by various factors such as water content, Li2COs content, and
age. Due to the complex interactions between the precursors in CAC, traditional analytical models
have struggled to predict CAC binders’ compressive strength and porosity accurately. To overcome
this limitation, this study utilizes machine learning (ML) to predict the properties of CAC. The study
begins by using thermodynamic simulations to determine the phase assemblages of CAC at differ-
ent ages. The XGBoost model is then used to predict the compressive strength, porosity, and hydra-
tion products of CAC based on the mixture design and age. The XGBoost model is also used to
evaluate the influence of input parameters on the compressive strength and porosity of CAC. Based
on the results of this analysis, a closed-form analytical model is developed to predict the compres-
sive strength and porosity of CAC accurately. Overall, the study demonstrates that ML can be ef-
fectively used to predict the properties of CAC binders, providing a valuable tool for researchers
and practitioners in the field of cement science.

Keywords: calcium aluminate cement; XGBoost model; analytical model; compressive strength;
phase assemblage

1. Introduction

Concrete is the most widely produced-and-used material globally. While the inces-
sant development of global infrastructure (e.g., rapidly growing metropolises and mega-
cities) ensures that demand for concrete is ever-increasing, the production of Portland
cement (PC) presents considerable energy consumption (=11 E]/year [1]) and environmen-
tal impact- (=9% of global CO2emission is attributed to the production of PC [2—4]) related
challenges. Calcium aluminate cement (CAC) has been explored as a sustainable alterna-
tive to PC [5-7]. The main chemical phases of CACs are calcium aluminate (CA)* and
mayenite (C12A7), whereas gehlenite (C2AS) and calcium di-aluminate (CA:z) are the minor
phases [8,9], where C = CaO, A = Al:Os, H = H20 and S = SiO2. During the production of
PC, the calcination of limestone is a significant contributor to CO: emissions, accounting
for approximately 60% of the total COz emissions [10,11]. The lime content of PC typically
ranges from 50 to 60%mass, whereas the lime content of CAC is usually between 20 to
30%mass [8,12]. As a result, the manufacturing of CAC emits approximately half the amount
of CO:z emissions compared to the manufacturing of PC. To be specific, the production of
1 g of CAC releases approximately 0.29 g of COz, which is approximately 47% less than
the CO2 emissions associated with the production of PC [6,10]. In addition to environmen-
tal benefits, CAC becomes even more appealing when we consider its rapid strength
achievement. This is on account of the rapid hydration of CAC, because of which 1-day
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and 7-day strength of the CAC binder are equivalent to 7- and 28-day strengths of their
PC counterparts [13-15].

During the hydration process of CAC, various intermediate, metastable phases are
formed. These phases are called CAH1, C2AHs, and CsAHx, where “x” can be 11, 13, or
19, depending on the relative humidity[16,17]. These phases later transform into CsAHs
(hydrogarnet) and AHs (gibbsite) [8]. The formation of these metastable phases are tem-
perature dependent. At low temperatures (below 15 °C), only CAHuo is formed [8]. As the
temperature increases, C2AHs starts to appear in the CAC binder [18]. At around 40 °C,
C2AHs is the main hydration product formed, along with alumina gel [19]. When the tem-
perature reaches 60 °C, CsAHs and AHs are formed without forming any metastable
phases [8,18,19]. If the CAC contains silica, C2ASHs (straetlingite) may also be formed [9].
Straetlingite is a strength-providing phase that can improve the compressive strength of
the CAC. The phase conversion process has a significant effect on the compressive
strength of CAC. As the low-density phases (i.e,, C2AHs, CAH1o, and C:sAHx) transform
into the high-density phase (i.e., C3AHs), the porosity of the cement increases and its com-
pressive strength decreases [14,20].

The conversion of metastable hydrates into stable ones is influenced not only by tem-
perature but also by other factors, such as the water-to-cement ratio and the presence of
admixtures. The water-to-cement ratio plays a significant role in this process. At high wa-
ter-to-cement ratios, the conversion of CAHio into CsAHs is complete, but excess water is
left over from the reaction, leading to an increase in porosity and a decrease in strength
[12,21,22]. On the other hand, at low water-to-cement ratios, there is insufficient water
available for CAHuo to fully react and convert into CsAHg, resulting in a more significant
amount of CAHio, leading to a decrease in porosity and an increase in mechanical
strength[8,23]. Several studies [8,24-26] have found that inorganic salts can significantly
impact the hydration reaction of CAC. It is generally agreed upon that lithium salts accel-
erate the hydration of alumina-based cementitious materials, with Li2COs being the most
common and effective accelerator [26,27]. The addition of Li2COs reduces the time-to-set
of CAC (i.e., the time until initial hydrates form) and increases strength development at
early ages [25]. However, the use of inorganic salts also has a negative effect, as they de-
crease the setting times of high alumina-containing CACs and hinder the development of
mechanical properties at later ages [25,28]. According to Luong et al. [29], accelerating
admixtures only affect the hydration kinetics of CAC initially, prolonging the precipita-
tion of CAHiw and C2AHs. However, once the hydration products start to form, accelerat-
ing admixtures do not affect the rate of CAC hydration [30].

Based on the above discussion, it is clear that the mixture design and processing pa-
rameters have a significant impact on the mechanical properties and hydration products
of CAC. To better understand the influence of these parameters on cementitious materials,
previous studies [31-38] have developed several analytical models to predict the com-
pressive strength. These models help researchers to quantitatively understand the effects
of different mixture designs and processing parameters on the performance of CAC. The
selective equations for analytical models are listed in Table 1. Where: f. is compressive
strength; Vi is volume of the component i; w, ¢, and a represents water, cement, and air
content, respectively; a is degree of hydration; t is cement curing age; 7 is reference cur-
ing age; and A, B, and n are coefficients.



Materials 2023, 16, 654

3 of 16

Table 1. Analytical models used to predict the compressive strength of cementitious materials.

Analytical Model Reference
V B
y (—C> Feret et al. [37]
J Y,
f. = pwie Abrams et al. [38]
B
0.66
f = AP = A 0 — Powers et al. [31]
— Ta
w n
fi=@A+B ?)e[_r/ t Gavela et al. [36]

The first-generation analytical models to predict the compressive strength of ce-
mentitious material were proposed by Feret et al. [37] and Abrams et al. [38], which rein-
forced the effect of the water-to-cement ratio on the consequent compressive strength.
However, these two models did not account for other vital factors (i.e., aggregate content,
admixture, curing condition, and concrete age) that are widely known to affect mechanical
property development. In 1946, Powers et al. [31] amended the relationship presented by
Feret et al. [37] by introducing the degree of hydration and gel-to-space ratio terms. Karni
et al. [32] refined the gel-to-space ratio parameter by relating it to the total reacted paste
volume. In 2000, Tango et al. [33] simplified the Powers’ equation and initially applied
time (i.e., concrete age) to the equation. Around the same time, Popovics et al. [34,39] in-
corporated air and CsS content into Abrams et al.’s model [38]. More recently, multi-factor
models—as developed by AL-Shukaili et al. [35] and Gavela et al. [36] —were established
to account for the complex cement mixture designs (i.e., water-to-cement ratio; percentage
of steel fiber; cement content; aggregate content; and aspect ratio). In particular, Gavela et
al. [36] developed a sigmoidal function model to predict the compressive strength of con-
crete via similar mixture design and processing methods in relation to the water-to-ce-
ment ratio and curing time.

However, those models cannot accurately predict the compressive strength of CAC
due to several knowledge gaps that exist in the aforesaid analytical models. One of the
main reasons is that most of these models were initially developed for PC, which has dif-
ferent strength-providing phases and hydration mechanisms compared to CAC. Next, co-
efficients in analytical models are not generic, which means that they need to be calibrated
each time they are used to predict the compressive strength of a new CAC. Additionally,
due to the incomplete understanding of CAC, some theories and parameters cannot be
included in analytical models, resulting in lower prediction accuracy. Therefore, an ad-
vanced model is required to produce the compressive strength of CAC in a high-fidelity
manner.

Machine learning (ML) techniques, a data-driven approach, are a promising tool to
achieve reliable predictions of the compressive strength of CAC. ML is an emerged ap-
proach used by many studies related to cementitious materials. Previous studies have em-
ployed ML models to predict the compressive strength of cementitious materials. Artifi-
cial neural networks (ANN) have been used to predict the compressive strength of self—
compacting concrete containing bottom ash and self-compacting concrete after exposure
to high temperatures [40,41]. Dantas et al. and Duan et al. [42,43] have applied the support
vector machine model to predict the compressive strength of concrete made from recycled
aggregate. Particle swarm optimization adaptive network-based fuzzy interference and
Genetic algorithm adaptive network fuzzy interference models have been developed to
predict the compressive strength of alkali-activated concrete made from steel slag [44].
The gray model, a combination of ML and theoretical models, is developed to accurately
predict the shear capacity of reinforced concrete [45]. Mangalathu et al. [46] have explored
the ability of ML models in predicting the failure mode of reinforced concrete shear walls.
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Our previous studies [47-50] have also shown that ML is powerful enough to predict and
optimize the mechanical properties of PC and alkali-activated cement. Although ML
demonstrates outstanding performance in predicting the properties of various cementi-
tious materials, it has not been utilized to predict the compressive strength of CAC.

Opverall, the objective of this study is to provide an accessible method to predict the
properties of CAC binders. First, thermodynamic simulations are utilized to obtain phase
assemblages at given ages. The XGBoost model is then employed to learn correlations
between properties (i.e., compressive strength, porosity, and phase assemblage) and mix-
ture designs, and subsequently produce reliable predictions of those properties. A closed-
form analytical model is then developed to predict the compressive strength and porosity
based on the variable importance evaluated by the XGBoost model. The analytical model
can help end-users who cannot use ML to predict the compressive strength and porosity
of CAC binders before starting cumbersome experiments. To the authors’ best knowledge,
this is the first study to develop ML and analytical models to predict time-dependent com-
pressive strength and phase assemblages of CAC in relation to mixture designs

2. Modeling Methods
2.1. Thermodynamic Model

Several studies [17,51,52] have shown that thermodynamic modeling, coupled with
accurate and complete thermodynamic databases, can accurately simulate phase assem-
blages of hydrates and anhydrates based on the chemical composition of cement. The fol-
lowing paragraphs describe the parameters for Gibbs Free Energy Minimization Software
(GEMS) [53,54] simulation and the details of the GEMS simulation itself. The accuracy and
completeness of the physicochemical properties of precursors and products used in ther-
modynamic modeling are critical to the quality of the results. These properties can typi-
cally be found in the literature and thermodynamic databases. In this study, the thermo-
dynamic data for aqueous species and solids are taken from the PSI-GEMS thermody-
namic database, while the solubility products for cement minerals are taken from the
Cemdata 14.01 database [55,56]. An extended Debye-Huckel equation [57] is used to cal-
culate the activity coefficients of the aqueous species.

The performed GEMS simulations utilized the initial mixture design parameters of a
given binder (i.e., as inputs at 25 °C. The GEMS calculated the volume of all reactants and
hydration products with respect to the degree of hydration. Figure 1 is an example of
phase assemblage obtained from the thermodynamic simulation for a CAC binder with a
0.3 water-to-cement ratio. Based on this figure, the hydration process stops at 42% because
of a lack of sufficient water to fully hydrate the CAC. This phase assemblage can help
researchers to discover the hidden correlations between hydration products and proper-
ties at different hydration levels. For example, when 10% CAC reacts with water, it forms
28.571%vo unreacted CAC, 6.1784%vo C4AH19, 0.7046%vol straetlingite, 1.2367%vo1 gibbsite,
0.0418%vol hematite, and 0.2745%vot magnetite. The compressive strength would be low
because the volume of strength providing phases (i.e., C+AHw and straetlingite) are low.
The phases shown in the figure are in agreement with findings in prior studies. Lothen-
bach et al. [16] and Barnes et al. [18] have discovered that C4AHuy, straetlingite, and gibbs-
ite are the main hydration products at 25 °C.
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Figure 1. Phase assemblage of CAC estimated through GEMS at various degrees of reaction. The
dashed line indicates the phase assemblage at 10% reacted CAC based on the degree of hydration
estimated from compressive strength. After 41.3% of CAC reacted, the hydration reaction was ter-
minated due to insufficient water.

2.2. XGboost Model

The XGBoost model [58] is an advanced classification and regression tree (CART)
model. It uses the gradient boosting technique [59] to combine a set of weak base learners
into strong learners through additive functions. The XGboost model is designed to be par-
allelizable, computationally efficient, and to prevent overfitting. Similar to the conven-
tional CART model, the XGBoost also grows through binary split in a hierarchical fashion.
However, the gradient boosting technique allows XGBoost to utilize the objective function
(Equation (1)), a combination of cost function and regularization () at each node, and to
train new trees with residual errors (Equation (2)) from previous trees. Therefore, the final
output compensates for errors produced by each weak learner.

0bj = Y L@y + ) ()
i k

1)
where Q(f) = yT 4—%/1”0)”2
t
50 = Y fulw) = 3¢V + i) @
k=1

Here, L is the loss function that measures differences between prediction J; and tar-
get y;; y}t) is the prediction at t-th iteration; Q(fi) penalizes the complexity of tree fi; T is
the number of leaves of tree fi; w is the leaf weights; y is the complexity of each leaf, and
A is the vector of scores on leaves. Second-order Taylor expansion is then applied to opti-
mize the objective function in the general setting [60], as shown in Equation (3).

C 1
0bj9 = ) [gife ) + 5 hf ()] + O(F) ®)
i=1

4
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= YT [Cier; 900) + 5 Bier, b + D) 0] +¥T

Here, g; and h; are the first and second, respectively, a derivate of the loss function
(L); Ij represents all instances at leaf node j. The objection functions before and after the
split (Equations (4) and (5)) are compared to determine the effectiveness of a certain split.
I is the instance set before the split. I. and Iz are instance sets of left and right nodes after
the split. The comparison can be applied to every possible split. If the decision tree’s per-
formance improves after the split, this modification will be accepted; otherwise, the split
will be terminated.

1 Cier, 90)°
=77 4
Ob]leaf ZZiEIj hi +2 Y ( )
1 . 32 . )2
Objsplit - _- (ZLEIL gl) + (ZIEIR gl) ) + 2)/ (5)

2 Ve, hi + 4 Xieghi + 4

Due to the abovementioned architectures, the XGBoost model has several unique fea-
tures. First, the objective function effectively eliminates overfitting, and thus the XGBoost
model converges at a global minimum quickly after a few iterations and maintains the
level constantly [61]. Moreover, the objective function used in XGBoost automatically pe-
nalizes individual trees, which allows each tree to have a different number of leaves and
increases the diversity between trees. This helps prevent overfitting and improves the
overall performance of the model. Another unique feature of XGBoost is the use of shrink-
age, which reduces the influence of individual trees and nodes on future trees. This en-
sures that the model is able to develop rational input-output correlations and improve its
accuracy. Furthermore, XGBoost includes a randomization parameter known as subsam-
pling [58], which decorrelates individual trees. This helps to prevent overfitting and im-
proves the model’s ability to generalize to new data. Overall, the XGBoost model is easy
to implement and only requires manual adjustment of a few hyperparameters, such as the
shrinkage and the number of iterations. This makes it a popular choice among data scientists
and machine learning practitioners. In this study, the optimal shrinkage and the number of
iterations were 0.2 and 300.

3. Database

In this study, the experimental data porosity and compressive strength of CAC were
obtained from Matusinovic et al.’s study [62]. The CAC was supplied by Istra Cement
International, Pula, Croatia, a part of the Heidelberger Zement Group. The CAC had
40.2%mass CaO, 39.0%mass Al203, 11.7%mass Fe203, 4.3%mass FeO, and 1.9%mass SiO2. The prin-
cipal mineral phase was monocalcium aluminate (CA), with C12A7, CsAF2, and C2S as mi-
nor phases. The Li2COs used was a commercial Analar grade reagent [62]. In mixture de-
signs of CAC binders, water-to-cement ratios were 0.2, 0.25, and 0.3; the Li2COs contents
were 0, 0.001, 0.003, 0.005, 0.007, and 0.01%mass. The ages of CAC binders were 1, 2, 3, 4, 5,
6,7,8,9,24,72, and 168 h. The compressive strength measurement was conducted based
on ASTM C349 [63] and ASTM C109 [64]. The compressive strength for each binder was
calculated as the average of measurements of triplicate specimens. All experiments were
conducted consistently under the abovementioned experimental conditions. In Matusi-
novic et al.’s study [62], total water (TW) and bound water (BW) in each binder were
measured. This information was used to calculate porosity in CAC binders. The TW and
BW were calculated by the mass difference between the crushed sample and the sample
after removing all water or free water through ignition. The quantity of TW and BW was
expressed per 100 g of ignited material. The total porosity (%) is defined as the fraction of
the cement paste volume filled with free water, as shown in Equation (6) [24,62,65]. Here,
przo is the density of water (g/cm?3); ps is average density of acetone-dried CAC paste
(g/cm?; including the hydrates and the fraction of non-reacted cement). After determining



Materials 2023, 16, 654

7 of 16

the porosity of the CAC binder, the degree of hydration of CAC was estimated. To obtain
accurate phase assemblages, it is necessary to carefully specify the degree of hydration of
CAC in thermodynamic simulations. The GEMS simulations are performed in a range of
degrees of hydration of CAC. Afterwards, the porosity in the phase assemblage is com-
pared to the porosity calculated using Equation (6). If the two porosities match, a straight
line is drawn on the phase assemblage figure, which indicates the degree of hydration of
the CAC and the volume of the anhydrates and hydrates.

P (TW — BW) / py,0
~ 00 BW , TW-BW ©)
Ps pHZO

In this study, compressive strength, porosity, and phase assemblage of CAC binders
in relation to mixture design and age are consolidated into a single database (shown in
Table S1), which consists of 171 unique data-records. All data-records from Matusinovic
et al. [62] are included in the database. This is because the database is adopted from the
literature, and there is no possible mechanism to distinguish data-records that were meas-
ured accurately from ones that are erroneous. Therefore, for all data-records, we simply
assume that all data-records were obtained from proper measurements and were reported
accurately, and, therefore, there is no need to “sanitize” the database. The training dataset
comprises 75% random-selected data-records from the parent database, and the remain-
ing data-records are utilized as a testing dataset. Through the training dataset, the ML
model discovers underlying correlations between mixture design and property. The test-
ing dataset is used to validate the performance of the ML model. Overall, the parent da-
tabase comprised of three input variables and six outputs. The inputs included mixture
designs of the CACs: water-to-cement ratio (unitless); Li2COs content (%mass); and cement
age (hour). The outputs are compressive strength (MPa), porosity (%ve), C+AHis content
(%vor), Straetlingite content (%vor), Gibbsite content (%vor), and Solid content (%vor). Other
hydrate phases (i.e., Hematite and Magnetite) were not investigated because they were
minor phases and provided little-to-no strength. The curing condition was not considered
as an input parameter because all the experiments were conducted under identical curing
conditions. The statistical parameters pertaining to the database are itemized in Table 2.
Four statistical parameters —Pearson correlation coefficient (R); coefficient of determina-
tion (R?); root mean squared error (RMSE); and mean absolute error (MAE)—are used to
evaluate the prediction performance of the XGBoost model.

Table 2. Summary of minimum, maximum, mean, and standard deviation of the CAC database
population related to three inputs and six outputs (bold). The database consists of 171 unique data
records.

Attribute Unit Min. Max. Mean Std.Dev.
Water-to-Cement Ratio Unitless 0.20 0.30 0.25 0.04
Li2COs Content Yomass 2.55 10.91 3.89 1.17
Cement Age Hour 1 168 30.42 51.62
Compressive Strength MPa 0 79.80 33.08 26.65
Porosity Yovol 3.84 47.34 21.35 11.96
CsAH1 Content Yovol 0.74 42.23 21.78 11.44
Straetlingite Content Yovol 0.09 4.80 248 1.30
Gibbsite Content Yovol 0.16 8.40 4.34 2.27

Solid Content

Yovol 52.64 96.13 78.65 11.96
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4. Results and Discussion
4.1. Machine Learning Prediction

This study presents the prediction results of the compressive strength and hydration
products of CAC using an XGBoost model. The hyperparameters of the XGBoost model
were optimized using a 10-fold cross-validation [66] and grid-search method [67,68], en-
suring a robust correlation between the input and output data, accounting for any outliers
in the database and eliminating bias and variance influences.

Figure 2 demonstrates the predictions of the compressive strength and porosity
against measured/estimated values. Figure 3 exhibits predictions of the volume fraction
of CsAHuy, straetlingite, gibbsite, and solid content against phase assemblages estimated
by thermodynamic simulations. The results of both the training and testing datasets are
shown in the figures. Four statistical parameters pertaining to the prediction results on
the testing dataset are shown in Table 3. In Figures 2 and 3, the XGBoost model produces
predictions in a high-fidelity manner, where most data-records in both testing and train-
ing datasets are located between 10% error lines. In Table 3, the R and MAE of compressive
strength are 0.94 and 5.58 MPa. The marginal error from predictions is in a reasonable
range, where the standard deviation of compressive strength measurement =~ 5 MPa [69].
The R? values for the predictions of five phase assemblages are larger than 0.90, which
implies that the XGBoost model can produce reliable predictions of phase assemblages of
CAC. It is not a surprise that the XGBoost model yields reliable predictions for CAC be-
cause several studies [61,70,71] have already demonstrated that the XGBoost model pro-
duces excellent predictions of various properties of cementitious materials. Such reliable
performance contributes to XGBoost’s advanced structures. When each tree grows, the
split at each node must be evaluated by the objective function, which allows the model to
remove redundant leaves and perform the optimal split. In addition, the cost function
helps with the elimination of overfitting and underfitting. In the model, shrinkage, a vital
parameter, ensures that the model does not converge at local minimums. Furthermore,
the randomized subsampling characteristic guarantees that the structure of each tree is
independent from one another. Lastly, only two hyperparameters, shrinkage rate and num-
ber of iterations, are required to be adjusted manually. However, the adjustment may be
sluggish and compromise accuracy [66]. To avoid such problems, the grid-search method
and the 10-fold CV method, are implemented to optimize the two hyperparameters.

Il ' ' Il ' Il ' A Il ' Il ' Il ' Il ' I

E1oo 50
s 4 XGBoost Model L J XGBoost Model |
= Training Dataset Training Dataset
'*cc-;, 804 U R2=0.99 - 340 - R2=0.99 B
§ {  Testing Dataset o X S Testing Dataset |
b7 R2=0.88 > R?=0.92
o 60— 0O - » 30— —
= o
g o ' g 1 -
S 404 = B 20 =
5 I
o i g i
$ 20+ - a 10 -
kel
5 L L
<
o 0 —T 0 T

0 20 40 60 80 100 0 10 20 30 40 50

Measured Compressive Strength (MPa) Estimated Porosity (%,,)

(a) (b)

Figure 2. The XGBoost model’s predictions of: (a) compressive strength, and (b) porosity against
experimental measurements from Matusinovic et al. [62]. The coefficient of determination (R?) is
shown in the legend. The dashed line represents the line of ideality, and the solid lines represent a
+10% error bound.
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Figure 3. The XGBoost model’s predictions of: (a) C+AHis content, (b) straetlingite content, (c) gibbs-
ite content, and (d) solid content against phase assemblages derived from thermodynamic simula-
tions. The coefficient of determination (R?) is shown in the legend. The dashed line represents the
line of ideality, and the solid lines represent a +10% error bound.

Table 3. Four statistical parameters (i.e., R, R>, MAE, and RMSE) evaluating the performance of
XGBoost on predictions of compressive strength, porosity, C+AHis content, straetlingite content,
gibbsite content, and solid content.

R R? MAE RMSE
Combressive Streneth Unitless Unitless MPa MPa
P & 0.9386 0.8809 5.577 8.088
Porosit Unitless Unitless % Vol % Vol
y 0.9578 0.9173 2353 2.967
Unitless Unitless %Y%vol Y% vol
C:AH Content 0.9789 0.9582 1.693 2155
L. Unitless Unitless %ol % Vol
Straetlingite Content 0.9757 0.9520 0.2060 0.2598
. . Unitless Unitless Y% Vol Y% vol
Gibbsite Content 0.9757 0.9520 0.3839 0.4553

3 3 0, 0,
Solid Content Unitless Unitless JoVol JoVol

0.9655 0.9322 2.205 2.716
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Overall, Figures 2 and 3 demonstrate that the XGBoost model can predict the me-
chanical properties and phase assemblages of CAC binders as a function of mixture design
and cement age. Though outside of the scope for this study, to build upon the results
presented in this section, the next step would be to employ an optimization approach to
formulate mixture designs while satisfying user-imposed thermodynamic and mechani-
cal criteria, even without a comprehensive understanding of the underlying nonlinear re-
lationships.

Next, the XGBoost model is utilized to evaluate the influence of each input variable
on compressive strength and porosity. Figure 4 ranks the influence (importance) of input
variables in descending order according to their abilities to change the compressive
strength and porosity. This rank can be used as a guideline to develop analytical models
by assigning more weight to influential parameters and removing insignificant parame-
ters.

16 8
Compressive Strength Porosity
124 6
o o
o o
c c
£ g €44
o o
o o
E E |
4 2 -
0- 0-
4, 4 Q:z ‘190 &
R % %, R %
90. ) 7 96. >
. o <, <, (" <,
‘90 ’)( \9@ 0(
@,)( o,)(
(a) (b)

Figure 4. The importance of input parameters contributing to (a) compressive strength; and (b) po-
rosity of CAC. Parameters are listed as a descent trend in relation to their decreasing influence on
the property.

As shown in Figure 4, as expected, cement age is the most influential factor for com-
pressive strength and porosity. This is because as time passes, CAC reacts with water to
form C:AHu, gibbsite, and straetlingite, which monotonically reduces the porosity and
increases the compressive strength. The water-to-cement ratio demonstrates a more sub-
stantial influence than Li2COs content. This is because the CAC cannot form hydration
products that provide strength without sufficient water; nevertheless, excessive water re-
duces the connectivity between solids and increases porosity, which, in turn, significantly
reduces the compressive strength [8,17]. Li2COs is evaluated to be a substantially less crit-
ical parameter compared with the other two parameters. Although Li>COs can accelerate
the degree of hydration of CAC, its effect on mature properties—compressive strength
and porosity —at late ages can be neglected [29].

4.2. Analytical Model Development

This section presents an analytical model development based on outcomes from the
XGBoost. Based on Figure 4, the relative importance of cement age is determined to be
more significant than the water-to-cement ratio and Li2COs content for this dataset. Thus,
during the development of the analytical model, cement age is given more weight than
the other inputs—which are assigned less, but equal weights due to their relative lack of
influence on compressive strength and porosity. Owing to only three input parameters
(water-to-cement ratio, Li2COs content, and age), Gavela’s model [36] is selected as a
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baseline model to develop the simple, closed-form analytical model for CAC. In e Gavela’s
model, water-to-cement ratio and age are major input variables. AL-Shukaili’s model [35]
is then utilized to elucidate Li2COs content, as a first-order input, in the analytical model.
The analytical model that predicts the compressive strength and porosity of CAC is shown
in Equation (7). The porosity of cement is directly related to compressive strength; there-
fore, the same equation is utilized to predict porosity. Here, Ci is the constant coefficient
(unitless); r is the water-to-cement ratio (unitless); Li is the Li2COs content (%mass), and t is
the cement age (hour). By using a nonlinear, gradient-descent scheme [49,72] and Nelder-
Mead multidimensional simplex algorithm [73,74], the constant and coefficients are opti-
mized, as shown in Table 4.

—C
ompressive strength/Porosity = [(C; + C, * 1) * et + Cy* Li+ CstS +C,| (7)

Table 4. List of coefficients of the analytical model for the compressive strength and porosity of
CAC.

Compressive C1 82.159 2 —41.801 C3 3.632

Strength C4 1788 C5 1.631 Cé6 0.274
Cc7 -15.422

C1 2.610 2 55.324 C3 -0.488

Porosity C4 =710 C5 35.542 Cé -0.258
C7 -16.192

Figure 5 shows the predicted compressive strength and porosity produced by the
analytical model against measured values. The statistical parameters pertaining to predic-
tion accuracy are shown in Table 5. In general, the analytical model produces predictions
of the compressive strength and porosity of CAC with reasonable accuracy. The R? and
MAE of compressive strength predictions are 0.87 and 7.67 MPa, respectively, and the R?
and MAE of porosity predictions are 0.82 and 4.24%vo, respectively. In Figure 5, it is worth
pointing out that the predictions of compressive strength under 20 MPa exhibit higher
deviation between predicted and measured values than any other predictions owing to
variations in Li2COs content. Within the dataset of interest, the compressive strength un-
der 20 MPa were measured from the CAC binder at early ages. The Li2COs content non-
linearly affects the hydration reaction at early ages, substantially increasing the variation
of compressive strength and decreasing prediction performance. A potential solution that
improves the prediction accuracy is to utilize a more extensive database or extend the
current one further. Inclusion of more data-records into the database will enhance its vol-
ume and diversity, which, in turn, can be utilized to optimize the analytical model further
and enhance prediction performance. To the authors’ best knowledge, this is the first
study to develop a closed-form analytical model to predict the compressive strength and
porosity of CAC.
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Figure 5. The analytical model’s predictions of: (a) compressive strength, and (b) porosity against
experimental measurement from Matusinovic et al. [62]. The coefficient of determination (R?) of
each prediction is shown in the legend. The dashed line represents the line of ideality, and the solid
lines represent a +10% error bound.

Table 5. Four statistical parameters (i.e., R, R?>, MAE, and RMSE) evaluated the prediction perfor-
mance of the analytical model on compressive strength and porosity.

R R? MAE RMSE
Compressive Strength Unitless Unitless MPa MPa
0.9351 0.8745 7.666 9.673
Porosity Unitless Unitless %ovol %vol
0.9075 0.8236 4.244 5.065

5. Conclusions

CAC, which has traditionally been used in refractory applications, has gained popu-
larity as a COz-efficient alternative to PC. However, the unpredictable nature of CAC has
limited its widespread adoption. Hence, there is a need to understand the composition-
property relationships in CAC. Recently, machine learning (ML) has been used to uncover
non-linear correlations between composition and properties in composite materials. By
using mixture design attributes such as cement age, water-to-cement ratio, and Li2COs
content as inputs, ML can predict not only the porosity and compressive strength but also
the phase assemblages of hydrated CAC. However, ML techniques may not be universally
accessible. As an alternative, a novel analytical model has been developed to predict the
compressive strength and porosity of CAC.

In this study, the compressive strength and porosity of CAC was obtained from pre-
vious studies. Based on the mixture design, thermodynamic simulations were used to de-
termine the phase assemblages of CAC at different degrees of hydration. The XGBoost
model was used to predict the compressive strength, porosity, and phase assemblages of
CAC in relation to the mixture design and cement age. The results showed that the
XGBoost model can produce reliable predictions of the properties of CAC. Additionally,
the model was able to evaluate the impact of different input parameters on the compres-
sive strength and porosity of CAC. This information was used to guide the development
of a closed-form analytical model that can predict the compressive strength and porosity
of CAC. Analytical approaches can be more desirable because they do not require any
programming background to perform predictions. The optimized analytical model pro-
duced predictions of the compressive strength and porosity of CAC with good accuracy.
In conclusion, the prediction accuracy of both the XGBoost and analytical models could
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be improved by using a more extensive and a more diverse dataset. This study marks an
important step towards developing machine learning models to predict the properties of
CAC. In the future, a larger and more diverse database of CAC may be applied to the
XGBoost model. By learning the input-output correlations from this new database, the
XGBoost model will be able to easily predict the properties of CAC with different mixture
designs and processing parameters. Additionally, the XGBoost model has the potential to
optimize the mixture design of CAC to achieve specific target properties.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16020654/s1, Table S1: CAC database used in this study.
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