2022 IEEE Conference on Control Technology and Applications (CCTA) | 978-1-6654-7338-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/CCTA49430.2022.9966096

2022 IEEE Conference on Control Technology and Applications (CCTA)

August 22-25, 2022. Trieste, Italy

Distributed Trajectory Planning for Multi-rotor UAVs with Signal Temporal
Logic Objectives

Yash Vardhan Pant!, Houssam Abbas2, Rahul Mangharam3

Abstract— We develop a distributed motion planner for
multi-robot systems with Signal Temporal Logic (STL) ob-
jectives. Existing approaches to STL-based motion planning
are limited to fragments of STL that might not capture all
desired behaviors or safety requirements. Focusing on the case
of a fleet of multi-rotor Unmanned Aerial Vehicles (UAVs)
jointly tasked with satisfying a given STL mission, we develop a
distributed method, Fly-by-Distributed-Logic (FBDL), for tra-
jectory planning. The proposed method generates trajectories
that maximize the smooth robustness of STL specifications,
where the associated optimization is solved in a distributed
manner. This, to the best of our knowledge, is the first
distributed method that can handle the full grammar of STL
(bounded time). Simulation studies show the applicability of
our approach to a variety of STL missions, including those with
nested STL operators and the Until operator. We also compare
its performance to a centralized approach and show that
our method is computationally faster, but generally computes
trajectories with lower robustness.

I. INTRODUCTION

Signal Temporal Logic (STL) is proving to be an effective
formalism for representing multi-robot missions that not
only have spatial, but also temporal and inter-robot require-
ments [1], [2], [3]. Most methods for motion planning for
multi-agent systems with STL specifications are centralized
approaches, where a single computation resource generates
trajectories (or computes control signals) for each agent. In
many applications however, this may be impractical, e.g.
in the case of Unmanned Aerial Vehicle (UAV)s managed
by different operators but flying in the same airspace, the
operators would want the UAVs to cooperate for safety
purposes, but are unlikely to rely on a single operator to
generate trajectories for all UAVs. Such applications necessi-
tate the development of distributed motion planning of multi-
agent systems with objectives specified as Signal Temporal
Logic (STL) specifications. In this paper, we present one
such approach for distributed trajectory generation of UAVs.
As will be seen in later sections, the approach requires
each the UAVs to iteratively solve an optimization and
communicate their solution with other UAVs. Building upon
the optimization solver presented in [4], we show how this
distributed approach results in the UAVs jointly maximizing
a notion of robustness of satisfying a STL specification.

Contributions of this work: We present Fly-by-Distributed-

IDepartment of Electrical and Computer Engineering, University of
Waterloo, Waterloo, Canada yash.pant@uwaterloo.ca.

2School of Electrical Engineering and Computer Science, Oregon State
University, Corvallis, USA houssam.abbas@oregonstate.edu.

3Department of Electrical and Systems Engineering, University of Penn-
sylvania, Philadelphia, PA, USA {rahulm}@seas.upenn.edu.

978-1-6654-7338-5/22/$31.00 ©2022 IEEE

Logic (FBDL), a distributed algorithm for trajectory gener-
ation, that:

1) Has convergence guarantees (section V-B).

2) In addition to making a best effort to compute UAV
trajectories that satisfy the STL specification, generates
UAV trajectories that respect kinematic (velocity and
acceleration) constraints.

3) Is applicable to specifications generated using the full
grammar of STL with bounded temporal operators and
possibly non-convex predicates, i.e. leverages the full
expressivity of STL.

Through three multi- UAV simulation studies, we show
the applicability of our approach and compare it to the
centralized method in [1].

QOutline of the paper: Section II presents an overview
of both centralized and distributed approaches for motion
planning with STL specifications. Section III presents the
notation used in this paper, and formally states the problem
we aim to solve. Section IV introduces the optimization
formulation for UAV trajectory planning with STL speci-
fications. The FBDL algorithm, i.e. our approach for solving
this optimization is presented in section V. Simulation results
over different types of STL specifications are in Section
VI. Finally, we conclude and discuss the limitations of our
approach and future work in section VIIL.

II. RELATED WORK

The control and trajectory planning of systems with Signal
(or Metric) Temporal Logic specifications has become a
well studied problem in recent times. In this section, we
cover some of the relevant literature on both centralized and
distributed approaches for this problem.

A. Centralized methods

Most approaches that solve the problem of control of
dynamical systems with STL specfications, when applicable
to the case of multi-agent systems, work in a centralized
manner. The works of [5], [6], [7] build upon [8] and
develops an automatic encoding of an STL specification as a
set of constraints in a Mixed Integer Linear Program (MILP).
To overcome some of the computational limitations of such
methods, gradient-based approaches have been developed in
[9], [1] and have been applied to problems in multi-agent
trajectory planning. Also finding applications for multi-agent
planning with specifications similar to STL, [10] presents an
approach that combines Linear Programming with SAT solv-
ing. A control barrier function-based approach [11] enables
the development of closed-form control laws for systems

476

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12,2023 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

with STL specifications. However this approach is applicable
only to a fragment of STL. Recently, [12] developed a
method that trains a Neural Network-based controller for
satisfying STL specifications through data generated by using
gradient-based methods.

B. Distributed methods

The problem of distributed control of multi-agent sys-
tems with STL specifications is one that has only recently
gained attention. An early method is that of [13], where
the authors develop a receding horizon control algorithm for
communication-aware distributed motion planning of multi-
agents systems. This however is applicable only to reach-
avoid STL specifications. [14] presents a distributed method
based on a multi-stage control scheme, and [3], [15] further
develops a control barrier function-based approach. These
methods are limited to a particular fragment of STL, and
are applicable only to specifications with convex atomic
predicates. As a consequence, collision avoidance (inter-
agent or with obstacles) cannot be a part of the requirements
and is dealt with using lower-level planners. The MILP-
based distributed approaches of [2], [16] allows for collision
avoidance objectives to be taken into account, however they
also work with limited fragments of STL. [17] presents a
framework for multi-agent motion planning, in a discretized
workspace, with objectives similar to STL specifications. Our
approach builds upon the formulation of [1], and through a
gradient-based distributed optimization, allows for planning
for multi-agent system with specifications that can involve
the full STL grammar.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

Let D = {1,..., D} denote the set of all UAVs. We use
pa : [0,7] — R? to represent a trajectory (in the 3D position
space) over a time interval [0, 7] for a UAV d € D. py(t) €
IR3 refers to the position of UAV d at time ¢. Similarly, we use
v4 and aq to refer to the velocity and acceleration trajectories
respectively. For ease of notation, we drop the subscript d
when it is not required. We use the shorthand p(¢t) = d‘(’i?),
and correspondingly p(t) = v(¢), p(t) = v(t) = a(t), and
so on. Finally, the full state of a UAV at time ¢ is denoted by
x(t) = [p(t), v(t), a(t)]' € RY. The full state trajectory
is denoted by x : [0,7] — R°. We use X to denote the set
of all trajectories, or signals, x : [0,7] — X.

B. Brief review of Signal Temporal Logic (STL)

Signal Temporal Logic (STL) [18] allows for succinct
and unambiguous mathematical representation for a wide
variety of desired system behaviors. Here, we present a short
introduction to STL. The interested reader can refer to [18],
[19] for a detailed explanation. Let p : X — R be a real-
valued function.This defines a predicate q := p(x) > 0.
Further, let I C R denote a non-singleton time interval, T the
Boolean True value, — and A the Boolean negation and AND
operators, respectively, and U the Until temporal operator. A

477

STL specification is recursively built from these using the
following grammar:

@ = Tlq|~le1 A pa|p1lrps

Informally, @1U;po means that ¢ must hold at some
point in I, and until then, ¢ must hold without interruption.
The disjunction (V), implication (=), Always (1) and
Eventually ({) operators can be derived from the operators
defined above.

Example 1: Consider two UAVs with position trajectories
p1 and ps. Given a region of the airspace, R C R3, UAV 2
cannot enter the region until UAV 1 has visited it within the
time interval I = [0, 10] seconds. This can be represented
using STL as: ¢1 = —=(p2 € R)Ur(p1 € R). Both UAVs
must also respect a speed limit of 5m.s~1, which corresponds
to the specification ¢ = /\Z=1 Or(||vall < 5). Since the two
UAVs must respect both these requirements, we can combine
them using the logical AND operator: ¢ = ¢1 A ¢a.

In the example above, the specification ¢ has a time
horizon of H, = 10 seconds, i.e. in order to evaluate if
© holds, we need trajectories of time duration at least 10
seconds. See [5] for details. In the rest of this paper, we
only consider specifications with a bounded time horizon.

1) Robustness of STL formulae: For every STL specifi-
cation , we can construct a robustness function [20] by
following the grammar of STL. It returns a robustness value
p,(x) for this formula, with respect to the signal x that it
is defined over, and has the important following property:

Theorem 3.1: [20] For any x and STL formula ¢, if

po(x) < 0 then x violates ¢, and if p,(x) > 0 then x
satisfies . The case p,,(x) = 0 is inconclusive.
Thus, the degree of satisfaction or violation of a specification
is indicated by the robustness value. There also exists a
smooth, or continuously differentiable robustness function
(91, [1].

Theorem 3.2: [9] The smooth robustness of a STL for-
mula ¢, p,, is a continuously differentiable function such that
for any trajectory X, |p,(x) — py(x)| < 0, where 6, > 0 is
a tune-able constant.

Consequently (from Theorem 3.1), p,(x) > d,, implies x
satisfies . Later, we will use this smooth robustness function
as an objective to be maximized for generating trajectories
that robustly satisfy a given STL specification.

C. Problem Statement

In this paper, we aim to develop a method for solving the
following problem:

Problem 1 (Distributed trajectory planning): Develop a
distributed algorithm that, given a multi-UAV mission ¢,
generates a x4 for every UAV d € D such that:

1) Mission satisfaction: (x1,...,Xp) E ¢o(x1,...

i.e. satisfy the given specification and,

2) Kinematic feasibility of trajectories: vq € V, a4 €
AVd € D, i.e. resulting trajectories have velocities
and accelerations within desired bounds V' C R3 and
A C R3 respectively'.

,XD)s

'For simplicity, we assume all UAVs have homogeneous kinematic
constraints. Our method works in the heterogeneous case as well.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12,2023 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A trajectory consisting of two segments of jerk minimizing
splines, connecting position waypoints p° to p', and p' to p
respectively. The arrows show the velocities at these waypoints,
v, Vi € {0,1,2}. Each segment corresponds to a duration of 7
seconds, resulting a total trajectory duration of 27 seconds.

In this distributed setting, each UAV can only make a
decision (or generate trajectories) for itself. UAVs can com-
municate with each other under the following assumption:

Assumption 3.1 (Ideal inter-UAV communication): In this
setting, each UAV can communicate instantaneously with
each other in a lossless manner.

I'V. FORMULATING THE TRAJECTORY GENERATION
OPTIMIZATION, AND A CENTRALIZED BASELINE

Here, following the setup in [1], we first formulate the
problem of generating UAV trajectories that satisfy a STL
specification as an optimization to maximize smooth robust-
ness over these UAV trajectories. Next, we will introduce our
approach to solve this optimization in a distributed manner,
as opposed to [1] which does so via a centralized approach.

A. UAV Trajectory Planning

Similar to [1], for each UAV, we are interested in gener-
ating trajectories that are composed of jerk-minimizing (for
multi-rotor UAVs) splines [21] between waypoints. Figure
1 shows one such trajectory composed of two segments.
Here, p° € R? and v° € R? represent the initial (at time 0)
position and velocity waypoints for the UAV. The segment
between one waypoint, given by position p® = [p2, p), p?] "
and velocity v° = [v2,v9,v9]T, and another with desired
position p' = [p;, py, pl]

%, is a trajectory (see figure 1) of
fixed time duration 7 with (VI € {x,y, 2}, Vt € [0, 7])* given

by [21]:

Here, o, § and v are linear functions of p°, v° and p'
(with parameter 7) [21]. We assume that the start and end
accelerations are zero, i.e. a® = a! = 03y and end velocity
ol s free. For brevity, we omit further details here. The
interested reader can refer to [1], [21] for more details.

1) The Trajectory planning optimization:: The Fly-by-
Logic method [1] formulated an optimization that generates
trajectories for multiple UAVs tasked with satisfying a STL
specification (. The optimization variables here are a se-
quence of N + 1 position waypoints in 3D space for each

a 45 B 44 3 0 0
o 4 30 4o
ﬂt +36t B"‘Q%t +Ul
Y

pi(t)
Vl(t)
al(t)

(O]

2With some abuse of notation, here we use the subscript I € {x,y, z}
to denote axis of motion in 3D space, and not the index for a UAV.

478

UAV (d € D) p%N = [pY,...,pN], where total flight time

N7 > hrz(p). The full trajectory for a UAV d, composed of
N segments (1) connecting the N + 1 waypoints, is given
by X4 = [Pz, Py:Pzs Va, Vy, V2, 85,ay,a;]" 1 [0,N7] —
RY. The objective is to select these waypoints such that
the resulting trajectories x;, Vi € D maximize the smooth
robustness (recall Theorem 3.2) of the specification p,.

pg:NT?f;%N pe(P1,---,PD) (2a)
st.vd=1,...,D,¥j=0,...,N—1

LBy (v)) < pi™" — p) < UBya(v}) (2b)

LBuce (v]) < pi" — pl < UBuee(v)) (2c)

This is a non-convex optimization, with linear constraints
[1]. The UAV trajectories pq , when discretized in time?,
are linear functions of the position waypoints pgﬁN , i.e.
pa = L(p%) (refer to [1] for details). The constraints (2)
are linear in the waypoints, and ensure kinematic feasibility
of (see problem 1) the resulting trajectories. The interested
reader can refer to the appendix VII-A for further details on
the constraints.

2) Fly-by-Logic (FBL): Baseline centralized solution:
The work in [1], solves the optimization (2) in a central-
ized manner, using the off-the-shelf non-convex optimization
solver IPOPT [22]. We restate a key result from [1] here:

Theorem 4.1 (STL satisfaction, kinematic feasibility [1]):
A feasible solution to the optimization (2) that also achieves
an objective p, > 04 (Theorem 3.2) generates trajectories
P1,- .-, Pp such that they:

1) Satisfy the STL specification ¢
2) Have bounded velocity and acceleration(along every
axis of motion [€ {z,y, z}) such that V¢ € [0, hrz(p)]:
vq €V, aq(t) € A for each UAV d € D.
Solving the optimization (2) approach hence serves as
a basis for a solution to problem 1. Next, we present the
distributed approach to do so.

V. FLY-BY-DISTRIBUTED-LOGIC (FBDL): DISTRIBUTED
TRAJECTORY PLANNING WITH STL SPECIFICATIONS

In order to solve problem 1, we build upon the optimiza-
tion formulated in (2) and solve it in a distributed manner.
The proposed approach, which we call Fly-by-Distributed-
Logic (FBDL), builds upon the non-convex solver of [4].

A. Overview of the approach

FBDL aims to solve (2) by iteratively making UAVs
solve a convex sub-problem, and then communicate these
solutions to other UAVs. For compactness of representation,
we introduce some new notation. Let yq = pY?" represent
the waypoints for UAV d. Also, let » > 0 denote the 7"
iteration of an algorithm, and y4[r — 1] = pJ™[r — 1] be the
(proposed) waypoints for UAV d obtained from the previous
iteration. Let y[r — 1] = [y1[r — 1],...,yp[r — 1]] be the

3The trajectories pg here are discrete-time, with sampling time dt < 7.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12,2023 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

collection of waypoints for all UAVs d € D at iteration r — 1.
Finally, let Y be the polyhedral feasible set for the trajectory
planning optimization (2), defined by (2b) and (2c). We now
define this convex objective for UAV d, with variable y4 and
information (constants) y[r — 1] from the previous iteration:

fa(ya, ylr — 1)) = = (VP (L(y[r — 11)), ya — yalr — 1]) 5
2 lya — walr — 1] ®

Here, @ > 0 is a constant, L is a linear mapping from
waypoints to discrete-time trajectories (section IV-A.1). The
following Lemma states two useful properties:

Lemma 5.1: The function f4(yq,y[r — 1]) is: 1) Contin-
uously differentiable, and 2) Strongly convex* with respect
to yq. Also, 3) V,p,(L(y[r —1])) is Lipschitz continuous
onY forally; €Y.

Proof sketch: Note that f; is convex: the first term is linear
in the variable y4 since the gradient term V5, (L(y[r—1]))
is a constant (vector), and the second is quadratic in y4. We
can set the constant & > 0 to a large enough value such
that the function is also strongly convex [4]. 1) and 3) above
follow from the definition of smooth robustness, which is
continuously differentiable [9], and from that fact that the
constraint set Y is convex (in fact linear) and compact.

B. Algorithm for distributed trajectory planning

Intuitively, minimizing f; (3) at iteration 7 corresponds
to taking a step along the gradient of p, (in the space of
variables for UAV d). Note the — sign in (3). This is since
we aim to maximize the smooth robustness in (2) in order
to generate trajectories that satisfy the STL specification ¢
(Theorem 3.2). To do so across all UAVs in a distributed and
cooperative manner, taking inspiration from [4] we introduce
the following trajectory generation algorithm:

Algorithm 1 is an iterative algorithm that outputs a se-
quence of waypoints p4[r*] for each UAV d involved in the
STL specification (. Each UAV starts with an initial solution
y[0], obtained by solving a linear feasibility problem with
equations (2b) and (2c) as constraints. Note, unlike [2], [13]
where each UAV solves an optimization one after the other,
here multiple UAVs (in the set S[r]) solve their (convex)
optimizations in parallel at each iteration (see line 6). In
line 7, the UAVs that solved an optimization at this iteration
update their variables. Here, +[r] is an adaptive step-size
that meets the following conditions: 1) ~[r] € (0,1], 2)
S o] = 400, 3) limsup, . y[r] < C where C is
a positive constant. UAVs (D \ S[r]) that did not solve an
optimization at iteration r simply re-use their variables from
the previous iteration. The UAVs then broadcast their updated
variables to each other (line 9). The UAVs keep track of the
best solution (lines 10-12), and the trajectories can be flown
if they satisfy the specification ¢, i.e. when p,,(L(y[r*])) >
0. We first present a result about the convergence properties
of the algorithm:

4For ¢ > 0, f(z) is strongly convex if f(x) — (c/2)||=||? is convex
[23](chapter 9).

479

Algorithm 1 FBDL: Distributed trajectory planning with
STL specifications

Data: Initial positions of UAVs, pY Vd € D, Integer s, >
0
Result: Waypoints yq[r*] for each UAV d € D and trajec-
tories x4 = L(ya[r*])
1: Initialization: y[0], set r = 0, yq[r*] = y4[0]Vd € D
2: while r < rp and |p,[r] — p,[r —1]| > Threshold do
3: Increment 7, r < r+1
4: For each UAV d € ™D, compute the gradient
Vyubo (L(ylr — 1]))
5. Choose subset of UAVs S[r] C D
. Compute y; = argmin, oy fa(ya, ya[r—1]) Vd € S[r]

7. Update yq[r] = ya[r — 1] + v[r](yj — yalr —1]) Vd €
Sr]
Update yq[r] = yalr — 1]Vd ¢ S|r]

: Broadcast all updated solutions to form y|r]

10:if po(L(y[r])) > pu(L(y[r — 1])) then

11: ya[r*] = ya[r] {Store best solution}

12: end if

13: end while

14: return pgy[r*]Vd € D

Theorem 5.1 (Convergence of FBDL): Let S1,...,S,, be
non-overlapping partitions of the set (of UAVs) D =
{1,...,D}. If: 1) v[r] meets the conditions above, and 2)
S[r] = S;, where i is picked in a cyclic (one-after-other)
manner from 1,...,m, then algorithm 1 converges to a
stationary point of p.

This follows directly from the convergence properties of
the non-convex optimization algorithm in [4] (see Theorem
1) when the conditions defined here and in Lemma 5.1 are
satisfied. Next, we discuss the properties of the trajectories
generated via algorithm 1.

Theorem 5.2 (STL satisfaction and kinematic feasibility):
If the resulting trajectories (from computed waypoints
pa[r*]) have a robustness value p,(L(y[r*])) > 0, then the
trajectories satisfy the STL specification ¢ and are also
kinematically feasible (see problem 1).

This is a consequence of Theorem 3.1 and the second point

in Theorem 4.1, and shows that algorithm 1 is a best-effort
solution to problem 1.
Remark: In this work, we only consider the problem of UAV
trajectory generation with STL specifications. However, since
we base algorithm 1 on the non-convex optimization solver in
[4], it is (with minor modifications) applicable to linear time
invariant (LTI) systems of the form z[k+1] = Az[k]+Bu[k].
We leave a detailed exploration of this to future work.

VI. SIMULATION STUDIES

We carried out three simulation studies, where we compare
our distributed approach, FBDL, to the centralized approach,
FBL [1]. Video playbacks for these simulations can be
found at: https://bit.ly/3nQNmnu (for FBDL) and
https://bit.ly/3xMroXo (for FBL).

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12,2023 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

« -2
Fig. 2. Workspace for the multi-UAV timed reach-avoid study, and
trajectories for D = 4 UAVs. The goal set G is in green, and the
unsafe set U is in red. A (3D) playback of these trajectories can
be viewed at https://youtu.be/c5w-—avQKc7M, and with a
top-down view at https://youtu.be/HQyhVLEk1xQ.

A. Simulation setup

All simulations were performed on a laptop with a i7-9750
(2.6GHz) processor and 16 GB RAM, running Ubuntu 18.04.
Algorithm 1 was implemented in MATLAB R2019b, with
gpOASES [24] as the solver for the convex optimization as-
sociated with minimizing (3) (see line 6 of algorithm 1). The
gradient computation (line 4 of algorithm 1) was done using
Casadi [25]. For all problems, the UAV kinematic bounds
were V = [—-0.75,0.75] x [—0.75,0.75] x [—0.75,0.75] and
A [-1,1] x [-1,1] x [=1,1]. The constant o in (3)
was set through trial and error to different values (order of
1073) for each of the three studies that follow. The time
varying step size was set to y[r] = 0.99" + 0.001, which
meets the conditions in Theorem 5.2. For the optimization
formulation in (2), the jerk minimizing spline segments have
a duration of 7 = 1s, and the trajectories are discretized with
a discretization time of dt = 0.05s.

B. Multi-UAV timed reach-avoid

In order to benchmark the performance of our approach,
we first compare it to Fly-by-Logic, the centralized method
in [1]. Here, D UAVs (where D € {2,4,8}) are tasked
with reaching a goal set G = [1.5,2] x [1.5,2] x [0.5,1]
within 8 seconds, while also avoiding an unsafe set U =
[—1,1] x[-1,1] x [0, 1.5] throughout this time. Additionally,
each UAV should also be at least 0.2m away from each other,
in the inf-norm sense. The workspace is shown in figure 2.

These requirements can be encoded in STL as:

D
PRA = /\ (D[O78]ﬂ(pd eU)A Ql0,8] (pq € G))
d=1 “4)
AN Do llpa —parll > 0.2)
d,d’ ,d#d’

To solve this problem using algorithm 1, we divide the
D UAVs into two groups S7 and S5 such that S; U .Sy =
{1,...,D}. Here S; contains the first D/2 UAVs, and
Sy contains the remaining D/2, and at each iteration, the
algorithm selects group S; or S (in an alternating manner)
to solve their optimizations (see line 5, algorithm 1 and
Theorem 5.1).

1) Simulation results: For each value of D € {2,4,8},
we randomly generate 20 initial positions for the UAVs and
generate trajectories to maximize the robustness of ¢ra4.

480

0.25
0123 i
.orlrm'
-0.5 fiilJ
2 ! —Robustness p,,
E 1 Smooth Robustness g,
7] |
~
-2 |
50 100 150 200 250 300 350 400
Tterations (r)
Fig. 3. Evolution of robustness (and smooth robustness) versus

iteration for algorithm 1 generating trajectories to satisfy wra 4
with D = 4 UAVs. At iteration » = 61, each UAV generates
trajectories that together satisfy ¢ra. Also seen is the algorithm
converging to a robustness value of nearly 0.125, which for this
instance of the simulation is the global maxima of robustness
(limited by the initial positions of the UAVs).

Table I shows a comparison of the centralized method (FBL)
with our proposed distributed approach (FBDL) on:

1) Computation time> to find a satisfying solution (Ty),
or the first instance where the solver finds trajectories
Peora > 0. As seen in the table, this computation time
increases with the number of UAVs D. The distributed
method is on average faster than the centralized ap-
proach.

Computation time for the solver to converge to the
maximum robustness solution and terminate (7ie;m). A
trend similar to T, is seen here.

Robustness of computed trajectories after convergence
(Ppra)- Here, the centralized method outperforms
FBDL in each case and generates trajectories with a
higher robustness for each setting of D.

2)

3)

Figure 3 shows the evolution of the robustness (and
smooth robustness) of computed trajectories after each it-
eration of algorithm 1.

2) Discussion: The simulation results for this benchmark
show that the distributed method developed here has per-
formance that compares well with the centralized approach.
For all 20 initial positions, and for each setting of D, FBDL
generates trajectories that satisfy the specification py,, in
(4) (as does the centralized approach). FBDL also takes less
time than the centralized approach to find these satisfying
trajectories®. However, the centralized approach outperforms
FBDL in terms of the robustness value. This is to be
expected as in general centralized optimization approaches
outperform distributed ones. In particular, the centralized
approach (FBL) guarantees convergence to a local optimum,
while our distributed method only guarantees convergence
to a stationary point (Theorem 5.1). A comparison of the

SThese are the (accumulated) computation times for the optimization step
(line 6) in algorithm 1. Computation times for computing the gradient (line
4) are negligible.

5The computation performance of FBL can be improved upon by using
the HSL linear solvers [26] (with IPOPT), however due to compatibility
issues, we could not use them in this study and uses the default linear
solver instead.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12,2023 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

centralized approach to a MILP-based method on this bench-
mark can be found in [1].

C. Multi-UAV timed Reach-avoid with the Until operator

Building on the timed reach-avoid simulation study, we
test our method on a multi-UAV specification involving the
Until operator to demonstrate applicability of our approach
to the full grammar of STL. Here, we consider the case
of D = 2 UAVs tasked with the goal set G (see figure
2) within 6s, while also avoiding the unsafe set U and
each other throughout. Additionally, UAV 2 which starts
closer to GG should not enter it before UAV 1. This final
requirement is encoded using the until operator. The full
mission specification is:

2

eraru = [\ (Op,6~(pa € U) A Oj0,6)(pa € G))
d=1

ABo,61(llp1 — p2]] 2 0.2) A (—(p2 € G)Ujg,6) (1 € G))
(6))

Here, the D = 2 UAVs are divided into two groups S =
{1} and S5 = {2} for using algorithm 1 (see line 5).

1) Simulation results and discussion: Across 20 pairs
of random initial positions for the UAVs, FBDL generates
trajectories that satisfy the specification (5). Averaged over
these 20 runs, the computation times are Ty = 0.35s
and T = 0.96s. The centralized approach (FBL) on
the other hand has computation times of Ty, = 1.83s and
Tierm = 19.8s. The maximum achieved robustness (averaged
over all runs) FBDL is 0.045 and 0.149 for the FBL. This
is similar to the trend observed in the timed reach-avoid
simulation study, where the distributed approach is faster
than the centralized approach, but generates trajectories with
a lower robustness. A 3D visualization of the generated
trajectories for the 2 UAVs for one pair of initial positions is
at https://youtu.be/cboVcUGFGdM and a top-down
view is at https://youtu.be/CDIWGgidX8w.

D. Case study: Multi-UAV persistent surveillance

Finally, similar to the case study in [2]7, we consider a
mission that is expressed using a STL specification involving
nesting of temporal operators. For D = 3 UAVs, we consider
the requirements where the UAVs must:

1) Persistent surveillance: Visit sets G;, j = 1,2,3 (in
any order) within 16s and remain inside each set for
at least 2s. For each UAV, with position pg, d = 1,2, 3,
this requirement is specified as follows

pps = /\(<>[0,16]D[0,2] (pa € Gj))
d,j

2) Maintain coherence: The UAVs must pairwise be
within a distance of 1.2m to each other at all times.
This is referred to as persistence in [2], and could for
example to allow the UAVs to communicate with each
other in real time.

7We consider a 3D workspace as opposed to the 2D workspace in [2]

481

Fig. 4. Workspace and generated trajectories for the multi-UAV per-
sistent surveillance problem. The sets to visit, G;, j € {1, 2,3} are
in green, and the sets to avoid Uj, j € {1,2} are in red. Playback
of these trajectories is at https://youtu.be/MInSNciAFEs.

0433

W o
A

g

-0.5

I

—Robustness p,,
-—Smooth Robustness p,

Robustness

100 200 300 400 500 600 700 800 900 1000
Tterations (r)

Fig. 5. Evolution of robustness (and smooth robustness) versus

iteration for algorithm 1 generating trajectories to satisfy the

specification in 6 with D = 3 UAVs. At iteration r = 333, each

UAV generates trajectories that together satisty @mission-

poon =)\

d,d’ ,dsd’

(O0,18(IlPa — parll < 1.2))

3) Collision avoidance: For safety, the UAVs must be
pairwise no closer than 0.2m. They must also avoid
3 unsafe sets U;, j = 1,2.

poa= N

d,d’ d£d’
A /\(D[o,lsﬁ(lbd €Uj;))
d,j

(Dro,18(Ilpa — par|| > 0.2))

The workspace and the sets for this mission are shown in
figure 4. The overall mission specification is:

Pmission = PPs N pcor N pca (6)

This mission has a specification horizon of hrz(yp) = 18s.
For generating trajectories via algorithm 1, we divide the
D = 3 UAVs into three groups S; = {1}, So = {2} and
Sz = {3}.

Figure 5 shows the evolution of robustness with iterations
for algorithm 1 generating trajectories to satisfy the multi-
UAV persistent surveillance mission in section VI-D.

1) Simulation results and discussion: We solve for this
specification for 5 randomly generated initial positions, gen-
erated uniformly centered around [1.5,1,0.5)’, [1.5,0,0.5)
and [1.5,—1,0.5]" with intervals of width [—0.5,0.5] along
each axis. Algorithm 1 generates trajectories that on average

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12,2023 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF SIMULATION RESULTS, MEAN & VARIANCE OVER 20 RUNS WITH RANDOM INITIAL POSITIONS, FOR THE MULTI-UAV TIMED
REACH-AVOID PROBLEM WITH NUMBER OF UAVS D RANGING FROM 2 TO 8. Tsar IS THE COMPUTATION TIME (SECONDS), TAKEN BY PROPOSED
DISTRIBUTED ALGORITHM (FBDL) AND THE BASELINE CENTRALIZED ALGORITHM (FBL), TO GENERATE TRAJECTORIES THAT SATISFY @R A. Trerm
IS THE TIME FOR THE ALGORITHMS TO TERMINATE, AND pyp, 4 IS THE ROBUSTNESS VALUE ACHIEVED.

D | FBL : Te(s) | FBDL : Tey(s) FBL : Tierm(s) FBDL : Tierm(s) FBL :pypa FBDL : pyp,
2 0.135 +0.038 0.084 + 0.048 2.763 + 2.2024 0.931 + 0.029 0.209 + 0.052 0.188 £+ 0.059
4 0.609 + 0.333 0.276 = 0.074 6.994 + 4.323 1.9141 £ 0.084 0.121 4+ 0.059 0.059 £+ 0.036
8 | 3.0331+£0.697 | 1.081 £0.408 | 23.468 £+ 11.709 6.672 L+ 4.049 0.064 + 0.023 0.023 +0.020

satisfy the specification in Ty = 14.67s. With an average
termination time of T, = 44.05s, the maximum value of
robustness achieved (averaged over the 5 runs) via FBDL
is 0.094. On average, the centralized approach takes Ty, =
33.0s, Tierm = 64.01s and achieves a maximum robustness
value of 0.096. These trends are similar to those observed in
the other simulation studies. This example was inspired from
[2], where a planar (2D) workspace is considered, but with
a specification horizon that is twice as long 40s. Since there
approach solves a feasibility problem, they generate with a
robustness value of 0. While computation times across these
slightly different problems (and on different computation
platforms) are incomparable, the computation times reported
in [2] of 59.4s for their distributed method and 341.83s for
a centralized (MILP-based) approach respectively show that
the computational burden of FDBL is similar to [2].

VII. CONCLUSION

Summary. We developed Fly-by-Distributed-Logic, an con-
vex optimization-based, distributed approach for UAV tra-
jectory planning with Signal Temporal Logic (STL) specifi-
cation. To the best of our knowledge, this is the first such
distributed method that can handle specifications leveraging
the full grammar of STL. We showed the convergence
guarantees, and the ability of the method to generate kine-
matically feasible trajectories. Extensive simulations showed
the performance of our approach, demonstrating that it can
successfully generate trajectories that satisfy various types of
STL specifications, and do so while taking less computation
time than a state-of-the-art centralized approach.

Limitations and future work. Here, we address some of the
main limitations of our method and possible ways to improve
upon these:

1) While FBDL successfully generated trajectories that
satisfied the STL specifications in all 45 simulation
runs, over the 3 simulation studies, the algorithm is not
complete, i.e., even if a satisfying solution exists, there
is no guarantee than FBDL will find it. In practice, this
can be mitigated (but not entirely overcome) by multi-
starting the optimization [9].

2) Compared to the centralized approach, FBL (also not
a complete algorithm), FBDL on average returned
trajectories with a lower robustness value. Based on
a distributed optimization algorithm [4], FBDL only
guarantees convergence to a stationary point of the
smooth robustness function, which is not necessarily

482

a satisfying solution (even if it was observed for the
simulations).

3) A practical limitation of FBDL is in the communi-
cation requirements that it imposes, namely nearly
instantaneous and lossless communication in a fully-
connected network. Future work will aim to ad-
dress these by relaxing the broadcast communica-
tion requirements based on distances/coupling between
agents in the STL specification of interest. Another
possible method is to use a block-cyclic scheme instead
of a cyclic scheme for selecting which groups of
UAVs solve the optimization at a given iteration. This
would reduce the across-group communication. Initial
results for this show promise, and a brief overview is
presented in appendix VII-B.

Future work will also include extending our approach to
work with planar (as opposed to 3D) workspaces, and hence
allow for a comparison to existing approaches like [2].
Conclusion. The method developed here shows promise, and
in its current form we envision it as a one-shot trajectory
generation approach. Future improvements will allow us to
use it as an online, predictive trajectory planner.

REFERENCES

[1] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-
logic: control of multi-drone fleets with temporal logic objectives,” in
Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems. 1EEE Press, 2018, pp. 186—197.

[2] A. T. Biiyiikkocak, D. Aksaray, and Y. Yazicioglu, “Distributed
planning of multi-agent systems with coupled temporal logic speci-
fications,” in AIAA Scitech 2021 Forum, 2021, p. 1123.

[3] L. Lindemann and D. V. Dimarogonas, “Decentralized control barrier

functions for coupled multi-agent systems under signal temporal logic

tasks,” in 2019 18th European Control Conference (ECC). IEEE,

2019, pp. 89-94.

M. Razaviyayn, M. Hong, Z.-Q. Luo, and J.-S. Pang, “Parallel succes-

sive convex approximation for nonsmooth nonconvex optimization,”

Advances in Neural Information Processing Systems (NeurIPS), 2014.

[5] V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conf. on Decision and
Control, Dec 2014, pp. 81-87.

[6] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in Allerton conference, September 2015.

[7]1 S. Saha and A. A. Julius, “An milp approach for real-time optimal
controller synthesis with metric temporal logic specifications,” in
Proceedings of the 2016 American Control Conference (ACC), 2016.

[8] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407-427,
1999.

[9] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in 2017 IEEE Confer-
ence on Control Technology and Applications (CCTA). 1EEE, 2017,
pp. 1235-1240.

[4

=

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12,2023 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

[10] Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada, “Smc: Satisfiability modulo convex
optimization,” in Proceedings of the 20th International Conference
on Hybrid Systems: Computation and Control, 2017, pp. 19-28.

[11] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Control Systems Letters, 2019.

[12] W. Liu, N. Mehdipour, and C. Belta, “Recurrent neural network
controllers for signal temporal logic specifications subject to safety
constraints,” IEEE Control Systems Letters, 2021.

[13] Z. Liu, B. Wu, J. Dai, and H. Lin, “Distributed communication-
aware motion planning for multi-agent systems from stl and spatel
specifications,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC). 1EEE, 2017, pp. 4452-4457.

[14] L. Lindemann and D. V. Dimarogonas, “Decentralized robust control
of coupled multi-agent systems under local signal temporal logic
tasks,” in 2018 Annual American Control Conference (ACC). IEEE,
2018, pp. 1567-1573.

[15] Lindemann, Lars and Dimarogonas, Dimos V, “Barrier function based
collaborative control of multiple robots under signal temporal logic
tasks,” IEEE Transactions on Control of Network Systems, vol. 7, no. 4,
pp. 1916-1928, 2020.

[16] Yan, Ruixuan and Julius, Agung, “A Decentralized B&B Algorithm
for Motion Planning of Robot Swarms With Temporal Logic Specifi-
cations,” IEEE Robotics and Automation Letters, 2021.

[17] A. Desai, 1. Saha, J. Yang, S. Qadeer, and S. A. Seshia, “Drona: A
framework for safe distributed mobile robotics,” in Proceedings of the
8th International Conference on Cyber-Physical Systems, 2017, pp.
239-248.

[18] O. Maler and D. Nickovic, Monitoring Temporal Properties of Con-
tinuous Signals. Springer Berlin Heidelberg, 2004.

[19] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Proceedings of the International Conference
on Formal Modeling and Analysis of Timed Systems, 2010.

[20] G. Fainekos and G. Pappas, “Robustness of temporal logic specifi-
cations for continuous-time signals,” Theoretical Computer Science,
2009.

[21] M. W. Mueller, M. Hehn, and R. DAndrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,” in
IEEE Transactions on Robotics, 2015.

[22] A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, 2006.

[23] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[24] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“gpoases: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327-363, 2014.

[25] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” PhD thesis, Arenberg Doctoral School, KU Leuven,
2013.

[26] “Hsl. a collection of fortran codes for large scale scientific computa-
tion.” http://www.hsl.rl.ac.uk, accessed: 2021-05-11.

APPENDIX

A. Constraints for the trajectory planning optimization

For the constraints of the trajectory planning optimization
(2), consider the min-jerk trajectory segment [21], of time
duration 7, between a waypomt P o= [pl, p;, p]T with
velocity v/ = [v],v],v] 717, and the waypoint with desired
position p/ ! = [pﬁl it p2*1] 7. The kinematic bounds
be hyper-rectangles of the form V' = [Umin, Umax)® C R3 and
A = [amin, Gmax)® C R3. We now define [1] for ¢ € [0, 7]:

K3(t) = (90t*)/(487%) — (90¢) /(127%) + (30£%) /(477)

Ka(t) = (90t%)/(127°) — (90£%) /(47*) + (30t)/(27°)

Let t' = argmax, (o ,)/+(t). We can now define the con-
straints (for each UAV) that ensure velocity and acceleration

are within bounds [Umin, Umax] and [@min, Gmax] Tespectively,
for each axis of motion /:

O]

©wWmm o
L L (A L
B RN

o

Robustness

10 20 30 40 50 60 70 80 90 100
Iterations (r)

Fig. 6. Evolution of robustness versus iteration for algorithm 1
generating trajectories to satisfy the specification in (4) with D = 4
UAVs. Here, we consider different block-cyclic schedules for which
subset of UAVs solve their optimization at each iteration.

LBua(v]) = (vmin — (1 = 7K3(7))v]) /K3 (7)
UBveI(Uf) = (Vmax — (1 = 7K3(7))v] ')/ Ks(7) ®
LBucc(v]) = 70] + amin/Ka(t')

UBaCC(’Ulj) = Tvlj + Gmax/ Ka(t")

Combining these constraints for all axis of motion
gives x,y,z the velocity and acceleration constraints
in the optimization (2) of the form LByy(v?) =
[LByei (v2), LByei (v), LByer(v7)] and similarly for the upper
bound for Velocmes and upper/lower bounds for acceleration.
These constraints are such that:

LBu(v') < '™ —p < UBua(v)

= € [Umm,vmax} vt € [0, 7], VI € {x,v, 2}, and,
LBaCC() <p —p’ < UBace (v)

= al € [amin, amax] YVt € [0, 7], VI € {z,y, 2}

®

B. Block-cyclic UAV group selection for optimization

In order to leverage the convergence guarantees of theorem
5.1, algorithm 1 requires broadcasting each UAVs solution to
other UAVs at every iteration r (see line 9). This is since the
algorithm requires selecting a subset S[r] = S; of UAVs
(in a cyclic manner) from the set of all UAVs D (such
that U;S; = D) to solve their optimization (see line 5 in
algorithm 1). In order to reduce the frequency of inter-group
communication, we can instead use a block-cyclic schedule
for which subset of UAVs solve their optimization at an
iteration. Here, for B consecutive iterations, we select the
same subset S; of UAVs to solve the optimization in line 5
and 6 of the algorithm 1. Through this, while each UAV
in the subset S; needs to communicate at each iteration,
they only need to communicate with the other UAVs in
D\ S; every B iterations. While this would lower the
communication burden, it no longer satisfies the criteria for
convergence of the algorithm (theorem 5.1). Figure 6 shows
the evolution of robustness for different settings of B (default
is 1) for algorithm 1 generating trajectories to satisfy (4).
The convergence to satisfying trajectories for all settings of
B shows that the convergence guarantees of the algorithm
are applicable even outside of the conditions in theorem 5.1.
Future work will aim to relax these necessary conditions.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12,2023 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

