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Abstract—The design and evaluation of cyber-physical systems
are complex as it includes mechanical, electrical, and software
components leading to a high dimensional space for architectural
search and parametric tuning. For each new design, engineers
need to define performance objectives, capture data from pre-
vious designs, make a model-based design, and then develop
and enhance each system in each iteration. To address this
problem, we present a combinatorial and parametric design space
exploration and optimization technique for automatic design
creation. We leverage gradient-free methods to jointly optimize
the multiple domains of the cyber-physical systems. Finally, we
apply this method in a DARPA design challenge where the goal is
to create new designs for unmanned aerial vehicles. We evaluate
the new designs on performance benchmarks and demonstrate
the effectiveness of gradient-free optimization techniques in
automatic design creation.

Index Terms—architectural design, design exploration, design
optimization, modelling, simulation

I. INTRODUCTION

Over the past few decades, there has been a drastic change
to how complex systems, such as aircraft, automobiles, gas
turbines, etc., are designed. The integration of computational,
control, and software in the design process has resulted in
products that demonstrate highly interrelated subsystems and
components, resulting in what is known as Cyber-Physical
Systems (CPS). Although the complexity of systems has
grown exponentially, the way we design them is still funda-
mentally the same. The design processes still rely on tradi-
tional systems engineering techniques following the iterative
process of requirements elicitation, requirements decompo-
sition, design synthesis, fabrication and finally followed by
verification and validation.

While recent developments [1] [2] have attempted to address
some of these CPS design process issues, there are still some
open and unsolved challenges. For example, currently, good
CPS designs are mainly created by the expertise of human
engineers. This expertise is acquired by working in a certain
engineering domain space for multiple years, the knowledge of
previous designs, and the ability to exchange knowledge with
other domains. In addition, current CPS designs are unable to
automatically discover new, innovative, and high performance
design solutions due to cost and time constraints.

To overcome these challenges, techniques for machine-
based design creation and optimization are developed where
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the design process gets largely automated. We demonstrate
the applications of these automated exploration techniques in
a DARPA-organized CPS Design Challenge (hackathon). The
goal was to automatically create new designs of an unmanned
aerial vehicle (UAV) that is tasked with the successful com-
pletion of a set of missions that stress the agility, endurance
and accuracy of the UAV designs (Figure 1). The purpose of
the design optimization is to maximize the performance of
the UAV by exploring different architectures, configurations,
parametric designs and control settings.
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Fig. 1. Design challenge hackathon overview

This paper introduces the solutions, methods, and results
utilized to solve the DARPA design challenge. This work has
three primary contributions:

1) We provide three different strategies for multi-domain
design exploration using a gradient-free, deterministic,
parallel optimization pipeline to derive new and innova-
tive designs for CPS.

2) Based on a set of input seed designs we apply these
strategies to infer and optimize design spaces of UAVs
to create designs that fulfill mission-specific objectives.

3) We provide detailed insights in both the use of
the gradient-free optimization across discrete mechan-
ical and electrical components and continuous control
choices as well as the final output of the new UAV
designs.

II. RELATED WORK

Generative Design The topics of this paper are related
to the field of Generative Design. This describes a design
exploration process where the design goals and constraints
are defined by engineers and a software [3]. In the field of
topology optimization Than et al. [4] proposed an iterative
six-step generative procedure that allows designing the upper
arm of a Delta robot using the topology optimization method.
Similarly for medical devices, [5] presented a 3D structural
topology optimization to create a new and innovative design of
an aneurysm implant Herath et al. [6] displayed an accelerated
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topology optimization technique based on deep learning meth-
ods. With the usage of Conditional Generative Adversarial
Networks (cGANs), the authors predict the optimal topology
of a given structure subject based on a given set of input
parameters. In order to speed up the creation of new designs
Usama et al. [7] proposed a data-driven design pipeline for
fast design exploration to design new vehicles. The authors
structured the generative design method in a qualitative search,
that first builds up a lower-dimensional representation of a
given design space, and a quantitative search, that explores the
design space to find an optimal design in terms of performance
criterion (e.g. drag coefficient). Similar efforts can be observed
in the works of [8], [9], [10], [11] among a host of other
publications in the use of generative models (GANs) or other
AI-methods (convolutional neural networks).

CPS Design Space Exploration Bradley and Atkins [12]
surveyed the run-time cooperative optimization and prove that
considering both cyber and physical components in a co-
optimization and co-regulation schemes has an advantage for
the design of mobile robotic and vehicle systems. In the
work of [13], the authors showed how domain knowledge
can be used to guide the design-space exploration process
for an advanced control system and its deployment on em-
bedded hardware. In [14] the authors presented a design
space exploration where they choose a real non-linear inverted
pendulum as a demonstration example that has a wide range of
physical and cyber settings that can be adjusted. The authors
present a method that has parameterizable physical models and
automatic recalculation of control algorithm parameters for the
explored systems. [15] presented an approach to automatically
synthesize both the hardware and the controller parameters
for modular robots. This synthesis is mainly based on the
task the robot should fulfill. The results showed that such
a synthesis can outperform genetic algorithm optimizations.
Finally, Lin et al. [16] presented a formalization of the design
constraints of building an autonomous driving system in terms
of performance, predictability, storage, thermal, and power.
This work was presented with a focus on the computation
hardware only (ECU implemented with CPU, GPU, or FPGA).
The same task was displayed in [17] where computation
platforms are optimized under latency and cost.

CPS Design Space Optimization The use of model-
based systems engineering (MBSE) methods for the design
of CPS saw fruition with the DARPA AVM [1] and the
META program. The program resulted in the OpenMETA
design framework [2] that offers capabilities to not only model
the CPS domains using MBSE techniques, but also explore
these disparate design spaces jointly. To reduce the design
space and improve the time of the optimization, in [18] an
effective design space ascertained algorithm based on design
optimization parameter steering mechanism is proposed. Ren
et al. [19] approach the problem of designing aircraft and
wind turbines. In this work an iterative updating and re-
optimization of a fast physics-based replacement model, fol-
lowing a surrogate-based optimization paradigm is present.
Lei et al. [20] presented a comparative study on different

types of robust design optimization methods for the creation of
new electrical machines. Finally, the optimization techniques
used in this paper is an effort to generalize the TUNERCAR
toolchain presented in [21].

III. METHODOLOGY

A. Problem Statement
We first define the design of a UAV as a directed multi-graph

G = (V, E). Where V is the set of vertices in the graph repre-
senting the components of the UAV and E is the set of edges
in the graph which represent the connections between the
components. In our experiments, the nodes in graph G could be
one of these components: batteries, motors, propellers, wings,
servos, tubes, flanges, plates or hub connectors. The edges
in graph G could be mechanical assemblies (concentric or
coincident joints), electrical connections or logical links such
as a software socket that transmits data from a sensor to a
computer (logical connection) or an assembly mating joint
(physical connection).

A multi-directed graph is chosen as the representation of
the design due to the possibility of the existence of multiple
connections between a set of components. This representation
follows the concepts introduced in [2]. We define the objective
function f : G → R that maps the input graph G to a
real numbered score representing the design’s performance
on designated benchmarks. The problem objective is then
formulated as,

argmax
G

(f(G)) (1)

To solve this problem, we propose two functions. Firstly, a
function g(Ginit, {si}) → G. g takes an initialized graph Ginit,
and a set of specifications {si} ∈ S, where S is the set of
all valid specifications, as input, and outputs a fully defined
graph G as output. Specifications is a mapping that assigns an
available component, or a parameter, to every node and edge
in the graph G. The overall structure, including the number
of nodes and edges, and the connections between them are
defined in Ginit. The set of specifications fully defines the type
and adjustable parameters of each vertex and edge. g then
builds upon the input graph by fully defining the graph with the
set of specifications. In this case, the objective of the problem
then becomes:

arg max
{si}∈S

(f(g(Ginit, {si})) (2)

Secondly, a function h(V0, {ai},m) → G that generates a
graph iteratively. V0 is the root node of the graph. {ai} ∈ A is
a set of actions that describes adding a specific node (alongside
an edge) to the graph, where A is all allowed actions and
m ∈ Z+ is the number of iterations allowed. Thus, in this
case, the objective of the problem becomes:

arg max
{ai}∈A

(f(h(V0, {ai},m))) (3)

A set of seed designs, Ginit, created by human designers are
provided to our algorithms to warm-start the learning process.
Each seed design completely specifies the design, i.e., the
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location, number, and type of nodes and edges in the graph
are fully defined.

In addition to the seed designs, a corpus of components that
can be used to construct any subsequent design is provided.
The components are tagged with their characteristics (e.g.,
batteries are tagged with their capacity, mass, discharge rates,
chemistry, etc.). In our experiments, a specification set {si}
explicitly defines which component is selected out of all valid
components at each node. The action sequence {ai} defines
the action of adding a component to the graph and establishing
a connection to the existing incomplete gr

B. Proposed Solutions
We propose three different strategies to tackle search and the

optimization problem, each using gradient-free optimization
techniques to automatically create new UAV designs.

1) Holistic optimization from seed design on the entire
parameter space as displayed in Figure 2. In this ap-
proach, we use (1+λ)-EAs (Evolutionary Algorithm).
This algorithm follows the basic sketch of EAs and
is applied with different mutation rates to perform the
optimization on the entire search space of {si}. The
EAs serve as the function g where by iteratively creating
new specification vectors using mutation and evaluating
them. A vector that maximizes the score within the given
computational budget is eventually found. The objective
used in this setting is the sum of all four scores provided
by the benchmarks in the simulation.

2) Sequential optimization from seed design separating
the combinatorial and parametric portions of the design
space as displayed in Figure 3. With this strategy, we
first split the search space into {si,comb} and {si,control}.
We then optimize the discrete parameters (propulsion,
aerodynamic,and structural systems) {si,comb} by us-
ing the aforementioned (1+λ)-EAs. For the continuous
parameters (autopilot flight system) {si,control}, we use
Differential Evolution (DE), which also lies under the
EA category of algorithms, with TwoPoint crossover
[22], [23]. Here the function g is a combination of both
the (1+λ)-EA and the DE. In the first stage, g is the
(1+λ)-EA. Then after finding the best specification set
{si,comb}, a new Ginit with specifications {si,comb} is used
as the seed design for the second stage. In the second
stage, g is the DE, where the final specification including
the controller parameters are found.

3) Architecture topology generation where certain rules
on connections and composition of an UAV system are
enforced as displayed in Figure 4. This approach tries
to directly create the function h. We assign an integer
to an allowed action and cap the length of the vector.
Thus optimizing this action sequence becomes a similar
problem of finding the combinatorial vector in solution
(2). Similarly, we first use the (1+λ)-EAs to optimize the
fixed-length vector {ai} to find a sequence of actions
that achieve high scores on the trim response objective.
Then we use the DE method to find a set of control

parameters for the design on the four benchmark scores.
The function h is then again a weighted combination of
the EA and the DE.
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Fig. 2. Optimization pipeline Solution 1: Holistic optimization
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IV. CPS DESIGN CHALLENGE EXPERIMENTS

A. Simulation Setup
To evaluate and benchmark the newly created designs we

use a flight dynamics simulation developed in Fortran that
implements a full 6 DOF flight physics based on rigid-body
dynamics [24], [25]. The simulation runs in 2 flight modes:
the Trim mode computes the steady-flight cruise state of the
input design; the Benchmark mode computes a flight along
with a set of defined paths.

An input file generated by the OpenMETA [2] toolchain
with a Creo [26] CAD model of the design is used by the
flight dynamics simulation. To circumvent the large overhead
generated by the OpenMETA toolchain, we use the Python
API provided by FreeCAD [27] to efficiently generate different
designs and provide necessary information to the simulation
(overall mass, moments of inertia, projected area, etc.). We
then call the flight dynamics simulation directly as a subpro-
cess as part of our optimization pipeline.

B. Search Space
Next, we define the design space that we are searching in.

The algorithms are tasked with searching for UAV designs that
score high on the provided benchmarks. Each UAV is defined
to have the following CPS components:
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• Propulsion: Batteries, ESCs, motors, propellers
• Aerodynamic: Wings, servos
• Structural: Tube, flange, plate, hub connectors
• Flight: Parameters for the autopilot

The overall architectural design follows several simple rules
on what components are must-haves in a UAV, and rules on
which components can connect, but the number of components
on any design is unlimited. For the propulsion, aerodynamic,
and structural components, the design space is combinatorial.
For the flight system, the design space is parametric. For each
selected structural component, parametric design parameters
related to the sizes, shape, and positioning of the component
can be altered continuously within a predefined design limit.
The exact size of the design space and its components is
specified in Appendix Table III.

C. Objective Functions
Lastly, we define the objective (introduced in Section III-A

as f ) of the design problem. In addition to the original
scoring criteria specified in the design challenge, we propose
an intermediate set of scoring criteria. These better evaluate
the performance of a UAV on the dynamics level, where better
scores are achieved by designs that are dynamically more
capable and nimble. As per the requirements of the design
challenge, all benchmarks terminate when one battery reaches
20 percent capacity. Designs are evaluated in the Benchmark
mode of the simulation. The testing specification of each task
in Benchmark mode and possible scores of each task are listed
in Appendix Table IV. And the specific breakdown of the
scoring criteria is as follows:

• For Benchmark 1 (rise and hover), if the design can
hover for 200 seconds and reach a height of 150 meters,
it’ll score 200 points. Additionally, each extra second
the UAV is able to hover there is an additional 1 point
per second, up to a maximum of 400 points in total.
Failing the hover benchmark also means failing the entire
suite of following benchmarks. Further, a penalty is
introduced when the vehicle violates the 150-meter height
requirement. Thus, the vehicle has to be stable at the
requested 150-meter height for at least 400 seconds to
score full points on this benchmark.

• For Benchmark 2 (straight line), a level steady flight of
over 2000 meters in a straight line is required to start
scoring. Then, the design gets 1 point per 10 meters
(including the 2000 meters prior) in flight. A penalty
of 10 times the lateral error in meters is introduced to
penalize designs that do not exhibit stable flights.

• For Benchmark 3 (circle), the design is required to
traverse a circle of diameter 1000 meters. Upon finishing
flying the circle, the design gets 300 points. A penalty of
50 times the lateral error in meters is added for deviations
from the circular path.

• For Benchmark 4 (racing oval), the design is required
to fly an oval consisting of two 750 meter straights,
and two 600 meter diameter half circles. Finishing the
course grants 200 points, and for every second less

than 350 seconds taken to complete the course, an extra
point is granted. Designs that exhibit poor path following
capability are penalized significantly. If the deviation
from the planned path exceeds 10 meters, the design gets
0 points.

To accelerate the search across the architecture space, we
introduce a set of intermediate scoring criteria. The designs
are evaluated in the Trim mode of the simulation. The testing
specification of each task in Trim mode and scoring of each
task are listed in Appendix Table V. These intermediate criteria
act as proxy for the original benchmarks and has better
stability in the optimization process. For example, having a
high flight distance forward is a good proxy for the Straight
Line benchmark, and allows for unlimited maximum scores
beyond the full score of the original benchmarks.

D. Designed Experiments
We perform the following experiments to compare the

performance of our proposed solutions on the design challenge
and to investigate what elements of the proposed solution
impacts the efficiency and performance of found solutions.
The details of the gradient-free optimizers used can be found
in the Appendix Section A.

1) Experiment: Analyze the performance of the proposed
solution (1). Here we test the performance of four
(1+λ)-EAs with different mutation rates on improving
a quadcopter seed design.

2) Experiment: Analyze the performance of the proposed
solution (2). Here we first test the performance of four
(1+λ)-EAs with different mutation rates on improving
the existing UAV design on the trim response scores and
continue with TwoPoints DE to improve the continuous
control parameters of each of the designs.

3) Experiment: Compare the performance of proposed
solution (2) with different population sizes. In this
experiment, we use the (1+λ)-EA with the most widely
used mutation rate 1/d.

V. EXPERIMENTAL RESULTS

In the following section, we show the results of each
experiment. A list of all the results as sum of individual
scores with variation in the optimizer parameters is shown
in Table I. Since we use a surrogate evaluation pipeline, we
also evaluate the best designs through the original OpenMETA
pipeline (shown in Table I in the last column).

In Figure 5, we show the progression of the best-evaluated
design of each generation using Solution (1) where all param-
eters are optimized at the same time. Multiple designs achieve
the best benchmark score of 700, by achieving full scores on
Benchmarks 1 and 2. The optimizers can find solutions that
can rise, hover, and fly forward, but weren’t able to find any
designs that could follow curves. We also show the comparison
of using an EA and performing a random search. It is clear that
even though the result found by this Solution does not achieve
good scores on the benchmarks the algorithm demonstrates
better results than random searches.
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TABLE I
FULL RESULTS OF ALL DESIGNED EXPERIMENTS

Experiment Optimizer Budget (# evals) Best Trim Score Best Benchmark Score
Holistic Discrete (1+λ)-EA 19200 N/A 700
Holistic Lengler (1+λ)-EA 19200 N/A 700
Holistic Portfolio (1+λ)-EA 19200 N/A 699
Holistic FastGA (1+λ)-EA 19200 N/A 700
Holistic RandomSearch 19200 N/A 400

Sequential Discrete (1+λ)-EA + 2ptsDE 9600+9600 -24937.41 1489, 15653

Sequential Lengler (1+λ)-EA + 2ptsDE 9600+9600 -32583.37 1100
Sequential Portfolio (1+λ)-EA + 2ptsDE 9600+9600 -27999.26 0
Sequential FastGA (1+λ)-EA + 2ptsDE 9600+9600 -26213.04 1100
Sequential RandomSearch + RandomSearch 9600+9600 -30660.95 400

Sequential, λ = 8 Discrete (1+λ)-EA + 2ptsDE 9600+9600 -30177.3 1089
Sequential, λ = 16 Discrete (1+λ)-EA + 2ptsDE 9600+9600 -25055.92 1489
Sequential, λ = 32 Discrete (1+λ)-EA + 2ptsDE 9600+9600 -24937.41 1489, 15653

Sequential, λ = 64 Discrete (1+λ)-EA + 2ptsDE 9600+9600 -24937.41 1489, 15653

Sequential, λ = 128 Discrete (1+λ)-EA + 2ptsDE 9600+9600 -24937.41 1489, 15653

Topology Generation Discrete (1+λ)-EA + 2ptsDE 9600+9600 -53228.69 N/A, 15563

Fig. 5. Results of experiment 1: Optimizing on all parameters using discrete
(1+λ)-EA (1/d mutation rate). Maximum (best) score of each generation is
shown with a check mark.

In Figure 6 and 7, we show the the progression of best
designs on the trim response metrics, and best control pa-
rameters found for the best design using solution (2). In
Figure 6, we show the designs in each generation with the
minimum objective score on the trim response metrics marked
by checkmarks. The error band in the figure shows the range
of scores achieved by designs in the same generation.

Fig. 6. Results of experiment 2: Optimizing discrete parameters using Discrete
(1+λ)-EA (1/d mutation rate).The Minimum (best) score of each generation
is shown with a check mark.

In Figure 7, we show the performance of solution (2) in the
second stage when control parameters are tuned. We also show
the comparison with solution (1) and random search. Average

3First score: Python pipeline; Second score: OpenMETA pipeline.

Fig. 7. Results of experiment 2: Continuous parameters using TwoPoints
DE using best design from Figure 6. The figure shows the average of each
generation compared to results from Experiment 1 and Random Search.

scores of each generation with standard deviation as error
bands are shown. Although the all-parameter-optimization was
able to find some designs that score above 600 points, the
majority of designs explored are either invalid or do not score.
Thus we see the average of all performances in a population
hovering around zero. In comparison, the best design from
the trim response optimization readily scores 1100 points (full
score on the first three benchmarks) without much tuning. At
the end of the optimization, a design is found to achieve the
best score at 1489 points out of 1582 possible points. We
also show the 3D model of the design found by this solution
in Figure 8. There is a noticeable asymmetric design choice
present where one of the propellers has a smaller diameter
than the others.

Fig. 8. 3D-model of the highest scoring design from Experiment 2.
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Next, we study the effect of different population size during
both stages of the optimization in solution (2). As shown in
Figure 9, the best scoring design in trim responses is found
when λ = 8.

Fig. 9. Results of experiment 3: Effect population sizes in each generation in
(1+λ)-EA during trim response optimization. Minimum (best) scores shown
at each generation with marker.

However, when we move to the next stage of optimization,
λ = 8 has the worst results on the final benchmark scores
when trying to track the four designated paths. Upon further
inspection, the design found by this setting in the trim response
optimization stage has a higher maximum lateral velocity
compared to others. However, finding a set of controller
parameters that’s able to maintain a low error while tracking
an oval at the high lateral velocity becomes too challenging for
the optimizer in the second stage. This is why we see designs
found by λ = 8 hovers at around 1100 points in the final
stage of the optimization, never achieving a non-zero score
for the last benchmark. For all other values of λ, the max
lateral velocity found limits the highest score achievable on
the last benchmark again. 1489 is again the highest scoring
design in all explored designs. Another observation is that for
λ greater than 32, experiments all found the same best design.

Lastly, we show the results from solution (3), topology
generation. The best design overall is found in this experiment.
On the intermediate trim benchmark, it scored the highest out
of all designs, with a maximum lateral velocity of 50 m/s. We
show the 3D models of the 3 best designs found during the first
stage of optimization in Figure 10. All three designs were able
to achieve impressive intermediate benchmark scores from
trim responses and exhibit interesting design choices.

Fig. 10. Three highest scoring designs on trim responses scores from
Experiment 4 (from left to right: -53228.69, -40707.43, -19572.00).

VI. DISCUSSION

The results presented show that the proposed method
of combinatorial and parametric system design optimization
based on gradient-free methods is generally functional. Un-
fortunately, with solutions (1) and (2) and their respective
experiments we can see that using a seed design has its

limitations. Although we’re able to evaluate tens of thousands
of designs in a short amount of time and find a design that is
close to achieving the design requirement, the approach still
leaves a lot more to be desired. For example, the seed design’s
topology is purely created based on human intuition and not
on specific requirements for the UAV’s flight dynamics. This
means that a bad design as a starting point for the optimization
does not lead to better outcomes afterward. Future research
could focus on how to automatically generate seed designs
that take specific design requirements into account. Afterward
the same optimization techniques could be applied to find the
best component specifications on the seed design.

In solution (3), although we formulate the vector to be
optimized as a sequence of actions, the optimization doesn’t
take the nature of a sequence into account. The previous action
in the sequence is not influenced by its predecessors and does
not influence its successors. Considering the history of actions
opens up new possibilities where the intentions of human
designers could potentially be modeled. The formulation of the
function h in section III-A used by solution (3) provides the
prime opportunity to replace the fixed length, EA-optimized
vector by a sequence from a recurrent neural network or a
transformer. Sequence generation is the strong suit of these
approaches that intrinsically model history.

CONCLUSION

In this paper, we present three solutions for architectural
exploration and parameter optimization to create new designs
for UAVs that meet the requirements set by the DARPA CPS
Design Challenge. In the first solution, all design parameters
are optimized at once. In the second solution, the search
is split into combinatorial and parametric sub-spaces. The
combinatorial parameters are first optimized on an interme-
diate benchmark. Then the parametric parameters of the best
design are optimized on the final overall benchmarks. In the
third solution, graphs are generated from a root node using
a sequence of actions. We were able to demonstrate that all
solutions result in feasible designs while solution (3) provides
the best overall designs that fulfill the mission goals. Finally,
with this research, we were able to demonstrate that gradient-
free optimization techniques can be used for the automatic
design creation of CPS based on provided seed designs.
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APPENDIX

A. Optimizers

In the following section, we introduce the two gradient free
optimizers mentioned in III-B to jointly explore the discrete
and the continuous portions of the parameter space.

For the discrete parameters, we use a (1+λ) Evolutionary
Algorithm (EA). This algorithm follows the basic sketch of
EAs. First, an initial population is randomly generated and
evaluated on the given metric. Then the fittest individuals are
selected as parents of following generations. New individuals
are then generated through mutation and sometimes crossover
operations to form a new generation. Then parts of the popu-
lation, usually the least-fit ones, are discarded and replaced by
the new individuals. The (1+λ)-EA we utilize is a variant of
(1+1)-EA. We generate λ mutants to compete with the parent.
The best mutant becomes the parent of the next generation
while the current parent is always discarded. In our experi-
ments, we evaluate four different variations of (1+λ)-EA with
different mutation rates. Mutation rate refers to the proportion
of the genome vector that’s randomly changed in one step
of mutation. Although designed to target discrete parameters,
these EAs can also optimize continuous parameters, albeit not
achieving high accuracy on them. A summary of the variants
can be found in Table II.

For the continuous parameters, we use Differential Evolu-
tion (DE), which also lies under the EA category of algorithms.
In its simplest form, a population is first sampled uniformly
according to the constraints of the parameters. Then after eval-
uations, the genome goes through mutation and recombination.
In this step, the genomes are moved around in the search space
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TABLE II
MUTATION RATES OF DIFFERENT VARIANTS OF (1+λ)-EA USED. 2

Name Mutation Rate
Discrete (1+λ)-EA 1/d

Lengler [28] (1+λ)-EA int(max(1, d(a log(i)
i )))/d

Portfolio [29] (1+λ)-EA {χ}/d
FastGA [30] (1+λ)-EA α/d

by combining positions of existing genomes in the population.
Then if a new genome improves in performance compared
to the previous population, it is accepted as part of the new
population. The algorithm then iterates until a satisfactory
solution is found. We use a specific version of DE called
TwoPoints DE (two-point crossover) in our experiments. The
mutation step performs a crossover to move genomes in the
search space. For each individual in the current population,
three individuals, one fittest, and two random, are first selected.
A donor genome is then created by adding the weighted
difference between the two random individuals to the fittest
individual. Then two crossover points (indices in the candidate
vectors) are specified to split the genome vector equally on
both the donor genome and the target genome to specify which
portion of the vectors will be exchanged between the two.
And whether the vector between the two points or outside the
two points are exchanged is decided randomly. Then the new
generated genomes are evaluated again, the better performing
new genomes will replace the worst performing ones in the
previous population. This process is repeated until the desired
solution is found.

TABLE III
DETAILED SPECIFICATION OF DESIGN SPACE

Subsystem Component Type Size

Propulsion

Battery Discrete 34
Battery Position Continuous 3×#Battery

ESC Discrete 20
ESC Offset Continuous 3×#ESCs

Motor Discrete 83
Propeller Discrete 417

Aero
Left Wing Discrete 68

Right Wing Discrete 68
Servo Discrete 27

Structure

Tube Connectors Discrete 1
Tube Length Continuous # arm

Flange Connectors Discrete 2
Plate Connectors Discrete 1
Hub Connectors Discrete 6

Connection Angles Continuous #Connection
Flight Autopilot (LQR-Controller) Continuous 20

2d is the dimension of the search space, i is the iteration index, a =
1.54468, {χ} is a set of selected numbers between 1 and d, where the specific
number is adaptively chosen randomly at every generation, and α is chosen
randomly from a power-law distribution. For Lengler, the mutation rate is
not fixed, meaning that mutation is randomly decided but on average at the
specified rate.

TABLE IV
OVERALL BENCHMARKS FROM DESIGN CHALLENGE

Type Specification Score
Rise and Hover Vertical from 0 to 150m then hover 400
Straight Line North in a straight line 300
Circle 1km diameter circle clockwise 400

Racing Oval Racing oval with 2x 750 m straights 482and 2x 600 m diameter half circles
Total Sum of all Benchmarks 1582

TABLE V
INTERMEDIATE BENCHMARKS FROM TRIM RESPONSES

Type Specification Score
Distance Max. flight distance forward target_dist - dist
Time Max. flight time forward target_time - time
Speed Max. lateral speed -300 × max latvel
Power Within max. power limit pow ¡ pow_lim
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