
35

Learning-‘N-Flying: A Learning-Based, Decentralized
Mission-Aware UAS Collision Avoidance Scheme

ALËNA RODIONOVA, University of Pennsylvania, USA
YASH VARDHAN PANT, University of California, Berkeley, USA
CONNOR KURTZ, Oregon State University, USA
KUK JANG, University of Pennsylvania, USA
HOUSSAM ABBAS, Oregon State University, USA
RAHUL MANGHARAM, University of Pennsylvania, USA

Urban Air Mobility, the scenario where hundreds of manned and Unmanned Aircraft Systems (UASs) carry
out a wide variety of missions (e.g., moving humans and goods within the city), is gaining acceptance as a
transportation solution of the future. One of the key requirements for this to happen is safely managing the
air tra!c in these urban airspaces. Due to the expected density of the airspace, this requires fast autonomous
solutions that can be deployed online. We propose Learning-‘N-Flying (LNF), a multi-UAS Collision Avoid-
ance (CA) framework. It is decentralized, works on the "y, and allows autonomous Unmanned Aircraft
System (UAS)s managed by di#erent operators to safely carry out complex missions, represented using Sig-
nal Temporal Logic, in a shared airspace. We initially formulate the problem of predictive collision avoidance
for two UASs as a mixed-integer linear program, and show that it is intractable to solve online. Instead, we
$rst develop Learning-to-Fly (L2F) by combining (1) learning-based decision-making and (2) decentralized
convex optimization-based control. LNF extends L2F to cases where there are more than two UASs on a col-
lision path. Through extensive simulations, we show that our method can run online (computation time in
the order of milliseconds) and under certain assumptions has failure rates of less than 1% in the worst case,
improving to near 0% in more relaxed operations. We show the applicability of our scheme to a wide variety
of settings through multiple case studies.
CCS Concepts: • Computer systems organization→ Robotic control; • Computing methodologies→
Neural networks;
Additional Key Words and Phrases: Collision avoidance, unmanned aircraft systems, temporal logic, robust-
ness, neural network, Model Predictive Control
ACM Reference format:
Alëna Rodionova, Yash Vardhan Pant, Connor Kurtz, Kuk Jang, Houssam Abbas, and Rahul Mangharam. 2021.
Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS Collision Avoidance Scheme. ACM
Trans. Cyber-Phys. Syst. 5, 4, Article 35 (September 2021), 26 pages.
https://doi.org/10.1145/3447624

Authors’ addresses: A. Rodionova, K. Jang, and R. Mangharam, University of Pennsylvania, Department of Elec-
trical and Systems Engineering, Philadelphia, 200 S. 33rd Street PA, 19104, USA; emails: {alena.rodionova, jangkj,
rahulm}@seas.upenn.edu; Y. V. Pant, University of California, Berkeley, Department of Electrical Engineering and Com-
puter Sciences, Berkeley, 545N Cory Hall, Berkeley, CA 94720, USA; email: yashpant@berkeley.edu; C. Kurtz and H. Abbas,
Oregon State University, School of Electrical Engineering and Computer Science, 3101 Kelley Engineering Center Corvallis,
OR 97331, USA; emails: {kurtzco, houssam.abbas}@oregonstate.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro$t or commercial advantage and that copies bear this notice and
the full citation on the $rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci$c permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2378-962X/2021/09-ART35 $15.00
https://doi.org/10.1145/3447624

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

https://doi.org/10.1145/3447624
mailto:permissions@acm.org
https://doi.org/10.1145/3447624
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447624&domain=pdf&date_stamp=2021-09-22

35:2 A. Rodionova et al.

1 INTRODUCTION
With the increasing footprint and density of metropolitan cities, there is a need for new trans-
portation solutions that can move goods and people around rapidly and without further stressing
road networks. Urban Air Mobility (UAM) [12] is one such concept quickly gaining acceptance
[26] as a means to improve connectivity in metropolitan cities. In such a scenario, hundreds of Au-
tonomous manned and Unmanned Aircraft Systems (UASs) will carry goods and people around
the city while also performing a host of other missions. A critical step toward making this a reality
is safe tra!c management of all the UASs in the airspace. Given the high expected UAS tra!c den-
sity, as well as the short timescales of the "ights, UAS Tra!c Management (UTM) needs to be
autonomous and guarantee a high degree of safety and graceful degradation in cases of overload.
The $rst requirement for automated UTM is that its algorithms be able to accommodate a wide
variety of missions, since the di#erent operators have di#erent goals and constraints. The second
requirement is that as the number of UASs in the airspace increases, the runtimes of the UTM
algorithms do not blow up—at least up to a point. The third requirement is that it must provide
guaranteed collision avoidance in most use cases and degrade gracefully otherwise; that is, the de-
termination of whether it will be able to decon"ict two UASs or not must happen su!ciently fast
to alert a higher-level algorithm or a human operator, say, who can impose additional constraints.

In this article we introduce and demonstrate a new algorithm, Learning-‘N-Flying (LNF), for
multi-UAS planning in urban airspace. LNF starts from multi-UAS missions expressed in Signal
Temporal Logic (STL), a formal behavioral speci$cation language that can express a wide variety
of missions and supports automated reasoning. In general, a mission will couple various UASs to-
gether through mutual separation constraints, and this coupling can cause an exponential blowup
in computation. To avoid this, LNF lets every UAS plan independently of others while ignoring the
mutual separation constraints. This independent planning step is performed using Fly-by-Logic,
our previous UAS motion planner. An online collision avoidance procedure then handles potential
collisions on an as-needed basis, i.e., when two UASs that are within communication range detect
a future collision between their preplanned trajectories. Even online optimal collision avoidance
between two UASs requires solving a Mixed-Integer Linear Program (MILP). LNF avoids this
by using a recurrent neural network that maps the current con$guration of the two UASs to a
sequence of discrete decisions. The network’s inference step runs much faster (and its runtime
is much more stable) than running an MILP solver. The network is trained o%ine on solutions
generated by solving the MILP. To generalize from two UAS collision avoidance to multi-UAS, we
introduce another component to LNF: Fly-by-Logic generates trajectories that satisfy their STL
missions and a robustness tube around each trajectory. As long as the UAS is within its tube, it
satis$es its mission. To handle a collision between three or more UASs, LNF shrinks the robust-
ness tube for each trajectory in such a way that sequential two-UAS collision avoidance succeeds
in decon"icting all the UASs.

We show that LNF is capable of successfully resolving collisions between UASs even within
high-density airspaces and short timescales, which are exactly the scenarios expected in UAM.
LNF creates opportunities for safer UAS operations and therefore safer UAM.

Contributions of This Work. In this article, we present an online, decentralized, and mission-
aware UAS Collision Avoidance (CA) scheme that combines machine-learning-based decision-
making with Model Predictive Control (MPC). The main contributions of our approach are:

(1) It systematically combines machine-learning-based decision-making1 with an MPC-based
CA controller. This allows us to decouple the usually hard-to-interpret machine learning

1With the o%ine training and fast online application of the learned policy; see Sections 4.2 and 6.2.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:3

Fig. 1. Two UASs communicating their planned trajectories and cooperatively maneuvering within their
robustness tubes to avoid a potential collision in the future.

component and the safety-critical low-level controller, and also repair potentially unsafe
decisions by the ML components. We also present a su!cient condition for our scheme to
successfully perform CA.

(2) LNF collision avoidance avoids the live-lock condition where pairwise CA continually results
in the creation of collisions between other pairs of UAS.

(3) Our formulation is mission aware; i.e., CA does not result in violation of the UAS mission.
As shown in [32], this also enables faster STL-based mission planning for a certain class of
STL speci$cations.

(4) Our approach is computationally lightweight with a computation time of the order of 10ms
and can be used online.

(5) Through extensive simulations, we show that the worst-case failure rate of our method is
less than 1%, which is a signi$cant improvement over other approaches including [32].

Related Work. UTM and Automatic Collision Avoidance Approaches. CA is a critical com-
ponent of UTM. The NASA/FAA Concept of Operations [1, 19] present airspace allocation schemes
where UASs are allocated airspace in the form of non-overlapping space-time polygons. Our ap-
proach is less restrictive and allows overlaps in the polygons but performs online collision avoid-
ance on an as-needed basis. A tree-search-based planning approach for UAS CA is explored in [4].
The next-gen CA system for manned aircrafts, ACAS-X [18], is a learning-based approach that
provides vertical separation recommendations. ACAS-Xu [24] relies on a lookup table to provide
high-level recommendations to two UASs. It restricts desired maneuvers for CA to the vertical axis
for cooperative tra!c and the horizontal axis for uncooperative tra!c. While we consider only the
cooperative case in this work, our method does not restrict CA maneuvers to any single axis of
motion. Finally, in its current form, ACAS-Xu also does not take into account any higher-level
mission objectives, unlike our approach. This excludes its application to low-level "ights in urban
settings. The work in [8] presents a decentralized, mission-aware CA scheme but requires time of
the order of seconds for the UASs to communicate and safely plan around each other, whereas our
approach has a computation times in milliseconds.

Multi-agent Planning with Temporal Logic Objectives. Multi-agent planning for systems
with temporal logic objectives has been well studied as a way of safe mission planning. Approaches
for this usually rely on grid-based discretization of the workspace [6, 34] or a simpli$ed abstraction
of the dynamics of the agents [2, 7]. [22] combines a discrete planner with a continuous trajectory
generator. Some methods [10, 16, 17] work for subsets of Linear Temporal Logic (LTL) that do
not allow for explicit timing bounds on the mission requirements. The work in [34] allows some

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

35:4 A. Rodionova et al.

explicit timing constraints. However, it restricts motion to a discrete set of motion primitives. The
predictive control method of [30] uses the full STL grammar; it handles a continuous workspace
and linear dynamics of robots, but its reliance on mixed-integer encoding (similar to [14, 35]) limits
its practical use as seen in [27]. The approach of [29] instead relies on optimizing a smooth (non-
convex) function for generating trajectories for "eets of multi-rotor UASs with STL speci$cations.
While these methods can ensure safe operation of multi-agent systems, these are all centralized ap-
proaches, i.e., require joint planning for all agents and do not scale well with the number of agents.
In our framework, we use the planning method of [29], but we let each UAS plan independently
of each other in order for the planning to scale. We ensure the safe operation of all UASs in the
airspace through the use of our predictive collision avoidance scheme.

Organization of the Article. The rest of the article is organized as follows. Section 2 covers prelim-
inaries on Signal Temporal Logic and trajectory planning. In Section 3 we formalize the two-UAS
CA problems, state our main assumptions, and develop a baseline centralized solution via an MILP
formulation. Section 4 presents a decentralized learning-based collision avoidance framework for
UAS pairs. In Section 5 we extend this approach to support cases when CA has to be performed
for three or more UASs. We evaluate our methods through extensive simulations, including three
case studies in Section 6. Section 7 concludes the article.

2 PRELIMINARIES: SIGNAL TEMPORAL LOGIC-BASED UAS PLANNING
Notation. For a vector x = (x1, . . . ,xm) ∈ Rm , ‖x ‖∞ = maxi |xi |.

2.1 Introduction to Signal Temporal Logic and Its Robustness
Let T = {0,dt , 2dt , 3dt . . .} be a discrete time domain with sampling period dt and let X ⊂ Rm be
the state space. A signal is a function x : E → X where E ⊆ T; the k th element of x is written xk ,
k ≥ 0. Let XT be the set of all signals.

Signal speci$cations are expressed in STL [23], of which we give an informal description here.
An STL formula φ is created using the following grammar:

φ := (| p | ¬φ | φ1 ∨ φ2 | ![a,b]φ | ![a,b]φ | φ1U[a,b]φ2.

Here, (is logical True; p is an atomic proposition, i.e., a basic statement about the state of the
system; ¬,∨ are the usual Boolean negation and disjunction; ! is Eventually; ! is Always; andU
is Until. It is possible to de$ne the ! and ! in terms of UntilU , but we make them base operations
because we will work extensively with them.

An STL speci$cation φ is interpreted over a signal, e.g., over the trajectories of quad-rotors, and
evaluates to either True or False. For example, operator Eventually (!) augmented with a time inter-
val ![a,b]φ states that φ is True at some point within [a,b] time units. Operator Always (!) would
correspond to φ being True everywhere within time [a,b]. The following example demonstrates
how STL captures operational requirements for two UASs:

Example 1 (A Two-UAS Timed Reach-avoid Problem). Two quad-rotor UASs are tasked with a
mission with spatial and temporal requirements in the workspace schematically shown in Figure 2:

(1) Each of the two UASs has to reach its corresponding Goal set (shown in green) within a
time of 6 seconds after starting. UAS j (where j ∈ {1, 2}), with position denoted by pj , has
to satisfy: φreach, j = ![0,6] (pj ∈ Goalj). The Eventually operator over the time interval [0, 6]
requires UAS j to be inside the set Goalj at some point within 6 seconds.

(2) The two UASs also have an Unsafe (in red) set to avoid, e.g., a no-"y zone. For each UAS j,
this is encoded with Always and Negation operators:
φavoid, j = ![0,6]¬(pj ∈ Unsafe).

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:5

Fig. 2. Step-wise explanation and visualization of the framework. Each UAS generates its own trajectories to
satisfy a mission expressed as a Signal Temporal Logic (STL) specification; e.g., regions in green are regions
of interest for the UAS to visit, and the no-fly zone corresponds to infrastructure that all the UASs must
avoid. When executing these trajectories, UASs communicate their trajectories to others in range to detect
any collisions that may happen in the near future. If a collision is detected, the two UASs execute a conflict
resolution scheme that generates a set of additional constraints that the UASs must satisfy to avoid the
collision. A cooperative CA-MPC controls the UASs to best satisfy these constraints while ensuring each
UAS’s STL specification is still satisfied. This results in new trajectories (in solid pink and blue) that will
avoid the conflict and still stay within the predefined robustness tubes.

(3) Finally, the two UASs should be separated by at least δ meters along every axis of motion:
φseparation = ![0,6] | |p1 − p2 | |∞ ≥ δ .

The two-UAS timed reach-avoid speci$cation is thus

φreach-avoid =
2∧

j=1
(φreach, j ∧ φavoid, j) ∧ φseparation. (1)

To satisfyφ, a planning method generates trajectories p1 and p2 of a duration at leasthrz (φ) = 6s,
where hrz (φ) is the time horizon of φ. If the trajectories satisfy the speci$cation, i.e., (p1, p2) |= φ,
then the speci$cation φ evaluates to True; otherwise it is False. In general, an upper bound for
the time horizon can be computed as shown in [30]. In this work, we consider speci$cations such
that the horizon is bounded. More details on STL can be found in [23] or [30]. In this article, we
consider discrete-time STL semantics, which are de$ned over discrete-time trajectories.

The Robustness value [9] ρφ (x) of an STL formula φ with respect to the signal x is a real-valued
function of x that has the important following property:

Theorem 2.1 ([9]). (i) For any x ∈ XT and STL formula φ, if ρφ (x) < 0, then x violates φ, and if
ρφ (x) > 0, then x satis!es φ. The case ρφ (x) = 0 is inconclusive.

(ii) Given a discrete-time trajectory x such that x |= φ with robustness value ρφ (x) = r > 0, then
any trajectory x′ that is within r of x at each time step, i.e., | |xk − x ′k | |∞ < r , ∀k ∈ H, is such that
x′ |= φ (also satis!es φ).

2.2 UAS Planning with STL Specifications
Fly-by-logic [27, 29] generates trajectories by centrally planning for "eets of UASs with STL spec-
i$cations, e.g., the speci$cation φreach-avoid of example 1. It maximizes the robustness function by
picking waypoints for all UASs through a centralized, non-convex optimization.

While successful in planning for multiple multi-rotor UASs, performance degrades as the
number of UASs increases, in particular because for N UAS,

(
N
2
)

terms are needed for specifying
the pairwise separation constraint φseparation. For these reasons, the method cannot be used for

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

35:6 A. Rodionova et al.

real-time planning. In this work, we use the underlying optimization of [29] to generate trajecto-
ries but ignore the mutual separation requirement, allowing each UAS to independently (and in
parallel) solve for their own STL speci$cation. For the timed reach-avoid speci$cation (1) in exam-
ple 1, this is equivalent to each UAS generating its own trajectory to satisfy φ j = φreach, j ∧ φavoid, j ,
independently of the other UASs. Ignoring the collision avoidance requirement φseparation in the
planning stage allows for the speci$cation of (1) to be decoupled across UASs. Therefore, this
approach requires online UAS collision avoidance. This is covered in the following section.

3 PROBLEM FORMULATION: MISSION-AWARE UAS COLLISION AVOIDANCE
We consider the case where two UASs "ying preplanned trajectories are required to perform col-
lision avoidance if their trajectories are on path for a con"ict.

De!nition 1 (Two-UAS Con"ict). Two UASs, with discrete-time positions p1 and p2, are said to
be in con"ict at time step k if | |p1,k − p2,k | |∞ < δ , where δ is a prede$ned minimum separation
distance.2 Here, pj,k represents the position of UAS j at time step k .

While "ying their independently planned trajectories, two UASs that are within communica-
tion range share an H -step look-ahead of their trajectories and check for a potential con"ict in
those H steps. We assume the UASs can communicate with each other in a manner that allows for
enough advance notice for avoiding collisions, e.g., using 5G technology. While the details of this
are beyond the scope of this article, we formalize this assumption as follows:

Assumption 1. The two UASs in con"ict have a communication range that is at least greater than
their n-step forward reachable set [5] (n ≥ 1).3 That is, the two UASs will not collide immediately in
at least the next n-time steps, enabling them to communicate with each other to avoid a collision. Here
n is potentially dependent on the communication technology being used.

De!nition 2 (Robustness Tube). Given an STL formula φ and a discrete-time position trajectory
pj that satis$es φ (with associated robustness ρ), the (discrete) robustness tube around pj is given
by Pj = pj ⊕ Bρ , where Bρ is a 3D cube with sides 2ρ and ⊕ is the Minkowski sum operation
(A ⊕ B := {a + b | a ∈ A,b ∈ B}). We say the radius of this tube is ρ (in the inf-norm sense).

Robustness tube de$nes the space around the UAS trajectory, such that as long as the UAS stays
within its robustness tube, it will satisfy the STL speci$cation for which it was generated. See
examples of the robustness tubes in Figures 1 and 2.

The following assumption relates the minimum allowable radius ρ of the robustness tube to the
minimum allowable separation δ between two UASs.

Assumption 2. For each of the two UASs in con"ict, the radius of the robustness tube is greater
than δ/2, i.e., min(ρ1, ρ2) ≥ δ/2, where ρ1 and ρ2 are the robustness of UAS 1 and 2, respectively.

This assumption de$nes the case where the radius of the robustness tube is wide enough to
have two UASs placed along opposing edges of their respective tubes and still achieve the mini-
mum separation between them. We assume that all the trajectories generated by the independent
planning have su!cient robustness to satisfy this assumption (see Section 2.2). Now we de$ne the
problem of collision avoidance with satisfaction of STL speci$cations:

2A more general polyhedral constraint of the form M (p1,k − p2,k) < q can be used for de$ning the con"ict.
3This set can be computed o%ine as we know the dynamics and actuation limits for each UAS.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:7

Problem 1. Given two planned H -step UAS trajectories p1 and p2 that have a con"ict, the collision
avoidance problem is to !nd a new sequence of positions p′1 and p′2 that meet the following conditions:

| |p ′1,k − p ′2,k | | ≥ δ ,∀k ∈ {0, . . . ,H } (2a)
p ′j,k ∈ Pj,k ,∀k ∈ {0, . . . ,H }, ∀j ∈ {1, 2}. (2b)

That is, we need a new trajectory for each UAS such that they achieve minimum separation
distance and also stay within the robustness tube around their originally planned trajectories.

Convex Constraints for Collision Avoidance. Let zk = p1,k −p2,k be the di#erence in UAS positions
at time step k . For two UASs not to be in con"ict, we need

zk " Bδ /2, ∀k ∈ {0, . . . ,H }. (3)

This is a non-convex constraint. For a computationally tractable controller formulation that solves
Problem 1, we de$ne convex constraints that when satis$ed imply Equation (3). The 3D cube Bδ /2
can be de$ned by a set of linear inequality constraints of the form M̃ iz ≤ q̃i , ∀i ∈ {1, . . . , 6}.
Equation (3) is satis$ed when ∃i |M̃ iz > q̃i . Let M = −M̃ and q = −q̃; then ∀i ∈ {1, . . . , 6}:

M i (p1,k − p2,k) < qi ⇒ (p1,k − p2,k) " Bδ /2. (4)

Intuitively, picking one i at time step k results in a con$guration (in position space) where the
two UASs are separated in one of two ways along one of three axes of motion.4 For example, if at
time step k we select i with corresponding M i = [0, 0, 1] and qi = −δ , it implies that UAS 2 "ies
over UAS 1 by δ meters, and so on.

A Centralized Solution via a MILP Formulation. Here, we formulate a MILP to solve the two-
UAS CA problem of problem 1 in a predictive, receding horizon manner. For the formulation, we
consider an H -step look ahead that contains the time steps where the two UASs are in con"ict. Let
the dynamics of either UAS5 be of the form xk+1 = Axk +Buk . At each time step k , the UAS state is
de$ned as xk = [pk , vk]T ∈ R6, where p andv are the UAS positions and velocities in the 3D space.
Let C be the observation matrix such that pk = Cxk . The inputs uk ∈ R3 are the thrust, roll, and
pitch of the UASs. The matrices A and B are obtained through linearization of the UAS dynamics
around hover and discretization in time; see [21] and [28] for more details. Let xj ∈ R6(H+1) be the
preplanned full state trajectories, x′j ∈ R6(H+1) the new full state trajectories, and u′j ∈ R3H the
new controls to be computed for the UAS j = 1, 2. Let b ∈ {0, 1}6(H+1) be binary decision variables,
and µ is a large positive number; then the MILP problem is de$ned as

min
u′1, u′2, b

J
(
x′1, u′1, x′2, u′2

)

x ′j,0 = x j,0, ∀j ∈ {1, 2}
x ′j,k+1 = Ax ′j,k + Bu

′
j,k , ∀k ∈ {0, . . . ,H − 1}, ∀j ∈ {1, 2}

Cx ′j,k ∈ Pj,k , ∀k ∈ {0, . . . ,H }, ∀j ∈ {1, 2}

4Two ways along one of three axes de$nes 6 options, i ∈ {1, . . . , 6}.
5For simplicity we assume both UASs have identical dynamics associated with multi-rotor robots; however, our approach
would work otherwise.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

35:8 A. Rodionova et al.

M iC
(
x ′1,k − x ′2,k

)
≤ qi + µ

(
1 − bi

k

)
, ∀k ∈ {0, . . . ,H },∀i ∈ {1, . . . , 6}

6∑

i=1
bi

k ≥ 1, ∀k ∈ {0, . . . ,H }

u ′j,k ∈ U , ∀k ∈ {0, . . . ,H }, ∀j ∈ {1, 2}
x ′j,k ∈ X , ∀k ∈ {0, . . . ,H + 1},∀j ∈ {1, 2}.

(5)

Herebi
k encodes action i = 1, . . . , 6 taken for avoiding a collision at time step k , which corresponds

to a particular side of the cube Bδ /2. Function J could be any cost function of interest; we use J = 0
to turn Equation (5) into a feasibility problem. A solution (when it exists) to this MILP results in
new trajectories (p′1, p′2) that avoid collisions and stay within their respective robustness tubes of
the original trajectories, and hence are a solution to problem 1.

Such optimization is joint over both UASs. It is impractical as it would either require one UAS
to solve for both or each UAS to solve an identical optimization that would also give informa-
tion about the control sequence of the other UAS. Solving this MILP in an online manner is also
intractable, as we show in Section 6.2.1.

4 LEARNING-2-FLY: DECENTRALIZED COLLISION AVOIDANCE FOR UAS PAIRS
To solve problem 1 in an online and decentralized manner, we develop our framework, Learning-
to-Fly (L2F). Given a prede$ned priority among the two UASs, this combines a learning-based
con"ict resolution (CR) scheme (running aboard each UAS) that gives us the discrete compo-
nents of the Mixed Integer Linear Program (MILP) formulation (Equation (5)), and a cooperative
collision avoidance MPC for each UAS to control them in a decentralized manner. We assume that
the two UASs can communicate their preplanned N -step trajectories p1, p2 to each other (refer to
Section 2.2), and then L2F solves problem 1 by following these steps (also see Algorithm 1):

(1) Con"ict resolution: UAS 1 and 2 make a sequence of decisions, d = (d0, . . . ,dH), to avoid
collision. Each dk ∈ {1, . . . 6} represents a particular choice of M and q at time step k ; see
Equation (4). Section 4.2 will describe our proposed learning-based method for picking dk .

(2) UAS 1 CA-MPC: UAS 1 takes the con"ict resolution sequence d from step 1 and solves a con-
vex optimization to try to decon"ict, while assuming UAS 2 maintains its original trajectory.
After the optimization, the new trajectory for UAS 1 is sent to UAS 2.

(3) UAS 2 CA-MPC: (If needed) UAS 2 takes the same con"ict resolution sequence d from step 1
and solves a convex optimization to try to avoid UAS 1’s new trajectory. Section 4.1 provides
more details on CA-MPC steps 2 and 3.

The visualization of the above steps is presented in Figure 2. Such a decentralized approach dif-
fers from the centralized MILP approach, where both the binary decision variables and continuous
control variables for each UAS are decided concurrently.

4.1 Distributed and Cooperative Collision Avoidance MPC (CA-MPC)
Let xj be the preplanned trajectory of UAS j, xavoid be the preplanned trajectory of the other
UAS to which j must attain a minimum separation, and prtyj ∈ {−1,+1} be the priority of
UAS j. Assume a decision sequence d is given: at each k in the collision avoidance horizon, the
UASs are to avoid each other by respecting Equation (4), namely Mdk (p1,k − p2,k) < qdk . Then
each UAS j = 1, 2 solves the following Collision-Avoidance MPC optimization (CA-MPC):

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:9

CA-MPCj (xj , xavoid , Pj , d, prtyj):

min
u′j ,λ j

H∑

k=0
λj,k

x ′j,0 = x j,0

x ′j,k+1 = Ax ′j,k + Bu
′
j,k , ∀k ∈ {0, . . . ,H − 1}

Cx ′j,k ∈ Pj,k , ∀k ∈ {0, . . . ,H }
prtyj ·MdkC

(
xavoid,k − x ′j,k

)
≤ qdk + λj,k , ∀k ∈ {0, . . . ,H }

λj,k ≥ 0, ∀k ∈ {0, . . . ,H }
u ′j,k ∈ U , ∀k ∈ {0, . . . ,H }
x ′j,k ∈ X , ∀k ∈ {0, . . . ,H + 1}.

(6)

This MPC optimization tries to $nd a new trajectory x′j for the UAS j that minimizes the slack
variables λj,k that correspond to violations in the minimum separation constraint (Equation (4))
w.r.t the pre-planned trajectory xavoid of the UAS in con"ict. The constraints in Equation (6) ensure
that UAS j respects its dynamics, input constraints, and state constraints to stay inside the robust-
ness tube. An objective of 0 implies that UAS j’s new trajectory satis$es the minimum separation
between the two UASs; see Equation (4).6

CA-MPC Optimization for UAS 1. UAS 1, with lower priority, prty1 = −1, $rst attempts to
resolve the con"ict for the given sequence of decisions d:

(
x′1, u

′
1,λ1
)
= CA-MPC1 (x1, x2, P1, d,−1). (7)

An objective of 0 implies that UAS 1 alone can satisfy the minimum separation between the two
UASs. Otherwise, UAS 1 alone could not create separation and UAS 2 now needs to maneuver as
well.

CA-MPC Optimization for UAS 2. If UAS 1 is unsuccessful at collision avoidance, UAS 1
communicates its current revised trajectory x′1 to UAS 2, with prty2 = +1. UAS 2 then creates a
new trajectory x′2 (w.r.t the same decision sequence d):

(
x′2, u

′
2,λ2
)
= CA-MPC2

(
x2, x′1, P2, d,+1) . (8)

Algorithm 1 is designed to be computationally lighter than the MILP approach (Equation (5)),
but unlike the MILP it is not complete.

The solution of CA-MPC can be de$ned as follows:

De!nition 4.1 (Zero-slack Solution). The solution of the CA-MPC optimization (Equation (6)) is
called the zero-slack solution if for a given decision sequence d either

1) there exists an optimal solution of Equation (6) such that ∑k λ1,k = 0 or
2) Equation (6) is feasible with ∑k λ1,k > 0 and there exists an optimal solution of Equation (6)

such that ∑k λ2,k = 0.

Theorem 4.1 de$nes the su!cient condition for CA and Theorem 4.2 makes important connec-
tions between the slack variables in CA-MPC formulation and binary variables in MILP. Both

6Enforcing the separation constraint at each time step can lead to a restrictive formulation, especially in cases where the
two UASs are only brie"y close to each other. This does, however, give us an optimization with a structure that does not
change over time and can avoid collisions in cases where the UAS could run across each other more than once in quick
succession (e.g., https://tinyurl.com/arc-case), which is something ACAS-Xu was not designed for.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

https://tinyurl.com/arc-case

35:10 A. Rodionova et al.

ALGORITHM 1: Learning-to-Fly: Decentralized and cooperative collision avoidance for two UASs. Also
see Figure 2.

Notation : (x′1, x
′
2, u
′
1, u
′
2) = L2F(x1, x2, P1, P2)

Input: Preplanned trajectories x1, x2, robustness tubes P1, P2
Output: Sequence of control signals u′1, u′2 for the two UASs, updated trajectories x′1, x′2
Get d from con"ict resolution
UAS 1 solves CA-MPC optimization (6): (x′1, u

′
1,λ1) = CA-MPC1 (x1, x2, P1, d,−1)

if ∑k λ1,k = 0 then
Done: UAS 1 alone has created separation; set u′2 = u2

else
UAS 1 transmits solution to UAS 2
UAS 2 solves CA-MPC optimization (6): (x′2, u

′
2,λ2) = CA-MPC2 (x2, x′1, P2, d,+1)

if ∑k λ2,k = 0 then
Done: UAS 2 has created separation

else
if | |p′1,k − p

′
2,k | | ≥ δ , ∀k = 0, . . . ,H then

Done: UAS 1 and UAS 2 created separation
else

Not done: UAS still violate Equation (2a)
end

end
end
Apply control signals u′1, u′2 if Done; else Fail.

theorems are direct consequences of the construction of CA-MPC optimizations. We omit the
proofs for brevity.

Theorem 4.1 (Sufficient Condition for CA). Zero-slack solution of Equation (6) implies that
the resulting trajectories for two UASs are non-con"icting and within the robustness tubes of the initial
trajectories.7

Theorem 4.2 (Existence of the Zero-slack Solution). Feasibility of the MILP problem (Equa-
tion (5)) implies the existence of the zero-slack solution of CA-MPC optimization (Equation (6)).

Theorem 4.2 states that the binary decision variables bi
k selected by the feasible solution of the

MILP problem (Equation (5)), when used to select the constraints (de$ned byM, q) for the CA-MPC
formulations for UAS 1 and 2, imply the existence of a zero-slack solution of Equation (6).

4.2 Learning-Based Conflict Resolution
Motivated by Theorem 4.2, we propose to learn o%ine the con"ict resolution policy from the MILP
solutions and then online use already learned policy. To do so, we use a Long Short-Term Memory
(LSTM) [13] recurrent neural network augmented with fully connected layers. LSTMs perform
better than traditional recurrent neural networks on sequential prediction tasks [11].

The network is trained to map a di#erence trajectory z = x1 − x2 (as in Equation (3)) to a
decision sequence d that decon"icts preplanned trajectories x1 and x2. For creating the training

7Theorem 4.1 formulates a conservative result as Equation (4) is a convex under approximation of the originally non-convex
collision avoidance constraint (Equation (3)). Indeed, non-zero slack ∃k |λ2,k > 0 does not necessarily imply the violation
of the mutual separation requirement (Equation (2a)). The control signals u′1, u′2 computed by Algorithm 1 can therefore
in some instances still create separation between UASs even when the conditions of Theorem 4.1 are not satis$ed.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:11

Fig. 3. Proposed LSTM model architecture for CR-S. LSTM layers are shown unrolled over H time steps. The
inputs are zk , which are the di!erences between the planned UAS positions, and the outputs are decisions
dk for conflict resolution at each time k in the horizon.

set, d is produced by solving the MILP problem (Equation (5)), i.e., obtaining a sequence of binary
decision variables b ∈ {0, 1}6(H+1) and translating it into the decision sequence d ∈ {1, . . . , 6}H+1.

The proposed architecture is presented in Figure 3. The input layer is connected to the block
of three stacked LSTM layers. The output layer is a time distributed dense layer with a softmax
activation function that produces the class probability estimate ηk = [η1

k , . . . ,η
6
k](for each k ∈

{0, . . . ,H }, which corresponds to a decision dk = argmaxi=1, ...6η
i
k .

4.3 Conflict Resolution Repairing
The total number of possible CR decision sequences over a time horizon ofH steps isH 6. Learning-
based collision resolution produces only one such CR sequence, and since it is not guaranteed to
be correct, an inadequate CR sequence might lead to the CA-MPC being unable $nd a feasible
solution of Equation (6), i.e., a failure in resolving a collision. To make the CA algorithm more
resilient to such failures, we propose a heuristic that instead of generating only one CR sequence
generates a number of slightly modi$ed sequences, aka backups, with an intention of increasing
the probability of $nding an overall solution for CA. We call it a CR repairing algorithm. We propose
the following scheme for CR repairing.

4.3.1 Naïve Repairing Scheme for Generating CR Decision Sequences. The naïve repairing algo-
rithm is based on the initial supervised learning CR architecture; see Section 4.2. The proposed
DNN model for CR has the output layer with a softmax activation function that produces the class
probability estimates ηk = [η1

k , . . . ,η
6
k](for each time step k ; see Figure 3. Discrete decisions were

chosen as
dk = argmax

i=1, ...6
ηi

k , (9)

which corresponds to the highest probability class for time step k . Denote such choice of dk as d1
k .

Analogously to the idea of top-1 and top-S accuracy rates used in image classi$cation [33],
where not only the highest predicted class but also the top S most likely labels count, we de$ne
higher-order decisions ds

k as follows: instead of choosing the highest probability class at time step
k , one could choose the second-highest probability class (s = 2), third-highest (s = 3), up to the
sixth-highest (s = 6).

Formally, the second-highest probability class choice d2
k is de$ned as

d2
k = argmax

i=1, ...6, i#d1
k

ηi
k . (10)

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

35:12 A. Rodionova et al.

In the same manner, we de$ne decisions up to d6
k . The general formula for the sth-highest proba-

bility class, decision ds
k is de$ned as follows (s = 1, . . . , 6):

ds
k = argmax

i=1, ...6, i#d j
k ∀j<s

ηi
k . (11)

Using Equation (11) to generate decisions dk at time step k , we de$ne the naïve scheme for
generating new decision sequences d′ following Algorithm 2.

ALGORITHM 2: Naïve scheme for CR repairing
Notation : (x′1, x

′
2, u
′
1, u
′
2) = Repairing(x1, x2, P1, P2,ϒ)

Input: Preplanned trajectories x1, x2, robustness tubes P1, P2, original decision sequence d, class
probability estimates η, set of collision indices: ϒ = {k : | |p′1,k − p

′
2,k | | < δ , 0 ≤ k ≤ H }.

Output: Sequence of control signals u′1, u′2 for the two UASs, updated trajectories x′1, x′2
for s = 2, . . . , 6 do

De$ne repaired sequence d′ using naïve scheme as follows:

— ∀k " ϒ : d ′k = dk
— ∀k ∈ ϒ : d ′k = d

s
k = argmaxi=1, ...6, i#d j

k ∀j<s η
i
k

(x′1, x
′
2, u
′
1, u
′
2) = CA-MPC(x1, x2, P1, P2, d′)

if | |p′1,k − p
′
2,k | | ≥ δ , ∀k = 0, . . . ,N then

Break: Repaired CR sequence d′ led to UAS 1 and UAS 2 creating separation
end

end
if | |p′1,k − p

′
2,k | | ≥ δ , ∀k = 0, . . . ,H then

d′ = d: Repairing failed. Return trajectories for the original decision sequence.
end

Example 4.3. Let the horizon of interest be only H = 5 time steps and the initially obtained
decision sequence be d = (1, 1, 1, 1, 1). Given that the collision was detected at time steps 2 and 3,
i.e.,ϒ = (2, 3), let the second-highest probability decisions bed2

2 = 3 andd2
3 = 5. Then the proposed

repaired decision sequence is d′ = (1, 1, 3, 5, 1). If such CR sequence d′ still violates the mutual
separation requirement, then the naïve repairing scheme will propose another decision sequence
using the third-highest probability decisions d3. Let d3

2 = 2 and d3
3 = 3; then d′ = (1, 1, 2, 3, 1). If

it fails again, the next generated sequence will use fourth-highest decisions, and so on up to the
$fth iteration of the algorithm (requires d6

k estimates). If none of the sequences managed to create
separation, the original CR sequence d = (1, 1, 1, 1, 1) will be returned.

Other variations of the naïve scheme are possible. For example, one can use an augmented set of
collision indicesϒ or another order of decisionsdk across the time indices, e.g., replace decisionsdk
one by one rather than all dk for collision indicesϒ at once. Moreover, other CR repairing schemes
can be e!cient and should be explored. We leave it for future work.

5 LEARNING-‘N-FLYING: DECENTRALIZED COLLISION AVOIDANCE FOR
MULTI-UAS FLEETS

The L2F framework of Section 4 was tailored for CA between two UASs. When more than two
UASs are simultaneously on a collision path, applying L2F pairwise for all UASs involved might
not necessarily result in all future collisions being resolved. Consider the following example:

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:13

Fig. 4. Sequential L2F application for the three-UAS scenario. Preplanned colliding trajectories are depicted
in dashed lines. Simultaneous collision is detected at point (0, 0, 0). The updated trajectories generated by
L2F are depicted in solid color. Initial positions of UAS are marked by “O.”

Example 5.1. Figure 4 depicts an experimental setup. Scenario consists of three UASs that must
reach desired goal states within 4 seconds while avoiding each other; minimum allowed separation
is set to δ = 0.1m. Initially preplanned UAS trajectories have a simultaneous collision across all
UASs located at (0, 0, 0). Robustness tube radii were $xed at ρ = 0.055 and UAS priorities were
set in increasing order, e.g., UASs with a lower index had a lower priority: 1 < 2 < 3. The $rst
application of L2F led to resolving collision for UAS 1 and UAS 2; see Figure 4(a). The second
application resolved collision for UAS 1 and UAS 3 by UAS 3 deviating vertically downward; see
Figure 4(b). The third application led to UAS 3 deviating vertically upward, which resolved collision
for UAS 2 and UAS 3 but created a re-appeared violation of minimum separation for UAS 1 and
UAS 3 in the middle of their trajectories; see Figure 4(c).

To overcome this live-lock-like issue, where repeated pairwise applications of L2F only result
in new con"icts between other pairs of UASs, we propose a modi$cation of L2F called LNF. The
LNF framework is based on pairwise application of L2F but also incorporates a Robustness Tube
Shrinking (RTS) process described in Section 5.1 after every L2F application. The overall LNF
framework is presented in Algorithm 3. Section 6.3 presents extensive simulations to show the
applicability of the LNF scheme to scenarios where more than two UASs are on collisions paths,
including in high-density UAS operations.

ALGORITHM 3: Learning-‘N-Flying: Decentralized and cooperative collision avoidance for multi-UAS
"eets. Applied in a receding horizon manner by each UAS i .

Input: Preplanned "eet trajectories xi , initial robustness tubes Pi , UAS priorities
Output: New trajectories x′i , new robustness tubes P′i , control inputs u ′i,0
Each UAS i detects the set of UASs that it is in con"ict with: S = {j | ∃k | |pi,k − pj,k | | < δ , 0 ≤ k ≤ H }
Order S by the UAS priorities
for j ∈ S do

(x′i , x
′
j , u
′
i , u
′
j) = L2F(xi , xj , Pi , Pj), see Section 4

if ϒ = {k : | |p′i,k − p
′
j,k | | < δ , 0 ≤ k ≤ H } # ∅ then

(x′i , x
′
j , u
′
i , u
′
j) = Repairing(xi , xj , Pi , Pj ,ϒ)

end
(P′i , P

′
j) = RTS (x′i , x

′
j , Pi , Pj)

end
Apply controls u ′i,0 for the initial time step of the receding horizon

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

35:14 A. Rodionova et al.

Fig. 5. Visualization of the robustness tube shrinking process.

5.1 Robustness Tube Shrinking
The high-level of idea of RTS is that, when two trajectories are de-collided by L2F, we want to
constrain their further modi$cations by L2F so as not to induce new collisions. In Example 5.1,
after collision-free x′1 and x′2 are produced by L2F and before x′2 and x3 are de-collided, we want
to constrain any modi$cation to x′2 s.t. it does not collide again with x′1. Since trajectories are
constrained to remain within robustness tubes, we simply shrink those tubes to achieve this. The
amount of shrinking is δ , the minimum separation. RTS is described in Algorithm 4.

ALGORITHM 4: Robustness tubes shrinking. Also see Figure 5.
Notation : (P′1, P

′
2) = RTS (x′1, x

′
2, P1, P2)

Input: New trajectories x′1, x′2 generated by L2F, initial robustness tubes P1, P2
Output: New robustness tubes P′1, P′2
Setmsep = min0≤k≤H | |p′1,k − p

′
2,k | |

for k = 0, . . . ,H do
if dist(P1,k , P2,k) ≥ δ then

No shrinking required: P ′1,k = P1,k , P ′2,k = P2,k
else

Determine the axis (X , Y , or Z) of maximum separation between p′1,k and p′2,k
De$ne the 3D box Πk with edges of size min(msep,δ) along the determined axis and in$nite
edges along other two axes
Center Πk at the midpoint between p′1,k and p′2,k
Remove Πk from both tubes: P ′1,k = P1,k \ Πk , P

′
2,k = P2,k \ Πk

end
end

Example 5.2. Figure 5(a) presents the initial discrete-time robustness tubes and trajectories for
UAS 1 and UAS 2. Successful application of L2F resolves the detected collision between initially
planned trajectories p1, p2, depicted in the dashed line. New non-colliding trajectories p′1 and p′2
produced by L2F are in solid color. Figure 5(b) shows that for time step k = 0 no shrinking is
required since the robustness tubes P1,0, P2,0 are already δ -separate. For time steps k = 1, 2, 3,
the axis of maximum separation between trajectories is Z ; therefore, boxes Πk are de$ned to be
of height δ with in$nite width and length. Boxes Πk are drawn in gray; midpoints between the
trajectories are drawn in yellow. Figure 5(c) depicts the updated δ -separate robustness tubes P′1
and P′2.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:15

Theorem 5.3 (Sufficient Condition for δ -separate Tubes). Zero-slack solution of Equation
(6) implies that robustness tubes updated by the RTS procedure are the subsets of the initial robust-
ness tubes and δ -separate; e.g., for robustness tubes (P′1, P

′
2) = RTS (x′1, x

′
2, P1, P2), the following two

properties hold:

dist(P′1, P
′
2) ≥ δ (12)

P′j ⊆ Pj , ∀j ∈ {1, 2}. (13)

See the proof in the appendix Section A.

5.2 Combination of L2F with RTS
The three following lemmas de$ne important properties of L2F combined with the shrinking pro-
cess. Proofs can be found in the appendix Section A.

Lemma 5.1. Let two trajectories x′1, x′2 be generated by L2F and let the robustness tubes P′1, P′2 be
the updated tubes generated by the RTS procedure from initial tubes P1, P2 using the trajectories x′1,
x′2. Then

p′j ∈ P′j , ∀j ∈ {1, 2}. (14)

Lemma 5.1 states that the RTS procedure preserves trajectory belonging to the corresponding
updated robustness tube.

Lemma 5.2. Let two robustness tubes P1 and P2 be δ -separate. Then any pair of trajectories within
these robustness tubes are non-con"icting, i.e.:

∀p1 ∈ P1, ∀p2 ∈ P2, | |p1,k − p2,k | | ≥ δ , ∀k ∈ {0, . . . ,H }. (15)

Using Lemma 5.2, we can now prove that every successful application of L2F combined with
the shrinking process results in new trajectories that do not violate previously achieved minimum
separations between UASs, unless the RTS process results in an empty robustness tube. In other
words, it solves the three-UAS issue raised in Example 5.1. We formalize this result in the context
of three UASs with the following Lemma:

Lemma 5.3. Let x1, x2, x3 be preplanned con"icting UAS trajectories, and let P1, P2, and P3 be
their corresponding robustness tubes. Without loss of generality, assume that the sequential pairwise
application of L2F combined with RTS has been done in the following order:

(
x′1, x

′
2
)
= L2F (x1, x2, P1, P2) ,

(
P′1, P

′
2
)
= RTS (x1, x2, P1, P2) (16)

(
x′′1 , x

′
3
)
= L2F (x′1, x3, P′1, P3

)
,

(
P′′1 , P

′
3
)
= RTS (x′′1 , x′3, P′1, P3

) (17)
(
x′′2 , x

′′
3
)
= L2F (x′2, x′3, P′2, P′3

)
,

(
P′′2 , P

′′
3
)
= RTS (x′′2 , x′′3 , P′2, P′3

)
. (18)

If all three L2F applications gave zero-slack solutions, then position trajectories p′′1 , p
′′
2 , p

′′
3 pairwise

satisfy mutual separation requirement, e.g.:
"""|p ′′1,k − p ′′2,k """ | ≥ δ , ∀k ∈ {0, . . . ,H } (19)
"""|p ′′1,k − p ′′3,k """ | ≥ δ , ∀k ∈ {0, . . . ,H } (20)
"""|p ′′2,k − p ′′3,k """ | ≥ δ , ∀k ∈ {0, . . . ,H }, (21)

and are within their corresponding robustness tubes:

p′′j ∈ P′′j , ∀j ∈ {1, 2, 3}. (22)

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

35:16 A. Rodionova et al.

By induction, we can extend Lemma 5.3 to any number of UASs. Therefore, we can conclude
that for any N preplanned UAS trajectories, zero-slack solution of LNF is a su!cient condition
for CA; e.g., resulting trajectories generated by LNF are non-con"icting and within the robustness
tubes of the initial trajectories. Note that this approach can still fail to $nd a solution, especially
as repeated RTS can result in empty robustness tubes.

Theorem 5.4. For the case of N UASs, when applied at any time step k , LNF (Algorithm 3) termi-
nates after no more than

(
N
2
)

applications of pairwise L2F (Algorithm 1).

This result follows directly from the inductive application of Lemma 5.3. In experimental eval-
uations (Section 6.3), we see that this worst-case number of L2F applications is not required often
in practice.

6 EXPERIMENTAL EVALUATION OF L2F AND LNF
In this section, we show the performance of our proposed methods via extensive simulations, as
well as an implementation for actual quad-rotor robots. We compare L2F and L2F with repair
(L2F+Rep) with the MILP formulation of Section 3 and two other baseline approaches. Through
multiple case studies, we show how LNF extends the L2F framework to work for scenarios with
more than two UASs.

6.1 Experimental Setup
Computation Platform. All the simulations were performed on a computer with an AMD Ryzen
7 2700 eight-core processor and 16GB RAM, running Python 3.6 on Ubuntu 18.04.
Generating Training Data. We have generated the dataset of 14K trajectories for training with
collisions between UASs using the trajectory generator in [25]. The look-ahead horizon was set
to T = 4s and dt = 0.1s. Thus, each trajectory consists of H + 1 = 41 time steps. The initial and
$nal waypoints were sampled uniformly at random from two 3D cubes close to the $xed collision
point; initial velocities were set to zero.
Implementation Details for the Learning-Based Con"ict Resolution. The MILP to generate
training data for the supervised learning of the CR scheme was implemented in MATLAB using
Yalmip [20] with MOSEK v8 as the solver. The learning-based CR scheme was trained for ρ = 0.055
and minimum separation δ = 0.1m, which is close to the lower bound in Assumption 2. This was
implemented in Python 3.6 with Tensor"ow 1.14 and Keras API and Casadi with qpOASES as the
solver. For training the LSTM models (with di#erent architectures) for CR, the number of training
epochs was set to 2K with a batch size of 2K. Each network was trained to minimize categorical
cross-entropy loss using the Adam optimizer [15] with a training rate of α = 0.001 and moment
exponential decay rates of β1 = 0.9 and β2 = 0.999. The model with three LSTM layers with 128
neurons each (see Figure 3) was chosen as the default learning-based CR model and is used for the
pairwise CA approach of both L2F and LNF.
Implementation Details for the CA-MPC. For the online implementation of our scheme, we
implement CA-MPC using CVXgen and report the computation times for this implementation.
We then import CA-MPC in Python, interface it with the CR scheme, and run all simulations in
Python.

6.2 Experimental Evaluation of L2F
We evaluate the performance of L2F with 10K test trajectories (for pairwise CA) generated using
the same distribution of start and end positions as was used for training. Figure 6 shows an ex-
ample of two UAS trajectories before and after L2F. Successful avoidance of the collision at the
midway point on the trajectories can easily be seen on the playback of the scenario available at

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:17

Fig. 6. Trajectories for two UASs from di!erent angles. The
dashed (planned) trajectories have a collision at the halfway
point. The solid ones, generated through the L2F method, avoid
the collision while remaining within the robustness tube of the
original trajectories. Initial UAS positions marked as stars. Play-
back of the scenario is at https://tinyurl.com/l2f-exmpl.

Fig. 7. Trajectories for two Crazyflie
quad-rotors before (do"ed) and a#er
(solid) L2F. Videos of this are at https:
//tinyurl.com/exp-cf2.

https://tinyurl.com/l2f-exmpl. To demonstrate the feasibility of the decon"icted trajectories, we
also ran experiments using two Crazy"ie quad-rotor robots as shown in Figure 7. Videos of the
actual "ights and additional simulations can be found at https://tinyurl.com/exp-cf2.

6.2.1 Results and Comparison to Other Methods. We analyzed three other methods alongside
the proposed learning-based approach for L2F.

(1) A random decision approach that outputs a sequence sampled from the discrete uniform
distribution.

(2) A greedy approach that selects the discrete decisions that correspond to the direction of the
most separation between the two UASs at each time step. For more details see [32].

(3) An L2F with Repairing approach following Section 4.3.
(4) A centralized MILP solution that picks decisions corresponding to binary decision variables

in Equation (5).
For the evaluation, we measured and compared the separation rate and the computation

time for all the methods over the same 10K test trajectories. Separation rate de$nes the fraction
of the con"icting trajectories for which UAS managed to achieve minimum separation after a CA
approach. Figure 8 shows the impact of the ρ/δ ratio on separation rate. Higher ρ/δ implies wider
robustness tubes for the UAS to maneuver within, which should make the CA task easier as is seen
in the $gure. The centralized MILP has a separation rate of 1 for each case here but is unsuitable
for an online implementation with its computation time being over a minute (see Table 1), and
we exclude it from the comparisons in the text that follows. In the case of ρ/δ = 0.5, where
the robustness tubes are just wide enough to $t two UASs (see Assumption 2), we see that L2F
with repairing (L2F+Rep) signi$cantly outperforms the methods. This worst-case performance of
L2F with repairing is 0.999, which is signi$cantly better than the other approaches including the
original L2F. As the ratio grows, the performance of all methods improves, with L2F+Rep still

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

https://tinyurl.com/l2f-exmpl
https://tinyurl.com/exp-cf2
https://tinyurl.com/l2f-exmpl
https://tinyurl.com/exp-cf2

35:18 A. Rodionova et al.

Fig. 8. Model sensitivity analysis with respect to variations of fraction ρ/δ , which connects the minimum
allowable robustness tube radius ρ to the minimum allowable separation between two UASs δ ; see Assump-
tion 2. A higher ρ/δ implies there is more room within the robustness tubes to maneuver for CA.

Table 1. Separation Rates and Computation Times (Mean and Standard Deviation)
Comparison of Di!erent CA Schemes

CA Scheme
Random Greedy L2F L2F+Rep MILP

Separation rate
ρ/δ = 0.5 0.311 0.528 0.899 0.999 1
ρ/δ = 0.95 0.605 0.825 0.999 1 1
ρ/δ = 1.15 0.659 0.989 1 1 1

Comput. time (ms)
(mean ± std)

ρ/δ = 0.5 7.9 ± 0.01 9.7 ± 0.6 9.1 ± 1.3 9.7 ± 3.6 (98.9 ± 44.9) · 103

ρ/δ = 0.95 7.5 ± 0.01 9.3 ± 0.5 8.7 ± 0.5 8.7 ± 0.5 (82.5 ± 36.3) · 103

ρ/δ = 1.15 6.3 ± 1.9 7.1 ± 2. 8.6 ± 0.5 8.7 ± 0.4 (33.1 ± 34.9) · 103

Separation rate is the fraction of con"icting trajectories for which the separation requirement (Equation (2a)) is
satis$ed after CA. Computation time estimates the overall time demanded by the CA scheme. MILP reports the time
spent on solving Equation (5). Other CA schemes report time needed for CR and CA-MPC together. L2F with
repairing includes repairing time as well.

outperforming the others and quickly reaching a separation rate of 1. For ρ/δ ≥ 1.15, L2F no
longer requires any repair and also has a separation rate of 1.

Table 1 shows the separation rates for three di#erent ρ/δ values as well as the computation
times (mean and standard deviation) for each CA algorithm. L2F and L2F+Rep have an average
computation time of less than 10ms, making them suited for an online implementation even at our
chosen control sampling rate of 10Hz. For all CA schemes excluding MILP, the smaller the ρ/δ
ratio, the more UAS 1 alone is unsuccessful at collision avoidance MPC (Equation (7)), and UAS 2
must also solve its CA-MPC (Equation (8)) and deviate from its preplanned trajectory. Therefore,
computation time is higher for smaller ρ/δ ratios and lower for higher ρ/δ values. A similar trend
is observed for the MILP, even though it jointly solves for both UASs, showing that it is indeed
harder to $nd a solution when the ρ/δ ratio is small.

6.3 Experimental Evaluation of LNF
Next, we carry out simulations to evaluate the performance of LNF, especially in terms of scalability
to cases with more than two UASs, and analyze its performance in a wide variety of settings.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:19

Fig. 9. Four-UAS position swap. (a): 3D representation of the scenario. (b) and (c): 2D projections of the
scenario onto the horizontal plane XoY before and a#er collision avoidance. Initial colliding trajectories are
depicted in dashed lines in (a) and (b). Collision is detected at point (0, 0, 0); it involves all four UASs and
happens simultaneously across the agents. The updated non-colliding trajectories generated by LNF are
depicted in solid color in (a) and (c). Initial positions of UAS are marked by “O” and final positions by “!.”

6.3.1 Case Study 1: Four-UAS Position Swap. We recreate the following experiment from [3].
Here, two pairs of UASs must maneuver to swap their positions; i.e., the end point of each UAS
is the same as the starting position for another UAS. See the 3D representation of the scenario in
Figure 9(a). Each UAS start set is assumed to be a singular point $xed at

Goal1 = (1, 0, 0), Goal2 = (0, 1, 0), Goal3 = (−1, 0, 0), Goal4 = (0,−1, 0), (23)
and goal states are antipodal to the start states:

Startj = −Goalj , ∀j ∈ {1, 2, 3, 4}. (24)
All four UASs must reach desired goal states within 4 seconds while avoiding each other. With

a pairwise separation requirement of at least δ = 0.1 meters, the overall mission speci$cation is

φmission =

4∧

j=1
![0,4] (pj ∈ Goalj) ∧

∧

j#j′
![0,4] | |pj − pj′ | | ≥ 0.1. (25)

Following Section 2.2, initial preplanning is done by ignoring the mutual separation requirement
in Equation (25) and generating the trajectory for each UAS j = {1, 2, 3, 4} independently with
respect to its individual STL speci$cation:

φ j = ![0,4] (pj ∈ Goalj). (26)
Obtained preplanned trajectories contain a joint collision that happens simultaneously (at t = 2s;
see Figure 10) across all four UASs and located at point (0, 0, 0); see Figure 9(b). For LNF experi-
mental evaluation, the robustness value was $xed at ρ = 0.055 and the UAS priorities were set in
increasing order; e.g., the UAS with a lower index has the lower priority: 1 < 2 < 3 < 4.

Simulation Results. The non-colliding trajectories generated by LNF are depicted in
Figure 9(c). Playback of the scenario can be found at https://tinyurl.com/swap-pos.

It is observed that the opposite UAS pairs chose to change attitude and pass over each other;
see Figure 9(a). Within these opposite pairs, UASs chose to have horizontal deviations to avoid
collision; see Figure 9(c). The LNF algorithm performed

(4
2
)
= 6 pairwise applications of L2F (see

Theorem 5.4). Such a high number of applications is expected due to the complicated simultane-
ous nature of the detected collision across the initially preplanned trajectories. No CR repairing

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

https://tinyurl.com/swap-pos

35:20 A. Rodionova et al.

Fig. 10. Four-UAS position swap: Relative distances before (top) and a#er (bo"om) the collision avoidance
algorithm. Initial simultaneous collisions across all four UASs are successfully resolved by LNF. Note that
the symmetry in the initial positions and trajectories results in multiple UAS pairs with the same relative
distances for the time horizon of interest before collision avoidance (top).

was required to successfully produce noncolliding trajectories by the LNF algorithm. It took LNF
37.8ms to perform CA. Figure 10 represents relative distances between UAS pairs before and after
collision avoidance. Figure 10 shows that none of the UASs cross the safe minimum separation
threshold of 0.1m after LNF; e.g., joint collision has been successfully resolved by LNF.

6.3.2 Case Study 2: Four-UAS Reach-Avoid Mission. Figure 11 depicts a multi-UAS case study
with a reach-avoid mission. The scenario consists of four UASs that must reach desired goal states
within 4 seconds while avoiding the wall obstacle and each other. Each UAS j ∈ {1, . . . , 4} speci$-
cation can be de$ned as:

φ j = ![0,4] (pj ∈ Goalj) ∧ ![0,4]¬(pj ∈ Wall). (27)
A pairwise separations requirement of δ = 0.1 meters is enforced for all UASs; therefore, the
overall mission speci$cation is

φmission =
4∧

j=1
φ j ∧

∧

j#j′
![0,4] | |pj − pj′ | | ≥ 0.1. (28)

First, we solved the planning problem for all four UASs in a centralized manner following the
approach from [29]. Next, we solved the planning problem for each UAS j and its speci$cation
φ j independently, with calling LNF on the "y, after planning is complete. This way, independent
planning with the online collision avoidance scheme guarantees the satisfaction of the overall
mission speci$cation (Equation (28)).

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:21

Fig. 11. Reach-avoid mission. Non-colliding trajectories for four UASs generated by LNF. All UASs reach their
goal sets (green boxes) within 4 seconds, do not crash into the vertical wall (in red), and satisfy the pairwise
separation requirement of 0.1m. Initial UAS positions marked by magenta “!.” Simulations are available at
https://tinyurl.com/reach-av.

Table 2. Reach-Avoid Mission

Centralized Planning [29] Decentralized Planning with CA
Independent Planning CA with LNF

Comput. time (mean ± std)(ms) 345.8 ± 87.2 138.6 ± 62.4 9.97 ± 0.4
Computation time (mean and standard deviation) comparison between centralized planning following [29] and
decentralized planning (independent planning with LNF) over 100 runs of the scenario.

Simulation Results. We have simulated the scenario for 100 di#erent initial conditions. Com-
putation time results are presented in Table 2. The average computation time to generate tra-
jectories in a centralized manner was 0.35 seconds. The average time per UAS when planning
independently (and in parallel) was 0.1 seconds. These results demonstrate a speedup of 3.5×
for the individual UAS planning versus centralized [29]. Scenario simulations are available at
https://tinyurl.com/reach-av.

6.3.3 Case Study 3: UAS Operations in High-Density Airspace. To verify the scalability of LNF,
we perform evaluation of the scenario with high-density UAS operations. The case study con-
sists of multiple UASs "ying within the restricted area of 1m3 while avoiding a no-"y zone of
(0.2)3 = 0.08m3 in the center; see Figure 12. Such a scenario represents a hypothetical constrained
and highly populated airspace with heterogeneous UAS missions such as package delivery or aerial
surveillance.

Each UAS’s j start position Startj and goal set Goalj are chosen at (uniform) random on the op-
posite random faces of the unit cube. Goal state should be reached within a 4-second time interval
and the no-"y zone must be avoided during this time interval. Same as in the previous case studies,
we $rst solve the planning problem for each UAS j separately following the trajectory generation
approach from [29]. The STL speci$cation for UAS j is captured as follows:

φ j = ![0,4] (pj ∈ Goalj) ∧ ![0,4]¬(pj ∈ NoFly). (29)

After planning is complete and trajectories pj are generated, we call LNF on the "y to satisfy
the overall mission speci$cation φmission =

∧N
j=1 φ j ∧ φseparation, where N is a number of UASs

participating in the scenario and φmission is the requirement of the minimum allowed pairwise

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

https://tinyurl.com/reach-av
https://tinyurl.com/reach-av

35:22 A. Rodionova et al.

Fig. 12. 3D representation of the unit cube scenario with
20 UASs. All UASs must reach their goal sets within 4 sec-
onds, avoid the no-fly zone, and satisfy pairwise separation
requirement of 0.1m. Initially planned trajectories (dashed
lines) had five violations of the mutual separation require-
ment. LNF successfully resolved all detected violations and
led to non-colliding trajectories (solid lines). Simulations are
available at https://tinyurl.com/unit-cube.

separation of 0.1m between the UAS:

φseparation =
∧

j, j′: j#j′
![0,4] | |pj − pj′ | | ≥ 0.1. (30)

We increase the density of the scenario by increasing the number of UASs while keeping the
space volume at 1m3.

Simulation Results. We ran 100 simulations for various numbers of UASs, each with random-
ized start and goal positions. Trajectory preplanning was done independently for all UASs, and
LNF is tasked with CA. For evaluation, we measure the overall number of minimum separation
requirement violations before and after LNF for two di#erent settings of the fraction ρ/δ : narrow
robustness tube, ρ/δ = 0.5, and wider tube, ρ/δ = 1.15; see Figure 13. With increasing num-
ber of UASs, the number of collisions between initially preplanned trajectories increases (before
LNF) and the number of not collisions by LNF, while small, increases as well (Figure 13(b)). The
corresponding decay in separation rate over pairs of collisions resolved is faster for the case of
ρ/δ = 0.5, which is expected due to less room to maneuver. The separation rate is higher when
the ρ/δ ratio is higher; see Figure 13(a). We performed simulations for up to 70 UASs. The average
separation rate for 70 UASs is 0.915 for ρ/δ = 0.5 and 0.987 for ρ/δ = 1.15. The results show that
LNF can still succeed in scenarios with a high UAS density. Videos of the simulations are available
at https://tinyurl.com/unit-cube.

6.3.4 Comparison to MILP-Based Replanning. LNF requires the new trajectories after CA to be
be within the robustness tubes of preplanned trajectories to still satisfy other high-level require-
ments (Problem 1). While this might be restrictive, we show that online replanning is usually not
an option in these multi-UAS scenarios. An MILP-based planner, similar in essence to [31], was im-
plemented and treated as a baseline to compare against LNF through evaluations on the scenario
of Section 6.3.3. Unlike the decentralized LNF, such MILP planner baseline is centralized as it plans
for all the UASs in a single optimization to avoid the no-"y zone, reach their destinations, and also
avoid each other.

We ran 100 simulations for various numbers of UASs, with each iteration having randomized
start and goal positions. Simulations are available at https://tinyurl.com/re-milp. The computation
times are presented in Table 3. As the number of UASs increases, it is clear the online replanning
is intractable. For example, the baseline takes on average 8.8 seconds to produce trajectories for 20
UASs, in contrast with 73.1 milliseconds for LNF to perform CA. For 50 UASs and higher the MILP
baseline solver could not return a single feasible solution, while LNF could. LNF outperforms the

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

https://tinyurl.com/unit-cube
https://tinyurl.com/unit-cube
https://tinyurl.com/re-milp

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:23

Fig. 13. Unit cube scenario. Model performance analysis with respect to variations in the number of UASs
for two di!erent se"ings of ρ/δ . A higher ρ/δ implies there is more room within the robustness tubes to ma-
neuver for CA. Performance is measured in terms of separation rate (a) and the overall number of minimum
separation requirement violations before and a#er LNF (b). We plot the mean and standard deviation over
100 iterations.

Table 3. Computation Times (Mean and Standard Deviation) Demanded by the Replanning Scheme
(MILP-Based Replanning or CA with LNF) Averaged over 100 Random Runs

Replanning Scheme N = 10 N = 20 N = 30 N = 40 N = 50
Comp. times
(mean ± std)

MILP-based planner 0.6 ± 0.1s 8.8 ± 9.6s 175.5 ± 149.9s 1740. ± 129.3s Timeout
CA with LNF 15.2 ± 5.1ms73.1 ± 23.5ms117.3 ± 45.6ms198.7 ± 73.6ms211.1 ± 82.3ms

Time taken by the MILP-based replanner to encode the problem is not included in the overall computation time.
“Timeout” stands for a timeout after 35 minutes.

MILP-based replanning baseline since it can perform CA with small computation times, even for
a high number of UASs.

7 CONCLUSIONS
Summary. We presented L2F, an online, decentralized, and mission-aware scheme for pairwise
UAS collision avoidance. Through LNF, we extended it to work for cases where more than two
UASs are on collision paths, via a systematic pairwise application of L2F and with a set-shrinking
approach to avoid live-lock like situations. These frameworks combine learning-based decision-
making and decentralized linear optimization-based MPC to perform CA, and we also developed
a fast heuristic to repair the decisions made by the learning-based component based on the fea-
sibility of the optimizations. Through extensive simulation, we showed that our approach has a
computation time of the order of milliseconds and can perform CA for a wide variety of cases with
a high success rate even when the UAS density in the airspace is high.
Limitations and Future Work. While our approach works very well in practice, it is not complete,
i.e., does not guarantee a solution when one exists, as seen in simulation results for L2F. This
drawback requires a careful analysis for obtaining the sets of initial conditions over the con"icting
UASs such that our method is guaranteed to work. In future work, we aim to leverage tools from
formal methods, like falsi$cation, to get a reasonable estimate of the conditions in which our
method is guaranteed to work. We will also explore improved heuristics for the set-shrinking in
LNF, as well as the CR decision repairing procedure.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

35:24 A. Rodionova et al.

APPENDICES
A ROBUSTNESS TUBE SHRINKING

De!nition 3. The distance between two sets A and B is de$ned as

dist(A,B) = inf {| |a − b | |∞ | a ∈ A, b ∈ B}. (31)

De!nition 4. Two robustness tubes P1 and P2 are said to be δ -separate from each other if at
every time step k the distance between them is at least δ , i.e.:

dist(P1,k , P2,k) ≥ δ ∀k = 0, . . . ,H . (32)

For brevity we use dist(P1, P2) ≥ δ for denoting being δ -separate across all time indices k =
0, . . . ,H .

Proof of Theorem 5.3. By construction of RTS; see Algorithm 4. If initial tubes are δ -separate,
then no shrinking is required and therefore, both Properties (13) and (12) are satis$ed. If the initial
tubes are not δ -separate, Property (13) comes from the fact that for any time step k , P ′j,k = Pj,k \Πk

for UAS j = 1, 2. Property (12) is a consequence of the zero-slack solution and Theorem 4.1, which
states that resulting trajectories are non-con"icting, | |p ′1,k − p ′2,k | | ≥ δ , ∀k ∈ {0, . . . ,H }; therefore,
msep ≥ δ . Following Algorithm 4, for any time step k box’s Πk smallest edge is min(msep,δ) = δ ,
and since for both UAS j = 1, 2 the tube update is de$ned as P ′j,k = Pj,k \ Πk , the shrinked tubes
P ′j,k are δ -separate. !

Proof of Lemma 5.1. From the CA-MPC de$nition (Equation (6)) it follows that p′j ∈ Pj , ∀j ∈
{1, 2}. The updated tubes are de$ned as P′j = Pj \Π ; see Algorithm 4. By the de$nition of 3D cube
Π , for any time step k , p ′j,k " Πk ; therefore, p′j ∈ P′j , ∀j ∈ {1, 2}. !

Proof of Lemma 5.2. Following De$nition 4, tubes are δ -separate if dist(P1,k , P2,k) ≥ δ , ∀k ∈
{0, . . . ,H }. Therefore, due to Equation (31), the following holds:

inf { | |p1,k − p2,k | | | p1,k ∈ P1,k , p2,k ∈ P2,k
} ≥ δ . (33)

By the de$nition of the in$mum operator, ∀p1,k ∈ P1,k ,∀p2,k ∈ P2,k :

| |p1,k − p2,k | | ≥ inf {| |p1,k − p2,k | | | p1,k ∈ P1,k , p2,k ∈ P2,k
} ≥ δ , (34)

which completes the proof. !

Proof of Lemma 5.3. (1) Property (21) directly follows from Theorem 4.1.
(2) Due to Theorem 5.3, RTS application (17) leads to tubes P′′1 and P′3 being δ -separate. RTS (18)

leads to P′′3 ⊆ P′3. Therefore, P′′1 and P′′3 are δ -separate and following Lemma 5.2, property (20)
holds.

(3) Analogously, due to Theorem 5.3, RTS application (16) leads to tubes P′1 and P′2 being δ -
separate. RTS (17) leads to P′′1 ⊆ P′1 and RTS (18) leads to P′′2 ⊆ P′2. Therefore, P′′1 and P′′2 are
δ -separate and following Lemma 5.2, Property (19) holds.

(4) Tube-belonging Property (22) follows directly from Lemma 5.1.
!

B LINKS TO THE VIDEOS
Table 4 has the links for the visualizations of all simulations and experiments performed in this
work.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

Learning-‘N-Flying: A Learning-Based, Decentralized Mission-Aware UAS CA Scheme 35:25

Table 4. Links for the Videos for Simulations and Experiments

Scenario Section Platform # of UAS Link
L2F test Section 6.2 Sim. 2 https://tinyurl.com/l2f-exmpl

Crazy"ie validation Section 6.2 CF 2.0 2 https://tinyurl.com/exp-cf2
Four-UAS position swap Section 6.3.1 Sim. 4 https://tinyurl.com/swap-pos

Four-UAS reach-avoid mission Section 6.3.2 Sim. 4 https://tinyurl.com/reach-av
High-density unit cube Section 6.3.3 Sim. 10, 20, 40 https://tinyurl.com/unit-cube

MILP replanning Sec 6.3.4 MATLAB 20 https://tinyurl.com/re-milp
“Sim.” stands for Python simulations, “CF2.0” for experiments on the Crazy"ies.

REFERENCES
[1] Federal Aviation Administration. 2018. Concept of Operations: Unmanned Aircraft System (UAS) Tra!c Management

(UTM). https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf.
[2] Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. 2016. Q-Learning for robust satisfaction

of signal temporal logic speci$cations. In IEEE Conference on Decision and Control.
[3] Javier Alonso-Mora, Tobias Naegeli, Roland Siegwart, and Paul Beardsley. 2015. Collision avoidance for aerial vehicles

in multi-agent scenarios. Autonomous Robots 39, 1 (2015), 101–121.
[4] Anjan Chakrabarty, Corey Ippolito, Joshua Baculi, Kalmanje Krishnakumar, and Sebastian Hening. 2019. Vehicle to

Vehicle (V2V) communication for Collision avoidance for Multi-copters "ying in UTM–TCL4. https://doi.org/10.2514/
6.2019-0690

[5] Mohammed Dahleh, Munther A. Dahleh, and George Verghese. 2004. Lectures on dynamic systems and control. MIT
Lecture Notes 4, 100 (2004), 1–100.

[6] Jonathan A. DeCastro, Javier Alonso-Mora, Vasumathi Raman, and Hadas Kress-Gazit. 2017. Collision-free reactive
mission and motion planning for multi-robot systems. In Springer Proceedings in Advanced Robotics.

[7] Ankush Desai, Indranil Saha, Yang Jianqiao, Shaz Qadeer, and Sanjit A. Seshia. 2017. DRONA: A framework for safe
distributed mobile robotics. In ACM/IEEE International Conference on Cyber-Physical Systems.

[8] Francisco Fabra, Willian Zamora, Julio Sangüesa, Carlos T. Calafate, Juan-Carlos Cano, and Pietro Manzoni. 2019.
A distributed approach for collision avoidance between multirotor UAVs following planned missions. Sensors 19, 10
(2019), 2404.

[9] G. Fainekos and G. Pappas. 2009. Robustness of temporal logic speci$cations for continuous-time signals. Theoretical
Computer Science 410, 42 (2009), 4262–4291.

[10] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. 2005. Hybrid controllers for path planning: A temporal logic ap-
proach. In Proceedings of the 44th IEEE Conference on Decision and Control. 4885–4890. https://doi.org/10.1109/CDC.
2005.1582935

[11] Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmidhuber. 2002. Learning precise timing with LSTM recurrent
networks. Journal of Machine Learning Research 3, (2002), 115–143.

[12] Davis L. Hackenberg. 2018. ARMD Urban Air Mobility Grand Challenge: UAM Grand Challenge Scenarios. https:
//evtol.news/__media/PDFs/eVTOL-NASA-Revised_UAM_Grand_Challenge_Scenarios.pdf. (2018).

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–1780.
[14] S. Karaman and E. Frazzoli. 2011. Linear temporal logic vehicle routing with applications to multi-UAV mission plan-

ning. International Journal of Robust and Nonlinear Control 21, 12 (2011), 1372–1395.
[15] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014).
[16] M. Kloetzer and C. Belta. 2006. Hierarchical abstractions for robotic swarms. In Proc. of 2006 IEEE International Con-

ference on Robotics and Automation. 952–957. https://doi.org/10.1109/ROBOT.2006.1641832
[17] M. Kloetzer and C. Belta. 2008. A fully automated framework for control of linear systems from temporal logic speci-

$cations. IEEE Transactions on Automatic Control 53, 1 (Feb. 2008), 287–297. https://doi.org/10.1109/TAC.2007.914952
[18] Mykel J. Kochenderfer, Jessica E. Holland, and James P. Chryssanthacopoulos. 2012. Next-Generation Airborne Collision

Avoidance System. Technical Report. MIT-Lincoln Laboratory, Lexington, KY.
[19] M. Z. Li, W. R. Tam, S. M. Prakash, J. F. Kennedy, M. S. Ryerson, D. Lee, and Y. V. Pant. 2018. Design and implementation

of a centralized system for autonomous unmanned aerial vehicle trajectory con"ict resolution. In Proceedings of IEEE
National Aerospace and Electronics Conference.

[20] Johan Lofberg. 2004. YALMIP: A toolbox for modeling and optimization in MATLAB. In 2004 IEEE International Con-
ference on Robotics and Automation (IEEE Cat. No. 04CH37508). IEEE, 284–289.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

https://tinyurl.com/l2f-exmpl
https://tinyurl.com/exp-cf2
https://tinyurl.com/swap-pos
https://tinyurl.com/reach-av
https://tinyurl.com/unit-cube
https://tinyurl.com/re-milp
https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://doi.org/10.2514/6.2019-0690
https://doi.org/10.1109/CDC.2005.1582935
https://evtol.news/__media/PDFs/eVTOL-NASA-Revised_UAM_Grand_Challenge_Scenarios.pdf
https://doi.org/10.1109/ROBOT.2006.1641832
https://doi.org/10.1109/TAC.2007.914952

35:26 A. Rodionova et al.

[21] Teppo Luukkonen. 2011. Modelling and control of quadcopter. Independent Research Project in Applied Mathematics,
Espoo 22 (2011).

[22] Xiaobai Ma, Ziyuan Jiao, and Zhenkai Wang. 2016. Decentralized prioritized motion planning for multiple autonomous
UAVs in 3D polygonal obstacle environments. In International Conference on Unmanned Aircraft Systems.

[23] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of Continuous Signals. Springer, Berlin.
[24] G. Manfredi and Y. Jestin. 2016. An introduction to ACAS Xu and the challenges ahead. In 2016 IEEE/AIAA 35th Digital

Avionics Systems Conference (DASC’16). 1–9. https://doi.org/10.1109/DASC.2016.7778055
[25] Mark W. Mueller, Markus Hehn, and Ra#aello D’Andrea. 2015. A computationally e!cient motion primitive for

quadrocopter trajectory generation. IEEE Transactions on Robotics 31, 6 (2015), 1294–1310.
[26] NASA. 2018. Executive Brie$ng: Urban Air Mobility (UAM) Market Study. https://www.nasa.gov/sites/default/$les/

atoms/$les/bah_uam_executive_brie$ng_181005_tagged.pdf.
[27] Yash Vardhan Pant, Houssam Abbas, and Rahul Mangharam. 2017. Smooth operator: Control using the smooth ro-

bustness of temporal logic. In 2017 IEEE Conference on Control Technology and Applications. IEEE, 1235–1240.
[28] Yash Vardhan Pant, Houssam Abbas, Kartik Mohta, Truong X. Nghiem, Joseph Devietti, and Rahul Mangharam. 2015.

Co-design of anytime computation and robust control. In 2015 IEEE Real-Time Systems Symposium. IEEE, 43–52.
[29] Yash Vardhan Pant, Houssam Abbas, Rhudii A. Quaye, and Rahul Mangharam. 2018. Fly-by-logic: Control of multi-

drone "eets with temporal logic objectives. In Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems. IEEE Press, 186–197.

[30] V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia. 2014. Model predictive
control with signal temporal logic speci$cations. In 53rd IEEE Conference on Decision and Control. 81–87. https://doi.
org/10.1109/CDC.2014.7039363

[31] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M. Murray, Alberto Sangiovanni-Vincentelli, and
Sanjit A. Seshia. 2014. Model predictive control with signal temporal logic speci$cations. In 53rd IEEE Conference on
Decision and Control. IEEE, 81–87.

[32] Alena Rodionova, Yash Vardhan Pant, Kuk Jang, Houssam Abbas, and Rahul Mangharam. 2020. Learning to Fly -
Learning-based Collision Avoidance for Scalable Urban Air Mobility. In Proceedings of the IEEE International Confer-
ence on Intelligent Transportation Systems. http://arxiv.org/abs/2006.13267.

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/s11263-015-
0816-y

[34] Indranil Saha, Ramaithitima Rattanachai, Vijay Kumar, George J. Pappas, and Sanjit A. Seshia. 2014. Automated compo-
sition of motion primitives for multi-robot systems from safe LTL speci$cations. In IEEE/RSJ International Conference
on Intelligent Robots and Systems.

[35] S. Saha and A. Agung Julius. 2016. An MILP approach for real-time optimal controller synthesis with Metric Temporal
Logic speci$cations. In Proceedings of the 2016 American Control Conference (ACC’16).

Received August 2020; revised December 2020; accepted January 2021

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 35. Publication date: September 2021.

https://doi.org/10.1109/DASC.2016.7778055
https://www.nasa.gov/sites/default/files/atoms/files/bah_uam_executive_briefing_181005_tagged.pdf
https://doi.org/10.1109/CDC.2014.7039363
http://arxiv.org/abs/2006.13267
https://doi.org/10.1007/s11263-015-0816-y

