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Abstract

We propose a variational multiscale method stabilization of a linear finite element method for nonlinear poroelasticity. Our
approach is suitable for the implicit time integration of poroelastic formulations in which the solid skeleton is anisotropic and
incompressible. A detailed numerical methodology is presented for a monolithic formulation that includes both structural
dynamics and Darcy flow. Our implementation of this methodology is verified using several hyperelastic and poroelastic
benchmark cases, and excellent agreement is obtained with the literature. Grid convergence studies for both anisotropic
hyperelastodynamics and poroelastodynamics demonstrate that the method is second-order accurate. The capabilities of our
approach are demonstrated using a model of the left ventricle (LV) of the heart derived from human imaging data. Simulations
using this model indicate that the anisotropicity of the myocardium has a substantial influence on the pore pressure. Furthermore,
the temporal variations of the various components of the pore pressure (hydrostatic pressure and pressure resulting from changes
in the volume of the pore fluid) are correlated with the variation of the added mass and dynamics of the LV, with maximum
pore pressure being obtained at peak systole. The order of magnitude and the temporal variation of the pore pressure are in
good agreement with the literature.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cardiac perfusion, a mechanism by which blood is removed and delivered to the myocardium, plays a significant
role in heart function. Cardiovascular magnetic resonance imaging is the most commonly used experimental tech-
nique for acquiring perfusion data [1,2]. Computational methods such as the finite element method (FEM) provide
an alternative to medical imaging and promise to provide insight into the mechanism of perfusion. Computational
methods for modelling perfusion require a poroelastodynamic framework that describes the unsteady coupled
interaction between the elastodynamics of a solid and fluid dynamics within the pores of the solid. Poroelasticity
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is also used in other areas of biomechanics, including in models of cartilage, liver, and cornea, and it also has
been widely applied in geomechanics and hydrogeology [3—5]. The complete modelling of poroelastodynamics can
be considered within a fluid—structure interaction framework that resolves each pore. However, it is difficult to
obtain accurate information about the pores, such as the shape and connectivity between them, and simulations of
models with this level of detail are generally computationally intractable. Thus, homogenized models are commonly
employed [6—10]. In these reduced models, homogenization converts the small-scale phenomenon into macroscopic
quantities by considering the poroelastic medium to be a homogenized mixture of solid and fluid. In such models, the
solid part is often called the skeleton [11,12]. For cardiac perfusion, the myocardium is considered a homogeneous
mixture of a solid skeleton compartment consisting of cardiac myocytes and collagen and a fluid compartment
composed of coronary vessels to transport blood to and from the myocardium [11-13]. In homogenization, the
length scale of the pores is characterized by capillary permeability and porosity [14]. Using the poroelastic approach,
the Darcy flow assumption provides a continuous flow velocity and pressure in the pores [15]. Assuming Darcy
flow also simplifies the model by considering the velocity as the pressure gradient multiplied by the permeability
tensor [16].

Simulating poroelastodynamics in complex problems such as cardiac perfusion requires methods that can handle
the incompressibility or near incompressibility of the anisotropic, nonlinear skeleton together with Darcy flow.
In large deformation models, the need to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) criterion [17] makes it
challenging to treat the skeleton as either incompressible or nearly incompressible. Costa et al. [18] were among the
first to perform a complete three-dimensional finite element analysis of the left ventricle (LV) of the heart with large
deformation and a nonlinear and non-homogeneous incompressible model. They concluded that higher-order finite
elements are required for a stable, accurate solution. Yang et al. [19] conducted an FEM analysis of poroviscoelastic
soft tissue using biquadratic interpolation for the displacement of the skeleton and fluid pressure. They concluded
that the same order of interpolation for displacement and pressure would not satisfy the LBB criterion. Chapelle
et al. [11] studied the poroelastodynamics in an elliptical LV with near incompressibility of the skeleton using
FEM with first-order elements for the displacement and piecewise constant elements for the pressure. Richardson
et al. [13] studied the poroelastodynamics in a realistic human LV using an Immersed Boundary/Finite Element
method [20] that used first-order elements for both the displacement and velocity of the skeleton and the pore
pressure together with stabilization using a volumetric energy term. Cookson et al. [21] used a mixed method with
second-order elements for the displacement and first-order elements for the pressure for a comparably realistic LV.
Lee et al. [22] used a similar approach for the analysis of poroelastodynamics in a porcine LV.

It is well known that in the absence of stabilization, using first-order elements for both the displacement and
the pressure in incompressible and nearly incompressible material models leads to spurious pressure checkerboard
modes and volumetric locking [23]. Prior work yielded a stable method for incompressible elasticity and poroe-
lasticity through higher-order elements and reduced integration methods [24]. Because higher-order elements are
computationally expensive, another choice is to use first-order elements for the displacement and piecewise constant
elements for the pressure. However, such methods give only first-order accuracy for the pressure and are limited to
near incompressibility. Obtaining second-order accuracy for both displacement and pressure requires at least linear
elements for both displacement and pressure. Many stabilization techniques have been developed to enable the use
of equal-order elements, such as formulations that use a modified deformation gradient [23] or mean dilation [25].
Developments in the finite element method for fluid mechanics led to a stabilized method for incompressible fluid
with first-order elements for velocity and pressure [26,27]. Later, this method was extended to incompressible
static elasticity [28]. Klaas et al. [29] presented the stabilized finite element method for incompressible and nearly
incompressible static nonlinear hyperelasticity using linear elements for both displacement and pressure. Masud and
Truster [30] used a variational multiscale framework for the stabilization using linear elements. Scovazzi et al. [31]
and Zeng et al. [32] extended this method to unsteady formulations by adding a stabilization term corresponding to
the inertia force using the Dynamic Variational Multiscale (D-VMS) method. Rossi et al. [33] presented a detailed
formulation of the stabilized finite element method for unsteady hyperelasticity using an implicit time-stepping
method.

This study extends the D-VMS method for large deformation hyperelasticity and isotropic materials presented in
Rossi et al. [33] to a poroelastic anisotropic formulation suitable for complex biomechanical models, including
the LV. The stabilization term in our formulation includes contributions from the anisotropic elastodynamics
and poroelastodynamics. Grid convergence studies for anisotropic elastodynamics and poroelastodynamics test
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cases are presented. Further verification studies are reported for three-dimensional problems of shrinking and
expanding cubes [11]. The method’s capabilities are demonstrated by simulating LV dynamics and perfusion using
an anatomical model derived from human image data across three consecutive cardiac cycles.

2. Mathematical formulation

For the poroelastic medium, the homogeneous mixture formulation represents both solid and fluid as a single
continuum with porosity ¢, which represents the fraction of fluid volume in the porous medium, such that the
volume occupied by the fluid at time ¢ is

Vi) = /Q P(x, t)dx, (1)

in which (2 is the physical region occupied by the poroelastic medium at time ¢. The volume of the skeleton is the
difference between the total volume of {2, and the fluid volume V'(¢),

Vi) = V) = Vi) = /Q (I —¢(x,1)dx. 2

The deformation gradient tensor F of the homogeneous mixture is computed with respect to the skeleton
configuration and is defined by

ax
F=—, 3
e (3)
in which X are material coordinates of the skeleton in the reference configuration and x = x (X,t) are the

current coordinates of the material point X at time ¢. The Lagrangian displacement and velocity of the material are
u(X,t) =x—X and v(X, t) = u(X, t). We consider the balance equations for the poroelastodynamics problem in
Lagrangian form. Denoting the Jacobian determinant of the deformation mapping by J(X, ¢) = detF, the volumes
are

Vie) = / Jo (x (X,1),0)dX, V)= [ ¢o(X)dX, @)
.Q() ‘QO

Vi) =/ JA=¢(x (X,1),0)dX, VY0)= [ (I—do(X)dX, &)
2 2

in which (2 is the physical region occupied by the poroelastic medium in the reference configuration and ¢o(X) =

¢ (x (X, 0),0) is the porosity field in the reference configuration.

In the next section, we start by presenting the mathematical statement of the elastodynamics problem without
the presence of the pore fluid (¢ = 0). Then, we extend the formulation to poroelastodynamics using the mass and
momentum balance equations in the pore-fluid, coupled with the mass and momentum balance equations for the
homogeneous mixture.

2.1. Elastodynamics

The dynamics of a hyperelastic solid are fully described by the equations of mass and momentum balance.
Because there is no pore fluid, the homogeneous mixture is comprised solely of the skeleton and is referred to as
a solid. The mass balance equation states that the mass of a solid M(¢) does not change in time: M(t) = M(0).
Introducing the mass per unit volume in the current configuration p*(x,¢) and reference configuration pj(X) =
P (x(X,0),0), we have

M(z) :/ p*(x, 1) dx 2/ Jp*(x(X, 1), 1) dX = po(X) dX = M(0), (6)
2 2 2
or, locally,
Jp (X (X, 1), ) = py(X). )
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For an incompressible solid, J = 1 ar}d P*(x(X, 1), t) = p3(X). With this, differentiating the above equation with
respect to time yields the rate form, J = JV - v = 0, in which V - is the divergence in the current configuration.
Because v = v(X, ¢) is the Lagrangian structural velocity, this is stated in fully Lagrangian form by

H:Vxv=0, (8)

in which H = JF~T is the cofactor matrix of F. The cofactor matrix can be written more conveniently using the
cross product between matrices [34], H = %F x F (In fact, because the cross-product is a linear operator, in this
form, the linearization of the cofactor is straightforward.).

Momentum balance in the Lagrangian frame is

Py = Vx - (FS) + pib, ©)

in which b is the body force per unit mass, and S is the second Piola—Kirchhoff (PK2) stress. To model the
myocardium, we assume the PK2 stress can be additively decomposed into active and passive parts: S = S, + S,,.
The active stress S, is obtained from a contraction model, whereas the passive stress S;, is obtained from a strain
energy function ¥ = ¥ (C), such that

v (C)
S, =2 , 10
p 5C (10)
in which C = F’F is the right Cauchy—Green strain tensor. Eq. (10) corresponds to a hyperelastic material

description. To enforce the constraint (8), we introduce the Lagrange multiplier p(X, 7), which is identified as the
solid pressure [22]. Next, introducing the distortional component of the deformation gradient tensor F = J ~13F
and the corresponding distortional Cauchy—Green strain C = F”F, the strain energy function is

v (C,p)=W(C)—p(J—1), (11)
and the passive component of the PK2 stress becomes
aw (C)
aC

in which W(C) is the strain energy function corresponding to the isochoric deformations. Considering the Lagrange
multiplier p(X, t) to include any spherical component of the total stress, the total PK2 stress is modified to include
only the deviatoric part of the active stress, given as

S, =2 —pJCc, (12)

oW (C) L
S =S, + DEV[S,] = 2" _ pJC~' 4+ DEV[S,. (13)

0C
Here, DEV[S] is the PK2 stress tensor corresponding to the deviatoric Cauchy stress [35], given as

DEV[S] = JF 'dev[oc]F T =S — %(S - O)C!, (14)
where
devio] =0 — %tr(a)l. (15)

in which dev[o] is the deviatoric component of the Cauchy stress o. Because DEV[S] = 20 W((_J)/ 0C + DEVIS.],
and the first Piola—Kirchhoff stress tensor corresponding to the deviatoric Cauchy stress Dev[P] = J dev[o]FT =
P- % (P:F)F~T = F DEVIS], the final system of equations is

u=v, (16a)
po¥ = Vx - (Dev[P]) — Vy - (pH) + pgb, (16b)
0=H: Vyxv. (16¢)

Using Eq. (16a), it is possible to write the momentum equation (Eq. (16b)) as a second-order differential equation
in time. However, since a key part of the proposed stabilization method (explained later in Section 3.2) is that
it acts on the velocity field, it is convenient to write the equation as a first order system. As shown in Rossi
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et al. [33], after discretization, this choice results in a two-step algorithm in which we first solve for the velocity
and pressure fields and then update the displacement field. Note that, as demonstrated in Scovazzi et al. [31] for
isotropic incompressible and nearly incompressible elasticity, we obtain a stable scheme for the dynamic problem
only with velocity stabilization.

2.2. Poroelastodynamics

Although we consider both the skeleton and the pore fluid as incompressible, the homogeneous mixture may not
be incompressible due to the fluid moving within the skeleton [11,36]. The total mass of the homogeneous mixture
as a function of time is M (z) = Mf(r) + M5(¢) and is evaluated via

M'(t) = /{ 2 p(x,p'(x, 1) dx,  M(t) = /{ Z(l—«ﬁ(x,t))pS(x,z)dx. (17

The density of the mixture is p(x, t) = ¢(x, Dptx, )+ —¢(x, 1)p5(x, 1). For an unconfined poroelastic medium,
even if the fluid and the solid are incompressible, the mixture is generally not incompressible (p # pp) due to the
presence of an external source. For cardiac perfusion, the porous medium (myocardium) is connected to an external
source (large blood vessels) and is unconfined. Mass conservation for the solid skeleton means M*(¢) = M*(0), and
the change of mass of the mixture at time ¢ is AM = M(t) — M(0) = M"(t) — M'(0). From (17), the local form of
the mass balance equations for the solid and fluid compartments in the reference configuration become

Jo*(x (X, 1), )1 = p(x (X, 1), 1)) = pp(X)(1 — (X)), (18a)
Tp' (X (X, 1), DX (X, 1), 1) — p{(X)o(X) = m(X, 1), (18b)
in which m(X, t) is the (Lagrangian) added mass, i.e., the additional fluid mass per unit 'reference volume. For
an incompressible solid, p* = p;. Taking the time derivative of Eq. (18b), and using J = JV - v, we find
Jo'o (V- v) + J(pf¢) = m. This can be simplified as
D(0'9)
Y y. = — 19
Py (o'pv) = = (19)
Using the definition of perfusion velocity w(x,t) = ¢(x,1) (vf(x’l(x, 1), 1) —v(x '(x,1), t)), and defining the
Eulerian mass source
o 209)
ot
in which s(x, ) is the volumetric source in the current configuration, we obtain, after algebraic manipulation,

+ V- (o) 20)

m

7+ V- (p'w) = p's. 1)
In the formulation used herein, the perfusion velocity is assumed to be governed by a Darcy flow model, such that

w(x, 1) = —KVpP® (x '(x, 1), 1), (22)

in which pP°(X, t) is the pore pressure in the reference configuration and K is the permeability tensor. We assume
the total pore pressure pP°"(X,¢) is the sum of three contributions: the Lagrange multiplier p(X, ) that impose
skeleton incompressibility; the pressure derived from the pore pressure—volume relationship pPV(X,¢); and the
compaction pressure p°(X, t) that enforces a non-negative porosity ¢ at all times, so that

PP(X, 1) = p(X, )+ p™V(X, 1) + pS(X, 1), (23)

in which pPV and p° are functions (specified later) of the added mass m. Because the pore pressure and the added
mass are defined in the reference configuration, Eq. (21) is pulled back to the reference configuration using the
incompressibility assumption for the fluid, pf = ,06, along with Eqgs. (22) and (23) to obtain the Lagrangian form
of the added mass equation,

1. .
—m — Vx - (KoVxp) — Vy - (KfVxm) = S, (24)
0
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in which the Lagrangian permeability tensor is Ko = JF~'KF~7, the added mass dependent permeability tensor is
K{' = Kod(p*¥ + p©)/0m, and the Lagrangian volumetric source is S(X, 1).

The constraint that the skeleton remain incompressible, J(1 — ¢) = 1 — ¢y, can be written in terms of the added
mass m. In fact, by using Eq. (18) to eliminate ¢, and using the fluid incompressibility assumption p! = ,03, we
find the relationship J — 1 =m/ pg. Then, the incompressibility constraint in Lagrangian coordinates can be stated
in rate form as

H: Vyvo=—. (25)
Py

Momentum balance of the mixture involves the inertia of both the skeleton and the pore fluid. Assuming the

fluid and the skeleton have the same acceleration, we can simplify the equations of momentum balance, obtaining

(po +m) v = Vx - (Dev[P]) — Vy - (pH) + pob, (26)

in which py = p(x (X, 0), 0) = pgbo + p3(1 — o).
The stress tensor S and the fluid pressures pPV and p° are derived from an energy function that depends on the
strain tensor C, the Lagrange multiplier p and the added mass m, such that ¥ = ¥(C, p, m).

U(C, p,m) = W(C) + U(m) — p (J 11— ﬂf) , 27)
0

in which W(C) characterizes the skeleton isochoric deformations, U (m) characterizes the changes in volume due to

the fluid motion, and the last term enforces the incompressibility constraint of the solid skeleton. The above strain

energy function allows for negative values of ¢ depending on the value of the source S. To enforce a non-negative

value for the porosity ¢, we split the energy U(m) into a pressure-volume relation U?V(m) and a compaction

penalization U€(m), such that

W(C, p,m) = W(C) + U™ (m)+ U(m) — p (J - %) . 28)
Po
With this definition of the energy, we obtain
aw (C aury au*
S= zﬁ — pJC ' +DEV[S,], p™ = W) e OUTm) (29)
aC om om
The final system of equations for the poroelastic mixture is
L=v (30a)
(po +m) v = Vx - (Dev[P]) — Vx - (pH) + pob, (30b)
1
H:Vyv=—m, (30c)
Po
1.
= Vx - KoVxp) + Vx - (K§ Vym) + S. (30d)
0

Note that similar to Eq. (16), because the stabilization (Section 3.3) acts on the velocity field, it is convenient to
write the balance equations as a first-order system.

Remark. The density of the fluid p" and the pore pressure pPo™ are related by the free enthalpy of the fluid g™ [11],
given as

1 ag"
— =% 31
Iof appore
Following an isothermal assumption, this relationship is simplified as [37]
. ppore _ ppore
= 32)

P0
in which pgm is the pore pressure in the initial reference configuration. The above choice holds if the fluid is
incompressible, i.e. p' = pf.
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2.3. Constitutive equations

We verify that our formulation is stable and robust using several constitutive laws. For isotropic elastic solids,
we use the neo-Hookean and Mooney—Rivlin models,

Neo-Hookean: W (C) = g (I =3), (33)
Mooney—Rivlin: W ((_3) =C; (1_1 — 3) + C; (1_2 — 3) , (34)

in which G, C;, and C, are material constants, and I; = tr ((_1) and I, = % (I_ 12 + tr ((_?2)) are invariants of C. For
anisotropic elastic solids, we use the standard reinforced model,

W(©) = 5 (=) + 5 (max (T 1) 1), @)

in which Gy is a material constant and Iy = f 0" C fo. with f, being the fibre direction in the initial reference
configuration.

For the pore-fluid, the energy corresponding to the pressure—volume relationship U?Y(m) and the compaction
penalization U®(m) are given as

U™ (m) = Emz, U¢(m) = ctan™! < (36)

2
in which « and ¢ are constants, ¢ is the critical value of ¢ up to which compaction is permitted, and € is a small
value. Here, ¢ is the maximum value of the pore pressure from the previous time step. When (m + ¢o) X @ciit, the
pore pressure component p° given as

c 2
g U ¢ (37)
am €2 + (m + ¢0 - ¢crit)2
is very large to prevent further pore fluid extraction [11,22]. The functional form of p€ is chosen this way to prevent
m + ¢ becoming smaller than ¢.;. In fact, for very small value of € &~ 0, the contribution introduced by p° is
negligible if m + ¢o > ¢t but becomes rapidly large as m + ¢o approaches ¢..i;. However, very small values of
€ will lead to divergence of the nonlinear solver. Preliminary numerical experiments not reported here suggest that
the choice € = 0.001 and ¢y = 0.001 ensures convergence of the nonlinear solver while enforcing the constraint
m + ¢O > ¢crit-
To model the biomechanics of the left ventricle, we use the Holzapfel-Ogden (HO) model [38],

W (C) = z“_b exp[b (I, - 3)]

+ Zf:za—b {exp [bi (max (I, 1) — 1)2] — 1] n ;;f {exp [bfs (igfs)z] — 1], (38)

i=f,s

m +¢0 _¢crit)

€

in which a, b, a;, bi, ag, and by are material constants, iy = Sq - Cso, and g = fo- Cso, with s the sheet
direction in the reference configuration. For the pressure—volume relationship within the pores, we use the energy
function proposed by Bruinsma et al. [39],

U*v (m) =% exp (g3 (m + ¢0)) + g2 (m + o) [In (g3 (m + ¢)) — 1]

— [q1 exp (g3¢%0) + g2 In (¢)] (m + o) (39)

in which ¢qi, ¢», and g3 are material constants.
Finally, the active component of the stress tensor is

Sa=T(t, L) fo ® fo, (40)

in which the scalar tension T = T'(¢, l4) is a function of time and the current fibre elongation Iy = f, - Cf,.
Specifically,

T L) =T [1+49 (VI —1)]. (41)
in which 7,(¢) is the active tension that is determined empirically.
7
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3. Numerical formulation

This section introduces a finite element method specialized to piecewise linear (P') finite elements for the
incompressible poroelastic mixture. In particular, we extend a previously developed stabilization method for
P! elements for isotropic elastodynamics [33] to anisotropic hyperelastic materials and anisotropic poroelastic
materials. We use the second-order backward differentiation (BDF2) method to integrate the elastodynamic and
poroelastodynamic equations in time. As in prior work [33], the BDF2 method with a time step size controlled by
the CFL condition leads to accurate dynamics and dissipation of only the undesired high frequencies.

We denote by

(v, w)g, =/ vwdX and (v, w)g, =/ v-wdX 42)
2 2
the L2(2y) and L*(£2))? inner products on the interior of the domain {2, and by
(v, w)p, =/ vwdA (43)
Iy
a functional on a regular subset I of the boundary d(2. We also define the element-wise inner products
(v, w)gy = > / vwdX and (v, w)gy = > | vowdx, (44)
kerh K keh 'K

in which K is an element of the triangulation 7", such that 2 = U -7 K. Here we consider K to represent either a
triangle (in two spatial dimensions) or a tetrahedron (in three dimensions). To simplify the notation, from this point
on, we omit the subscript X if the inner products are taken over {2 or (2, because all quantities are Lagrangian
quantities described using reference coordinates.

3.1. Abstract variational multiscale framework for nonlinear dynamics

We present here the abstract framework for nonlinear problems [33] using the D-VMS method. Denote by V an
infinite dimensional space, V* its dual, and N a nonlinear operator associated with a generic nonlinear problem
whose variational statement can read as Find y € V such that, Yo € V,

N, Ohvey = ([, @)y v, (45)

in which y is the solution vector and AV (y) € V*. The variational multiscale framework introduces a decomposition
of the space V into a finite dimensional subspace V and its compliment V' such that V = V 4 V’. With this, we
can now decompose into a resolvable coarse scale and unresolvable fine scale vectors y =y + y" and ¢ = @ + ¢’
such that (45) can be recast as Find y € V and y' € V' such that, Yo € V and Vo' € V',

WGI+Y). @)y = (f@yev (46a)
W G+5). o)y =(f 0y (46b)

Assuming the existence of the Fréchet derivative £ [y](-) of A (-), as in Rossi et al. [33], defined as

lim — |V (3+y) =N @ - L31()]| =0 @7)
Iy ll=o Iyl

we can approximate the nonlinear problem as follows Find y € V and y' € V' such that, Yo € V and V¢’
eV,
(N (j}) ) ¢>V*,V + <£ [S,] (.V/) ) (0>V*,V = (f7 ¢>V*,V ) (483)
W@, @)y HLBO) @)y =10y - (48b)

As we will demonstrate in the numerical test, the linearized problem above results in a second-order accurate method
when using linear finite elements.
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Introducing the formal adjoint of L*[y] of L[y], the above problem is recast as Find y € Voand y €
V’ such that, Y@ € V and Vo' € V',

N3 @yey + (¥, L3@)ye y = (f, Py (49a)
<£ [y] y,7 (p,>v*!v = (f - N(j}) s ¢/>V*,V . (49b)
The solution to (49b) can be formally expressed in terms of the fine-scale Green’s function integral operator M’
y=MN®-NH= —/ X, YYN(y) — fHdXdy, (50)
2

in which g’(-, -) is the fine-scale Green’s function. Approximating the Green’s function using localization arguments
as g'(X,Y) = 1,6(X — Y), in wllich 8 is the multidi_mensional Dirac delta function, we obtain the multiscale
variational formulation, Find y € V such that, Vo € V,

N (), @y v = (T, NG) = ), L F19)yy = (f s @ysy - (51)

The matrix 7, contains the problem dependent parameters that we use to stabilize the variational formulation.
3.2. Variational multiscale method for hyperelastodynamics

We now apply the variational multiscale framework (51) to the hyperelastodynamic problem (16). Using the
vectors y = [u, v, p] and ¢ = [w, w, ¢g], we have

(N (_Y) ) ¢>V*,V =(u -0, Ib)QO

+(pg — V- (Dev[P]) + V- (pH) , w)g, + (H: Vv, 9) g, (52a)
<f1 ¢>V*,V = (p(s)bv w)QO . (52b)
Introducing the multiscale decomposition and imposing # = ¥, we find that &' = v/, and

dDev[P]
oF

+(ﬁ Vv + (F x V') : Vf),é)

(L3, @)V*,V = (pgi/ -Vv. [ : Vu’] + V- (pF x Vu') + V- (p'H) a;)

/
QO

o (53)

in which F, H and P are, respectively, the deformation gradient tensor, its cofactor, and the first Piola—Kirchhoff
stress tensors evaluated using the coarse scale displacements . Integration by parts leads to

dDev[P
<y/, L£* 7] ¢)v*,v = (,081'/, ﬁ,)% _ (u/, v. [Vﬁ) : e_v[]})
2

oF
+ (', V- (pF x Vi) o + (0, H: Vi)
— (v, HVg) o~ (u', (F x V0)Vq) o (54)
Using a minimalist approach to avoid spurious pressure oscillations [33], we approximate
(LY, 8)yy ~ (H: VY, G) g, (55)
(. L 319)y. , ~ = (v HVG) (56)
This approximation is equivalent to choosing
0 0 O
7, =10 0 0]. (57)
0 = O
Introducing the finite dimensional test function spaces
Vi ={w" e (C'U2%)") : w"|, € (P'(K))"/,YK € T", w" =0 on I} and (58a)
Vi={q"eC'%:q"|, € P(K).VK € T"}, (58b)
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and the corresponding trial function spaces
Sy ={w" € (C'2%)) : w"|, e (P'(K)" VK € T", w" = vp on Ip}and (59a)
Sp=V, (59b)

the stabilized weak form of the hyperelastodynamic equations reads Find u" v" € St and p" €
S;’, such that, ¥V @", w" € V!, and q" € V",

_(ph _ o h ~ h
O_<u v,w)no, (60a)
0= (pyo", w"), + (Dev[P"] — p"H", V") , —(to, w") . — (p5b. w"), . (60b)
0=H":Vv".¢"), + (v H'Vg"), . (60c)
V=—1 (ivh + iSHhvph — b) , (60d)
0

in which the terms corresponding to the deviatoric component of the stress tensor disappear because of the choice of

linear shape functions. We use the BDF2 scheme for the time discretization and Newton’s method for the nonlinear
equations. After discretization, as shown in Rossi et al. [33], the system can be solved as a two-step algorithm in
which we first solve for the velocity and pressure fields, followed by an explicit update of the displacement field.
The numerical implementation follows that given by Rossi et al. [33].

3.3. Variational multiscale method for poroelastodynamics

We now apply the variational multiscale framework (51) to the poroelastodynamic problem (30). Using the
vectors y = [u, v, p, m] and ¢ = [w, w, g, r], we have

N (), @lyxy =@ — v, W) g
+ ((po +m)v — V- (Dev[P]) + V- (pH) , w) o

—i—(H : Vo — ﬁf,q>
Po 2

| -
—{—(—fm—V-(KOVp) -V (K§ Vm),r) , (61a)
Lo 2
(f,@)yx v =(pob, w) g, + (S, g, - (61b)
Introducing the multiscale decomposition as before, we find
_ - . dDev[P , - ) L
(£0515 0l = (54 oty = - [ PEE cvu | 49 (58 V) 49 - () )
Q/

0

+(ﬁ:Vv’+(Fx Vu’):Vf)—@.,c})
Po 2

1 ./ e / [ / aI—(Om / - =
+ | —m -V - (KoVp) =V A\KyVm + | —Lm' | Vi |, F , (62)
Po om o

0

in which Ko = JF'KF~7 and KI' = Kod(p"¥ + p¢)/drm. We remark that in (62), we consider the permeability
tensor K to be a model parameter defined in the reference configuration. If K is defined in current configuration,
then Eq. (62) should contain its linearization in terms of the displacements. Integration by parts leads to

. 9Dev[P
VL 318l = (052 8) g + (0, 8) 5~ (w9 [ Vs ot
, 0 0 oF 2
+ (u/, V. (ﬁﬁ‘ X va))% + (p/, H: Vﬁ))%
10
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_ - e ., _
— (v’, HVq)Q, — (u , (F x Vv)Vq)Q, + (—fm ,q)
0 0 od 2

1 ./ = / Ve = / Ve =
n (_fm , r) (V- (KeV)) o+ — (0. V- (RoVF)) (63)
'OO _Q(’) 0 0

in which we assume K, = I_(g . Using again a minimalist approach to avoid spurious pressure oscillations, we
choose

(64)

Using the function spaces defined in (58) and (59), the stabilized weak form of the poroelastodynamic equations
reads, Find u",v" € Sf, and p",m" € 8", such that, ¥ o, wh e Vf, and q",r" € V,?,

0=(i"—o"@") . (652)
0
0=((po+m") 8" w"), + (Dev[P"] - p"H", Vw') , —(to, w"), — (ppb, w"), . (65b)
ah
0=(H":Vv".q"), — (m—f,qh) + (v H'Vg"),, . (65¢)
0 pO % 0
o h
0= (% rh) + (KoVp". vg") , + (K Vm" V") o +(W-n.r") —(S.q"), . (65d)
0 2
V=—1 (i)” + lthVph — b) , (65¢)
Po

in which the terms corresponding to the deviatoric component of the stress tensor disappear because we have
specialized the formulation to piecewise linear shape functions, and the vector W corresponds to the Lagrangian
perfusion velocity. Similar to Eq. (60), we discretize Eq. (65) in time using the BDF2 scheme and solve the
resulting system of equations for the velocity, pressure, and added mass using Newton’s method. We then update
the displacement explicitly.

3.4. Choice of the stabilization parameter

For simplicity, the stabilization matrix 7 is chosen to be isotropic [33], i.e., T = tL. The stabilization parameter
7T is an intrinsic time scale that can be obtained in various ways [31]. In our formulation, we choose the stabilization
time scale between the time scale of the shear wave Az, of the elastic material and the time scale related to the
time discretization Az, such that

e
T = & max [ﬂ, min (Atﬂ, At)i| , ¢ €[0.01,0.03], Az, = minh—. (66)

2 100 eeThC,
Here, h° is the characteristic length of element e, ¢}, is the shear wave velocity, and T" is the general triangulation.
Although the stabilization term adds some numerical dissipation, its contribution is small, thanks to the choice of
the stabilization parameter in the D-VMS method. This was demonstrated in [31,33] and shown in the numerical
results in the following sections. Further, for the D-VMS method, numerical dissipation is necessary to satisfy the
LBB criterion. The expression for T (Eq. (66)) was obtained in previous studies [31,33] after intensive numerical
experiments to minimize the numerical dissipation while maintaining stabilization. In the expression (Eq. (66)),
the term min(At,, At) is chosen so that the numerical dissipation is not too large to cause catastrophic failures
in computation in the limit Ar — oo. The term Az, /100 is introduced so that the numerical dissipation is stable
in the limit Az — 0. Further, to reduce excessive numerical dissipation for incompressible case, Rossi et al. [33]
introduced the value of c; in the range [0.01, 0.03] after numerical experimentation to maintain the stabilization,

and we follow this approach here.

11
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For isotropic materials, the shear wave velocity cj, is [33]

¢, =/ (Wi + Wa) /pg, (67)

in which W, = % and W, = % For anisotropic materials, we extend this definition of shear wave velocity

using the anisotropic invariants. Here, we consider anisotropicity described in terms of two material directions (in
the myocardium, fibre and sheet directions) and their interactions. Consequently, the shear wave velocity for the

anisotropic material is

¢t = /(W1 + Wa o+ Wag + Wag + Wss) /5. (68)

J—W, and W8fs =W
0145

. . (_)W
in which W4f = =, W45 = .
dlyf 0Igfs

3.5. Choice of time step size

Even though the implicit time integration is unconditionally stable, for strongly nonlinear problems, the time step
size choice is closely related to the convergence of nonlinear iterations. For the nonlinear convergence, an empirical
relationship is obtained for the time step size as proportional to the velocity of the shear wave,

he
At = acp, min —, (69)
eeThCY,
in which acpp, is the CFL number. In our numerical experiments, when we use 0.1 < acp. < 1, the nonlinear solver
generally requires at most five Newton iterations. Note that stabilization method and the assumptions Egs. (57) and
(64) guarantee an accurate solution only if the mesh size and time step size are related by the CFL condition

(Eq. (69)).

4. Results

Numerical tests are presented for benchmark test cases in two and three dimensions for both hyperelastic and
poroelastic problems. In addition, the method’s capability is demonstrated by simulating LV dynamics and perfusion
in an anatomical model derived from human image data.

4.1. Elastodynamics

This section details numerical tests of the anisotropic hyperelastic formulation, including a two-dimensional
anisotropic compressed block, three-dimensional shear deformation, three-dimensional bending column, and three-
dimensional twisting column.

4.1.1. Hyperelastic anisotropic compressed block

Fig. 1 shows the computational domain and boundary conditions for a two-dimensional compressed block
benchmark with uniformly distributed vertical loading at the mid-portion of the top surface and traction-free
boundary conditions on the left and right faces. The vertical displacement is constrained on the bottom surface,
and the horizontal displacement is constrained on the top. We consider the standard reinforced model (Eq. (35))
with G = Gy = 80.194 dyne/cm2 and an initial fibre direction fo = (0.866, 0.5). A constant density of o5 = 1.0
g/cm? is considered. Constant vertical loading of 200 dyne/cm? is applied on the top mid-surface. Computations
were carried out for eight sets of uniform meshes, with coarsest mesh spacing # = 5 cm (with Ar = 0.1s) and
finest mesh spacing & = 0.2 cm (with Az = 0.004s).

The results obtained from the D-VMS method are first compared with the standard Q' finite element with
reduced selective integration (Q'—B-bar) method [23], P! — P! (piecewise linear interpolation for displacement,
velocity and pressure) method, and the P! — P° (piecewise linear interpolation for displacement and velocity and
piecewise constant interpolation for pressure) method. Fig. 2 compares the grid convergence for the displacement,
velocity, and pressure for the D-VMS and Q'-B-bar methods. It is clear from the figure that the displacement,
velocity and pressure converge with grid refinement. Further, Fig. 3 shows that the pressure field obtained using the
D-VMS method is smooth and in agreement with the Q'—B-bar method. Thus, it is evident that D-VMS produces

12
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Fig. 1. Computational setup for the compressed block test case (Section 4.1.1). The vertical displacement is constrained on the bottom
surface and horizontal displacement is constrained on the top surface. A constant vertical loading of 200 dyne/cm? is applied on the top

mid-surface.
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Fig. 2. Convergence for the displacement u, velocity va, and pressure pa at the midpoint on the top surface of the anisotropic compressed

block obtained using the D-VMS method and Q'—B-bar method at ¢ = 1.0s.

D-VMS Q'-B-bar p'_p! pP'—p°

200

-10 P(dynelcm’)

Fig. 3. Pressure fields for the two-dimensional anisotropic compressed block obtained using the D-VMS method, Q'—B-bar method, P! — P!
method, and P' — PO method at t = 0.1s for the finest mesh spacing 4 = 0.2 cm.

a solution that is free of locking with a non-oscillatory pressure field. Note that the P! — P° locks, and the P' — P!

formulation appears to avoid locking but generates an oscillatory pressure field.
Fig. 4 shows the convergence for the pressure p and the fibre stretch A (+/lsf), for various mesh sizes and its

comparison with the pressure field obtained by the Q'—B-bar method at ¢ = 1.0s. The thick blue line in each figure
represents the deformed shape obtained from the Q'—B-bar method. The fields of pressure and fibre stretch and the
shapes of the deformed cube are in excellent agreement for the finest mesh spacing.

13
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D-VMS D-VMS D-VMS Q'-B-bar
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-200 p(dyne/cm’) 190

0.75 A 118

Fig. 4. Pressure fields (top) and fibre stretch fields (bottom) for the anisotropic compressed block obtained using the D-VMS method with
various mesh spacing and Q'-B-bar method at r = 1.0s. The thick blue line in each panel show the shape obtained using the Q'-B-bar
method.
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Fig. 5. Temporal variation of the displacement u,, velocity va, and pressure pa at the midpoint on the top surface of the anisotropic
compressed block obtained using the D-VMS method and Q'-B-bar method.

Fig. 5 shows the temporal variation of the displacement (u4), velocity (va), and pressure (pa) at the point
A indicated in Fig. | obtained from the D-VMS method and the Q'—B-bar method. The results are in excellent
agreement for the displacement, velocity, and fibre stretch. The pressure is slightly more oscillatory for the stabilized
method as compared to the Q'—B-bar method.

4.1.2. Hyperelastic anisotropic shear
We now consider a hyperelastic material occupying the domain {2 = [0, 1 m] x [0, 1 m] x [0, 1 m] in which
forcing is applied to obtain the exact shear deformation
Wi (X, t) = aZ%in (1),
uy (X,t) = BZsin (1),
uy (X, 1) =0, (70)
where u%, uy, and u’ are the displacements in X, Y, and Z directions, and oo and 8 are constants.

For an anisotropic cube modelled by the standard-reinforced model (Eq. (35)) with fibre direction f, =
% (1,1, 1), the resulting fibre stretch is

\/(1201Z +6B)sin(t) + (—120222 — 3p2) cos () + 120222 + 32 + 9

3 (71)

A (X, 1) =

14
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D-VMS pt—pt D-VMS error

|A—A7 0.005
Fig. 6. Pressure fields (top) and fibre stretch fields (bottom) obtained using the D-VMS method and P! — P! method along with the absolute

errors in the pressure and fibre stretch at # = 0.25s for the shear deformation of the anisotropic cube (Section 4.1.2).

The exact solution for the pressure is

10 ((3pbZ? 2Gt\ »  3B°00N L. . o
X, ) = —— G+ — Z t
p (X, 1) 3<< 20+ +3 a+20 sin” () +

(72)

1 2 f 2Gy f .
15 ([ 18XZ%0) = 16ZGr +36 (G + == | X )+ 18p(BZY ) sin (1)

Appendix A provides the detailed derivation of the exact solution. For the computation, we use initial and boundary
conditions obtained from the imposed exact solution. For the bottom plane Z = 0, the zero velocity boundary
condition is used. For all other faces, traction conditions obtained from the exact solution of the PK2 stress are
used. The remaining physical parameters used are p; = 1.0 kg/m’, G = 1.0 Pa, Gr =10Pa, o = 0.1, and
B =0.1.

Fig. 6 shows the pressure obtained from the numerical simulation using the D-VMS and P! — P! methods and
the error in the pressure at + = 0.25s. The simulations are carried out for meshes with mesh spacing 7 = 0.167m
and time step size At = 0.05s. The pressure field obtained using the D-VMS method is less oscillatory than the
P! — P! method. Fig. 6 also shows the fibre stretches obtained using the D-VMS and P! — P! methods and the
error in fibre stretch obtained using the D-VMS method. The maximum value of the error in pressure and the fibre
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Fig. 7. L? errors for the displacement, velocity, pressure, and fibre stretch for the shear deformation of the anisotropic cube at t = 10.0s.
The blue line in each figure indicates second-order convergence (o< h2).
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Fig. 8. Left: Computational domain for the bending column (Section 4.1.3). The bottom plane Z = 0 is fixed and the axis of bending is
asymmetric so that the solution is not axisymmetric. Right: Pressure fields for the three-dimensional anisotropic bending column problem
obtained using the D-VMS method, QI—B—bar method, and P! — P! method at r = 0.2s.

stretch are found to be 0.0033Pa and 0.005, respectively. Similar to the pressure, the fibre stretch is also oscillatory
for the P! — P! method compared to the D-VMS method.

A convergence study was performed using a set of five grids with the coarsest mesh spacing of 4 = 0.25m (with
time step size At = 0.1s) and the finest mesh spacing of 4~ = 0.015625m (with time step size At = 0.00625s).
Fig. 7 shows the convergence of displacement, velocity, pressure, and fibre stretch. Similar to an earlier isotropic
convergence study [33], a second-order convergence is observed for all variables. This illustrates that the D-VMS
method can be extended to anisotropic cases without loss in accuracy.

4.1.3. Hyperelastic anisotropic bending column

We next consider a three-dimensional anisotropic bending column. Fig. 8 shows the computational domain for the
bending column. The bending axis is slightly inclined such that the solution is not symmetric. A fixed displacement
boundary condition is used for the bottom plane Y = 0, and a traction-free boundary condition is used for all the
other faces. The initial velocity is set to

v(X,0)=(3Y, 0, 0)mis. (73)

We use the standard reinforced model (Eq. (35)) with G = Gy = 5.67 X 10°Pa, initial fibre direction
fo = (0,0.5,0.866), and pj = 1100 kg/m?>. Simulations are performed using the D-VMS method, P' — P! method,
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h = 0.167Tm

Fig. 9. Deformed shapes of the three-dimensional anisotropic bending column obtained using the D-VMS method (shown with mesh) with
various mesh spacing superimposed with the shape obtained using the Q'!'-B-bar method (with & = 0.167m) at 7 = 0.5s.

and Q'-B-bar method until = 0.5s. For the D-VMS method, the simulations are carried out for three different
tetrahedral meshes with mesh spacing 7 = 0.5m (with time step size Ar = 0.005s), & = 0.25m (with time
step size At = 0.0025s) and & = 0.167m (with time step size At = 0.001675s), respectively. For the P! — P!
method, the simulations are carried out for the tetrahedral mesh with mesh spacing 4 = 0.25m (with time step size
At = 0.0025s). For the Q'-B-bar method, hexahedral mesh with mesh spacing 7 = 0.167m (with time step size
At = 0.001675s) is used.

Fig. 8 shows the pressure fields in the deformed configuration obtained from the D-VMS method, Q'—B-bar
method, and P' — P! method. It is clear from the figure that the P! — P! method generates highly oscillatory
pressures. The D-VMS method results in smooth pressure distribution, and the results are in agreement with the
Q'-B-bar method.

Fig. 9 shows the deformed shape of the bending column for various mesh sizes obtained from the D-VMS method
and its comparison with the results obtained from the Q'—B-bar method with a finer mesh size. The figure shows
that the results obtained using the finer meshes match the D-VMS and Q'-B-bar methods.

4.1.4. Hyperelastic anisotropic twisting column
Next, we consider a twisting column, with the computational domain, boundary conditions, and the fibre direction
the same as the bending column, shown in Fig. 8, but with initial velocity

v(X,O):lOOsin(%) (z, 0, —X)mys. (74)

All other physical parameters are the same as that of the bending column. The mesh for the grid convergence
is also the same as the bending problem. Fig. 10 compares the pressure fields obtained from the various methods.
Similar to the bending column, the pressures obtained from the P! — P! method are highly oscillatory. Fig. 11 shows
that the result for the finer mesh obtained using the D-VMS method is in good agreement with that obtained from
the Q'—B-bar method. Fig. 11 also shows the deformed shape of the twisting column without the fibres (G; = 0).
It is clear from the figure that the anisotropicity introduced asymmetric twisting due to the fibre reinforcement.
Fig. 12 shows clear convergence of the pressure and the fibre stretch with refined grids.

4.2. Poroelastodynamics

This section presents numerical tests of the poroelastic formulation, including an anisotropic two-dimensional
compressing block, isotropic three-dimensional shear deformation, and isotropic three-dimensional swelling and
shrinking cubes.
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Fig. 10. Pressure fields for the three-dimensional anisotropic twisting column obtained using the D-VMS method, Q!-B-bar method, and
P! — P! method at + = 0.02s (Section 4.1.4).
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Fig. 11. Deformed shapes of the three-dimensional anisotropic twisting column problem obtained using the D-VMS method (shown with
mesh) with various mesh spacing superimposed with the shape obtained using the Q'—B-bar (with 4 = 0.167m) method and deformed shape
of three-dimensional twisting column without fibres (Gt = 0) obtained using the Q'—B-bar method at r = 0.1s.

4.2.1. Anisotropic porous compressed block

We now consider a porous version of the anisotropic compressed block discussed previously with an initial
porosity ¢o = 0.1 and a permeability K = 1.0 x 10~°T cm*dyne~'s~!. The source term is proportional to the pore
pressure (S = By pP"). A source constant of B, = 1.0 x 107> cm?dyne™'s~! is used.
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Fig. 12. Pressure fields (left) and fibre stretch fields (right) for the three-dimensional anisotropic twisting column obtained using the D-VMS
method with various meshes and the Q'—B-bar method at ¢ = 0.1s.
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Fig. 13. Pore pressure fields (left) and added mass fields (right) for the anisotropic porous compressed block obtained using the D-VMS
method and P! — P! method at t = 0.3s with mesh spacing & = 0.2cm (Section 4.2.1).

Fig. 13 compares the fields of pore pressure and added mass obtained from the D-VMS method and the
P' — P! method. The P' — P! results are clearly oscillatory, although they are less oscillatory as compared to
the hyperelastodynamics case. This may be because the skeleton is slightly compressible for the poroelastic case
due to the presence of the fluid as compared to the full incompressibility in the hyperelastic case. Fig. 14 shows
that the pore pressure field pP°™ and the fields of added mass m converge under mesh refinement. Fig. 15 shows
the convergence of the pressure p, the pore pressure pP°, and the added mass m at the midpoint on the top surface
of the compressed block.

4.2.2. Isotropic porous shear
Next, we consider a three-dimensional shear deformation with poroelasticity. For elasticity, the isotropic
neo-Hookean model (Eq. (33)) is used. We impose the shear motion

Wi (X, 1) = aX Zsin (1),
uy (X,t) = BZsin (1),
ul (X, 1) = 0. (73)

To satisfy the mass balance condition of the skeleton, J — 1 — % = 0, the exact solution for the added mass is
0

m* (X, 1) = pbaZ sin(t). (76)
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Fig. 14. Pore pressure fields (top) and added mass fields (bottom) for the anisotropic porous compressed block obtained using different
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meshes at ¢ = 1.0s.
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Fig. 15. Convergence of the pressure pa, pore pressure ppAore, and added mass ma at the midpoint on the top surface for the anisotropic

porous compressed block for various numbers of degrees of freedom at r = 1.0s.

Using p¢ = 0, the pore pressure (Eq. (23)) is
3pbz(1+az sin(t))%

2X? (— : + Gasin (t)) sin (1) o
PP (X 1) = —

- +
3(1+aZsin(1)3 a7
<ng (1 +aZsin ()3 — w) sn@0pY
+ kpoaZ sin (t) .

(1 +aZsin(1))3

The detailed derivation of this expression is given in Appendix B.
For the numerical simulations, we use the initial condition v (X, 0) = v* (X, 0) and m (X, 0) = 0. The boundary

conditions are the same as that of the hyperelastic shear deformation (Section 4.1.2). For the pore-fluid, ¢ = 0 is
used in the compaction penalization (Eq. (36)).

Fig. 16 compares the pore pressure fields and the added mass obtained from the P! — P! method and the D-VMS
method. Similar to the hyperelastic case, the D-VMS method results in a smooth pressure field compared to the
oscillatory pressure field obtained using the P! — P! method. Fig. 16 also shows a negligible difference between
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Fig. 16. Pore pressure fields (top) and added mass fields (bottom) obtained using the D-VMS method and P! — P! method and absolute
errors in the pore pressure and added mass at ¢t = 0.25s for the shear deformation of the poroelastic isotropic cube (Section 4.2.2).
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Fig. 17. L? errors for the displacement, velocity, pressure, and added mass for shear deformation of the three-dimensional isotropic poroelastic
cube at t = 10.0s. The blue line in each figure indicates second-order convergence (o< h2).

the results obtained from the simulation and the exact solution. Fig. 17 shows that the displacement, velocity, pore
pressure, and added mass obtained using the D-VMS method are second-order accurate.
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(b)

imm

Fig. 18. Computational setup along with boundary conditions for the verification of poroelastic problems of (a) a swelling poroelastic
cube resulting from an applied pore pressure gradient, and (b) a shrinking poroelastic cube resulting from applied compressive forces
(Section 4.2.3).

4.2.3. Swelling and shrinking

Here we show the performance of the D-VMS method on the two poroelastic test cases proposed by Chapelle
et al. [11]. Fig. 18 shows the computational domains for the two cases: a swelling cube and a shrinking cube. For
both cases, a Mooney—Rivlin model (Eq. (34)) is used for the hyperelastic part of the strain energy function, with
solid and fluid densities oy = ,o(f) = 1000 kg/m3, material constants C; = 2 kPa and C, = 0.033 kPa, initial
porosity ¢o = 0.1, and pore pressure constant x; = 2 kPa. For the swelling and shrinking cases, the permeabilities
of the fluid are taken as K = 10~*I m?kPa~'s~! and K = 2.5 x 1071 m?kPa~'s~!, respectively. The simulations
are performed using a mesh with mesh spacing 2~ = 0.05cm (and time step size Ar = 0.001s) for the swelling cube
and 2 = 0.05 mm (and time step size At = 0.0001s) for the shrinking cube. For the first test case, the swelling of
the cube is due to the pore pressure difference across two opposite faces of the cube (Fig. 18a). The pore pressure
pP°® is gradually increased on the left surface (X = 0), and pP°® = 0 is applied to the right surface. The other four
faces are set to be impermeable to constrain the flow to be in one direction, and no source/sink is used. Note that
no external forces are acting on the cube for this problem. The deformation is entirely driven by the Darcy flow
in the pore fluid. Chapelle et al. [11] used a pressure-based equation for Darcy flow, whereas we used the added
mass-based formulation. Thus, for the cube swelling case, the pore pressure boundary conditions used by Chapelle
et al. [11] are converted to boundary conditions for m. The added mass m on the left surface (X = Ocm) is set to
increase gradually (m (0,Y, Z,t) = 0.5 (1 — exp(—t2/0.25)) pé), and m on the right surface (X = 1.0cm) is kept
fixed at zero (Fig. 18a).

For the second case, the shrinking of the cube is driven by external forces applied on all six faces of the cube. In
this case, normal displacement is constrained on three faces (X =0, Y = 0, Z = 0), and normal forces are applied
on the other three faces (X = 1.0 mm, Y = 1.0 mm, Z = 1.0 mm). In addition, a pressure-dependent sink term,
S = —Bi(pPore — p), is imposed, and a zero normal gradient of m is applied on all the faces of the cube. For the
numerical simulation, ,BSi = 0.01 kPa~'s™! and pSi = 0 kPa are used. Note that for this case, the fluid added mass
and the porosity are coupled with the normal solid pressure and the solid pressure and its deformation depends on
the porosity (Eq. (30)). Thus, the problem serves to verify the two-way coupling between the solid deformation and
the Darcy flow.
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Fig. 19. (a) Pore pressure field for the swelling cube and (b) the added mass field for the shrinking cube at steady state condition along
with the temporal variation of pP°® and m at (c) the points (0 cm,0 cm,0 cm) and (0.5 ¢m,0.5 cm,0.5 cm) for the swelling cube and (d)
for the point (0.5 mm,0.5 mm,0.5 mm) for the shrinking cube.

Fig. 19 shows the deformed position and fields for the total pore pressure pP°*® (for the swelling cube) and
added mass m (for the shrinking cube). For the swelling case, Fig. 19c shows that the gradient in m and pore
pressure pP°® resulted in swelling of the cube near the left surface (X = 0) and fluid flow from the left to the right
surface. The swelling gradually decreases from the left to the right surface. Fig. 19¢ shows an excellent agreement
between our results and the literature for the transient variation of pore pressure pP°® and m at the middle point
(0 cm,0 cm,0 cm) and the right corner point (0.5 cm,0.5 cm,0.5 cm).

For the shrinking case, Fig. 19d shows that the fluid in the cube is completely drained at a steady-state, resulting in
a reduction in the volume of the cube by almost 10%. Fig. 19d also shows the transient variation of the pore pressure
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@ |u=0u=0 | |® (©

Fig. 20. (a) Computational setup for the LV problem and the deformed position of the LV at the (b) end of diastole and (c) peak of systole
(Section 4.3). The red colour shows the deformed position and the grey colour shows the reference position.

pP°® and m at the mid-point. The pressure increases gradually as per the applied pressure on the three surfaces.
When the fluid is almost completely drained out (m ~ —¢y), the penalty pressure p° takes a very large negative
value, and the total pore pressure pP°™ suddenly drops to zero, restricting further drainage of fluid (Fig. 19d). The
results are in very good agreement with the results from Chapelle et al. [11].

4.3. Perfusion in left ventricle

This section presents numerical simulations of perfusion in the left ventricle using a previously developed image-
based geometry [40] shown in Fig. 20. Like many previous studies [11,13,22], we only consider a portion of the
LV. As illustrated in Fig. 20a, we apply zero normal and circumferential displacements at the base, allowing only
radial expansion along the plane of the base of the LV.

The blood pressure inside the LV is modelled by a uniform pressure throughout the endocardial surface with
a prescribed waveform p"%(z). The HO model (Eq. (38)) is used for the hyperelastic strain energy function
with solid and fluid densities p§ = pf = 1.0 g/cm?, material constants ¢ = 2244.87 dyne/cm?, b = 1.6215,
ar = 24267 dyne/cmz, by = 1.8268, a; = 5562.38 dyne/cmz, by = 0.7746, as;, = 3905.16 dyne/cmz, and
bg, = 1.695, along with initial porosity ¢y = 0.1, permeability K = 10~I cm*dyne~'s~!, and pore pressure
constants ¢; = 220 dyne/cm?, ¢ = 10090 dyne/cm?, and g3 = 75. The anisotropic properties in the myocardial
skeleton are modelled using myofibres and collagen sheets as specified in Richardson et al. [13]. The myocardium
is considered porous, with source/sink terms dependent on the pore pressure [11],

S(X, 1) =B (p* — p™ (X, 1)) — % (PP (X, 1) — p¥), (78)
in which g* and B are constants and p*® and p* are the source and sink pressures. For the numerical simulation,
B%* = p% =3 x 107° cm?dyne's~!, p*® = 2.7 x 10* dyne/cm?, and p* = 1.3 x 10* dyne/cm? are used.

We simulate three consecutive cardiac cycles, including diastolic and systolic phases. The endocardial pressure

is applied with a maximum values of 1.067 kPa and 14.53 kPa during the diastole and systole, respectively, given
by

t
1.067— kPa, ift <0.2,
0.2
o | 1067 P it 02 <1 <05, o)
p(t) = 7
1,067 +13.46 (1 — exp (557 ) ) KPa, if 0.5 <1 <065,
1.067 +13.46 (1 — exp (- 4557 ) ) kPa, if 065 <1 <0.8.
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Fig. 21. Temporal variation of the volume of the myocardium LV, for the poroelastic and hyperelastic cases and added mass m at the
epicardial and endocardial surfaces, for three complete cardiac cycles.

For computing the active component of the stress tensor (Eq. (40)), the active tension (Eq. (41)) is prescribed using
the maximum values of active tension from a healthy LV model [41], given as

0 kPa, if t <0.5,

—(t—0.5)2 .
Ty = {8426 (1 — exp (U552 ) kPa, i 0.5 <1 < 0.65, (80)

84.26 (1 - exp (Z052)) KPa, if 0.65 <1 <0.8.

Fig. 20b and ¢ show the deformed positions at the end of diastole and systole, respectively. Fig. 21a shows the
temporal variation of the volume of the myocardium for both hyperelastic and poroelastic cases for three complete
cycles. The hyperelastic simulations shown here are carried out using the same methodology but with zero porosity
and external source. For both cases, a periodic state is obtained by the third cycle. The volume remains almost
constant throughout the cardiac cycle for the hyperelastic case because the myocardium is treated as incompressible.
For the poroelastic case, the volume changes depending on the added mass. Note that the volume of the skeleton
J—m/ ,o(f)) remains almost constant throughout the cycle.

In our poroelastic formulation, the change in the added mass m is governed by the Darcy flow pore fluid model,
and the fluid flow into or out of the pores depends on the pore pressure-dependent source/sink. Fig. 21b shows the
temporal variation of the space-averaged m for the endocardial and epicardial surfaces. During the diastolic phase,
m increases on both surfaces because of the smaller pore pressure, which results in fluid flow from the source to the
pores. Notice that at the end of diastole, the average m is larger at the endocardium than the epicardium. Furthermore,
m falls at both the endocardium and epicardium during the systole. However, the rate of decrease in m is greater
near the endocardium. The variation of m at the epicardium and endocardium in the diastole and systole could be
attributed to the larger pore pressure at the epicardium (endocardium) during the diastolic (systolic) phase (Fig. 22).
Fig. 22 shows the fields of p, pPV, and pP°™ at various cross-sections of the LV at the periodic state. Fig. 22a, b, and
q show that, the pressure is negative everywhere at the end of the diastole. This is because the inflation elongates
the fibres that are tangential to the surfaces at the epicardium and endocardium. Thus, the tensile forces along the
fibres make the volumetric component of the total fibre stress and hence the pressure negative [8,42,43]. Further,
the magnitude of the negative pressure is larger near the endocardium than the epicardium. This results from larger
fibre elongation and the associated fibre stress near the endocardium as compared to the epicardium (Fig. 22q).
In addition, the pressure is larger near the base than the middle and apex portions. This can be attributed to the
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Fig. 23. Temporal variation of p, p®¥, pP°®, m, and S at the endocardial and epicardial surfaces during the third cardiac cycle.

constraints imposed on the displacements of the base and associated reductions in the fibre stretch and fibre stress.
The fibre stretch and the fibre stress are also smaller near the apex than the middle portion because of the restricted
motion near the apex, resulting in a slightly larger pressure near the apex. Fig. 22b shows that the pressure variation
in the transmural direction is different at different angular locations because of the asymmetric deformation. During
the systolic phase, Fig. 22c, d, and r show that p achieves a maximum near the endocardium and a minimum near
the epicardium. Further, the pressure is positive everywhere because the fibres are compressed during contraction,
and the fibre stress is positive. The fibre stress is more near the endocardium than the epicardium (Fig. 22e). Thus,
the compressive force and associated pressure are greater near the endocardium than the epicardium.

Fig. 23 shows temporal variations of the pore pressure pP°", its components p and p*¥, the added mass m, and
the source S. Note that when m = 0, pPV is zero. Thus, p is the pressure driving the source S and the added mass
m in the beginning of the cycle. Because of the negative pressure during the diastole (Fig. 22b), the associated
smaller pore pressure results in fluid flow from the source to the pores and an increase in the added mass m. With
increasing m, p*¥ increases exponentially, leading to a positive total pore pressure pP° at both surfaces (Fig. 22j).
However, the total pore pressure pP° is less than the source pressure of 2.7 kPa, so that there is net flow into
the myocardium. Thus, the added mass m increases at the epicardium and the endocardium throughout the diastole
(Fig. 23). Note that, the space averaged p and the pore pressure pP°® are slightly larger near the epicardium than the
endocardium at the end of the diastole (Fig. 22q). Thus, the added mass m is slightly larger near the endocardium
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than the epicardium. By the end of the diastole, the total pore pressure pP°™ nearly balances with the source and
sink pressures, and the source S is nearly zero (Fig. 23), leading to a constant added mass m.

Fig. 23 shows that p increases rapidly at both the endocardium and the epicardium during systole. The pressure
p is very large near the endocardium as compared to the epicardium (Fig. 22r). At both surfaces, pP°™ increases and
the associated source S rapidly decreases (Fig. 23), leading to the shrinking of the pores, similar to that reported
in the literature [11,22,42]. This leads to a rapid decrease in the added mass m. Note that the rate of decrease of
m is very large near the endocardium as compared to the epicardium. This is because the pore pressure pP°™ is
larger near the endocardium than the epicardium (Fig. 22r). Since p'" also increases exponentially with increasing
m (Fig. 23), the rate of increase of pP°® is less than that of p. Furthermore, the source S reaches its minimum value
for both the endocardium and the epicardium when the pore-fluid pressure pP°™ reaches its maximum (Fig. 23).
However, the added mass m continues to drop until the source S becomes positive (Fig. 23). We remark that the
order of magnitude and the type of variation of the pore pressure are in good agreement with the literature [11,22].

5. Conclusion

This paper develops a stabilized equal-order mixed finite element method for anisotropic incompressible hyper-
elastodynamics and poroelastodynamics using linear finite elements. Our approach extends a dynamic variational
multiscale method, presented by Rossi et al. [33] for incompressible isotropic hyperelastodynamics, to anisotropic
hyperelastodynamics and poroelastodynamics. We verify the method’s convergence, stability, and robustness for
various anisotropic hyperelastic problems and isotropic/anisotropic poroelastic problems. We find that our method
results in second-order accuracy in space and time, and the results are in excellent agreement with the standard
selective reduced integration method (Q'—B-bar). For poroelastodynamics, our results are in excellent agreement
with the benchmark results of Chapelle et al. [11]. In addition, poroelastic simulations of ventricular perfusion
are performed using a realistic left ventricular geometry. Good qualitative agreement is obtained with prior results
reported in the literature. The temporal variation of the various components of the pore pressure are correlated
with the variation of the added mass m and the dynamics of the myocardium. The anisotropic behaviour greatly
influences the magnitude of the pore pressure and its distribution across the myocardium. The skeleton pressure
during the diastole (systole) was found to be negative (positive) in most of the places due to tension (compression)
on the myofibres.
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Appendix A. Analytical solution of hyperelastic shear deformation

For the shear deformation described by Eq. (70), the deformation gradient tensor F is

1 0 2aZsin(t)
F(X,)=| 0 1 Bsin(¢) . (A.1)
0 0 1
28
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Note that det(F) = 1 satisfies the mass balance condition. The right Cauchy—Green strain is
1 0 20 Z sin (t)
CX,n = 0 1 B sin (7) . (A.2)
2Zsin(t) Bsin() —4da?cos? (t) Z2 +4a2Z% — B%cos? (1) + B + 1
The first invariant of C is
I, =3 —4a®cos® (1) Z* + 4% Z* — B2 cos® (1) + B°. (A.3)
Using the initial fibre direction f, = %(1, 1, 1), the fibre invariant is
(—4052Z2 — /32) cos? (1)  (4aZ +2B)sin(t) 4a?Z> B2
+ + =
3 3 3 3
The deviatoric part of the first Piola—Kirchhoff stress tensor is

Iy =

+1. (A.4)

1 1
Dev[P] = G (F - ?1 . F‘T) +2G; (Ff(, ® fo— %f ~F‘T> . (A.5)
The inertia term in the momentum equation is
oob = (—,oéozzza)2 sin (1)) ex + (—,o(f),BZa)2 sin (1)) ey + (0) e. (A.6)
Using momentum balance, the pressure can be shown to satisfy
Vy - (pH) = —p{v + Vx - (Dev[P]) + pib. (A7)
With the body force
b=(0)ex + (0)ey + (sin (1) > QaXZ + BY)) ez, (A.8)
we have
3 sin (t) (3pL Z2 + 6G + 4Gy
ap _ asin() (3 f), (A.9a)
0X 3
0
% = ptBZsin(1). (A.9b)
ap 8 (3 ap 3 ap ) 2Gy\ . .
Lo "2(Zaz(Z)+28(—= zlc+= t t
0Z 3(4“ <8X)+8’3(8Y to 37 ) sin(@) Jsin (1)
302X G 3psBY
+ <<__p04 + ?f> o - AT ) sin (1) (A90)

The above system of partial differential equations are solved to obtain

10 ((3pf2* 2Gr\ 5 . 3B\ o . o
=—— =2 +G+ = —2\z t
p (( 20 + G+ 3 a”+ 20 sin” (¢) +

A.10
1 2 f 2Gf f . ( )
8 18XZ%p, — 16ZGr + 36 G+T X o+ 18p)BZY |sin(r).
Appendix B. Analytical solution for poroelastic shear deformation
For the poroelastic shear deformation described by Eq. (75), the deformation gradient is
l+aZsin(t) 0 «aXsin(z)
F(X,1) = 0 1 Bsin(r) . (B.1)

0 0 1

From J — 1 — m/p(')f = 0, the added mass m is

m(X,t) = plaZ sin(t). (B.2)
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The right Cauchy—Green strain C is

(14 aZsin® (1)) 0 (1 +aZsin () a X sin (r)
CX,1) = 0 1 B sin (1) ,
(1+aZsin(@)aXsin() Bsin(t) —acos® (1) X2+ a?X? — p2cos? (1) + 2+ 1
(B.3)
and the first invariant of C is
I, = —a?cos? (1) X* — a® cos® (1) Z> + o®X? + a*Z% — B%cos® (t) 4+ 2aZ sin (1) + B% + 3. (B.4)
Using the neo-Hookean model, the divergence of the deviatoric part of PK1 stress is given as
4G a2 X sin’ (1) 2GBsin® (1) a
Vy - (Dev[P]) = | — = ex+ [ - P | er
3(1+aZsin(t))3 3(1+aZsin(t))3
-5
1 Zsin(t))3
d+o ;m( ) ( —sin(t) Ga ( 11 cos? (1) X2 — a® cos® (1) Z2 + 5% cos? (1) (B.5)
—11e*X?> + ?Z% + 2aZsin (1) — 58> =3 ) ) es.
The inertia term is
pov = (—pha X Zsin (1)) ex + (—pyBZ sin (1)) ey + (0) ez. (B.6)
Using the following expression for the body force,
b=(0)ex + (0)ey+
Sin (6) (=9 (Z%x (> X* +28%) sin’ (1) + 2sin (t) B2Z — a X — 2BY) p§) +
18 (1 + aZ sin (1))
22 sin (1) (sin2 )G (Za (a2X2 n ﬁ) sin (1) + o2X? 4 367 4 %) a) (B.7)
+
9(1 +aZsin (1))}
pob — Vx .(Dev[P]) ) ez,
momentum balance implies
op X (pgz (1 +aZsin ()3 — M) sin (1) @
- = - , (B.8a)
X (1 +aZsin(1))3
- (,o(f)Z(l +aZsin@)3 — w) sin (1) B
(14 aZsin () — = - , (B.8b)
Y (1 +aZsin(1))3
Xsin(0) 22— (1 +azsin () fsin () 2L + (1 + aZsin (1)) 2P
— _— = o 1 1 —_— o — =
X Y 9Z
in(t) G
__ sin()Ga - (Hazcosz (1) X2 — a®cos? (1) Z% + 582 cos® (1) — 112 X2+
91 +aZsin(t))3
«?Z% 4+ 2aZsin (1) — 58% — 3 ) +by. (B.8c)
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The above system of equations can be solved to obtain

5
3pf Z(14+aZsin(1) 3 : ;
X2 _w—}-Gasm(Z) sin (1) «

- +
3(1 4 aZsin(1))3 (B.9)

(p(f)Z (1 4+ aZsin (1) — %) sin (1) BY

(1 +aZsin(1)3

The pore pressure pP°™ is

5
3pfZ(1+aZsin(1) 3 . .
2X? —w + Gasin (¢) | sin (t) «
ppore - _ - 4
3(1 +aZsin (1))3 (B.10)
. 5 i .
(pgz (1 4+ aZsin(1))3 — M) sin (1) BY
- A + IcpgaZ sin (1) .
14+ aZsin(t))3
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