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Abstract
Objective. Neural decoding is an important tool in neural engineering and neural data analysis. Of
various machine learning algorithms adopted for neural decoding, the recently introduced deep
learning is promising to excel. Therefore, we sought to apply deep learning to decode movement
trajectories from the activity of motor cortical neurons. Approach. In this paper, we assessed the
performance of deep learning methods in three different decoding schemes, concurrent,
time-delay, and spatiotemporal. In the concurrent decoding scheme where the input to the
network is the neural activity coincidental to the movement, deep learning networks including
artificial neural network (ANN) and long-short term memory (LSTM) were applied to decode
movement and compared with traditional machine learning algorithms. Both ANN and LSTM
were further evaluated in the time-delay decoding scheme in which temporal delays are allowed
between neural signals and movements. Lastly, in the spatiotemporal decoding scheme, we trained
convolutional neural network (CNN) to extract movement information from images representing
the spatial arrangement of neurons, their activity, and connectomes (i.e. the relative strengths of
connectivity between neurons) and combined CNN and ANN to develop a hybrid spatiotemporal
network. To reveal the input features of the CNN in the hybrid network that deep learning
discovered for movement decoding, we performed a sensitivity analysis and identified specific
regions in the spatial domain.Main results. Deep learning networks (ANN and LSTM)
outperformed traditional machine learning algorithms in the concurrent decoding scheme. The
results of ANN and LSTM in the time-delay decoding scheme showed that including neural data
from time points preceding movement enabled decoders to perform more robustly when the
temporal relationship between the neural activity and movement dynamically changes over time.
In the spatiotemporal decoding scheme, the hybrid spatiotemporal network containing the
concurrent ANN decoder outperformed single-network concurrent decoders. Significance. Taken
together, our study demonstrates that deep learning could become a robust and effective method
for the neural decoding of behavior.

1. Introduction

Understanding the relationship between neural
activity and perception, cognition, emotion, and

movement is one of the most fundamental goals
of neuroscience. Accordingly, neural decoding that
reads out the sensory stimulus, cognitive processes,
emotional states, and motor behavior from neural
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signals has become an important analytic tool in
neuroscience. One common example of neural
decoding is to predict the animal’s movement tra-
jectories or analyze the movement parameters based
on the neural signals recorded in the motor cortex
[1–3]. Another example of neural decoding is to pre-
dict the animal’s decisions according to the neural
activity in associative brain areas such as prefrontal
and parietal cortices [4–6]. Predicting the animal’s
spatial locations based on the neuronal activity in the
hippocampus [7, 8] is also a common application.

In many neuroscience applications, traditional
decoding methods such as population vectors [9],
multiple linear regressions [10], and the Kalman filter
[11] have been used due to their relatively simple
algorithms and low computational costs [2, 12, 13].
Although less frequent, nonlinear methods that aim
to more accurately characterize neural activity have
also been developed and applied [13]. These methods
include particle filters [14], point process filters [15],
hybrid filters [16], mixture of trajectory models [17],
and nonlinear dynamic models [18]. These various
decoding methods played pivotal roles in elucidat-
ing the neural mechanisms underlying various brain
functions, but their performance still suffers from the
complex nature of neural processes that each method
cannot fully capture [13].

A decoder could be regarded as a function
approximator [19], mapping neural signals to beha-
viorally relevant variables such as sensory stimu-
lus, working memory, and motor plans. Neurons
encode those variables in a highly complex and non-
linear manner. Deep learning is becoming an appeal-
ing solution for neural decoding because of its abil-
ity to learn complicated, nonlinear transformations
from data [19]. Compared with traditional methods,
deep learning could not only significantly improve
the decoding accuracy [20] but also help to more
accurately identify critical input features [21]. Simple
hypothesis-driven models rely on specific assump-
tions about a biological mechanism that deep learn-
ing does not embody, with a risk that it may miss
some important, relevant input features [21]. In this
case, deep learning could serve as an approxim-
ate bound for simple models. In other words, if a
human-generated simple hypothesis-driven model is
less accurate than a deep learning model in the same
task, the hypothesis-driven model likely has failed to
capture important principles [21]. Given these prom-
ising advantages of deep learning, in this paper, we
implemented a variety of deep learning decoders to
predict animals’ movements from neural activity and
examined their performance compared to traditional
methods. Furthermore, we analyzed the input fea-
tures discovered by deep learning decoders to gain
insight into the principles underlying the neural code
of movements.

2. Methods

2.1. Experimental data
The raw data (i.e. calcium signals of individual neur-
ons and forelimb movement trajectories of a mouse)
were obtained from the previous study [3]. Briefly,
the mouse was trained to perform a cued-lever press
task for two weeks (session 1–14; 1 session/day).
In this task, the mouse received a reward when
pressing the lever beyond the set thresholds within
10–30 s after auditory cue onset (figure 1(a)). Over
the two weeks, the activity of the same set of neur-
ons (N = 200) was recorded during the task through
two-photon calcium imaging at approximately 28Hz.
The calcium signal and movement trajectory in each
trial were aligned to movement onset and 3 s-long
segments (84 image frames, spanning 0 s–3 s from
movement onset) were used as single-trial data for
concurrent decoding, while the time window expan-
ded to include neural signals preceding movement in
time-delay decoding.

2.2. Input feature normalization
To use different input features (i.e. neurons) with
varying dynamic ranges, the input dataset needs
to be normalized. We examined four input feature
normalization methods, including MinMax scaling
(equation (1)), normalization (equation (2)), stand-
ard scaling without centering (equation (3)), and
standard scaling with centering (equation (4)), which
are provided by Scikit-learn [22]. Only the first three
normalizationmethods wouldmaintain the structure
of the sparse matrix [22].

x(i)j, normalized =
x(i)j − x(i)min

x(i)max − x(i)min

(1)

x(i)j, normalized =
x(i)j

∥x(i)∥2
=

x(i)j√∑
j

(
x(i)j

)2
(2)

x(i)j, normalized =
x(i)j
σ(i)

(3)

x(i)j, normalized =
x(i)j −µ(i)

σ(i)
(4)

where i= 1,2, . . . ,m (m is the number of features),
j= 1,2, . . . ,n (n is the number of data samples); x(i)max

and x(i)min are the maximal and minimal values of the

ith feature, respectively; x(i)j is the original jth data

sample of the ith feature; and x(i)j, normalized is the nor-

malized jth data sample of the ith feature; µ(i) is the
mean value for the ith feature and σ(i) is the standard
deviation for the ith feature.
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Figure 1. Deep-learning-based neural decoding of mouse forelimb movements. (a) Neural and movement data in this paper were
collected while mice learned a forelimb lever-press task [3]. The neural activity of motor cortical neurons was measured via
two-photon calcium imaging, and the endpoint of the forelimb was measured using the position sensor of the lever. (b) The raw
calcium fluorescence signal was converted to smoothed spike signal to use as input to decoders. The forelimb position was used as
the output variable of the decoders. (c) Deep learning is applied to several neural networks that decode forelimb movement
trajectories from neural activity.

We present results using MinMax scaling in the
paper as we found that MinMax scaling produces the
best decoding performance in the concurrent decod-
ing scheme.

2.3. Dataset splitting
To train and evaluate decoding models, the dataset
was divided into three subsets: training, validation,
and test. To do so, the whole dataset is first shuffled
in the dimension of trials, 90% of all trials was des-
ignated as training and validation dataset [22, 23].
The remaining 10% was designated as the test data-
set. Trials in the training and validation dataset were
divided in a 5-fold cross-validationmethod so that we
fit a given model on the training trials and selected
the parameters that yield the highest decoding per-
formance score (i.e.R2) on the validation trials. Then,
these fit parameters were used to evaluate the model
on the trials in the test dataset.

2.4. Optimization of models
ANN and LSTM with different hyperparameters and
parameters were separately optimized using a com-
mon loss function, the mean square error (MSE). We
used the adaptivemoment estimation (Adam) [24] as
the optimizer and the R2 of the test dataset as the cri-
teria when ranking models. All models were trained
and evaluated by 5-fold cross-validation in PyTorch
[25] and Skorch [26].

MSE(y, ŷ) =
1

n

n∑
k=1

(yk − ŷk)
2 (5)

R2 (y, ŷ) = 1−

n∑
k=1

(yk − ŷk )
2

n∑
k=1

(yk − ȳ)2
, ȳ=

1

n

n∑
k=1

yk (6)

where ŷ is the predicted value, y is the true value, ŷk
is the predicted value of the kth sample, and yk is the
true value of the kth sample.

2.5. Statistical test
To infer the statistical significance of differences
in decoding performance among different models
within a session, the 5 × 2cv paired t-test [27] was
used. In the 5 × 2cv paired t-test, the dataset is split
into two parts (50% training and 50% test data)
5 times. In each of the five iterations, two models
are trained by the training data and evaluated by the
test data (their performance: pA and pB) and then
the training and test data are rotated (the training
data becomes the test data and vice versa) to evaluate
models again [28]. The two performance differences
(p(1), p(2)) are measured as equation (7). The mean
(p̄) and variance (s2) of the difference are computed
as equation (8). The variance of the difference is com-
puted for five iterations and then used to compute the
t-statistic as equation (9). Using the t statistic, the p-
value can be computed and compared with a prede-
termined significance level, 0.05 [28].

p(1) = p(1)A − p(1)B , p(2) = p(2)A − p(2)B (7)

p̄=
p(1) + p(2)

2
, s2 = (p(1) − p̄)2 +(p(2) − p̄)2 (8)
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t=
p(1)1√

(1/5)
∑5

i=1 s
2
i

(9)

where p(1)1 is the p1 of the first iteration.
When comparing performance between sessions

within a given model or between models across mul-
tiple sessions, we used the standard Wilcoxon rank-
sum test using the five cross-validated performance
values per session. The p-value is adjusted for mul-
tiple comparisons using the Benjamini–Hochberg
false discovery rate (FDR) correction.

2.6. Image reconstruction for convolutional neural
network (CNN)
Four types of data were used to reconstruct images,
including smoothed spike signals, the neuron types
(excitatory or inhibitory), the distance matrix of
neurons, and the neuronal connectome. The neur-
onal connectomewas indirectly inferred using the fast
and robust connectome inference (FARCI) method
[29]. The distancematrix of neurons indicates the rel-
ative locations of neurons. The MinMax Scaling nor-
malized smoothed spike signals were used to recon-
struct images. In the reconstructed image, the neuron
was plotted as the point. To distinguish different types
of neurons, the excitatory neurons and inhibitory
neurons were plotted as red and blue, separately. The
brightness of color represented the activity level ran-
ging from 0 to 1. The lines between points represent
the functional connectome and the thickness of each
line represents the strength of connectivity between
the two corresponding neurons. The reconstructed
images were resized as 64 × 64 or 256 × 256 pixels
and then normalized with their mean and standard
deviation in PyTorch.

2.7. SHapley Additive exPlanations (SHAP)
Although deep learning models have excellent accur-
acy, mechanistic understanding of these models is
often not straightforward [30, 31]. To characterize
the input features that significantly contribute to the
predictions of our decoding models, we used SHAP
value proposed by Lundberg et al [30–32]. SHAP
value is based on Shapley values from the game theory
and additional feature attribution methods [30–33].
Shapley values are the only possible method in the
large category of additive feature attribution meth-
ods that will meet three crucial properties at the
same time: local accuracy (known as ‘efficiency’ in the
game theory), consistency (known as ‘monotonicity’
in the game theory), and missingness (similar to ‘null
effects’ in the game theory) [30–32].

The Shapley values are computed as the following:

ϕi =
∑

S⊆F\{i}

|S|! (M− |S| − 1)!

M!
[fx (S∪{i})− fx (S)]

(10)

where F is the set of all features (M features), S is the
subset of F, and S⊆ F\{i}means all possible feature
subsets. fx is a conditional expectation function of the
model’s output.

The larger the absolute SHAP value of a feature,
themore important the feature is [33]. The SHAP val-
ues of features are computed on each data point. The
global feature importance is evaluated by the mean
absolute SHAP value per feature across all data points,
which is determined as [30, 33]:

Ij =
1

n

n∑
k=1

∣∣∣ϕ(k)
j

∣∣∣ (11)

where n is the number of data points.

3. Results

In this paper, we sought to decode movement traject-
ories from neural signals in the motor cortex, using
data from a published study [3] in which the activ-
ity of hundreds of layer 2/3 neurons in the motor
cortex was recorded while mice learned a forelimb
lever-press task over two weeks (figure 1(a)). The
neural activity was acquired via two-photon calcium
imaging, and the forelimb position was measured
through a position sensor on the lever as previously
described [3]. We used movement and neural data
from 14 recording sessions of a singlemouse. The ori-
ginal neural data were the calcium fluorescence sig-
nals, which were subsequently transformed into frac-
tional changes relative to the baseline (∆F/F). The
calcium signals have a long-decay constant that is a
property of the sensor rather than the neural signal.
To remove the sensor-originating artifacts, we con-
verted the calcium signals to spike signals using a
non-negative deconvolution method [34], followed
by smoothing [29] (figure 1(b)). Then, the smoothed
spike signals were normalized using MinMax Scaling
(Methods) as different dynamic ranges across differ-
ent neurons are undesirable for training decoders.

Figure 1(c) shows the overview of our neural
decoding procedure. We applied deep learning to
movement decoding using four different network
models: artificial neural network (ANN), long-short
term memory (LSTM), CNN, and hybrid spatiotem-
poral network (STN). ANN is a computing system
inspired by biological neural networks. It connects the
inputs to a sequence of hidden layers, followed by the
output. LSTM is amore complicated recurrent neural
network that has a hidden state to form memory.
Unlike ANN which processes output at a given time
using all inputs that are fed simultaneously, LSTM
typically uses sequentially fed inputs to produce out-
puts. Thus, LSTM can flexibly integrate information
over time [35]. CNN is a type of deep neural net-
work that is mainly used for analyzing images. Dif-
ferent from ANN and LSTM, CNN has convolutional
layers to extract meaningful local structures of images
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Figure 2. Concurrent decoding. (a) A single session example of decoding performance of five concurrent decoding models. The
average and error bar were computed from the 5-fold cross-validation and the statistical test is the 5× 2cv paired t-test
(Methods). Multiple comparisons were corrected using the false discovery rate (FDR) method. (b) The mean decoding
performance across all 14 sessions. Wilcoxon rank-sum test using the FDR method to correct for multiple comparisons between
models. (c) The decoding performance as a function of the training session for two deep-learning decoders. The error bar was
computed from the 5-fold cross-validation. Wilcoxon rank-sum test for comparison between sessions or models.

[35]. As brain imaging technologies (e.g. fMRI, MRI,
EEG, and CT) improve, image resolution and volume
are increasing, making CNN a crucial and even neces-
sary tool for analyzing the brain state from images
[36–39]. Finally, hybrid models including STN com-
bine multiple networks, aiming to process different
types of data simultaneously. Several studies utilized
hybrid models to infer both the temporal hierarch-
ical features and spatial hierarchical maps of brain
networks [40]. Hybrid models have been shown to
successfully predict behavioral states (e.g. pre-impact
falls for older people) [41].

In the following sections, we describe our deep
learning decoders in each of three different decoding
schemes: concurrent, time-delay, and spatiotemporal.

3.1. Concurrent decoding
Concurrent decoding is the simplest scheme in this
paper, in which neural signals at a given time are
used to decode the position of the forelimb move-
ment at that time [20]. In the concurrent decoding
scheme, we compared the performance of two deep
learning network models, ANN and LSTM, to three
traditional machine learning models, Decision Tree,
Support Vector Machine (SVM), and Random Forest
(RF). The ANN and LSTM were optimized through
numerous combinations of hyperparameters and 5-
fold cross-validation. Hyperparameters include the
number of nodes in the hidden layers of the ANN,
dropout rates of the ANNand LSTM, and the number
of features in the hidden state of the LSTM.

We found that both the ANN and LSTM per-
form significantly better than the three traditional
machine learning models (figures 2(a) and (b)). The
ANN showed a slightly better performance than
the LSTM. In addition, the computational time for
model optimization was shorter for the ANN than for
LSTM. The outperformance of the ANN over tradi-
tional machine learning models might be attributed
to various factors. Compared to traditional machine

learning models, it has been shown that ANN has a
more powerful nonlinear-fitting capacity [42] which
enables them to adaptively extract more crucial
information from input features. Feature extraction
would be also important in our neural decoding as
the number of input features is much larger than that
of output features, such as 200 input features versus
one output feature. In addition to a large number of
neurons, the noise of neuronal spike signals is a sig-
nificant factor affecting the accuracy of neural decod-
ing. Although extracting spike signals from calcium
signals could reduce sensor-specific artifacts, spike
signals still have intrinsic and measurement noise
which could deteriorate the performance of neural
decoding. Unlike traditional machine learning mod-
els, ANN shows stronger robustness and fault toler-
ance to noise [42]. Considering the high accuracy,
low computational cost, and other aforementioned
advantages, deep learning ANN is an efficient model
to perform concurrent decoding.

As described earlier, the neural and movement
data were recorded while the mouse was trained to
perform a cued lever-press task daily for two weeks
(sessions 1–14) [3]. The previous study found that
neural population activity across trials with sim-
ilar movement trajectories becomes more similar
at the expert stage (sessions 10–14) than the naïve
stage (sessions 1–3), indicating that amore consistent
relationship between movements and neural activ-
ity emerges with learning. These observations sug-
gest that neural decoders might perform better at
the expert than the naïve stage. To test this idea,
we examined the decoding performance of the ANN
and LSTM as a function of learning stages (i.e. ses-
sions). As shown in figure 2(c), for both the ANN
and LSTM, the overall performance tends to increase,
albeit with a few fluctuations over sessions. Accord-
ingly, compared to the naïve stage, both the ANN
and LSTM showed significantly higher performance
in the expert stage, confirming our prediction. Taken
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Figure 3. Time-delay decoding. (a) Architectures of ANN (non-recurrent decoder) and LSTM (recurrent decoder) for time-delay
decoding. (b) The structure of input and output data for time-delay decoding. To decode the movement position at a given time
point, the neural activity in all time points in the preceding time interval (t time points) from all neurons ( f neurons) was used.
The input features were concatenated into a 1D vector to be fed into ANN all at once, while the input features at different
preceding timepoints are fed sequentially into LSTM. (c) The decoding performance of ANN and LSTM as a function of
preceding time intervals in three different training sessions. The error bar from the 5-fold cross-validation. Wilcoxon rank-sum
test using the FDR method to correct for multiple comparisons between time intervals.

together, the deep learning concurrent decoders out-
perform the traditional machine learning algorithms,
but their performance is still affected by the dynamic
change in the temporal relationship between neural
activity and movements over time.

3.2. Time-delay decoding
There are conduction andprocessing delays for neural
signals in the motor cortex to reach muscles and
thus cause movements. In addition, even if preceding
neural signals are not necessarily the direct command
to control muscles, they can still carry nontrivial
information regarding the upcoming movements
[43]. Therefore, the decoding accuracy of movement
trajectories may be further enhanced by including
neural signals at time points preceding each move-
ment position to decode [20, 35]. To test this idea,
we trained deep learning models in a second decod-
ing scheme, time-delay decoding in which neural
signals preceding each movement time point are
incorporated. The preceding time of neural signals
suggested for neural decoding varies across differ-
ent studies, ranging from 300 ms to more than 1 s
[3, 44, 45]. Given this variability, we examined six
different time intervals prior to the movement time

point, 500, 429, 321, 214, 107, and 0 ms. Note that
0 ms interval corresponds to concurrent decoding.
ANN (figure 3(a)) is a non-recurrent networkwith no
persistent internal state (memory) and thus, all input
data for decoding the movement position at a given
time should be fed to the network at the same time. So
we concatenated the time series of spike signals from
all time points in the preceding time interval across
all neurons as a single vector. In contrast, LSTM is a
recurrent network (figure 3(a)) that can exhibit tem-
porally dynamic behavior with the persistent internal
state or memory. The hidden memory state can be
used as contextual information to improve decod-
ing accuracy [46]. As the LSTM architecture allows
‘multi inputs and one output’, the spike signals from
each time point in the preceding time interval can be
sequentially fed to the network (figure 3(b)).

We found that in all sessions, time-delay ANN
and LSTM decoders incorporating neural activ-
ity in the 107 ms long preceding time interval
improved decoding accuracy compared to the con-
current decoders, indicating that this previous time
interval carries significantmovement-related inform-
ation. During the first few sessions of motor learning,
there was a tendency that decoding accuracy further
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Figure 4. Spatiotemporal decoding. (a) An example reconstructed image of neural activity and connectivity. The color code of
each dot represents the activity of neurons at the corresponding location, and the thickness of lines represents the strength of
connectivity between the corresponding neuronal pairs. (b) Ball chart reporting the decoding performance (R2) versus
computational complexity (floating-point operations (FLOPs), G-FLOPs= 1× 109 FLOPs) across different CNN models for two
sizes of images, respectively. The size of each ball corresponds to the number of parameters for each CNN model. Models with an
R2 less than−0.2 are not shown in the plot. (c) Scheme of the proposed hybrid model, STN. The best ANN (green box) and CNN
models in the concurrent decoding scheme are used. In this hybrid model, we only optimized the architecture of the ANN (gray
box) receiving the fusion layer output. (d) The decoding performance of four different decoders in session 14. The error bar from
the 5-fold cross-validation. The 5× 2cv paired t-test for comparisons between models and multiple comparisons were corrected
using the FDR method.

increased by including more distant preceding time
points (figure 3(c)). The best preceding time inter-
val (corresponding to the highest R2 of the test data-
set) in the early sessions varied across different ses-
sions for both the ANN and LSTM (figure 3(c)). In
contrast, in the later sessions, increasing the preced-
ing time interval beyond 107 ms did not signific-
antly affect the decoding accuracy of both the ANN
and LSTM (figure 3(c)). This difference between the
early and late sessions is consistent with the pub-
lished observation [3] that movement-related neur-
ons show variable timing of activity on individual tri-
als relative to the movement onset in the naïve stage,
whereas movement-related neurons in the expert
stage showed more reproducible and stable activity
timing, closer to the movement onset.

As the time-delay decoding outperforms the con-
current decoding in the early sessions, it produces
consistently high performance across different ses-
sions (R2 above 0.7) for both the ANN and LSTM.
Thus, the time-delay decoding can robustly extract
movement-related information from neural signals
even if the temporal relationship betweenmovements
and neural signals dynamically changes from session
to session. It is also notable that the concurrent ANN
outperforms the concurrent LSTM, but the time-
delay ANNand LSTMperform similarly (figure 3(c)).
In other words, performance gain by changing from

concurrent to time-delay decoding is larger in the
LSTM than in the ANN.

3.3. Spatiotemporal decoding
Both the concurrent and time-delay decoding
examined so far extract movement information from
the time series of input features (i.e. spike signals),
but do not utilize the spatial relationship or con-
nectivity between input features. It is known that
neurons interactively communicate to give rise to
skillful movement, and the inter-neuron interac-
tion is shaped by the underlying neuronal connec-
tome. A promising avenue for further enhancing the
movement decoding performance may be to add a
decoder that can mine movement-related informa-
tion from the spatial relationship between neurons
and their functional connectome. The neural data
in this paper was acquired from calcium imaging
which provides the spatial information of all recor-
ded neurons. Thus, we tested a hybrid spatiotem-
poral decoding scheme that combines the aforemen-
tioned ANN decoders with a decoder that extracts
movement trajectory information from reconstruc-
ted images of neural activity and connectivity. In
reconstructed images, each neuron was represen-
ted as a dot positioned at its center of mass and the
brightness of the colored dot indicated the activity
level (i.e. normalized smoothed spike signal) of the

7
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corresponding neuron (figure 4(a)). The connectivity
between a pair of neurons (i.e. connectome) was rep-
resented by the thickness of the line connecting the
two dots corresponding to the two neurons. There are
various connectome inference approaches (Model-
based Methods and Model-free Methods [47]). In
this paper, we used a recently developed method, the
FARCI method [29] which can be effortlessly applied
to the data obtained from calcium imaging and infer
the strength of association via partial correlations of
activity between all pairs of neurons.

As a decoder that extracts the movement traject-
ory information from reconstructed images, we con-
sidered CNN models known to be well-suited for
image analysis. We first evaluated the decoding per-
formance of several typical CNN models including
VGG-19 [48]; ResNet-34 and -152 [49]; DenseNet-
121 and -161 [50]; MobileNetV2 [51]; EfficientNet-
B0, B1, B2, B3, B4, B5, B6, and B7 [52]. As input
to each CNN model, we compared two input image
sizes, 64× 64 and 256× 256 (figure 4(b)). We found
no systematic relationship between the decoding
accuracy and the computational complexity meas-
ured as floating-point operations (FLOPs) across dif-
ferent CNN models. EfficientNet-B2 had the highest
accuracy in both image sizes (figure 4(b)). The accur-
acy of EfficientNet-B2 for image size 256 × 256 was
up to 0.76 despite its low computational and model
complexity. EfficientNet-B5 showed a similar accur-
acy to EfficientNet-B7 for image size 256 × 256,
but it required more than twice as many paramet-
ers as EfficientNet-B5 and three times as high FLOPs.
EfficientNet-B0 and MobileNetV2 required similar
number of parameters and FLOPs, but EfficientNet-
B0 was less accurate thanMobileNetV2 for image size
64 × 64. There was also no straightforward relation-
ship between the accuracy and image sizes. When the
image size increased from 64 × 64 to 256 × 256,
the accuracy of several CNN models (e.g. Efficient-
Nets and ResNet-152) improved, while other models
such as VGG-19 and MobileNetV2 showed a decline.
Due to the lack of a clear relationship, we selected
EfficientNet-B2 as our CNN decoder and 256 × 256
as the input image size, based on the empirically
observed accuracy (figure 4(b)).

Using the selected CNN model and its input
format, we built a hybrid model that combines the
aforementioned ANN concurrent decoder and the
CNN decoder (figure 4(c)). Hereafter, we refer to this
hybrid spatiotemporal model as concurrent STN. In
the concurrent STN, the outputs of the two decoders,
yCNN and yANN, were concatenated in the fusion layer
and then fed into another ANN. Then, the final pre-
dicted movement was the output of the voting layer
that computes the mean among the output of the
fusion ANN, yCNN and yANN from the identity short-
cuts. As the network depth increases, the accuracy

usually becomes saturated and then degrades rap-
idly due to the shattered gradient problem [49, 53].
The CNN applied in the hybrid models would suffer
from the same problem. Identity mapping by short
connections is a very powerful tool to fix this prob-
lem because the gradients in this architecture are far
more resistant to shattering, and decaying sublinearly,
while this architecture also adds neither extra para-
meters nor computational complexity [49, 53]. Based
on this idea, we added identity shortcuts (i.e. feed-
ing the ANN and CNN outputs to the voting layer)
in the concurrent STN. This concurrent STN was
assessed in comparison to three single-network mod-
els described earlier, i.e. the concurrent ANN, LSTM,
and CNN. As shown in figure 4(d), the STN showed
the highest accuracy (R2 = 0.88), followed by the
ANN, CNN, and LSTM in that order.

To understand which additional component of
the concurrent STN contributes to the enhanced
decoding performance, we examined two simpler
hybrid models, Model I and Model II, each imple-
menting only part of the concurrent STN architec-
ture. In Model I, we used the average of ANN and
CNN outputs as the final output to predict the move-
ment (figure 5(a)). The accuracy of Model I was very
close to that of the ANN, indicating little improve-
ment by the added CNN (figure 5(b)). In Model II,
we added a fusion layer that combines ANNandCNN
outputs and another ANN that takes the fusion layer
output (figure 5(a)). Then, the output of this ANN
was taken as the final decoding output. The config-
uration of Model II is closer to the STN but lacks
the identity shortcuts and the final voting layer. Des-
pite this small difference, the accuracy of Model II
was significantly worse than the STN and only 0.01
higher than that of Model I (figure 5(b)). These res-
ults from the two simpler hybrid models suggest that
the largest decoding enhancement is attributable to
the difference between Model II and the concurrent
STN, which is the identity shortcuts. This finding val-
idates our design choice to add the identity shortcuts
described earlier.

Next, we examined whether the decoding per-
formance of the STN could be further improved
by replacing the concurrent ANN decoder with a
time-delay ANN decoder (figure 5(c)). The modi-
fied STN will be referred to as time-delay STN. Dif-
ferent from the earlier time-delay decoding analysis
of the single-network models, including neural sig-
nals in preceding time intervals in the time-delay STN
resulted in little improvement in decoding accuracy
(figure 5(d)). This result suggests that the concurrent
STN that combines the concurrent ANN and CNN
reached a saturated level of performance, at least in
the expert stage, such that the preceding spike signals
in the time-delay decoders to the STN provide little
extra information regarding movements.
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Figure 5. Hybrid model variations. (a) Model I and Model II implement only part of the proposed model, STN. Model I contains
no fusion ANN. Model II contains no identity short connections. (b) The decoding performance of ANN, CNN, Model I, Model
II, and STN. The error bar from the 5-fold cross-validation. The 5× 2cv paired t-test for model comparisons and multiple
comparisons were corrected through the FDR method. (c) A hybrid model utilizing the time-delay ANN decoder. Note the CNN
is the same concurrent decoder as the STN. (d) The decoding performance of time-delay ANN and hybrid models as a function of
preceding time intervals in three different training sessions. The error bar from the 5-fold cross-validation. Wilcoxon rank-sum
test using the FDR method to correct for multiple comparisons between time intervals.

3.4. Sensitivity analysis
So far we found that deep learning decoders out-
perform traditional machine learning decoders, and
their performance can be further improved by includ-
ing neural signals from larger preceding temporal
windows or adding a network to extract informa-
tion from reconstructed neural images. The better
performance of deep learning decoders likely reflects
their superior capability to discover relevant input
features. Thus, we identified the input features that
played a significant role in our decoders by perform-
ing a sensitivity analysis that assesses how import-
ant each input feature is to the decoder output.
Among several sensitivity analysis methods, we chose
SHAP Methods which has been shown to exhibit
higher computational performance and better con-
sistency with human intuition [30]. The previous
study that generated the dataset in this paper classified
movement-related neurons whose activity is signific-
antly higher during movement than non-movement
period based on a statistical permutation test [3].

We used these functionally interpretable movement-
related neurons as a reference to contrast SHAP-
identified important input features in each decoder.
To compare important input features across differ-
ent decoders including the STNwhich requires a long
computational time for SHAP, we applied the sensit-
ivity analysis only to a single expert session.

We first examined important neurons in three
concurrent decoders, RF, ANN, and LSTM, and
found that the classified important neurons for each
decoder were not exactly identical to the movement-
related neurons but overlapped to some extent
(figure 6(a)). It is noteworthy that even the over-
lapping neurons show different degrees of contri-
bution across different decoders (figure 6(b)). We
also quantified the collective contribution of a sub-
set of neurons to the decoder output using the ratio
of the sum absolute SHAP value of the classified
important neurons to that of all neurons. In this
analysis, we ranked neurons based on their SHAP
values and selected top-ranking neurons that match
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Figure 6. Sensitivity analysis. (a) The thick brown lines indicate movement-related neurons, or important neurons classified using
SHAP for Random Forest, ANN, and LSTM decoders. (b) Input feature (neuron) importance measured as the mean absolute
SHAP values for Random Forest, ANN, and LSTM. (c) Images of all neurons, movement-related neurons, and classified neurons
for Random Forest, ANN, LSTM, and common neurons in all four methods. Red neurons are excitatory and blue inhibitory.
(d) Images of all neurons, movement-related neurons, classified neurons for Random Forest, ANN, and LSTM, and Grad-CAM at
four different time points.

the number of movement-related neurons. The col-
lective contribution ratio in RF was up to 84%, while
the ratios in the ANN and LSTM were 41% and
37%, respectively. These results suggest that deep
learning decoders identified more input features than
movement-related neurons, which are relevant to
movement decoding.

Figures 6(a) and (b) shows the classified import-
ant neurons without indicating their locations or
cell types (i.e. excitatory or inhibitory neurons). To
visualize their spatial distribution and cell types, we
created images similar to the reconstructed images
used for the CNN decoder (figure 6(c)). The clas-
sified important neurons were dispersed across the
motor cortex. In the motor cortex, there are more
excitatory neurons than inhibitory neurons (e.g.
166 excitatory versus 34 inhibitory neurons in our

data sample). However, the proportion of classified
important neurons (15 excitatory versus 12 inhibit-
ory neurons) was higher in inhibitory neurons than
in the general population, suggesting that inhibit-
ory neurons have a higher tendency to contribute to
movement decoding.

Next, to identify the features in the reconstruc-
ted image that provide extra information extracted
by the CNN in the STN, we computed Grad- class
activation mapping (CAM) [54]. Grad-CAM visu-
alizes the class-discriminative features for CNNs at
each time point [54]. To facilitate the comparison of
the class-discriminative features in Grad-CAM to the
important neurons classified in RF, ANN, and LSTM,
we used SHAP values at each time point, instead of
the global average of SHAP values across all time
points, to rank and identify the important neurons
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Figure 7. Analysis of the spatial information of neurons. (a) Images of all neurons, movement-related neurons, and Grad-CAM at
four different time points (in the same format as figure 6(d)) for two examples of shuffled data. Note, in the shuffled data, the
spatial location of each neuron is randomly reassigned in the reconstructed images. (b) The decoding performance of the original
and shuffled data. The accuracy of CNN and STN decreased after the spatial information of neurons is disrupted. The error bar
from the 5-fold cross-validation. Wilcoxon rank-sum test for model comparisons.

(figure 6(d)). As shown in figure 6(d), only a subset
of neurons is consistently classified as the important
neurons by RF, ANN, and LSTM. In contrast, Grad-
CAM visualizations of smoothed spike signals high-
lighted a relatively constant area across time. These
informative regions identified in the spatial domain
that is consistent across time might provide extra
information for the STN.

The finding of the spatial regions suggests that
some spatial organized patterns might exist in neur-
ons of the motor cortex. Alternatively, movement
information decoded by the CNN originates mainly
from the activity of individual neurons carrying
movement-related information and is not influenced
by how those neurons are spatially arranged. To dis-
tinguish the two possibilities, we disturbed the nat-
ural spatial structure of our neural signals by shuffling
the locations of individual neurons while preserving
their neural signals and connectomes, and then per-
formed CNN and STN decoding analysis using the
shuffled images. If the spatial arrangement is irrelev-
ant, we expect that CNN and STN decoding perform-
ance would not be affected by shuffling. We found
that for each shuffled data, CNN identified different
regions as the class-discriminative features and those
regions are relatively consistent across time, similar
to the original data (figure 7(a)). However, shuff-
ling did not change decoding accuracy significantly
(figure 7(b)). This result suggests that the perform-
ance improvement from CNN to STN is unlikely due
to the spatial organization of neuronal activity that
CNN discovered.

4. Discussion

In this paper, we implemented various deep learn-
ing decoders that predict movements from the neural
activity in the motor cortex and found that the
performance of deep learning decoders surpasses
machine learning decoders. Our sensitivity analysis
revealed that deep learning discovered a larger num-
ber of important input features (i.e. neurons) than
traditional decoders or a simple hypothesis test (i.e.
movement-related neurons), suggesting that it may
have extracted features that are related to move-
ments in complex and nonlinear manners and thus
achieved higher decoding accuracy. Taken together,
we demonstrated that deep learning could be an
effective method for neural decoding of behavior,
solely from data with little human intervention.

It is noteworthy that the performance of deep
learning decoders could become even better than
what we report here, for the following reasons. First,
compared to the number of input features (∼200),
the sample size of our dataset was relatively small,
ranging from 1344 to 8400. Such a small dataset is
prone to overfitting for highly complex deep learn-
ing models, which deteriorates the performance in
test sets. Although some regularization methods such
as dropout help to reduce the overfitting issue, the
small size of the dataset has forced us to choose deep
learning models with relatively low model complex-
ity. Thus, our results may represent lower bounds of
performance that deep learning decoders can achieve.
In the future, once a large dataset in the source
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domain is established, transfer learning may be util-
ized to efficiently use deep learning models for lim-
ited, small datasets [55, 56]. More specifically, deep
learning models that are pre-trained using a very
large dataset in the source domain could be effi-
ciently fine-tuned for a small dataset in the target
domain. This strategy has been successfully applied
in neural decoding for the brain-computer interface
(BCI) [57, 58]. Secondly, we used the same input fea-
tures across our deep learning decoding schemes, in
order to assess the performance changes solely due to
the changes in decoder architectures. In other words,
our decoders may be able to produce even more
accurate and robust outcomes if feature engineering is
performed on each decoder specifically. Thirdly, the
STN used the reconstructed image of neural signals
rather than the calcium images directly observed from
the experiment. Although the reconstruction reduced
some background noise, it may have caused some loss
of relevant information. It is also noteworthy that for
future engineering applications, such as BCI [59, 60],
it is time-consuming to use the reconstructed image
of neural signals instead of the raw images, increas-
ing the computational load of real-time decoding.
Lastly, the architecture of ANN and CNN in our
STN model were not optimized in the hybrid set-
ting due to a long computational time. As computa-
tional power increases, each network in hybrid mod-
els can be better tuned in the hybrid setting, which
we expect to further improve decoding accuracy. Des-
pite these caveats, our deep learning decoders still per-
formed better than conventional methods, suggesting
that deep learning decoders would excel even further
when they are more finely optimized.
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