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The immersed boundary (IB) method is a non-body conforming approach to fluid-
structure interaction (FSI) that uses an Eulerian description of the momentum, viscosity, 
and incompressibility of a coupled fluid-structure system and a Lagrangian description 
of the deformations, stresses, and resultant forces of the immersed structure. Integral 
transforms with Dirac delta function kernels couple the Eulerian and Lagrangian variables, 
and in practice, discretizations of these integral transforms use regularized delta function 
kernels. Many different kernel functions have been proposed, but prior numerical work 
investigating the impact of the choice of kernel function on the accuracy of the 
methodology has often been limited to simplified test cases or Stokes flow conditions that 
may not reflect the method’s performance in applications, particularly at intermediate-to-
high Reynolds numbers, or under different loading conditions. This work systematically 
studies the effect of the choice of regularized delta function in several fluid-structure 
interaction benchmark tests using the immersed finite element/difference (IFED) method, 
which is an extension of the IB method that uses a finite element structural discretization 
combined with a Cartesian grid finite difference method for the incompressible Navier-
Stokes equations. Whereas the conventional IB method spreads forces from the nodes 
of the structural mesh and interpolates velocities to those nodes, the IFED formulation 
evaluates the regularized delta function on a collection of interaction points that can be 
chosen to be denser than the nodes of the Lagrangian mesh. This opens the possibility 
of using structural discretizations with wide node spacings that would produce gaps in 
the Eulerian force in nodally coupled schemes (e.g., if the node spacing is comparable 
to or broader than the support of the regularized delta function). Earlier work with this 
methodology suggested that such coarse structural meshes can yield improved accuracy 
for shear-dominated cases and, further, found that accuracy improves when the structural 
mesh spacing is increased. However, these results were limited to simple test cases that 
did not include substantial pressure loading on the structure. This study investigates the 
effect of varying the relative mesh widths of the Lagrangian and Eulerian discretizations in 
a broader range of tests. Our results indicate that kernels satisfying a commonly imposed 
even–odd condition require higher resolution to achieve similar accuracy as kernels that 
do not satisfy this condition. We also find that narrower kernels are more robust, in the 
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sense that they yield results that are less sensitive to relative changes in the Eulerian and 
Lagrangian mesh spacings, and that structural meshes that are substantially coarser than 
the Cartesian grid can yield high accuracy for shear-dominated cases but not for cases with 
large normal forces. We verify our results in a large-scale FSI model of a bovine pericardial 
bioprosthetic heart valve in a pulse duplicator.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The immersed boundary (IB) method [1] is a non-body conforming approach to fluid-structure interaction (FSI) in-
troduced by Peskin to model heart valves [2,3]. The IB approach to FSI uses an Eulerian description of the momentum, 
viscosity, and incompressibility of the coupled fluid-structure system, and it uses a Lagrangian description of the defor-
mations, stresses, and resultant forces of the immersed structure. In the continuous formulation, integral transforms with 
Dirac delta function2 kernels couple Eulerian and Lagrangian variables. When these equations are discretized, it is common 
to replace the singular delta function by a regularized delta function [1]. This coupling strategy eliminates the need for 
body-conforming discretizations and thereby facilitates models with very large structural deformations [4,5]. The IB method 
and its extensions have enabled simulation studies in a broad range of applications, including cardiac dynamics [6–16], 
platelet adhesion [17], esophageal transport [18–20], heart development [21], insect flight [22,23], and undulatory swim-
ming [24–29].

Despite the popularity of the IB method, most prior studies to examine the impact of the form of the regularized delta 
function on the accuracy of the method [1,4,30–39] have been limited to simplified test cases (e.g., two-dimensional Stokes 
problems) that may not reflect the method’s performance in applications, particularly at intermediate-to-high Reynolds 
numbers, or under various loading conditions. Peskin [1] constructed a four-point regularized delta function that appears to 
be among the kernels most commonly used with the IB method. This function satisfies a certain set of properties, includ-
ing an even–odd condition that is designed to avoid the well-known “checkerboard” instability that occurs with collocated 
discretizations of the incompressible Navier-Stokes equations. Roma et al. [31] introduced a three-point kernel function that 
satisfies the same properties as Peskin’s four-point function except for the even–odd condition, which is not clearly needed 
for the staggered-grid fluid solver employed in that work. Stockie [30] introduced a six-point IB kernel that yields higher-
order accuracy than the three- and four-point IB kernels for problems with smooth solutions, albeit at expense of additional 
computational cost. Yang et al. [33] developed smoothed C2 IB kernels that can suppress non-physical high-frequency force 
oscillations that can occur with the standard IB kernels. Bao et al. [36,37] developed a new C3 six-point kernel that improves 
grid translational invariance and regularity compared to the standard three- and four-point kernels and the smoothed ker-
nels of Yang et al. Griffith and Luo [4] used the benchmark problem of viscous flow past a cylinder to compare the standard 
three- and four-point kernels as well as the new six-point kernel by Bao et al. [36,37] and demonstrated that the choice of 
kernel function impacts the accuracy of the methodology. Mori [32] analyzed the convergence for the Stokes problem and 
showed that satisfying the even–odd condition improves the convergence properties of the method by eliminating high-
frequency errors in the far field. Liu and Mori [34] extended the work of Mori to analyze convergence for elliptic problems 
and showed that the smoothing order, which generalizes the even–odd condition, of a given delta function influences the 
convergence for the Stokes problem. Hosseini et al. [35] analyzed the convergence of regularization for various PDEs with a 
singular source and demonstrated the substantial impact of regularization of the source term on the solutions to these prob-
lems. Saito and Sugitani [38] studied the convergence of regularization error for a model Stokes problem in the context of 
finite element method. Heltai and Lei [39] provided a priori error estimates of regularization for elliptic problems compared 
to the non-regularized counterpart in the context of finite element formulations. However, with the exception of the work 
by Griffith and Luo [4], none of these focus on tests in the intermediate-to-high Reynolds number regimes in which the IB 
method is commonly used in practice. Here, we consider both the widely used IB kernels as well as B-spline kernels, which 
also are widely used delta function kernels [40,41] but which, to our knowledge, have not been systematically compared 
against kernels that follow the construction approach of Peskin [1,31,36,37] in the context of the IB method.

Herein we examine the impact of different choices of kernels on the dynamics using the immersed finite element/dif-
ference (IFED) method [4,5], which is an extension of the IB method that uses a finite element structural discretization 
combined with a Cartesian grid finite difference method for the incompressible Navier-Stokes equations. An important dif-
ference between the IFED method and conventional IB methods is that discrete IFED coupling operators use interaction points
that can be chosen to be distinct from the control points that determine the configuration of the structure (e.g., the nodes of 
the Lagrangian mesh). In this study, we follow the approach of Griffith and Luo [4] and construct the interaction points via 
adaptively chosen Gaussian quadrature rules that distribute the interaction points in the interiors of the structural elements. 
In contrast, the conventional IB method spreads forces from the nodes of the structural mesh and interpolates velocities to 

2 In fact, the singular Dirac delta function is not a function that is defined pointwise but instead is a generalized function or distribution. It is commonly 
referred to as the delta function within the IB literature, however, and we retain that usage herein.
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those nodes [1]. In nodally coupled IB methods, catastrophic leakage flows through the structure can occur if the node spac-
ing is comparable to or larger than the support of the regularized delta function because in such cases, there will be gaps 
in the Eulerian structural force density. (This issue is distinct from the question of the fundamental volume conservation of 
the IB method, which has been the subject of numerous studies, including the work of Peskin and Prinz [42] along with 
more recent work for both immersed boundary and immersed finite element-type methods [37,43–47].) The IFED approach 
of using distinct collections of control and interaction points opens the possibility of using structural discretizations with 
wide node spacings while maintaining a contiguous Eulerian structural force density. However, prior studies on the impact 
of the relative node spacing on the impact of the IFED method have been limited and, in particular, considered only cases 
with negligible normal forces along the fluid-structure interface [4]. At least in those tests, however, it was found that the 
accuracy of the method actually increases with increasing Lagrangian mesh spacing. In this study, we systematically investi-
gate the impact of the relative spacings of the Lagrangian and Eulerian discretizations for a broader range of test problems 
in the intermediate-to-high Reynolds number regime, ranging from 70 to 15,000. The results in this study are concordant 
with earlier work for shear-dominated cases in that narrower kernels are more robust and that a broad range of relatively 
coarse structural meshes can be used, but here we also identify that the structural mesh spacing must be comparable to 
or finer than the background Cartesian grid for cases involving large pressure loads. Our results also indicate that kernels 
satisfying a commonly imposed even–odd condition require higher resolution to achieve similar accuracy as kernels that 
do not satisfy this condition. We then apply and verify our key findings in a large-scale FSI model of bovine pericaridal 
bioprosthetic heart valve (BHV) in a pulse duplicator [15,16]. Although these investigations are all done within the context 
of the IFED version of the IB method, the large effect of the choice of kernel function on the results suggests the need for 
similar studies for other IB-type methods that use regularized delta functions to mediate fluid-structure interaction.

2. Methods

This section describes the continuous formulation of the IFED method and the numerical discretization and implemen-
tation of the method. We also define the key factors that impact the interaction between the Lagrangian mesh and the 
Eulerian grid such as different types of regularized delta functions, as well as the Lagrangian mesh spacing.

2.1. Immersed finite element/difference method

The continuous IFED formulation considers fluid-structure system occupying a fixed three-dimensional Eulerian compu-
tational domain � that is partitioned into time-dependent fluid (�f

t ) and solid (�s
t ) subdomains, so that � = �f

t ∪ �s
t . Here, 

x = (x1, x2, x3) ∈ � are physical coordinates, X = (X1, X2, X3) ∈ �s
0 are reference coordinates attached to the structure, N(X)

is the outward unit normal to ∂�s
0 at material position X , and χ(X, t) ∈ �s

t is the physical position of material point X at 
time t . The dynamics of the coupled system are described by

ρ
Du

Dt
(x, t) = −∇p(x, t) + μ∇2u(x, t) + f (x, t), (1)

∇ · u(x, t) = 0, (2)

f (x, t) =
∫
�s

0

F (X, t) δ(x − χ(X, t))dX, (3)

∂χ

∂t
(X, t) = U (X, t) =

∫
�

u(x, t) δ(x − χ(X, t))dx = u(χ(X, t), t), (4)

in which D
Dt = ∂

∂t + u · ∇ is the material derivative, u(x, t) and p(x, t) are the Eulerian velocity and pressure fields, f (x, t)
is the Eulerian structural force density, F (X, t) is the Lagrangian force density, U (X, t) is the Lagrangian velocity of the 
immersed structure, and δ(x) = ∏3

i=1 δ(xi) is the three-dimensional Dirac delta function. For simplicity, we assume a uni-
form mass density ρ and viscosity μ. Eq. (3) implies that the Eulerian and Lagrangian force densities are equivalent as 
densities, and Eq. (4) implies that the no-slip condition is satisfied along the fluid-structure interface. Note that because 
∂χ
∂t (X, t) = u(χ(X, t), t) and ∇ · u(x, t) = 0, the immersed structure is incompressible [47].

In our numerical tests, we consider both rigid and elastic immersed structures. For stationary structures considered in 
our examples, F (X, t) in Eq. (3) is a Lagrange multiplier for the constraint U (X, t) ≡ 0. We use a penalty formulation [48]
that yields an approximate Lagrange multiplier force,

F (X, t) = κ(X − χ(X, t)) − ηU (X, t), (5)

in which κ is a stiffness penalty parameter and η is a body damping penalty parameter. Note that as κ → ∞, χ(X, t) → X
and ∂χ

∂t (X, t) → 0. We include a damping term in the penalty force to reduce spurious oscillations that can occur in practice 
for finite κ .
3
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Fig. 1. Vortices shed from a stationary circular cylinder at Re = 200. The computational domain is described by block-structured adaptively refined Cartesian 
grid that dynamically tracks vortices shed from the immersed structure.

We also consider immersed elastic structures in Sections 3.3, 3.4, and 3.5. In the simplest version of this methodology, 
the immersed structure is modeled as a viscoelastic solid, in which the viscous stresses in the solid are typically small 
compared to elastic stresses [4,49–51]. In our IFED formulation, the elastic response is that of a hyperelastic material, for 
which the first Piola–Kirchhoff stress P of the immersed structure is related to a strain-energy functional �(F) via P = ∂�

∂F , 
in which F = ∂χ/∂X is the deformation gradient tensor. The resultant structural force F (X, t) generated by deformations 
of the elastic structure is determined in a weak sense by satisfying∫

�s
0

F (X, t) · V (X)dX = −
∫
�s

0

P(X, t) : ∇X V (X)dX (6)

for all smooth V (X) [4,52]. This is the so-called unified weak formulation [4], which incorporates both internal and trans-
mission forces [52]. Consequently, F can be a generalized function or distribution, with force concentrations along the 
fluid-solid interface that are singular like a one-dimensional delta function. As in earlier work using finite element-based 
structural discretizations with the IB framework, these singularities are effectively regularized by projecting them onto the 
finite element shape functions [4,49,52,53]. (Griffith and Luo [4] also considered a partitioned formulation that separately 
approximated the (regular) interior force density and the (singular) transmission force density. In practice, we have not 
found cases in which that approach yields substantially improved accuracy, but we do find that it yields poorer stability 
in many cases. Consequently, we focus on the unified formulation in this work.) We also use this approach as a penalty 
formulation to model rigid structures by treating the structure as an elastic material with a large stiffness parameter.

2.2. Eulerian and Lagrangian discretizations

The Eulerian variables are solved on the computational domain �, which includes both the solid and fluid subregions, 
and this domain is described using a block-structured locally refined Cartesian grids consisting of nested levels of Cartesian 
grid patches [7]. This allows high spatial resolution to be deployed dynamically near fluid-structure interfaces and near 
flow features that are identified by feature detection criteria (e.g., local magnitude of the vorticity) for enhanced spatial 
resolution. Fig. 1 provides an example of the adaptive mesh refinement in the test case of flow past a cylinder. We use a 
second-order accurate staggered-grid discretization [46,54] of the incompressible Navier-Stokes that includes a version of 
the piecewise parabolic method (PPM) [55] to approximate the convective term.

The Lagrangian variables are solved on the immersed structure, which is discretized with C0 finite elements as described 
in Griffith and Luo [4]. Briefly, we construct a triangulation, T h , with m nodes, in which we define the 3m-dimensional 
vector-valued approximation space as Xh ⊂ H1(T h)3. We then define {φ
} to be the standard nodally interpolating finite 
element basis of Xh . We track deformation, velocity, and force at the nodes and use the same shape functions for each 
component, which can be written as

χh(X, t) =
m∑


=1

χ 
(t)φ
(X), (7)

U h(X, t) =
m∑


=1

U 
(t)φ
(X), and (8)

F h(X, t) =
m∑


=1

F 
(t)φ
(X). (9)

For the rest of this discussion, we drop the subscript “h” from the numerical approximations to the Lagrangian variables to 
simplify notation.
4
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Fig. 2. Selected choices of regularized delta functions. One family of kernel functions is determined by imposing some or all of the conditions described by 
Peskin [1], and they present different properties depending on which of the moment conditions are satisfied. We can also consider B-spline kernels that 
are constructed by recursive convolution against piecewise-constant kernels.

2.3. Lagrangian-Eulerian coupling

As briefly described in Section 1, the coupling between Eulerian and Lagrangian variables is mediated by integral trans-
forms with delta function kernels as shown in Eq. (3) and (4). To approximate f = ( f1, f2, f3) in Eq. (3) on the Cartesian 
grid, we construct a Gaussian quadrature rule with Ne quadrature (or interaction) points Xe

Q ∈ Ke and weights we
Q , 

Q = 1, . . . , Ne for each element Ke ∈ T h . Then f1, f2, and f3 on the faces of the Cartesian grid cells are computed as [4]

( f1)i− 1
2 , j,k =

∑
Ke∈T h

Ne∑
Q =1

F1(X
e
Q , t) δh(xi− 1

2 , j,k − χ(Xe
Q , t))we

Q , (10)

( f2)i, j− 1
2 ,k =

∑
Ke∈T h

Ne∑
Q =1

F2(X
e
Q , t) δh(xi, j− 1

2 ,k − χ(Xe
Q , t))we

Q , (11)

( f3)i, j,k− 1
2

=
∑

Ke∈T h

Ne∑
Q =1

F3(X
e
Q , t) δh(xi, j,k− 1

2
− χ(Xe

Q , t))we
Q , (12)

in which F (X, t) = (F1(X, t), F2(X, t), F3(X, t)) are the Lagrangian force densities and δh(x) is a regularized delta function. 
We use the compact notation

f (x, t) = S[χ(·, t)] F (X, t), (13)

in which S[χ(·, t)] is the force-prolongation operator. Similarly, the velocity of the structure, ∂χ
∂t (X, t) in Eq. (4), can be 

approximated by using the Cartesian grid velocity u(x, t),

∂χ

∂t
(X, t) =J [χ (·, t)]u(x, t), (14)

in which J [χ(·, t)] is the velocity-restriction operator that is constructed to satisfy the adjoint condition, J = S∗ [4]. It is 
clear that the coupling operators S and J depend on the spatial discretization and the choice of regularized delta function 
kernel, δh .

2.4. Regularized delta functions

In our computations, we use a regularized delta function δh(x) in our discrete approximations to the integral transforms 
in Eq. (3) and (4). Following Peskin [1], we construct the three-dimensional regularized delta function as the tensor product 
of one-dimensional delta functions, δh(x) = ∏3

i=1 δh(xi), and the one-dimensional regularized delta function is defined in 
terms of a basic kernel function via δh(x) = 1

hϕ
( x
h

)
. Note that ϕ is different from φ used earlier to denote finite element 

basis functions. Here, ϕ (r) is continuous for all r and zero outside of the radius of support. Fig. 2 shows different regularized 
5
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delta functions considered in this study. One-dimensional kernel functions introduced by Peskin impose some or all of the 
following conditions [1]:

zeroth moment:
∑
j

ϕ(r − j) = 1; (15)

even–odd:
∑
j even

ϕ(r − j) =
∑
j odd

ϕ(r − j) = 1

2
; (16)

first moment:
∑
j

(r − j)ϕ(r − j) = 0; (17)

second moment:
∑
j

(r − j)2 ϕ(r − j) = K , for some constant K . (18)

The zeroth moment condition implies total forces are equivalent in discretized Lagrangian or Eulerian form when δh is 
used for force spreading [1]. The even–odd condition is designed to avoid the “checkerboard” instability in a collocated-
grid fluid solver and thereby to suppress spurious high-frequency modes [1,31,36,37,46]. Note that the even–odd condition 
implies the zeroth moment condition. The first moment condition implies the conservation of total torque. Along with the 
zeroth moment condition, it guarantees second-order accuracy in interpolating smooth functions [1]. If a kernel function 
satisfies Eq (18) with K = 0, then the second moment condition implies that the kernel achieves higher order accuracy in 
interpolating smooth fields. It is also possible to use the higher-order moment condition with K 
= 0, which can be used to 
impose higher continuity order on the kernel function [36]. Peskin also postulated a sum-of-squares condition,∑

j

(ϕ(r − j))2 = C, for some constant C, (19)

which is a weak version of a grid translational invariance property [1].
At present, the kernel functions most commonly used with the IB method appear to be what we refer to as the IB 

kernels, which satisfy some or all of the properties proposed by Peskin [1] (Figs. 2a and 2b). The three-point IB kernel is 
constructed by satisfying the zeroth and first moment conditions as well as the sum-of-squares condition, but not the even–
odd condition [1]. The five-point IB kernel satisfies the same conditions as the three-point function along with second and 
third moment conditions with K 
= 0 chosen to yield higher continuity order [36,37]. The four-point IB kernel is constructed 
by satisfying the even–odd condition (which also implies the zeroth moment condition) and first moment conditions as 
well as the sum-of-squares condition [1]. The six-point IB kernel satisfies the same conditions as the four-point function 
along with second and third moment conditions with K 
= 0 chosen to yield higher continuity order [36,37]. We emphasize 
that the three- and four-point IB kernels satisfy the same properties, except that the three-point kernel does not satisfy the 
even-odd condition. Likewise, the five- and six-point IB kernels satisfy the same properties, except that the five-point kernel 
does not satisfy the even-odd condition.

This study also considers the performance of B-spline kernels (Figs. 2f–2i), which are recursively constructed by convo-
lution against the zeroth-order B-spline kernel (which is a piecewise-constant function):

ϕ
B-spline
n (r) = ϕ

B-spline
n−1 (r) ∗ ϕ

B-spline
0 (r) =

∞∫
−∞

ϕ
B-spline
n−1 (r − s)ϕB-spline

0 (s)ds. (20)

An nth-order B-spline satisfies up to nth-order moment conditions but does not satisfy the even–odd condition or the 
approximate grid translational invariance property. Both the radius of support and the smoothness of the B-spline kernel 
increases with order, and the limiting function is a Gaussian [37,56]. One advantage of using B-spline kernels is that they 
are piecewise polynomial and can be evaluated efficiently. Table 1 shows a summary of properties and moment conditions 
satisfied by the kernels that are considered in this paper.

2.5. Lagrangian mesh spacing

In addition to the choice of the regularized delta function kernel, the coupling strategy used in the IFED method allows 
us to study the impact of the interaction between the Lagrangian mesh and the Eulerian grid. We use mesh factor, MFAC, 
to indicate the approximate ratio of Lagrangian element node spacing to the Eulerian grid spacing. MFAC is defined here as 
MFAC ≈ �X

EFAC�x , in which �X is the Lagrangian element size, �x is the Eulerian grid spacing in each coordinate direction, 
and the element factor EFAC is 1 for linear elements and 2 for quadratic elements, and reflects the fact that, e.g., nodes are 
approximately �X/2 apart for quadratic elements. See Fig. 3. For example, the usual “rule of thumb” described by Peskin [1]
restricts the structural mesh to be approximately twice as fine as the Eulerian grid, which corresponds to MFAC = 0.5, 
independent of EFAC. We investigate the effect of the choice of MFAC, along with the choice of the regularized delta function 
kernel, in the accuracy of our solutions through our FSI benchmarks.
6
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Table 1
Selected choices of regularized delta functions with properties and moment conditions that are satisfied. In the higher moment columns (second–fifth 
moment), the value of K that satisfies the given moment condition is given.

Kernel Even–Odd Zeroth 
Moment

First 
Moment

Second 
Moment

Third 
Moment

Fourth 
Moment

Fifth 
Moment

Sum of 
Squares

Piecewise-linear � �
IB (3-point) � � 1

2

IB (4-point) � � � 3
8

IB (5-point) � � 38
60 −

√
69
60 ≈ 0 ≈ 0.393

IB (6-point) � � � 59
60 −

√
29
20 ≈ 0 ≈ 0.326

B-spline (3-point) � � 1
4

B-spline (4-point) � � 1
3 0

B-spline (5-point) � � ≈ 0.417 ≈ 0 ≈ 0.479

B-spline (6-point) � � ≈ 0.500 ≈ 0 ≈ 0.700 0

Fig. 3. Description of MFAC, which is the ratio between background Cartesian grid spacing and finite element node spacing. In the case shown here, there 
are about five Cartesian grid cells between two finite element nodes for a second-order triangular (P2) element, so we say that MFAC ≈ 5.

2.6. Time discretization

We use an explicit midpoint rule for the structural deformation, a Crank-Nicolson scheme for the viscous term, and 
an Adams-Bashforth scheme for the convective term, as detailed previously [4]. Each time step involves solving the time-
dependent incompressible Stokes equations, one force evaluation and force spreading operation, and two velocity interpola-
tion operations.

2.7. Stabilization method for hyperelastic material models

In the continuous IFED formulation, the immersed structure is automatically treated as incompressible because 
∂χ
∂t (X, t) = u(χ(X, t), t) and ∇ · u(x, t) = 0. In the spatially discretized equations, exact incompressibility can be lost in 
the solid. We use a stabilization approach [47] that effectively reinforces the incompressibility constraint. This approach 
uses a splitting of the strain energy functional into isochoric and volumetric parts,

�(F) = W (F) + U ( J ), (21)

in which F = J−1/3F, as is commonly done in nearly incompressible elasticity models [57]. We use the volumetric part of 
the strain energy as a stabilization term used to enforce the incompressibility of the elastic structures, and here we choose 
it to be [58]

U ( J ) = β( J ln J − J + 1), (22)

in which β is a numerical bulk modulus [47]. In this study, we empirically determine approximately the largest value of the 
bulk modulus that allows the scheme to remain stable for a given time step size �t to penalize any volume change in the 
structural mesh elements for each kernel and grid spacing.

2.8. IBAMR

FSI simulations use the IBAMR software infrastructure, which is a distributed-memory parallel implementation of the IB 
method with adaptive mesh refinement (AMR) [59,60]. IBAMR uses SAMRAI [61] for Cartesian grid discretization manage-
ment, libMesh [62] for finite element discretization management, and PETSc [63] for linear solver infrastructure.
7



J.H. Lee and B.E. Griffith Journal of Computational Physics 457 (2022) 111042
Fig. 4. (a) Schematic of two-dimensional flow past a cylinder benchmark. Arrows represent the inflow boundary, where a uniform velocity boundary 
condition, u = (1, 0), is applied. Zero normal traction and tangential velocity at the outflow boundary. For the top and bottom boundaries, we use zero 
normal velocity and tangential traction. We choose Re = 200 in our tests. (b) A magnified view of the vortices shed from a stationary circular cylinder from 
our simulation.

3. Fluid-structure interaction benchmarks and results

This section systematically investigates the impact of the choice of regularized delta function as well as the relative 
spacings of the Lagrangian and Eulerian discretization on the IFED method using a series of FSI benchmarks. The benchmarks 
are organized into shear-dominated and pressure-loaded cases, and we apply our findings from them to a large-scale FSI 
model.

3.1. Two-dimensional flow past cylinder

We begin by considering the widely used test of viscous incompressible flow past a stationary circular cylinder [4,
64]. We use the penalty formulation, Eq. (5), to model the cylinder. The penalty parameters κ and η are determined to 
be approximately the largest stable values for a given time step size and Lagrangian and Eulerian mesh spacings. The 
cylinder has diameter D = 1 and is embedded in a computational domain � with side lengths of L = H = 60. Fig. 4a 
provides a schematic diagram. We use a uniform inflow velocity boundary condition, u = (1, 0), on the left boundary of the 
computational domain and specify zero normal traction and tangential velocity conditions on the right boundary. For the top 
and bottom boundaries of the computational domain, we specify zero normal velocity and tangential traction conditions. 
The fluid has density ρ = 1 and viscosity μ = 0.005, and the Reynolds number is Re = ρu∞D

μ = 200. We use the drag (
CD = Fx

ρu2∞D/2

)
and lift 

(
CL = F y

ρu2∞D/2

)
coefficients to evaluate the effect of the choice of regularized delta function or 

mesh factor on the computed dynamics, in which F = (Fx, F y) is the net force on the cylinder and u∞ is the characteristic 
flow speed (which we take to be x-component of the inflow velocity). The computational domain is discretized using a six-
level locally refined grid with a refinement ratio of two between levels and an N ×N coarse grid. The fine-grid Cartesian cell 
size is �x = H/(32N), and the time step size is �t = 0.1875/N . Griffith and Luo [4] previously conducted an initial study 
using this benchmark with the three-, four-, and six-point IB delta function kernels. Fig. 5 shows representative results 
of lift and drag coefficients using the three-point B-spline kernel, which shows converging behavior under simultaneous 
Lagrangian and Eulerian grid refinement (from N = 32 to N = 256) for MFAC = 0.5, 1, 2, and 4. The method yields similar 
convergence behavior under grid refinement for the other kernel functions that we consider and for the chosen values of 
MFAC.

Although the scheme converges under grid refinement for all choices of kernels and for all values of MFAC, we observe 
that four- and six-point IB kernels clearly require high grid resolution to yield converged solutions for MFAC = 0.5 and 1. 
Considering specifically the intermediate Cartesian resolution corresponding to N = 64, we find that some kernels show 
markedly lower accuracy for some MFAC values. At the same moderate resolution, the three-point IB kernel (along with the 
piecewise linear and B-spline kernels) are less sensitive for MFAC ≥ 1 compared to the four- and six-point IB kernels, which 
agrees with the results reported by Griffith and Luo [4].

Next, we compare results at the same resolution with a broader selection of kernel functions to identify which ker-
nels give more consistent results over different values of MFAC at intermediate resolution. Table 2 compares lift and drag 
coefficients and Strouhal numbers at N = 64 using different kernel functions for MFAC = 0.5, 1, 2, and 4. These quantities 
converge to CL = ±0.67, CD = 1.361 ± 0.041, and St = 0.200 under grid refinement, and we observe that the three-point IB 
and three- and four-point B-spline kernels with MFAC > 1 result in the best agreement with the converged values at N = 64. 
For MFAC = 0.5, lift amplitudes differ up to 25% from the converged value, compared to up to 9% for MFAC ≥ 1 for some 
kernels. These three kernels also give consistent Strouhal numbers (St = 0.200) for the values of MFAC considered. Fig. 6
compares lift and drag coefficients as functions of time for four representative kernels. Although Table 2 suggests that the 
three-point IB and three-point B-spline kernels yield similar values for lift and drag coefficients with similar root-mean-
square error with respect to the converged results, Fig. 6 shows that the lift and drag coefficients for MFAC = 0.5 using the 
8
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Fig. 5. Representative lift (CL) and drag (CD) coefficients for flow past a stationary cylinder at Re = 200 using the three-point B-spline kernel. The compu-
tational domain � is discretized using a six-level locally refined grid with a refinement ratio of two between levels and an N × N coarse grid. We observe 
that the lift and drag coefficients show converging behavior under simultaneous Lagrangian and Eulerian grid refinement (from N = 32 to N = 256) for all 
values of MFAC. Similar accuracy is observed with the other kernels except for the six-point IB kernel, which requires higher resolution to yield comparable 
accuracy.

Table 2
Comparison of lift (CL) and drag (CD) coefficients for flow past a stationary cylinder at an intermediate Cartesian resolution of N = 64 using different 
regularized delta functions and relative structural mesh spacing (MFAC). These values converge to CL = ±0.67, CD = 1.361 ±0.041, St = 0.200 under further 
grid refinement. We observe that the three-point IB and three- and four-point B-spline kernels result in the highest accuracies and least variation across 
MFAC values at N = 64.

MFAC = 0.5 MFAC = 1.0 MFAC = 2.0 MFAC = 4.0

Kernel CL CD St CL CD St CL CD St CL CD St

Piecewise-linear ±0.45 1.350 ± 0.045 0.180 ±0.61 1.346 ± 0.030 0.200 ±0.69 1.389± 0.039 0.200 ±0.70 1.400 ± 0.042 0.200
IB (3-point) ±0.53 1.375 ± 0.045 0.200 ±0.61 1.347 ± 0.028 0.200 ±0.66 1.357± 0.036 0.200 ±0.66 1.358 ± 0.036 0.200
IB (4-point) ±0.44 1.359 ± 0.042 0.200 ±0.62 1.446 ± 0.047 0.180 ±0.64 1.347± 0.031 0.200 ±0.64 1.348 ± 0.031 0.200
IB (5-point) ±0.46 1.360 ± 0.044 0.180 ±0.55 1.432 ± 0.053 0.200 ±0.64 1.346± 0.032 0.200 ±0.64 1.343 ± 0.033 0.200
IB (6-point) ±0.51 1.366 ± 0.042 0.180 ±0.70 1.467 ± 0.043 0.180 ±0.63 1.332± 0.029 0.200 ±0.63 1.332 ± 0.029 0.200
B-spline (3-point) ±0.51 1.354 ± 0.042 0.200 ±0.62 1.336 ± 0.032 0.200 ±0.67 1.363± 0.037 0.200 ±0.67 1.366 ± 0.037 0.200
B-spline (4-point) ±0.50 1.350 ± 0.043 0.200 ±0.61 1.355 ± 0.031 0.200 ±0.66 1.357± 0.035 0.200 ±0.66 1.356 ± 0.035 0.200
B-spline (5-point) ±0.49 1.358 ± 0.043 0.200 ±0.60 1.389 ± 0.040 0.200 ±0.65 1.351± 0.034 0.200 ±0.65 1.349 ± 0.034 0.200
B-spline (6-point) ±0.49 1.368 ± 0.044 0.180 ±0.56 1.422 ± 0.051 0.200 ±0.64 1.346± 0.032 0.200 ±0.64 1.344 ± 0.032 0.200

three-point IB kernel clearly deviates from the results for other values of MFAC. This suggests that the three-point B-spline 
kernel yields more consistent results as we vary MFAC. These results also are concordant with previous work by Griffith and 
Luo [4] in that refining the Lagrangian mesh while keeping the Eulerian grid resolution fixed generally lowers the accuracy. 
We find that the three-point B-spline kernel shows the least sensitivity at the coarsest grid spacings amongst the kernel 
functions considered in this study. Possible explanations for relatively lower accuracy and consistency from other kernels 
could be that the piecewise linear kernel is not sufficiently smoothing out the high-frequency errors and the larger IB and 
B-spline kernels are generating unphysically large numerical boundary layers near fluid-structure interfaces. We also note 
that the four- and six-point IB kernels satisfy the even–odd condition, and they yield lower accuracy than the corresponding 
three- and five-point IB kernels that do not satisfy the even-odd condition.

3.2. Two-dimensional channel flow

This section considers the benchmark problem of two-dimensional channel flow test adopted from Kolahdouz et al. [65]. 
We consider a domain � = [0, L]2 with two parallel plates, with channel width D and wall width w = 0.24D . The exact 
steady-state solution is described by the plane Poiseuille equation,

u(y) = χD

2μ
(y − y0)

(
1− y − y0

D

)
, (23)

in which y0 is the height of inner wall of the lower channel plate and χ = 2p0
L is the pressure gradient between the inflow 

and the outflow. To avoid a purely grid aligned test, we consider a slanted channel. Fig. 7a provides a schematic. This is 
done by rotating the channel walls by an angle θ , so that for every point on the walls (x, y), we transform the y-coordinate 
to y′ = y + (

x− L
2

)
tan θ and let (x, y′) be the new coordinates for the walls. The steady-state solution is then transformed 

to
9
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Fig. 6. Representative results of lift (CL) and drag (CD) coefficients for flow past a stationary cylinder at N = 64 using four representative regularized delta 
functions and different relative structural mesh spacing for a fixed Eulerian grid (MFAC = 0.5, 1, 2, and 4).

Fig. 7. (a) Schematic of two-dimensional flow through a slanted channel. (b) Representative steady-state velocity solution vector field for the two-
dimensional slanted channel flow benchmark. This simulation uses a three-level locally refined grid with a refinement ratio of two between levels and 
an N × N coarse grid with N = 256. The computation uses a piecewise linear kernel and MFAC = 2.0.

u(η) = χD

2μ
(η − η0)

(
1− η − η0

D

)
, (24)

in which η = −x sin θ + (y − y0) cos θ and χ = 2p0
L/ cos θ+D tan θ

. In our computations, we use D = 1, μ = 0.01, ρ = 1.0, L = 6D , 
p0 = 0.2, and θ = π/18. The maximum velocity is Umax = 1, and the average velocity is U = 2/3, which implies that 
the Reynolds number is Re = ρDU

μ ≈ 66.67. The fine-grid Cartesian cell size is �x = D/(4N), and the time step size is 
�t = 0.0375/N . At the inlet and outlet of the channel, the rotated analytical solution of the steady-state velocity (Eq. (24)) 
provides velocity boundary conditions. This benchmark assesses which choices of kernel and MFAC give the best accuracy 
for the flow within a confined, stationary geometry.

The channel walls are modeled as a stiff neo-Hookean material with Wwall = cwall
2 ( Ī1 − 3), in which Ī1 is the modified 

first invariant of the right Cauchy-Green tensor C̄ = F̄T F̄ = J− 2
3 FTF, and cwall ∝ �x

�t2
is a penalty stiffness parameter, so 

that the body becomes infinitely rigid as �t → 0. In addition to the penalty stiffness, we use penalty body and damping 
forces described in Eq. (5) to enforce rigidity of the structure as well as to keep it stationary. We empirically determine 
approximately the largest values of the penalty parameters that allow the scheme to remain stable for a given time step 
size �t for each kernel and grid spacing.

Fig. 8 shows a convergence study using different error norms for representative kernels with MFAC = 2.0. These results 
indicate that the velocity converges at first order for all kernels. Similar convergence rates are observed for MFAC = 0.5, 1.0, 
2.0, and 4.0. We find that using the piecewise linear kernel leads to the best accuracy for this test. Fig. 9 shows the error 
plots in velocity for representative kernels for MFAC = 0.5, 1, 2, and 4 at N = 128. In all cases, we observe the general trend 
that the cases with MFAC ≥ 1, i.e., cases in which the structural mesh is coarser than the background Cartesian grids, result 
in better accuracy. This finding is in agreement with the results of Section 3.1. Similar results are obtained at all resolutions 
10
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Fig. 8. Representative log-log plot of different error norms in velocity with respect to the finest Eulerian mesh width h for various kernels with MFAC = 2.0. 
The piecewise linear kernel shows the smallest errors. Notice that first-order convergence is obtained with all choices of kernels and for all values of MFAC.

Fig. 9. Plot of the error norms in velocity for values of MFAC = 0.5, 1, 2, and 4 at N = 128 for various kernels. It shows that the structural mesh that is 
relatively coarser than the finest background Cartesian grids yields the lowest error. The piecewise linear kernel shows the smallest errors. Note that similar 
results are obtained at all resolutions with all choices of kernels.

with all choices of kernels. These results demonstrate that the kernels with relatively narrower support (piecewise linear, 
three-point IB, and three-point B-spline) and using a structural mesh that is coarser than the background Cartesian grid 
yield the best accuracy for simulating internal flow within a stationary geometry. As in the tests reported in Section 3.1, we 
observe that the scheme converges under grid refinement for all choices of kernels and for all values of MFAC.

3.3. Modified Turek-Hron benchmark

Next we consider a version of the Turek-Hron FSI benchmark of flow interacting with a flexible elastic beam mounted 
to a stationary circular cylinder [66]. Fig. 10 shows a schematic of the setup for this benchmark. In the original Turek-Hron 
benchmark, the domain length is L = 2.5 and height is H = 0.41. Our modification to this benchmark uses L = 2.46 = 6.0H
for the domain to obtain square Cartesian grid cells, but this change is small enough that it does not affect the results 
substantially. The fine-grid Cartesian cell size is �x = H/(4N), and the time step size is �t = 0.001025/N . The circular 
cylinder is centered at (0.2, 0.2) with radius r = 0.05. The elastic beam has length l = 0.35 and height h = 0.02. The left 
end of the beam is fixed at the back of cylinder. We track the position of the control point A highlighted in Fig. 10b, 
whose initial position is A(0) = (0.6, 0.2). The boundary conditions are u(0, y) = 1.5U y(H−y)

(H/2)2
for x = 0, in which U = 2 is 

the average velocity, zero normal traction and zero tangential velocity conditions for x = L, and zero velocity condition for 
y = 0 and y = H . The Reynolds number is Re = ρUd

μ = 200, in which d = 2r = 0.1 is the diameter of the cylinder, ρ = 1000, 
and μ = 1. Notice that without the elastic beam, this problem reduces to a version of the flow past a cylinder benchmark 
already considered in Section 3.1. Results reported in Section 3.1 indicate that the three-point B-spline kernel provides the 
best accuracy at a given spatial resolution among the kernel functions considered in this study. Consequently, here we use 
the three-point B-spline kernel with MFAC = 2.0 for the cylinder in all cases, so that we can isolate the effects of the choice 
of kernel function and Mfac on the dynamics of the elastic beam. Also note that, following the specification of the test by 
Turek and Hron, the immersed body is positioned asymmetrically in the y-direction to ensure a consistent onset of beam 
motion across discretization and solver approaches.

In this benchmark, we use an incompressible neo-Hookean material for the elastic beam, whose strain energy functional 
is defined as

WNH = 1

2
Gs( Ī1 − 3), (25)

in which Gs is the shear modulus. This differs from the problem specification in Turek and Hron’s original paper, which uses 
a compressible St. Venant-Kirchhoff model for the elastic beam, but our numerical framework enforces incompressibility on 
11



Fig. 10. (a) Schematic of the Turek-Hron benchmark [66]. (b) Detail of the immersed cylinder and flexible beam.

Table 3
Results for the modified Turek-Hron benchmark using the three-point B-spline kernel with various values of MFAC under different grid resolutions. N is the 
number of grid cells on coarsest grid level, Ax and Ay are x-, y-displacements of the point A, and Stx and Sty are Strouhal numbers for the oscillations of 
Ax and Ay .

MFAC = 0.5 MFAC = 1.0 MFAC = 2.0 MFAC = 4.0

N Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx

32 −2.30± 2.16 10.4 −2.63± 2.47 10.4 −2.89± 2.85 10.4 −3.16± 3.00 10.8
64 −2.57± 2.44 10.8 −2.69± 2.55 10.8 −2.76± 2.66 10.8 −3.03± 2.89 10.8
128 −2.75± 2.61 10.8 −2.77± 2.63 10.8 −2.83± 2.70 10.8 −2.88± 2.73 10.8
256 −2.79± 2.64 10.8 −2.82± 2.67 10.8 −2.83± 2.69 10.8 −2.85± 2.70 10.8

N Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty

32 1.47 ± 30.5 5.00 1.67 ± 32.4 5.00 1.56 ± 34.9 5.00 1.23 ± 36.1 5.42
64 1.41 ± 32.7 5.00 1.44 ± 33.4 5.00 1.41 ± 34.2 5.00 1.49 ± 35.3 5.00
128 1.42 ± 33.9 5.00 1.43 ± 34.0 5.00 1.44 ± 34.5 5.00 1.42 ± 34.7 5.00
256 1.42 ± 34.2 5.00 1.43 ± 34.3 5.00 1.42 ± 34.4 5.00 1.42 ± 34.5 5.00

both solid and fluid by formulation, and so we cannot readily model the elastic beam as a compressible material. However, 
we also note that our results with an incompressible material model still fall within the range of results reported by Turek 
and Hron using a compressible material model [67]. We do not expand on those results because that comparison is not the 
main focus of this study.

Table 3 shows comparisons for the three-point B-spline kernel for MFAC = 0.5, 1, 2, and 4 under grid refinement. It 
reports the average and the amplitude of the x- and y-displacements (Ax and Ay) of the point A, as well as the Strouhal 
numbers (Stx and Sty) to quantify the oscillations of Ax and Ay . We obtain comparable results under grid refinement, 
which are more consistent between different MFAC values as we refine the resolution. Similar to the results from other 
benchmarks, this benchmark also indicates that under grid refinement, the results become independent of MFAC and the 
type of kernel. We again focus on the effect of MFAC and the choice of kernel function at an intermediate spatial resolution. 
Figs. 11 and 12 compare representative kernels at N = 64 for MFAC = 0.5, 1, 2, and 4. The three-point B-spline kernel clearly 
yields more consistent results for different values of MFAC at this resolution. Table 4 summarizes the differences between 
selected kernels in Figs. 11 and 12. Appendix A provides the results for the remaining IB and B-spline kernels (see Figs. S1
and S2), and Tables 4 and S1 show that the piecewise linear and three- and four-point IB kernels yield displacements that 
show large discrepancies from the converged displacements if we set MFAC = 0.5. The five- and six-point IB and three-, four-
, five-, and six-point B-spline kernels produce displacements that are relatively consistent. However, Table 3 indicates that 
the Strouhal numbers converge to 10.8, and only the three-point B-spline kernel shows the converged value for Strouhal 
number consistently for all values of MFAC = 0.5, 1, 2, and 4 at the intermediate Cartesian resolution of N = 64. These results 
indicate that the three-point B-spline kernel is less sensitive to changes in MFAC, whereas other kernels show clear loss of 
accuracy as we refine the Lagrangian mesh for a fixed Eulerian grid that is of intermediate spatial resolution.

3.4. Two-dimensional pressure-loaded elastic band

Results reported in Sections 3.1, 3.2, and 3.3 suggest that larger MFAC values generally give higher accuracy at a fixed 
Cartesian grid resolution, independent of the choice of kernel function. The tests considered so far, however, are examples of 
shear-dominant flows. Here we consider cases in which pressure loading dominates, as commonly encountered in biological 
and biomedical applications. To do so, we use a pressure-loaded “elastic band” model (Fig. 13) that is adopted from Vadala-
Roth et al. [47]. This uses an incompressible neo-Hookean material model, as described in Section 3.3, with the shear 
modulus Gs = 200. We set ρ = 1.0 and μ = 0.01. The computational domain is 2L × L, in which L = 1. The simulations use 
a uniform grid with an 2N × N grid with N = 128. The fine-grid Cartesian cell size is �x = L/N , and the time step size 
is �t = 0.001/N . Fluid tractions τ (x, t) = σ(x, t)n(x) = −h and τ (x, t) = σ(x, t)n(x) = h are imposed on the left and right 
boundaries of the computational domain, in which σ = −pI + μ 

(∇u + ∇uT
)
is the fluid stress tensor and h = (5, 0), and 

zero velocity is enforced along the top and bottom boundaries. The elastic band deforms and ultimately reaches a steady-
J.H. Lee and B.E. Griffith Journal of Computational Physics 457 (2022) 111042
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Fig. 11. x-displacement (Ax) of the point A for different values of MFAC for the modified Turek-Hron benchmark using different kernels at a Cartesian 
resolution of N = 64. Panels in the rightmost column show the periodic oscillations between t = 11.5 and t = 12.

Fig. 12. y-displacement (Ay ) of the point A for different values of MFAC for the modified Turek-Hron benchmark using different kernels at a Cartesian 
resolution of N = 64. Figures in the rightmost column show the periodic oscillations between t = 11.5 and t = 12.
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Table 4
Results for the modified Turek-Hron benchmark using kernels in Figs. 11 and 12. The number of Cartesian grid cells on the coarsest level is N = 64, Ax

and Ay are x-, y-displacements of the point A, and Stx and Sty are Strouhal numbers for the oscillations of Ax and Ay .

MFAC = 0.5 MFAC = 1.0 MFAC = 2.0 MFAC = 4.0

Kernel Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx

Piecewise-linear −2.20 ± 2.14 10.4 −2.74± 2.53 10.8 −2.80± 2.68 10.4 −3.10± 2.95 10.8
B-spline (3-point) −2.57± 2.44 10.8 −2.69± 2.55 10.8 −2.76± 2.66 10.8 −3.03± 2.89 10.8
IB (3-point) −2.03± 1.97 10.4 −2.69± 2.54 10.4 −2.76± 2.65 10.8 −3.02± 2.87 10.8
IB (4-point) −1.55± 1.56 10.4 −2.51± 2.39 10.4 −2.69± 2.58 10.8 −2.94± 2.80 10.8

Kernel Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty

Piecewise-linear 1.38± 30.8 5.00 1.46± 33.2 5.00 1.45 ± 34.4 5.00 1.47± 35.9 5.00
B-spline (3-point) 1.41± 32.7 5.00 1.44± 33.4 5.00 1.41 ± 34.2 5.00 1.49± 35.3 5.00
IB (3-point) 1.37± 29.2 5.00 1.45± 33.3 5.00 1.42 ± 34.1 5.00 1.48± 35.2 5.00
IB (4-point) 1.04± 25.9 5.00 1.46± 32.2 5.00 1.41 ± 33.5 5.00 1.47± 34.6 5.00

Fig. 13. Schematic of two-dimensional pressure-loaded elastic band adopted from Vadala-Roth et al. [47]. The loading on the band (blue) is driven by fluid 
forces induced by the pressure gradient between the left and right boundaries of the computational domain. The effective shape of the kernel function 
changes near the boundary of the computational domain. We attempt to avoid issues that may arise at or near the physical boundaries by using a finer 
structural mesh (MFAC = 0.5) for the two rigid blocks (yellow) by which the top and bottom of the band are fixed in place. In this figure, MFAC = 2 for the 
band away from the boundary. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

state configuration determined by the pressure difference across the band. We use a grid resolution (N = 128) that is fine 
enough so that the elastic bands are well-resolved for all cases to isolate the effect of MFAC on the Lagrangian-Eulerian 
coupling and eliminate the effect of elastic response from the band. Moreover, the effective shape of the kernel function 
changes near the boundary of the computational domain. We attempt to isolate the elastic model from issues that may 
arise at or near the physical boundaries by attaching it to the boundary through rigid blocks (of height h = 0.1) that are 
discretized using relatively fine structural meshes (MFAC = 0.5). In the continuous problem, there is no flow at equilibrium, 
but Fig. 14 demonstrates that if the structural mesh is coarser than the finest background Cartesian grid spacing (MFAC > 1), 
spurious flows clearly develop near the fluid-structure interface. Table 5 confirms that the error is an order of magnitude 
larger when MFAC is increased from 0.5 to MFAC > 1, and up to 65 times larger when increased to MFAC = 4. Similar results 
are obtained for all of the kernels considered here.

3.5. Bioprosthetic heart valve dynamics in a pulse duplicator

We aim to verify our key findings in a large-scale FSI model. To do so, we consider a dynamic model of a bovine peri-
caridal bioprosthetic heart valve (BHV) in a pulse duplicator, as described in detail by Lee et al. [15,16]. The simulation 
setup includes a detailed IFED model of the aortic test section of an experimental pulse duplicator, and the simulation in-
cludes both substantial pressure-loads (during diastole, when the valve is closed) and shear-dominant flows (during systole, 
when the valve is open). The bovine pericardial valve leaflets are described by a modified version [15] of the Holzapfel–
Gasser–Ogden (HGO) model [68],

WBHV = C10{exp
[
C01( Ī1 − 3)

] − 1} + k1
2k2

{exp
[
k2(κ Ī1 + (1− 3κ) Ī�4 − 1)2

]
− 1}, (26)

in which Ī�4 = max( Ī4, 1) = max(eT0 C̄e0, 1), and e0 is a unit vector aligned with the mean fiber direction in the reference 
configuration. The parameter κ ∈ [0, 13 ] describes collagen fiber angle dispersion. In the our simulations, we use C10 =
0.119 kPa, C01 = 22.59, k1 = 2.38 MPa, k2 = 149.8, and κ = 0.292 [15]. We use ρ = 1.0 g/cm3 and μ = 1.0 cP, and we can 
14



J.H
.Lee

and
B.E.G

riffi
th

JournalofCom
putationalPhysics

457
(2022)

1110

structural grid refinement (MFAC = 0.5, 0.75, 1, 2, and 4). If 
lastic band.
0 MFAC = 4.0

L∞
(×10−3)

L2

(×10−4)

L∞
(×10−3)

9.77 17.01 42.25
12.27 21.66 19.19
10.8 20.45 18.63
13.69 23.92 19.79
10.62 16.93 39.40
8.44 15.83 9.59
11.04 18.15 10.51
9.37 20.21 17.39

15
Table 5
Quantification of errors in velocity fields from the pressure-loaded two-dimensional elastic band using different regularized delta functions and relative 
the structural mesh is relatively coarser (MFAC > 1) than the finest background Cartesian grids, then we obtain low accuracy for simulating pressurized e

MFAC = 0.5 MFAC = 0.75 MFAC = 1.0 MFAC = 2.

Kernel
L2

(×10−4)

L∞
(×10−3)

L2

(×10−4)

L∞
(×10−3)

L2

(×10−4)

L∞
(×10−3)

L2

(×10−4)

IB (3-point) 0.36 1.26 0.88 2.48 1.49 3.88 6.27
IB (4-point) 0.52 1.26 1.20 4.44 0.95 2.41 5.99
IB (5-point) 1.06 2.12 1.92 4.18 1.80 5.73 5.91
IB (6-point) 2.33 2.81 3.19 3.76 3.94 5.96 6.19
B-spline (3-point) 0.33 0.61 0.65 2.05 1.61 5.41 6.53
B-spline (4-point) 1.26 2.86 1.85 4.62 2.10 8.08 6.42
B-spline (5-point) 1.81 4.47 2.50 4.63 2.56 9.06 6.90
B-spline (6-point) 1.74 3.09 2.48 4.46 2.29 7.77 5.97
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Fig. 14. Comparison of velocity fields from the pressure-loaded two-dimensional elastic band for MFAC = 0.5, 0.75, 1, 2, and 4. The simulations use an 
N × N grid with N = 128. The three-point B-spline kernel is used in the computations shown this figure, but we obtain similar results with other kernels. 
Specifically, if the structural mesh is relatively coarser (MFAC > 1) than the background Cartesian grid, then we obtain low accuracy.

calculate the peak Reynolds number [15,16], Repeak = ρQ peakD
μA ≈ 14,800, in which D = 25 mm and A are the geometrical 

diameter and cross-sectional area of the valve, respectively. The computational domain is 5.05 cm × 10.1 cm × 5.05 cm. 
The simulations use a three-level locally refined grid with a refinement ratio of two between levels and an N/2 × N × N/2
coarse grid with N = 64, which yields a fine-grid Cartesian resolution of 0.4 mm. Here, we use the piecewise linear kernel 
for the test section and consider the effects of different choices of kernel functions for the valve leaflets. Three-element 
Windkessel (R–C–R) models establish the upstream driving and downstream loading conditions for the aortic test section. A 
combination of normal traction and zero tangential velocity boundary conditions are used at the inlet and outlet to couple 
the reduced-order models to the detailed description of the flow within the test section. Solid wall boundary conditions are 
imposed on the remaining boundaries of the computational domain. See Lee et al. [15] for further details.

We first consider the effect of MFAC when using the three-point B-spline kernel for the valve leaflets. Figs. 15a and 15b
compare cross-section views of velocity magnitude for the bovine BHV models for MFAC = 0.75 and 1.5. It is clear in 
Fig. 15b that there are significant spurious flows through the structure during diastole, but not in Fig. 15a. Figs. 15c, 15d, 
and 15e compare simulated and experimental flow rates and pressure waveforms. The spurious velocities that are evident 
in Fig. 15b are also reflected in these measurements. Using MFAC = 0.75, the flow rate and pressure data are in excellent 
agreement with those from the corresponding experiment, whereas we clearly observe the effect of spurious velocities 
through the structure that are reflected as negative flow rates when the valve is closed and supporting a physiological 
pressure load (Fig. 15c). We also remark that the simulation using MFAC = 1.5 is not able to proceed beyond t ≈ 0.25
s without significantly reducing the time step size because of the high spurious velocities in the regions highlighted in 
Fig. 15b. The BHV leaflets in the MFAC = 1.5 case also experience unphysical deformations at the free edges of the leaflets 
during systole.

We also look at the effect of different kernels under a fixed value of MFAC. In Fig. 16, we compare three cases in which 
we use the three-point B-spline kernel, the three-point IB kernel, and the four-point IB kernel for the valve leaflets, and for 
all of them use the piecewise linear kernel for the aortic test section and set MFAC = 0.75. We observe immediately during 
diastole that there is unphysical velocity through the valve leaflets when using the four-point IB kernel (Fig. 16c).

4. Discussion

This study explores the impacts of various choices of regularized delta functions to approximate the integral transforms 
that connect the Lagrangian and Eulerian variables, Eqs. (3) and (4), in the IFED method. It also investigates the effect 
of variations in the structural mesh spacing relative to the background Cartesian grid spacing for different kernels on the 
accuracy using standard FSI benchmark studies. Our results suggest that kernels satisfying the even–odd condition require 
higher resolution to achieve similar accuracy as kernels that do not satisfy this condition (e.g., the four- and six-point IB 
kernels versus the three- and five-point IB kernels). We also find that, at least for the tests considered herein, narrower 
kernels are more robust, and that structural meshes that are coarser than the background Cartesian grid can yield improved 
accuracy compared to structural meshes that are comparable to or finer than the background grid for shear-dominated 
cases, but not for cases with large normal forces along the fluid-structure interface. This suggests that to handle both cases 
within a single model, one needs to use structural meshes with resolutions that are at least as fine as the background 
grid to avoid instabilities along with a narrower kernel. The impact of the choice of regularized delta function or relative 
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Fig. 15. Representative comparison of cross-section views of simulated velocity magnitudes for the bovine pericardial valve models for (a) MFAC = 0.75 and 
(b) 1.5 during diastole (pressure-loaded when the valve is closed) and systole (shear-dominant flow when the valve is open). The simulations use a three-
level locally refined grid with a refinement ratio of two between levels and an N/2 × N × N/2 coarse grid with N = 64, which corresponds to N = 256 at 
the finest level. We also look at comparisons of (c) flow rates (QAo), (d) downstream pressure (PAo), and (e) upstream pressure (PLV) waveforms measured 
from simulations with MFAC = 0.5, 0.75, 1, 1.5. In panel (b) we see spurious velocities through the structure during diastole as well as local regions with 
unphysical velocity concentrations during systole (red dashed circles). All comparisons in panels (c)–(e) also indicate that MFAC = 0.5 and 0.75 are in 
excellent agreement and MFAC = 1 shows minor discrepancy during closure as shown in the magnified views. This is because for the case of MFAC = 1, not 
all elements have MFAC exactly equal to 1, but some element have MFAC > 1. However, we clearly observe spurious velocities in (b) with MFAC = 1.5, which 
are reflected as negative flow rate measurement as shown in (c). As a result, we also observe discrepancies in both downstream and upstream pressure for 
MFAC = 1.5.

mesh spacings will likely depend on the many details of the Lagrangian and Eulerian spatial discretizations. For instance, 
different Lagrangian-Eulerian coupling strategies, such as node-based approximations to the integral transforms, may not 
be suitable for general use with MFAC > 1. A possible explanation for why narrower kernels yield higher accuracies for 
a given resolution is that the kernels with smaller support result in smaller numerical boundary layers along the fluid-
structure interface. In cases in which the numerical boundary layer is comparable to or larger than the physical boundary 
layer, changes in numerical boundary layer thicknesses may substantially impact accuracy. For instance, the channel flow 
benchmark is an interesting case in which the piecewise linear kernel leads to the best accuracy, as opposed to other 
cases in which the three-point B-spline kernel yields the best accuracy. Unlike in other tests considered herein, however, 
in laminar channel flow, the flow field is completely tangential to the immersed structures, so the dominating factor that 
affects the accuracy here is indeed the numerical boundary layer. The piecewise linear kernel leads to the smallest numerical 
boundary layer effect on the solution, and it provides the best accuracy for this test. It is evident in Figs. 8 and 9 that the 
error increases as the radius of support of the kernel increases. More broadly, these results suggest that smoother kernels 
do not necessarily yield improved accuracy. Indeed, based on these results, we speculate that there is a benefit in accuracy 
to using the minimal amount of smoothing required for a particular model. Specifically, kernel functions that smooth out 
spatial variations in the Lagrangian force when it is spread to the Eulerian grid effectively prevent those variations from 
impacting the dynamics of the fluid-structure system. Similarly, kernel functions that smooth out spatial variations in the 
Eulerian velocity field prevent those variations from influencing the motion of the structure. This can allow such modes 
to persist in the computed solution unless otherwise suppressed through physical or numerical smoothing mechanisms. In 
the present models, viscous dissipation is the primary physical smoothing mechanism, and some additional smoothing is 
provided by numerical dissipation from the PPM-type discretization of the convective terms in the momentum equation. 
The physical viscosity may have a limited impact on the computed dynamics at moderate-to-high Reynolds numbers at 
practical spatial resolutions, particularly in three spatial dimensions. This suggests that the overall methodology may benefit 
17



J.H. Lee and B.E. Griffith Journal of Computational Physics 457 (2022) 111042
Fig. 16. Representative comparison of cross-section views of simulated velocity magnitudes for the bovine pericardial valve models for (a) the three-point 
B-spline kernel, (b) the three-point IB kernel, and (c) the four-point IB kernel during diastole. In all of the cases, we use the piecewise linear kernel for 
the housing and set MFAC = 0.75. We observe that with the four-point IB kernel, there are relatively large unphysical flows “through” the valve leaflets, 
whereas the only flow we see with the three-point B-spline kernel and the three-point IB kernel are small leakage flows through the middle gap between 
the valve leaflets, which appear to be physical.

from additional stabilization that is tailored to the Lagrangian-Eulerian coupling operators, although the construction of such 
stabilization procedures is beyond the scope of the present study. As with the higher-order kernel functions, kernels that 
satisfy the even–odd condition will be oblivious to grid-scale even–odd oscillations in the velocity field when interpolating 
the velocity to the structure, and instead will only see the mean velocity. Specifically, interpolating an alternating +U/ − U
velocity pattern will yield a structural velocity that is identically 0 for any value of U when using a kernel that satisfies the 
even–odd condition. Although such oscillations will be damped by viscosity, if viscosity is small, these modes may decay 
slowly. We believe that this can allows oscillatory modes to persist near or inside the structure, like those that appear in 
Fig. 16 when the valve is closed for the four-point IB kernel but not for the three-point B-spline or IB kernels.

The results in Sections 3.1, 3.2, and 3.3 indicate that we obtain improved accuracy with a given Cartesian grid resolution 
for these shear-dominant cases by using relatively coarser Lagrangian nodal spacing (MFAC > 1). This means that the struc-
tural mesh in the IFED method can be coarser than that follows the “rule of thumb” (MFAC = 0.5) for the nodally interacting 
IB method by a factor of 8 (MFAC = 4), which results in a significant improvement in both accuracy and efficiency. However, 
in the pressure-loaded case considered in Section 3.4, we observe that the Lagrangian mesh needs to have a resolution that 
is similar to or relatively finer than the Cartesian grid (MFAC ≤ 1) to avoid spurious velocities through the structure. In fact, 
it is common in simulations using complex geometries to have many mesh elements that are comparable to or finer than 
the background Cartesian grid to preserve fine-scale geometric features. Understanding this transition in accuracy between 
shear-dominant and pressure-loaded cases is another possible future area of research.

The benchmarks suggest that the three-point B-spline kernel is the best overall choice considering both shear- and 
pressure-dominant flows because it is less sensitive to the relative structural mesh spacing. We emphasize, however, that 
under sufficiently fine grid resolution, different kernels all appear ultimately to converge to the same results. However, this 
study also suggests that optimal choices of numerical and discretization parameters can provide consistent solutions at the 
coarser grid resolutions that are needed to facilitate the deployment of the methodology to large-scale three-dimensional 
models. Using these results, we also applied our findings from benchmark studies to an FSI model of bovine pericardial 
BHV in a pulse duplicator, which involves both pressure-loaded and shear-dominant flows in a rigid and stationary channel 
with immersed elastic structures inside. Results obtained using this large-scale model are consistent with the key findings 
of benchmark test cases, and we obtain accurate results only for MFAC < 1. For the case in which MFAC = 1, the results are 
in excellent agreement with results using MFAC = 0.5 and 0.75, except for a slight discrepancy during closure as shown 
in Figs. 15c–15e because some elements have MFAC > 1. A limitation of this study is that not all possible kernel function 
constructions are considered. Another limitation is that it considers specific Lagrangian and Eulerian spatial discretizations. 
Although this study is done within the context of the IFED method, the effect of different kernels could be important 
not just for this method, but more generally for other IB-type methods that use regularized delta functions to mediate 
fluid-structure interaction.
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Appendix A. Turek-Hron benchmark results for various choices of kernel function

This section details results for the modified Turek-Hron benchmark using various IB and B-spline kernels (see Figs. S1
and S2). Table S1 reports the means for Ax and Ay , which are x-, y-displacements of the point A, as well as the Strouhal 
numbers corresponding to the oscillations of Ax and Ay at periodic steady-state. Here we look at relatively coarser resolu-
tion cases, in which the number of grid cells on coarsest grid level is N = 64. These results indicate that the three-point 
B-spline kernel is the only kernel that shows consistent Strouhal numbers for all values of MFAC = 0.5, 1, 2, and 4 at N = 64, 
and that it is less sensitive to changes in MFAC. Other kernels show loss of accuracy as we refine the Lagrangian mesh for a 
fixed Eulerian grid that is relatively coarse.

Table S1
Results for the modified Turek-Hron benchmark with different IB and B-spline kernels and various values of MFAC at a Cartesian resolution of N = 64.

MFAC = 0.5 MFAC = 1.0 MFAC = 2.0 MFAC = 4.0

Kernel Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx

IB (3-point) −2.03± 1.97 10.4 −2.69± 2.54 10.4 −2.76± 2.65 10.8 −3.02± 2.87 10.8
IB (4-point) −1.55± 1.56 10.4 −2.51± 2.39 10.4 −2.69± 2.58 10.8 −2.94± 2.80 10.8
IB (5-point) −2.51± 2.38 10.4 −2.57± 2.44 10.4 −2.70± 2.60 10.8 −2.95± 2.81 10.8
IB (6-point) −2.46± 2.35 10.4 −2.48± 2.36 10.4 −2.65± 2.53 10.4 −2.89± 2.75 10.8
B-spline (3-point) −2.57± 2.44 10.8 −2.69± 2.55 10.8 −2.76± 2.66 10.8 −3.03± 2.89 10.8
B-spline (4-point) −2.53± 2.42 10.4 −2.67± 2.54 10.4 −2.74± 2.63 10.8 −3.00± 2.86 10.8
B-spline (5-point) −2.55± 2.43 10.4 −2.63± 2.50 10.8 −2.72± 2.62 10.8 −2.98± 2.84 10.8
B-spline (6-point) −2.54± 2.42 10.4 −2.58± 2.46 10.4 −2.70± 2.60 10.8 −2.96± 2.82 10.8

Kernel Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty

IB (3-point) 1.37± 29.2 5.00 1.45± 33.3 5.00 1.42 ± 34.1 5.00 1.48± 35.2 5.00
IB (4-point) 1.04± 25.9 5.00 1.46± 32.2 5.00 1.41 ± 33.5 5.00 1.47± 34.6 5.00
IB (5-point) 1.39± 32.2 5.00 1.48± 32.6 5.00 1.41 ± 33.6 5.00 1.48± 34.7 5.00
IB (6-point) 1.39± 31.9 5.00 1.44± 32.0 5.00 1.41 ± 33.2 5.00 1.47± 34.3 5.00
B-spline (3-point) 1.41± 32.7 5.00 1.44± 33.4 5.00 1.41 ± 34.2 5.00 1.49± 35.3 5.00
B-spline (4-point) 1.41± 32.5 5.00 1.46± 33.3 5.00 1.42 ± 34.0 5.00 1.48± 35.1 5.00
B-spline (5-point) 1.39± 32.5 5.00 1.48± 33.0 5.00 1.42 ± 33.8 5.00 1.48± 34.9 5.00
B-spline (6-point) 1.41± 32.4 5.00 1.48± 32.6 5.00 1.41 ± 33.7 5.00 1.48± 34.8 5.00
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Fig. S1. x-displacement (Ax) of the point A for different values of MFAC for the modified Turek-Hron benchmark using different IB and B-spline kernels at 
a Cartesian resolution of N = 64. Figures in the rightmost panels show the periodic oscillations between t = 11.5 and t = 12.
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Fig. S2. y-displacement (Ay ) of the point A for different values of MFAC for the modified Turek-Hron benchmark using different IB and B-spline kernels at 
a Cartesian resolution of N = 64. Figures in the rightmost panels show the periodic oscillations between t = 11.5 and t = 12.
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