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Abstract— The increasing penetration of renewable energy
resources and the decreasing cost of battery energy storage in
recent years has led to a growing interest in using batteries to
provide grid services like frequency regulation. In this paper, we
discuss the advantages and disadvantages of different battery
degradation models and the impacts that model choice can have
on the assumed cost of energy capacity loss due to operation. We
also explore the effects of modeling degradation as an uncertain
process by extending a two-stage, multi-period optimization
problem for scheduling the operation of a battery providing
multiple services with risk aversion. We use stochastic dual
dynamic programming to derive a policy for the problem. Case
study results show that using a stochastic degradation model
with risk aversion produces a policy for more conservative
battery use and longer lifespan in comparison to that obtained
with a deterministic degradation model.

Index Terms— Battery Energy Storage, Capacity Degra-
dation, Stochastic Dual Dynamic Programming, Degradation
Uncertainty

NOMENCLATURE

Sets and Indices
D Set of cycle depths δ realized during the time

horizon, indexed by i.
J Set of segments of the marginal cycle aging cost

function with cardinality J , indexed by j.
T Set of time intervals in the optimization horizon

with cardinality T , indexed by t.
Parameters
ar Flexible load nominal power consumption, kW.
al, au Flexible load lower, upper limit, kW.
cb Battery replacement cost, $.
E Rated battery energy capacity, kWh.
G Line limit of the constrained line, kW.
k Penalty coefficient for increasing or decreasing the

energy consumption of the flexible load, $/kWh.
m Vector ∈ RJ containing the slopes of the piecewise

linear marginal cycle aging cost function, $/kW.
P Battery power capacity, kW.
sb0 Vector in RJ where element j defines the initial

energy level in battery segment j, kWh.
sv0 Flexible load virtual storage initial value, kWh.
sv,l Flexible load virtual storage lower limit, kWh.
sv,u Flexible load virtual storage upper limit, kWh.
α CVaR confidence level, (-).
β Weight for CVaR, (-).
ηc, ηd Battery charging, discharging efficiency, %.
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πg Price for buying/selling power, $/kWh.
πf Price for providing frequency control, $/kWh.
θ Value at risk, (-).

Degradation Model Variables and Parameters
Cc Energy capacity loss due to calendar aging, %.
Co Energy capacity loss due to cycling, %.
f Number of equivalent full cycles, (-).
ni Number of cycles of depth δi, (-).
si Average state of charge of cycle depth δi, (-).
tm Time, in months.
T abs Operating temperature, K.
δt, δi Cycle depth at time t, or indexed by i (-)
Φ Cycle depth stress for battery degradation, %.

State Variables
sbt A vector ∈ RJ where element j defines the energy

level in battery segment j at time t, kW.
sbt Energy level in the battery, a scalar variable equal

to 1ᵀsbt , kW.
svt Virtual storage of flexible load, kWh.

Decision Variables
at Power consumed by the flexible load, kW.
bt Power allocated for frequency regulation, kW.
ct Ratio of PV generation curtailed, (-).
gt Power exchanged with the grid, kW.
pc
t Vector ∈ RJ where element j defines the power

entering battery segment j at time t, kW.
pd
t Vector ∈ RJ where element j defines the power

leaving battery segment j at time t, kW.
pct Power leaving the battery, a scalar variable equal

to 1ᵀpc
t , kW.

pdt Power leaving the battery, a scalar variable equal
to 1ᵀpd

t , kW.
Stochastic Variables
ωdeg Uncertain battery degradation model coefficient,(-).
ωf
t Frequency regulation signal, (-).
ωpv
t PV system output, kW.

I. INTRODUCTION

Decreasing costs of batteries and increasing penetration
levels of intermittent renewable energy sources have led
to an increased use of battery energy storage to maintain
robustness and resiliency in power systems [1]. However,
the current costs, economical and environmental, of batteries
hinder their wide-spread use. Extending the cycle life of
a battery, the length of time until a battery reaches its
end of life (EOL), through mindful operation can lower its
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equivalent annual cost. EOL is typically defined as 20% loss
of rated energy capacity [2], [3].

How batteries are operated affects how they degrade, or
how their usable storage capacity decreases. Battery degra-
dation is a nonlinear function of environmental and operating
parameters, making it challenging to model accurately [4].
Omitting or inaccurately modelling degradation can lead
to undesirable capacity loss, necessitating more frequent
replacement. This increases both the economic and envi-
ronmental costs. Accurate models are complex and require
extensive operational data. Different battery chemistries have
different degradation dynamics. Moreover, a degradation
model developed for one battery may describe the degra-
dation of another battery of the same type and size poorly
because of differences in manufacturing, ambient conditions,
and so on [5], [6].

In this paper, we propose a new approach to schedule a
battery energy storage system (BESS) to provide multiple
grid services while accounting for capacity degradation. In
particular, motivated by the difficulty of accurately captur-
ing battery degradation processes, we propose a stochastic
model for battery degradation and show how it can be
incorporated into a stochastic dual dynamic programming
(SDDP) formulation that optimizes the operation of a BESS
simultaneously managing the power flow along a constrained
line and providing frequency regulation to the bulk network.
We use the conditional value at risk (CVaRα) as a means to
minimize the risk of considerable battery degradation. For
a given α ∈ (0, 1), CVaRα is defined as the expected
value of the cost greater than the (1−α)-quantile of the cost
distribution [7], [8]. In the context of our problem, this is
the expected cost of degradation for the α-fraction of most
expensive degradation.

Researchers have developed algorithms to optimize the
use of BESS providing grid services to maximize revenue,
accounting for different types of services and degradation [1],
[9]–[12]. However, this prior work has used deterministic
degradation models. In [9], degradation is modeled as a near-
quadratic cycle depth stress function, where cycle depth and
duplicity are found using an approximation of the rainflow
method. The rainflow counting algorithm was originally
derived for material stress analysis under cyclical loading, but
has been applied to batteries to find incremental degradation
due to cycling in recent years. In [10], capacity degradation
is modeled as a non-linear function of average state of charge
(SOC), cycle depth, and number of cycles derived from
accelerated cycle ageing tests. A kinetic battery model for
lead acid batteries was extended to other battery chemistries
and linearized in [12]. Another method for accounting for
degradation that has been used in optimization problems
is to limit the SOC to a given range where degradation
tends to be less severe and assigning a constant marginal
cost for charging and discharging, as in [1], [11]. All of
the aforementioned degradation models have advantages and
disadvantages with regard to accuracy and computational
expense. The use of different models may lead to different
optimal solutions for problems that otherwise have the same

formulation, and inaccuracy in the degradation model will
lead to sub-optimal operation [4]. This points to the need to
carefully understand the impact that our choice of degrada-
tion model has on solutions and the need to explicitly capture
model uncertainty in our formulations.

There are four main contributions of this paper. First, we
provide a comparison of three degradation models, and dis-
cuss how their different degradation magnitudes and dynam-
ics could affect solutions. Second, we develop a stochastic
degradation model based on the deterministic model in [9].
Third, we develop an SDDP approach to optimize BESS
operation subject to our stochastic degradation model. The
optimization formulation is an extension of that in [11],
which used a simpler, deterministic degradation model. Fi-
nally, we demonstrate the approach through a case study and
discuss the impacts of modeling degradation as a stochastic
process in BESS operation optimization problems.

The remainder of this paper is organized as follows.
Section II motivates the modeling of capacity degradation
as a stochastic process. In Section III, we develop the
stochastic battery degradation model and the SDDP problem
formulation. Section IV presents and discusses results from
a case study. Conclusions are presented in Section V.

II. MOTIVATION FOR MODELING DEGRADATION AS A
STOCHASTIC PROCESS

Electrochemical models are the most accurate types of
models for capturing battery dynamics and aging [13]. Elec-
trochemical models of lithium ion (Li-ion) batteries incorpo-
rate constitutive laws to describe Li-ion transportation, which
requires detailed information about the battery’s geometry
and chemical properties, as well as extensive laboratory test-
ing [2]. Electrochemical models are generally non-convex,
making them computationally intractable to implement with
many optimization algorithms commonly used in the power
systems domain.

Due to the complexities and computational difficulties
associated with electrochemical models, many simplified
battery aging models have been developed to be used in
optimization formulations [3], [14]. These simplified models
represent degradation as a function of one or more of the fol-
lowing parameters: time, number of cycles, state of charge,
cycle depth, temperature, and rate of charge/discharge. The
computational advantages of these models come at a cost of
accuracy [2].

To highlight how the choice of degradation model can
affect the modeled capacity loss from operation, we compare
three degradation models for a Li-ion battery. The compar-
ison is made by simulating a battery following the PJM
dynamic frequency regulation (FR) signal (RegD) obtained
from [15] over the course of a day. For simplicity, we
assume that the battery follows the same daily trajectory
for 10 years. Due to the random nature of FR signals, this
assumption would not hold in practice. However, we would
expect trajectories to have similar overall characteristics day
to day, and so do not expect that this simplifying assumption
has a large impact on the overall results. This method ignores
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the downward trend in SOC overtime due to battery losses
and the energy injections required to increase the SOC.

The three models used are from [9], [10], [13] and will
be referred to by their citation number. Each model has two
components: a calendar aging component Cc and a cycling
aging component Co. Both components represent energy
capacity degradation as a percentage of the rated energy
capacity. The two components are calculated separately and
summed to get the total energy capacity loss.

The model from [9] uses the rainflow counting algorithm
with an incremental cycle depth stress function to calculate
degradation. The calendar component is given as a constant
annual capacity degradation of Cc = 2%. The cycling
component is

Co =
∑
δi∈D

1.048× 10−2δ2.03i , (1)

where D is the set of all cycle depths δi realized during
the time horizon. Note that in [9], degradation is given as
a percentage of battery life, and so Co = 100% equates
to 20% loss of rated energy capacity (i.e., EOL is at 80%
battery capacity). However, here we wish to capture to the
entire capacity of the battery so we adjust the coefficient in
(1) so that Co = 20% equates to 20% loss of rated energy
capacity.

The model from [10] also utilizes the rainflow counting
algorithm, but with calendar and cycling components

Cc = 0.1723e0.007388s(tm)0.8, (2)

Co =
∑
δi∈D

0.021e−0.01943siδ0.7162i (ni)
0.5, (3)

where si is the average state of charge of cycle depth δi,
tm is the time in months, and ni is the number of cycles of
depth δi.

The model from [13] is an equivalent electrical circuit
model developed from accelerated calendar and cycle testing.
The calendar component Cc and cycling component Co of
the model are

Cc = 3.087× 10−7e0.05146T
abs

(tm)0.5, (4)

Co = 6.87× 10−5e0.027T
abs

f0.5, (5)

where T abs is the temperature in Kelvin, tm is the time in
months, and f is the number of equivalent full cycles.

We assume an operating temperature of 25◦C (298.15K).
We use the rainflow method to extract the cycle depths, as
well as the corresponding duplicity and average SOC for
each cycle depth [9]. The number of equivalent full cycles is
calculated as the total energy throughput divided by the rated
energy capacity. The parameters required by each model are
then used to calculate degradation.

Fig. 1 shows the estimated capacity degradation for each of
the three models resulting from operating a battery following
the same FR signal for 10 years. The cycle life is 2.56 years
for the model in [9], 5.01 years for the model in [10], and
3.82 years for the model in [13]. The variation in estimated
battery life and degradation dynamics given by these three

Fig. 1. Comparison of capacity degradation for a simulated battery calcu-
lated from three models used in BESS operation optimization problems.

models resulting from the same operating scheme suggests
that the choice of degradation model has an impact on the
estimated operating cost caused by energy capacity loss.

In summary, different models lead to significantly different
calculated values of degradation for the same operating
conditions. In the next section, we will investigate the impact
of accounting for degradation model inaccuracy in a BESS
operation optimization problem by modeling degradation as
a uncertainty process.

III. PROBLEM DESCRIPTION

We consider the system depicted in Fig. 2 and a modified
version of the problem presented in [11]. The system is
composed of a BESS, a flexible load, and a photovoltaic (PV)
system which are connected to the grid by a constrained line.
The BESS is primarily used to manage the line constraint but
the BESS operator also wants to sell unused capacity for FR
to offset its costs, while considering the cost of degradation.
The choice of FR capacity must be made in advance of real-
time operation. In addition to the BESS, the PV system and
the load are controllable. Specifically, the PV system’s power
output can be reduced. The load is permitted to vary within
a range but it is desired that it maintain a baseline. The
limited, time-integrated difference between the baseline and
the actual consumption of the load is modeled as virtual
storage.

While the basic setup described above is similar to that
in [11], our formulation has five key differences. To better
represent US markets, we consider one FR service while two
are considered in [11]. We model the FR signal on the real
2-second time interval, whereas it is modeled as a 5-minute
moving average in [11]. Our method allows for more accurate
modeling of BESS dynamics. In our model, the curtailment
ratio, power allocated to the flexible load, and power into
or out of the BESS are decided after the PV output and
FR signal are realized. This is differs from the formulation
in [11], where all decision variables, except the power into
and out of the BESS, are chosen before knowing the PV
output and FR signal. In [11], the cost of degradation is
approximated as a deterministic quadratic function of the
energy level deviation from a desired level. In contrast, here
we use the more detailed degradation model from [9], and
extend it to a stochastic model by treating a key parameter as
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Fig. 2. Diagram of system in which a BESS and flexible load manage a
grid constraint given uncertain solar PV production.

uncertain. Finally, our formulation incorporates risk aversion,
which was not considered in [11].

In summary, our objective is to develop a policy to
minimize the expected operational costs and the risk of
significant degradation of the BESS under uncertainty in the
PV power output, the FR signal, and the degradation model.
We must commit in advance to the FR power capacity and
net power exchanged with the grid (i.e., how much energy
is bought/sold in the energy market) every 5 min for the
next 12 hours, and are able to adjust the BESS power, PV
curtailment, and flexible load consumption in real-time after
uncertainty is revealed according to our control policy.

A. Stochastic Dual Dynamic Programming

We solve our problem using SDDP, a methodology
for solving convex, multistage, stochastic programs [16].
Stochastic dynamic programming (SDP) is the typical
method for solving multistage, stochastic programs, which
are not necessarily convex. However, SDP requires dis-
cretization of the action space, state space, and stochastic
variable space, which makes it computationally expensive
for large problems, e.g., as shown in [11]. We chose to use
SDDP because it only requires discretization of the stochastic
variable space. While SDDP extensions addressing some
types of nonconvexities do exist e.g., [17], here we consider
only convex problems, as further discussed in Section III-D.

In SDDP, variables are defined as either a state, decision,
or stochastic variable. A state variable represents information
required at the present time and onward and/or in subsequent
stages. A decision variable represents a decision made within
a stage or time period. A stochastic variable is a stage-wise
independent random variable [14]. SDDP approximates the
expected cost-to-go function with piecewise linear functions
obtained from the dual solutions of the optimization problem
at each stage.

The algorithm has two components: the forward pass
where scenarios are sampled based on the probability dis-
tribution of the random variables, and the backward pass
where each stage is optimized along the sampled trajectory
from the forward pass in reverse order. In the backward pass,
a Bender’s cut is added to improve the approximation of the
expected cost-to-go function using the Lagrange multipliers
from the optimized stage problem. This sequence of forward
and backward passes is repeated until some specified stop-
ping criteria is reached. A lower bound is obtained from

the solution of the first stage problem and an upper bound
can be approximated from a Monte Carlo simulation of the
policy [18], [16]. Note that this upper bound is a confidence
interval.

B. Stochastic Degradation Model

Many battery degradation models are non-convex, mak-
ing them incompatible with traditional SDDP approaches.
The model presented in [9] is convex and closely ap-
proximates the rainflow counting method, which has been
used extensively in literature to model battery degrada-
tion [14], [13], [19]. For this reason, we derived our stochas-
tic degradation model from that model.

In [9], the incremental cycle aging is given by a cycle
depth stress function Φ(δt), where δt is the cycle depth at
time t, defined as

δt =
pdt∆t

ηdE
, (6)

where pdt is the power discharged at time step t of duration
∆t, ηd is the discharge efficiency, and E is the rated capacity
of the battery. The marginal cycle aging for a particular cycle
depth δi is given by [9]

∂Φ(δi)

∂pdi
=
dΦ(δi)

dδi

∂δi
∂pdi

=
∆t

ηdE

dΦ(δi)

dδi
, (7)

where pdi is the power discharged from the battery over ∆t
resulting in cycle depth δi. If Φ(δt) is a convex function,
then the marginal cycle aging (7) can be upper-bound ap-
proximated by a piecewise linear function of J segments,
indexed by j. Each segment j corresponds to a range of
cycle depths δ ∈ [ j−1J , jJ ). The slope of segment j is

mj =
∆t

ηdE
J

(
Φ

(
j

J

)
− Φ

(
j − 1

J

))
, ∀j = 1, ..., J. (8)

Denote m ∈ RJ as the vector of all mj . This approximation
allows degradation costs to vary as a function of cycle depth,
with larger cycle depths having higher costs.

The cycle depth stress function, Φ(δt), is empirically
derived from tests conducted by repeatedly cycling a battery
through a specified series of cycle depths or SOC trajectory
and has some level of inaccuracy [20]. The function pre-
sented in [9] is given as

Φ(δt) = (5.24× 10−4)δ2.03t . (9)

Here, we propose to replace the deterministic coefficient
5.24 × 10−4 with a stochastic coefficient ωdeg that takes
values from a discrete set Ωdeg. Equation (8) can then be
rewritten as

mj =
∆t

ηdE
J

(
ωdeg

(
j

J

)2.03

− ωdeg

(
j − 1

J

)2.03
)
.

(10)
This can be further decomposed as

mj = ωdegm∗j , (11)
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where

m∗j =
∆t

ηdE
J

((
j

J

)2.03

−
(
j − 1

J

)2.03
)
. (12)

This decomposition makes it possible to model ωdeg as a
stochastic variable in the optimization problem while keeping
m∗j as a separate auxiliary variable. Denote m∗ ∈ RJ as the
vector of all m∗j .

C. Formulation

We formulate a two-stage, multi-period problem to decide
how much energy is bought from or sold to the grid gt (kW)
and how much of the BESS’s power capacity is allocated
to FR bt (kW) in each time step t ∈ T of duration ∆t for
the next T time steps. These decisions are made before the
PV power output and FR signal are known and make up
the first stage decisions, which are committed for the entire
time horizon. We assume that once these commitments have
been made, they are fulfilled. These variables are both control
variables and state variables because they represent decisions
in the first stage and information needed in the second stage.

We use t′ to denote time t in the second stage (i.e., after
uncertainty is revealed) and z to denote the 2-second sub-
interval on which the FR signal, BESS power, and SOC
update. The second stage decisions are the PV curtailment
ratio ct′ (-), power allocated to the flexible load at′ (kW), and
power into pct′,z (kW) or out of pdt′,z (kW) the BESS. They
are made with knowledge of the first stage decisions, the
PV power output, the FR signal, and the degradation model
coefficient. To use the degradation model from Section III-
B, we segment the BESS’s energy level sb, pc, and pd each
into J segments indexed by j, as explained in [9]. The
segmented vectors are denoted sb ∈ RJ , pc ∈ RJ , and
pd ∈ RJ , respectively. The sum of the elements of each
vector equals the total quantity, i.e., sb = 1ᵀsb, pc = 1ᵀpc,
and pd = 1ᵀpd. Then, we treat the vectors pc

t′,z and pd
t′,z

as second stage decisions.
The stochastic variables are the degradation model coef-

ficient ωdeg (-), the PV system output ωpv
t′ (kW), and the

FR signal ωf
t′,z (-). The state variables are the energy level

of the BESS sbt′ (kWh) and the virtual storage level of the
flexible load svt′ (kWh).

In summary, the first stage action vector is xt =
[gt bt]

ᵀ, the second stage action vector is xt′,z =
[pc
t′,z

ᵀ pd
t′,z

ᵀ
ct′ at′ ]

ᵀ, the stochastic variable vector
is ωt′,z = [ωdeg ωpv

t′ ωf
t′,z]

ᵀ, and the state vector is
st′,z = [sbt′,z

ᵀ
svt′ ]

ᵀ.
The cost function for the first stage is

min
x
C1 + (1− β)E[C2] + βCVaRα(xt′,z), (13)

where C1 is the cost associated with the first stage decisions,
C2 is the cost associated with second stage decisions, CVaRα
is a risk measure on degradation, and β ∈ [0, 1] is a weight.
Specifically, the first stage cost function is

C1(xt) =
∑
t∈T

∆t(−πggt − πfbt), (14)

where πg is the price for power bought from or sold to the
grid ($/kWh) and πf is the price for FR power capacity
($/kWh). We assume that all offered capacity is procured
by the system operator, which is reasonable if storage offers
capacity at low cost. The second stage cost is

C2(xt,xt′,z,ωt′,z, st′,z) =
∑
t∈T

∆t(k(svt′)
2 + Cbat

t′,z), (15)

where k is a penalty coefficient for increasing or decreasing
the energy consumption of the flexible load and Cbat

t′,z is the
marginal cost of cycle aging for the BESS, i.e.,

Cbat
t′,z =

1

2
cbωdegm∗ᵀ(pc

t′,z + pd
t′,z), (16)

where cb is the replacement cost of the BESS ($). For a
discrete distribution, CVaRα(xt′,z) is defined in [7] ∀α ∈
(0, 1) as

CVaRα(xt′,z) = max

{
θ − 1

1− α
E [max{θ − C2, 0}]

}
,

(17)
where θ is the value-at-risk. We also note that the second
stage cost function is minx C2(xt,xt′,z,ωt′,z, st′,z).

Both stage problems are subject to the following con-
straints. The power capacity allocated to frequency regulation
must be non-negative,

bt ≥ 0, ∀t ∈ T . (18)

For any realization of the frequency regulation signal, the
power exchanged with the grid must be within the line limit,

gt + bt ≤ G, ∀t ∈ T , (19)
gt − bt ≥ −G, ∀t ∈ T , (20)

where G is the line limit. The curtailment ratio is limited

0 ≤ ct′ ≤ 1, ∀t′ ∈ T , (21)

and the power allocated to the flexible load must remain
within the range [al, au],

al ≤ at′ ≤ au, ∀t′ ∈ T . (22)

The power constraints on the BESS are

pct′,z =
∑
j∈J

pct′,z,j , ∀t′ ∈ T , ∀z ∈ Z,

(23)

pdt′,z =
∑
j∈J

pdt′,z,j , ∀t′ ∈ T , ∀z ∈ Z,

(24)
0 ≤ pct′,z ≤ PBt′,z, ∀t′ ∈ T , ∀z ∈ Z,

(25)

0 ≤ pdt′,z ≤ P (1−Bt′,z), ∀t′ ∈ T , ∀z ∈ Z,
(26)

0 ≤ Bt′,z ≤ 1, Bt′,z ∈ Z, ∀t′ ∈ T , ∀z ∈ Z,
(27)

where P is the BESS power capacity and Bt′,z is a binary
variable equal to 1 if the BESS is charging and 0 if the BESS
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is discharging, which is used to prevent simultaneous charg-
ing and discharging. The net power entering the BESS is a
function of the first stage decisions, uncertainty realizations,
and the other second stage decisions,

pct′,z − pdt′,z = ωpv
t′ (1− ct′)− ωf

t′,zbt − gt − at′ ,
∀t′ ∈ T , ∀z ∈ Z.

(28)

The energy constraints on the BESS are

0 ≤ sbt′,z,j ≤ E/J, ∀t′ ∈ T , ∀z ∈ Z, ∀j ∈ J , (29)

sb1,1 = sb0 , (30)∑
j∈J

sbT,Z,j =
∑
j∈J

sb0,j . (31)

where (29) limits the energy in each energy level segment
to the rated energy capacity divided by the number of
segments, (30) sets the initial energy levels in each segment
to the known levels sb0 , and (31) requires that the total energy
in the BESS at the beginning and end of the horizon is
the same. The energy level evolution for each segment is
determined with the vector equations

sbt′,1 = sbt′−1,Z + ∆t(ηcpc
t′,1 − pd

t′,1/η
d),

∀t′ ∈ T \ 1.
(32)

sbt′,z = sbt′,z−1 + ∆t(ηcpc
t′,z − pd

t′,z/η
d),

∀t′ ∈ T , ∀z ∈ Z \ 1.
(33)

where ηc is the charging efficiency and ηd is the discharging
efficiency.

The constraints defining the virtual storage level of the
flexible load are

sv1 = sv0, (34)

sv,l ≤ svt′ ≤ sv,u, (35)
svt′ = svt′−1 + ∆t(at′ − ar), ∀t′ ∈ T \ 1. (36)

where (34) sets the initial energy level to the known level
sv0 and (35) limits the virtual storage level. Equation (36)
computes the changes in the virtual storage level over time,
where art′ is the nominal power consumption of the load.

D. Convex Relaxation

The traditional SDDP approach is only applicable to con-
vex problems. Constraints (25)-(27) make our problem non-
convex. While extensions of SDDP for solving nonconvex
problems exist, they generally lead to significant increases in
problem size. For example, stochastic dual dynamic integer
programming, presented in [17], requires a binary expansion
of the state variables. For computational tractability, we
chose to relax the binary constraint in our formulation rather
than implement a method compatible with nonconvex SDDP
formulations.

Removing (27) and replacing (25)-(26) with

0 ≤ pct′,z ≤ P, ∀t ∈ T , ∀z ∈ Z, (37)

0 ≤ pdt′,z ≤ P, ∀t ∈ T , ∀z ∈ Z, (38)

TABLE I
CASE STUDY PARAMETERS

Parameter Value (unit)
T , Z, J 144, 150, 10 (-)
∆t, ∆z 0.0833, 8.4745E-5 (hour)
πg, πf 0.20, 0.03 ($/kWh)
E 1600 (kWh)
P , G 600, 400 (kW)
al, ar, au 100, 200, 300 (kW)
ηd, ηc 0.95, 0.95 (-)
sv,l, sv0 , sv,u -400, 0, 400 (kWh)
cb 300 ($/kWh)
k 0.004 ($kW−2h−3)
sb0 800 (kWh)
β, α 0.5, 0.25 (-)

results in a convex formulation of our problem. Relaxing
these constraints permits simultaneous charging and dis-
charging by the BESS. While simultaneous charging and
discharging may not physically feasible (and is certainly
not desirable), mathematically it acts a way to remove
energy from the system as energy losses due to inefficiency.
Constraints (25)-(26) are inactivate unless there is benefit
in removing energy from the system. In our model, the
cost of degradation is modeled as a function of charge and
discharge power, giving an inherent cost to energy losses. For
this reason, we expect the optimal solution of the convex
formulation would rarely choose to simultaneously charge
and discharge. We verify this in the following section.

IV. CASE STUDY

This section presents the results from a case study using
the parameters shown in Table I. The initial BESS energy
level sb0 = 800 kWh is allocated to the energy level segments
by “filling” the segments in ascending order by index number
until the sum of segment-wise energy levels equals the total
energy level. The time horizon is 12 hours corresponding to
the middle of the day. We use 16 scenarios for PV power
output and FR signal. We used historical data from NREL
for PV generation in Michigan during July 2006 [21], which
is given in 5-min time steps. The FR signal used was the
RegD signal from PJM for July 2020 [15], which is given in
2-second time steps. We defined the set of possible stochastic
degradation coefficients Ωdeg to be the normally distributed
set of 20 evenly spaced values in [1.81×10−5, 1.03×10−3].
This gives Ωdeg a mean of 5.24×10−4, the coefficient given
in [9].

To analyze the effects that modeling degradation as a
stochastic process has on the policy obtained by SDDP for
our formulation, we also simulated a formulation of our prob-
lem with a deterministic degradation model for comparison.
The deterministic degradation model formulation is identical
to the formulation outlined in Section III except ωdeg is
replaced by the deterministic battery degradation coefficient
5.24× 10−4.

We implemented the convex relaxation of our model in
Julia using CPLEX 12.7.1 and SDDP.jl [18]. Implementing
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Fig. 3. Comparison of SOC trajectories using the deterministic degradation
coefficient versus the stochastic degradation coefficient. The trajectories are
the averages over 200 simulated cases.

TABLE II
RESULTS COMPARISON BETWEEN FORMULATIONS

Deterministic Stochastic % Difference
Total PV curtailed (%) 21.19 21.38 0.89%
Total power for FR (kW) 3199 4149 25.9%
Total power for sale (kW) 54401 53451 1.76%
FR fraction of services (%) 5.55 7.20 25.9%

the policy derived from SDDP, we simulated 200 cases with
the same stochastic variable sets used to develop the policy.

A. Results

The average SOC trajectories over 200 simulated cases
for both the deterministic and stochastic degradation for-
mulations are shown in Fig. 3. The total percentage of PV
curtailed, the sum of all the power allocated for FR and for
sale to the grid, as well as the fraction of total allocated
power devoted to FR over the 12-hour horizon for both
formulations are given in Table II. The percent difference
between the two formulations for all quantities is also given
for comparison. The figure shows that the policy derived with
the stochastic degradation model typically results in slightly
more conservative use of the battery.

The more conservative BESS charging and discharging
scheme can be attributed to the risk of higher levels of
degradation in the stochastic model accounted for by the
CVaRα. For the deterministic degradation model, a decision
to charge or discharge the BESS has a known cost. For the
stochastic degradation model, there is a risk that the degra-
dation cost could be greater than the cost assumed by the
deterministic model. The effective expected degradation cost
in the problem is the weighted sum of the expected cost of
degradation and the expected cost of the α-fraction of most
expensive degradation. The effective expected degradation
cost for the deterministic degradation model is equivalent
to the expected cost, as there is no risk of more expensive
degradation. The effective expected cost of degradation is
greater in the stochastic degradation case because the risk of
more expensive degradation exists.

Degradation is modeled as a function of power entering
and leaving the BESS, so minimizing that power transaction
minimizes the effective expected degradation cost. However,
using the BESS can result in revenue that may outweigh
the cost of degradation. Revenue can result from selling
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Fig. 4. Comparison of battery lifespan using the deterministic degrada-
tion coefficient versus the stochastic degradation coefficient based on 200
simulated cases.

excess PV power, selling power from the BESS, or using
power from the BESS to provide FR. This first choice leads
to no degradation of the BESS, but is only an option if
there is more than sufficient power output from the PV
to meet the demand of the flexible load. The other two
choices can be made anytime there is sufficient charge left
in the BESS (and sufficient room for charge in the FR case),
but come at the cost of degradation. Selling power to the
grid from the BESS guarantees that the amount of power
allocated for sale will be discharged, corresponding to a
known reimbursement and known input to the degradation
cost function. Choosing to allocate BESS power to FR will
result in a known reimbursement, since payment is only
dependent on allocated capacity. The actual power actuation
to provide FR will be some positive or negative value of less
than or equal in magnitude to the allocated capacity (positive
meaning pd > 0 and negative meaning pc > 0). Therefore, it
is likely that the input to the degradation cost function will
be less than it would be for the same allocation of power to
selling to the grid. This suggests that FR provides a lower
risk of degradation. Combining this with the fact that effec-
tive expected degradation cost is higher for the stochastic
degradation formulation suggests that providing FR may be
cost effective for the stochastic degradation formulation more
often than it is for the deterministic degradation formulation.
This explains the higher allocation to FR in the stochastic
degradation model formulation. We note that this result might
seem counter-intuitive; anecdotally batteries providing FR
tend to degrade quickly. However, the alternative here – using
the battery to transact energy every 5 minutes – can degrade
the battery even faster since the battery can experience
more/deeper SOC cycles, which determine degradation in
the model in [9].

How much greater the effective expected cost for the
stochastic case is in comparison to the deterministic case is
dependent on the range of Ωdeg. A wider range, meaning the
most expensive degradation is further from the average, leads
to a larger discrepancy between the two effective expected
costs. This is because the risk of expensive degradation
increases and so the expected cost of the α-fraction of most
expensive degradation also increases.

To quantify the affects of using a stochastic degradation
model in terms of battery capacity loss and lifespan, capacity
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loss over the 12-hour operating period was calculated using
the rainflow counting method and the operating data for
the 200 simulations for both formulations. For fair com-
parison, the deterministic stress function was used for both
formulations. The magnitude of degradation from the 12-
hour operation was very small for both formulations, but the
stochastic degradation model resulted in about 4.80% less
degradation on average. Assuming the the BESS repeatedly
operates the 12-hour trajectory until reaching EOL, Fig. 4
shows the spread of battery lifespans resulting from the
operating policies of the 200 simulated cases. On average,
using the stochastic degradation model results in a lifespan
of 4.51 years, compared to 4.25 years with the deterministic
degradation model.

Including the stochastic degradation coefficient leads to
a significantly longer solve time, taking 44.92 hours for
20 iterations compared to 2.04 hours for the deterministic
coefficient formulation to solve with the same number of
iterations using a 64-bit Intel i7-6700 core CPU at 3.40
GHz and 16-GB RAM. In practice it would be necessary
to solve this problem every 12 hours, or ideally as fre-
quently as predictions can be updated. Clearly the solve
time for the formulation with the stochastic degradation
model prevents practical use, as it is currently implemented.
Future work could explore more efficient implementations
and/or parallelization. While the solve times between the
two formulations was drastically different, the number of
iterations of the SDDP algorithm needed for convergence
was about the same.

Very small levels of simultaneous charging and discharg-
ing occurred in the solution, likely resulting from numerical
error. This suggests that the relaxation permitting simultane-
ous charging and discharging had insignificant impact on the
results for our specific formulation and parameter set.

V. CONCLUSION

In this paper, we explored the impact of using a stochastic
degradation model to optimize the operation of a BESS pro-
viding grid services. The case study results showed that using
a stochastic degradation model leads to a more conservative
BESS charging and discharging scheme compared to using
a deterministic degradation model. The more conservative
operation would lead to an extension of the BESS’s usable
life by about 1.5% on average. The risk of more expensive
degradation resulted in a policy where the system allocated
more power capacity to frequency regulation and less to
selling to the grid. The computation time required to compute
a SDDP policy for the formulation with the stochastic
degradation model was over 22 times greater than the compu-
tation time required for the formulation with a deterministic
degradation model and beyond the solve time needed for
practical use. How the choice of β and α values affects the
variation in policies as well as how to determine a suitable
Ωdeg will be explored in future work. Additional future work
includes altering the formulation and/or implementation to
improve computational efficiency and practicality.
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[11] O. Mégel, J. L. Mathieu, and G. Andersson, “Stochastic dual dynamic
programming to schedule energy storage units providing multiple
services,” in IEEE PowerTech. IEEE, 2015.

[12] P. Fortenbacher, J. L. Mathieu, and G. Andersson, “Modeling, identifi-
cation, and optimal control of batteries for power system applications,”
in Power Systems Computation Conference, 2014.

[13] D.-I. Stroe, M. Świerczyński, A.-I. Stan, R. Teodorescu, and S. J.
Andreasen, “Accelerated lifetime testing methodology for lifetime
estimation of lithium-ion batteries used in augmented wind power
plants,” IEEE Transactions on Industry Applications, vol. 50, no. 6,
pp. 4006–4017, 2014.

[14] P. Aaslid, M. M. Belsnes, and O. B. Fosso, “Optimal microgrid op-
eration considering battery degradation using stochastic dual dynamic
programming,” in International Conference on Smart Energy Systems
and Technologies, 2019.

[15] PJM, “RTO regulation signal data for 7.2020,” 2020.
[16] M. V. Pereira and L. M. Pinto, “Multi-stage stochastic optimization

applied to energy planning,” Mathematical programming, vol. 52,
no. 1, pp. 359–375, 1991.

[17] J. Zou, S. Ahmed, and X. A. Sun, “Stochastic dual dynamic integer
programming,” Mathematical Programming, vol. 175, no. 1, pp. 461–
502, 2019.

[18] O. Dowson and L. Kapelevich, “SDDP.jl: a Julia package for stochas-
tic dual dynamic programming,” INFORMS Journal on Computing,
no. 1, pp. 27–33, 2021.

[19] G. He, Q. Chen, C. Kang, P. Pinson, and Q. Xia, “Optimal bidding
strategy of battery storage in power markets considering performance-
based regulation and battery cycle life,” IEEE Transactions on Smart
Grid, vol. 7, no. 5, pp. 2359–2367, 2016.
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