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Screening of a small chemical library (#edicines for #alaria )ent$re Pathogen Box) identified two structurally 
related pyrazolone (inhibitor 1) and pyridazine (inhibitor 2) DNMT3A inhibitors with low micromolar inhibition 
constants. The uncompetitive and mixed type inhibition patterns with DNA and AdoMet suggest these molecules 
act through an allosteric mechanism, and thus are unlikely to bind to the enzyme’s active site. Unlike the 
clinically used mechanism based DNMT inhibitors such as decitabine or azacitidine that act via the enzyme 
active site, the inhibitors described here could lead to the development of more selective drugs. Both inhibitors 
show promising selectivity for DNMT3A in comparison to DNMT1 and bacterial DNA cytosine methyl-
transferases. With further study, this could form the basis of preferential targeting of de novo DNA methylation 
over maintenance DNA methylation.   

Epigenetic modifications of proteins and nucleic acids are crucial for 
normal development.1–3 Human DNA undergoes methylation largely at 
CpG dinucleotides, and the patterns are developmentally regulated and 
tissue-specific; these patterns contribute to the epigenetic code, which is 
essential for viability.3–6 Aberrant methylation patterns can result in 
hypermethylation of gene promoters, leading to the silencing of critical 
tumor suppressor genes, resulting in tumorigenesis.5,6 DNA methylation 
is carried out by a family of enzymes (DNMTs, Fig. 1) while demethy-
lation is carried out by the ten-eleven translocation (TET) enzyme 
family.7–10 DNMTs rely on the methyl donor S-adenosyl-l-methionine 
(AdoMet) and display both random and ordered kinetic mecha-
nisms.11–15 The housekeeping protein DNMT1 primarily acts on hemi-
methylated DNA, and the two de novo methyltransferases DNMT3A and 
DNMT3B, act predominately on unmethylated DNA.16–18 The DNMT3s, 
which also include a catalytically inactive regulatory protein DNMT3L, 
are mostly expressed during the early development phase of mammalian 
germ cells.1,4,16,19 DNMT1, meanwhile, is expressed throughout the 
lifetime of mammalian somatic cells and is localized near replication 
forks.17,20 

All DNMTs share the same domain architecture. The less conserved 
of their two domains is the *-terminal domain, which contains 

regulatory segments including the replication fork binding RFD 
seAuence in DNMT1 and the H3 binding ADD seAuence in 
DNMT3s.1,4,20,21 The C-terminal, or catalytic domain has the highly 
conserved methyltransferase motifs (I-B) that are found in both pro-
karyotic and eukaryotic methyltransferases (see Fig. 1).22 These motifs 
are responsible for cofactor binding and catalysis.4,21 DNMT3A forms 
tetramers with DNA binding occurring along the seam of the dimeriza-
tion domain (see Fig. 2).21 Mutations that disrupt the oligomeric state of 
DNMT3A occur in a number of cancers, and in particular, acute myeloid 
leukemia (AML).5,23–26 Both catalytically active DNMTs, and in partic-
ular, DNMT3A, interact with diverse partners and disruptions to these 
interactions alter the function of DNMT3A and contribute to tumor- 
specific changes in methylation patterns.5,23,27,28 

In the last twenty years, interest in developing drugs that target 
epigenetic pathways has increased, particularly for histone and DNA 
modifying enzymes.29–31 An obvious feature of these pathways is their 
inherent reversibility, unlike mutational changes which freAuently de-
mand therapeutic strategies leading to cytotoxic interventions. Inter-
estingly, the FDA approved DNMT nucleoside inhibitors, azacytidine 
and decitabine are highly cytotoxic. These prodrugs are converted to the 
triphosphates, incorporated into DNA and inhibit DNMTs through the 
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formation of an irreversible suicide complex.30,32,33 The dose-limiting 
toxicity manifested by these drugs has led to the search for non- 
nucleoside inhibitors; interestingly, many of these act by binding the 
enzyme active site or act by unknown mechanisms29,30. 

Our interest is to determine if new mechanistic classes of DNMT 
inhibitors can be identified. The long term goal is to develop therapeutic 
approaches not hampered by the toxicity and related issues associated 
with currently used and recently described DNMT inhibitors.29,30 For 
example, there are over 60 known proteins which interact with 
DNMT3A,34 some of which are implicated in directing DNMT3A to 
inappropriately methylate and regulate tumor suppressor genes.26,27 

Moreover, the clinically identified DNMT3A mutations in diverse can-
cers are known to alter the stability and functional outcomes of the 
complexes formed between DNMT3A and its partner proteins.26,27,35 

This network of interactions could be the basis of tumor-specific pro-
tein–protein inhibitors (PPIs).30,36 Certainly, the recent progress in 
developing PPIs for diverse therapeutic targets, including leukemia, 
forms a strong basis for such a strategy.37,38 Finally, allosteric enzyme 

modulators can provide a basis for enhanced selectivity and, potentially, 
decreased toxicity.39–41 

Here we describe our initial compound screening effort, relying on 
open source chemical library constructed from the #edicines for #alaria 
)ent$re (MMG) Pathogen Box. The library consists of 400 drug-like 
molecules with known activities against targets for neglected tropical 
diseases. The relative merits of using a library of well-established mol-
ecules that show good bio-activity versus other approaches have been 
well described.42 Using 50 compounds of the library, we first deter-
mined that a compound concentration of 60 µM resulted in 5H of the 
molecules showing 90H or more inhibition. We then relied on a modi-
fied version of our standard radiochemical assay using tritiated Ado-
Met,26 which measures DNA methylation (see Methods, 
Supplementary). The assay uses poly dI-dC which is an excellent 
DNMT3A substrate, due to the presence of multiple sites for DNMT3A- 
mediated methylation. The conditions allow for multiple catalytic 
turnovers with an excess of DNA.26,27 Importantly, many literature re-
ports describing DNMT screens are actually done under conditions 

Fig. 1. Comparison of the primary structures of human DNMTs. The C-terminal domain contains conserved motifs (I-B) and is active in the absence of the *-terminal 
domain. The N terminal domain has several conserved segments known to interact with regulatory proteins and histones. The abbreviations used areD DMAPD – DNA 
methyltransferase associated protein 1 interacting domain, PDB – PCNA binding domain, RFTS – Replication foci targeting domain, BAH – bromo-adFacent homology 
domain, ADD – ATRB-DNMT3-DNMT3L domain. 

Fig. 2. Crystal structure of DNMT3A-3L heterotetrameric complex; the DNA is modeled from the M.,haI-DNA cocrystal structure (PDB code 6f57).  
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which compromise interpretation of any inhibition effects, such as 
excess enzyme over DNA, or less than a single catalytic cycle. 43–45 

The screen of the library generated 12 compounds that showed at 
least 90H inhibition. The screening assay was repeated on these 12 
compounds to verify the inhibitory properties (see Figure 1S), and the 
results were used to select two structurally similar compounds for 

further analysis (see compounds 1 and 2, Fig. 3). These two compounds 
were previously identified as potential inhibitors of TbrPDEs, a class of 
phosphodiesterases found in T- brucei – the parasite responsible for 
trypanosomiasis ("frican sleepin% sic.ness).46 Compounds 1 and 2 both 
show potent and selective inhibition of TbrPDE, good antitrypanosomal 
effects, and are part of an extensive study of TbrPDE inhibitors involving 
numerous analogs.47 

The inhibitory mechanisms of both compounds were examined by 
varying both substrates. The results were fit to models representing 
various modes of inhibition (see Methods, Supplemental). The potencies 
(II values) of compounds 1 and 2 against DNMT3A range from 3.7 to 18 
µM (AdoMet) and 11 to 41 µM (poly dI-dC), which compare favorably to 
numerous published efforts.29,30 The best fits to the inhibition data for 
both compounds against poly dI-dC and AdoMet are consistent with 
mixed type or uncompetitive mechanisms (see Fig. 3, Table 1). Impor-
tantly, both mechanisms reAuire that compounds 1 and 2 bind alloste-
rically, away from the active site of the enzyme. The mixed type 
mechanism allows for scenarios in which the inhibitor binds both forms 
of the enzyme with the pertinent substrate bound, or unbound. In 
contrast, the uncompetitive mechanisms (Fig. 3, Table 1, Compound 2) 
implicate a mechanism wherein the inhibitor only binds to the form of 

Fig. 3. Best fit plots of the inhibition with respect to both substrates, poly dI-dC (A, B) and AdoMet (C, D). Assays were performed with 150 nM DNMT3A with an 
excess of the substrate being held constant. Radiolabeled 3H-AdoMet was used to determine product formation. All reactions were assayed for 30 min, then Auenched 
with 0.1H SDS and spotted onto charged nylon membranes for detection. Data was collected with two replicates (n = 2). Fitting was performed with standard 
inhibition eAuations being applied to the whole model. Extracted Ii values are boxed, while corresponding reciprocal plot with best-fit lines are shown in top right. 
Structures of inhibitors are shown (left). 

Table 1 
Galues for the various fits of inhibitors with respect to both substrates. Fits were 
determined using the *oncompetitive and Uncompetitive nonlinear regression 
models in /rism 0-1-3- The reported bounds define the 95H confidence interval 
of the Ii value.  

Inhibitor 1 2 
Substrate AdoMet poly dI-dC AdoMet poly dI-dC 

Best fit Ii (µM) 3.70 – 
7.06 

12.64 – 
40.56 

9.16–18.85 11.37 – 23.34 

Best fit 
Mechanism 

#i2ed #i2ed Uncompetitive Uncompetitive 

Goodness of fit 
(R2) 

0.957 0.831 0.983 0.891  
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the enzyme already bound by the DNA. The mechanisms of other DNMT 
inhibitors, when reported, often display competitive mechanisms with 
DNA, AdoMet, or both.30,44,48 The simplest interpretation of these 
mechanisms is that the inhibitor binds the same site as DNA or AdoMet, 
or, minimally, binds the same form of the enzyme bound by these 
substrates.49 

The widespread cellular reliance on AdoMet-dependent methyl-
transferases suggests that the development of drugs specific for DNA 
methyltransferases or drugs that distinguish between DNMT1 and 
DNMT3A will be challenging. This is reJected by the fact that the ma-
Fority of DNA methyltransferase inhibitors are poorly selective for 
DNMT3A, likely contributing to the limiting toxicity displayed by these 
compounds.30 DNMT1 is critical to cell viability and given the preva-
lence of DNMT1 throughout the lifetime of somatic cells, the selective 
inhibition of DNMT3A over DNMT1 is important in the development of 
cancer treatments.7 This is especially true of cancers like AML, where 
prevalence of DNMT3A mutations is particularly high. Further inhibi-
tion studies aimed to see if these compounds would affect DNMT1. 
Additionally, given the implicated allostery, we wanted to investigate if 
these compounds could inhibit the bacterial cytosine methyltransferase 
M. SssI (see Methods, Supplemental). This protein has a highly 
conserved active site with respect to DNMT3A but does not share its 
allosteric structure.22 The results with respect to DNMT3A and DNMT1 
found both compounds show some selectivity, with inhibitor 2 being the 
more selective of the two (see Fig. 4). Neither compound shows inhi-
bition of the bacterial DNA cytosine methyltransferase M.SssI, even at 
60 µM. Both compounds show little inhibition of DNMT1 at 6 µM, and 
compound 2 retains this selectivity even at 60 µM. It is intriguing that 
both inhibitors show greater inhibition of the catalytic domain of 
DNMT3A (residues 628 to 912, see Fig. 1) than the full length DNMT3A, 
suggesting that the large *-terminal segment interferes with the inhi-
bition. The basis of this difference has diverse molecular explanations, 
which we are actively investigating. Both compound 1 and 2 are still 
able to modulate the more biologically relevant full-length form of 
DNMT3A. 

In summary, the screening of a small chemical library of known 
drugs against human DNMT3A identified two non-nucleoside molecules 

of low micromolar potency. Both molecules inhibit the enzyme by 
binding outside the active site, and not only selectively inhibit human 
over bacterial DNMTs, but also shows some promising preferential tar-
geting of de novo over maintenance DNA methyltransferases. This 
highlights the potential use of these molecules for the treatment of 
malignancies associated with disruptions to DNMT3A activity. The large 
number of analogs of these two inhibitors which have been described 
provides a promising basis for further optimization of this new group of 
DNMT3A inhibitors, with reasonable prospects of showing improved 
toxicity over known DNA methyltransferase drugs.46 
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