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Abstract—The rapidly growing penetration of renewable en-
ergy resources brings unprecedented challenges to electricity
distribution networks. A large population of grid-connected
devices can lead to severe control scalability issues and potential
user information leakage. However, few research focuses on
the privacy preservation of distributed energy resource (DER)
control in a fully scalable manner. In this regard, this study
aims at designing a novel decentralized privacy-preserving DER
control framework that can 1) achieve control scalability over a
large population of heterogeneous DERSs; 2) eliminate the peer-to-
peer communications and secure the privacy of all participating
DERs against various types of adversaries; and 3) enjoy higher
computation efficiency and accuracy compared to state-of-the-art
privacy-preserving methods. The DER control is demonstrated
through a coupled optimization problem which optimizes the
power flow within a distribution network that is integrated with
solar generation and battery storage systems, and solved by using
the projected gradient method. The novel privacy-preserving
algorithm is designed based on cloud computing and secret
sharing. Preliminary results show the promising capabilities of
the proposed approach in DER control applications.

Index Terms—Decentralized optimization, distributed energy
resources, energy storage system, privacy, secret sharing, solar
photovoltaic

I. INTRODUCTION

A. Related Works

Large-scale deployment of distributed energy resources
(DERSs) has proven efficacy in reducing carbon footprint and
providing grid-edge ancillary services. In the meantime, scal-
able control strategies including distributed and decentralized
techniques are drawing more attention in large-scale DER con-
trol problems. For example, the distributed method in [1] can
control large-scale grid-connected photovoltaic (PV) systems.
However, it suffers from massive peer-to-peer communications
that generically exist in distributed control strategies. As
an improvement, Navidi et. al [2] developed a two-layer
decentralized DER coordination architecture that can scale the
solution to large networks, and no direct communication is
required between local controllers. Similarly, a decentralized
stochastic control strategy was designed in [3] for radial
distribution systems considering the integration of controllable
PV inverters and energy storage systems (ESSs). However,
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existing decentralized approaches fail to consider the privacy
which is a major block to the implementation of DER control.

In addressing privacy concerns, differential privacy (DP) has
received substantial attention owing to its rigorously mathe-
matical formulation [4]. DP-based methods add persistent ran-
domized perturbations to the datasets, constraints, or objective
functions for privacy preservation. In [5], a multi-agent cloud-
based framework was designed to keep each agent’s state
differentially private for constrained optimization problems.
Han et. al in [6] developed a distributed optimization algorithm
based on DP to preserve the privacy of the participating agents.
However, DP-based methods inevitablely suffer from accuracy
loss due to the added perturbations.

To improve the accuracy, another privacy preservation mea-
sure is encryption. Encryption-based strategies encrypt the
original data into cyphertexts, and only those holding private
keys can decrypt the cyphertexts. Lu et. al [7] proposed an
efficient and privacy-preserving aggregation scheme for smart
grid communications, in which the data is encrypted by Paillier
cryptosystem. In [8], a privacy-preserving and fault-tolerant
aggregation scheme was designed based on homomorphic
cryptosystem, aiming at secure aggregation of metering data.
However, the encryption-based methods prevalently demand
massive computation which would limit their applicability.
Other hardware integrated privacy-preserving methods, e.g.,
garbled circuit based strategy [9], [10], are deficient in flexi-
bility and uneconomic due to the hardware cost.

Secret sharing (SS) [11] is a lightweight cryptographic
method that can securely distribute a secret among a group
of m participants. Each participant will be allocated with
a share of the secret, and only when more than %, where
k < m, participants collaborate can the secret be reconstructed
from their shares. Adopting SS, Nabil er. al [12] designed a
SS-based detection scheme to identify malicious consumers
who steal electricity, in which system operators only collect
masked meter readings from the consumers to avoid privacy
violation. In [13], a SS-based algorithm was developed for the
private consensus problems. Compared with encryption-based
strategies, SS-based methods can achieve privacy preservation
while avoiding the heavy computational load. In this paper,
we will design a novel SS-based privacy-preserving algorithm
that merits both high efficiency and accuracy.
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B. Statement of Contributions

Mandated and frequent communications in unprotected
channels can cause unexpected privacy breaches, and yet pri-
vacy preservation is an generally ignored aspect in decentral-
ized algorithms. Motivated by addressing both the scalability
and the privacy in DER controls, we will orginally integrate
SS into decentralized optimizations for privacy preservation.
This novel scheme will be a perfect candidate for large-
scale DER control with privacy protection as it facilitates
decentralized optimization with scalablity as well as achieves
privacy preservation, high computing efficiency, and accuracy.
The applicability of the proposed method will be demonstrated
through a hybrid PV and ESS setup in a distribution network.

The contributions of this paper is three-fold: 1) We design a
novel decentralized privacy-preserving algorithm which can be
used as a benchmark for secure and scalable DER control; 2)
The proposed method eliminates the peer-to-peer communica-
tions and secures the privacy of the participating DERs against
adversaries; 3) Compared to state-of-the-art approaches, our
method achieves lower computational overhead and identically
accurate solutions as the non-privacy-concerned algorithms.

II. MAIN RESULTS & METHODOLOGIES
A. System Model

1) Branch Flow Model: Consider an n-bus radial distri-
bution network where N = {0,1,...,n} denotes the set of
buses. Let [;; denote the line segment connecting buses ¢ and
J, L denote the set of lines, C; denote the set of bus j’s
children, V; denote the voltage magnitude at bus j, P;; and
Q;; denote the active and reactive power flow from bus 4 to bus
J respectively, and r;; and x;; be the resistance and reactance
of line (i,j), respectively. For bus j, P; and (); denote
its active and reactive power consumptions, respectively, and
p; and g; denote its active and reactive power injections,
respectively. The power flow of the radial distribution network
can be defined by the DistFlow branch equations [14] as

Pij— Y Pju= P —p; + T}, (1a)
UGC]‘

Qij — Z Qiu=0Q; —q; +l‘iin2j (1b)
u€C;

V2= V7P = 2(rijPij + 245 Qi) — () + 23T}, (o)
where 77 = (P} + Q3;)/V;. To simplify the network model,
a DistFlow model can be linearized to the LinDistFlow model
by ignoring the higher order terms [15]. This linearization only
introduces a neglectable relative error which is normally of the
order of 1% [16]. This paper adopts the LinDistFlow model
to simplify the description and better illustrate the algorithm
design. The LinDistFlow model can be represented as

Pii— Y. Piu=P—p; (2a)
UEC]'

Qi— > Qu=0Q;—q (2b)
uE(Cj
V2 - ij =2(rijPij + i Qij)- (2¢)

In this paper, one objective is to minimize the total power loss
of the distribution network, which is approximated by

P P
hpr-pa) = Y T (”P"J||2+||Q”||2> (3)

V2
li; €L 0

where 1}y denotes the nominal voltage magnitude, p1, ..., Pn,
Pij, Qi; € RT where T denotes time intervals. Note that we
assume the reactive power flows Q;; are constants and only
consider the active power loss. Though reactive power loss
is not included here for simplicity, it can be added without
affecting the algorithm design. The active power flows are
constrained by .

0<Pij <Pi “4)

where ’ﬁij denotes the maximum active power flow limit.
2) Solar Photovoltaic: During T time intervals of a day,
the active power injections from the ¢th PV should satisfy

0 <p; <p; 3)

where p? € R”, and p? denotes the maximum available active
power from the ¢th PV inverter. p} is assumed to be known
by forecast. Herein, the curtailment cost is defined by

f20Y) = 1BY — P} |5 (6)

3) Energy Storage System: The discharging/charging rates
of the ¢th ESS is constrained by

—pt < pf < pi- (7)

where p¢ € RT denotes the discharging/charging rates of the
ith ESS, and p¢' and p¢* denote the maximum discharging
and charging rates, respectively.

Aggregate the charging/discharging rates across 7' time
intervals, the capacity of the ith ESS is constrained by

Pt < ApSAT < p™ (8)

where p¢! and ps* denote the lower and upper capacity bounds
of the ith ESS, respectively, AT denotes the time interval,
and A is a lower triangular matrix with only ones and zeros.
Furthermore, the ith ESS’s degradation cost can be calculated
in terms of the smoothness of charging and discharging by

fs(05) = 1P 13- 9)

Therefore, the total active power injections p; € RT at bus i
during 7" time intervals should satisfy

Di = P; — ;- (10)

B. Decentralized Optimization

The optimization problem is then formulated by minimizing
the total cost of the distribution network

min &1 f1(p%, p°) + Z (02 f2(p5) + 93 f3(p§))

i=1
s.t. - (2a),(4),(5),(7),(8),(10)

where d, denotes the weight associated with f,(:), p® =

[p‘fT, .. ,prT]T, and p¥ = [p?fT, . ,prT]T.

(P1)
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This paper achieves scalability in solving (P1) via projected
gradient method (PGM), where n agents (DERs) in the distri-
bution network cooperatively solve (P1). In this setting, each
agent updates its decision variable using PGM by

=Py [zf — ~ ()]

i il T

(1)

where x¢ denotes the decision variable of the ith agent at the
(th iteration, = = [:ch, e ,meT}T, +¢ is the step size, ®;(-)
denotes the first-order gradient of the Lagrangian w.r.t. ¢, and
Px,[-] denotes the projection operation on set Xj.

In PGM iterations, agent 4 needs to calculate ®;(z*) in (11)
where x;’s from all other agents need to be collected, e.g.,
the decision variables p® and p* in (P1). This unavoidable
information exchange can lead to privacy breaches, especially
attacks from other malicious agents. To address the privacy
concerns, we develop a novel SS-based algorithm that can
achieve secure information exchange in executing (11). The
proposed two-layer privacy-preserving computing structure is
shown in Fig. 1, in which the servers in the cloud computing
layer only aggregate and distribute the secure data received
from the agents in the distribution network layer.

]

Secure
Data Flow

Secure
Data Flow —

Distribution
Network

Fig. 1. Two-layer privacy-preserving computing structure for DER control in
a distribution network

C. Proposed Privacy-Preserving Algorithm

In this section, we present a novel privacy-preserving al-
gorithm based on SS. Before introducing the algorithm, we
first briefly introduce the Shamir’s SS scheme [11]. Suppose
a manager seeks to distribute a secret s to m agents, and
mandates at least k agents to reconstruct the secret. To this
end, the Shamir’s SS utilizes the idea of Lagrange polynomial
interpolation for secret distribution and recovery. Specifically,
the manager firstly constructs a random polynomial of

k—1

y(z) =s+crz+-+cp_12 (12)

where s denotes an integer secret, cq, ..., cy—1 denote random
coefficients that are uniformly distributed in the field E £
[0,¢e), and e denotes a prime number. Secondly, the manager
calculates the outputs of (12) with non-zero integer inputs,
e.g., setting 7 = 1,...,n to retrieve (7,y(7)) where y,
y(7) mod e and mod denotes the modular operation. Then,
the share y., is distributed to agent 7. Lastly, at least k agents

are required to reconstruct the polynomial based on Lagrange
interpolation and hence recover the secret s by

k k
s:zlyTHOUfT (13)
=1 vz

We next propose the novel two-layer decentralized privacy-
preserving algorithm based on SS. In the distribution network
layer, all agents (DERs) update their decision variables in
parallel, and only masked data are sent to the servers. In
the cloud computing layer, the servers aggregate and calculate
®,(-) using the received data, then distribute ®;(-) to the ith
agent. Specifically, the proposed algorithm consists of three
steps: 1) Each agent (DER) generates a random polynomial
yi(z) using (12) and sends the outputs of the polynomial to
the cloud servers; 2) The cloud servers then interact with
each other for information aggregation to calculate ®;(-)’s;
and 3) The cloud servers send ®;(-) to the ith agent, then
each agent performs the PGM updates using (11). Note that
the agents only send the outputs of the polynomials to the
servers so that the cloud servers are not aware of the true
decision variables, as the cloud servers only need to calculate
aggregated messages using those randomized outputs. The
outline of the proposed method is shown in Algorithm 1, and
the detailed version will be provided in the future work.

Algorithm 1 Decentralized SS-based privacy-preserving DER
control strategy

1: DERSs initialize decision variables, tolerance ¢, iteration
counter ¢ = 0, and maximum iteration £, ..

2. while € > g and £ < {4, do

3: Secret generation: The ith DER generates a random
polynomial y;(z) using (12) and sends the outputs of the
polynomial to the cloud servers

4: Secret reconstruction: The cloud servers interact with
each other and reconstruct the aggregated secrets to cal-
culate ®;(-)’s, and send ®,(-) to the ith agent

5: Decentralized update: The ith DER updates p$ and p}
by PGM using (11) and calculates the error €.

: =041

7: end while

To prove the privacy preservation of the proposed scheme,
we will consider three types of adversaries, including honest-
but-curious-agent who may observe the intermediate or in-
put/output data to infer the private information of other agents;
external eavesdroppers who launch attacks by wiretapping
and intercepting exchanged messages between agents and the
cloud server; and cloud servers who may be attacked to cause
the leakage of agents’ decision variables. Detailed privacy
analyses will be provided in our future work.

III. PRELIMINARY RESULTS

Simulations of a DER control problem were conducted on
the IEEE 13-bus test feeder where ESSs and solar PVs are
considered. Without loss of generality, each bus is assumed
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to be connected with a house that is equipped with an ESS
and 5 solar panels, resulting in total 12 houses connected. The
maximum capacity of each ESS is 15 kWh, and the maximum
charging/discharging rates are £2 kW, respectively [17]. The
forecasted solar PV generation is chosen from 01/01/2021
with AT = 5 mins on a sunny day in California [18]. The
decentralization does not alter the solution compared with the
centralized method, herein we only present the centralized
results of (P1).

In Fig. 2, all 12 houses are assumed to be located in
the same area with identical forecasted solar generation and
utility power supply, but each house is assigned with a unique
baseline load profile [18], [19]. Fig. 3(a) and Fig. 3(b) show
the active power injections or consumptions from the solar
PVs and ESSs, respectively. As can be seen, at around 12:00,
the solar PVs generate maximum amount of energy and the
ESSs charge at the peak rates. Before 8:00 and after 16:00,
energy stored in ESSs is extracted to compensate for the power
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Fig. 2. Daily solar generation forecast, active power supply forecast, and
baseline loads of 12 houses (dashed lines)
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PVs at 12 buses (blue marked line repre-
sents forecasted solar power limit)

(b) Charging and discharging rates of the
12 ESSs

Fig. 3. Active power injections and consumptions from the DERs

IV. CONCLUSION AND FUTURE WORK

In this paper, a novel privacy-preserving algorithm was
proposed for DER control in distribution networks. The pro-
posed algorithm secures the privacy of DER owners including
the DERs’ generation and consumption and daily electricity
usage. We firstly formulated the coupled optimization problem
that aims at minimizing the line loss, PV curtailment cost,
and ESS degradation cost. Then, we presented the outline of
the privacy-preserving algorithm based on SS, and showed
applicability of the proposed privacy preservation method.

The preliminary results prove the feasibility and potential
of the proposed approach. To fulfill this research direction,

future work includes 1) designing a real number to integer
quantization strategy with arbitrary precision that can integrate
SS into decentralized optimization seamlessly; 2) providing
a more detailed algorithm design and comprehensive privacy
analyses; and 3) conducting realistic large-scale experiments
to show that the proposed method can be readily applied in
real-world DER control applications.
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