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A B S T R A C T

As renewable energy penetrations increase, wind farms may be required to provide ancillary services such as
frequency regulation. For wind farms, two issues complicate frequency regulation: turbine-wake interactions
alter the available wind power, and the future power reference signal is uncertain. This paper presents a
stochastic model predictive controller (MPC) for wind farms to track an uncertain frequency regulation signal
while accounting for wakes. The controller uses a simplified Park model with wake propagation delay to predict
turbine-wake interactions. The controller operates without any knowledge of the future power regulation signal
or wind speed. The controller solves a nonconvex stochastic optimization program using scenario optimization.
Our stochastic MPC tracks with 7%–10% less error than our deterministic MPC controllers.
1. Introduction

Currently, wind farms are operated to maximize their energy pro-
duction. However, as wind energy replaces traditional power gener-
ating resources, wind farms may be called on to provide ancillary
services such as frequency regulation, in which a power plant tracks
a power reference command that varies on the timescale of seconds.
When providing frequency regulation, wind farms are usually forced to
curtail their average power production in order to increase power when
requested. Curtailment results in lost revenue and reduces the economic
viability of the farm [1]. However, derating a turbine also increases
he energy content in its wake. The extra energy in the flow field
llows the wind farm to temporarily extract more power downstream
f necessary. Hence, by carefully allocating turbine power generation
hen frequency regulation calls for a reduction in power production,
t is possible to reduce the amount of curtailment required for reference
racking. In fact, it is possible to use knowledge of the future frequency
egulation signal to transiently track signals that exceed the maximum
teady-state power obtainable from the wind by reducing power in
nticipation of a frequency regulation signal increase. However, in
ractice, the future frequency regulation signal is not known. This is
he issue we aim to address.
This paper develops model predictive controllers for wind farms to

rack a frequency regulation signal without knowledge of the future
eference signal. The controller uses a Park model with wake propa-
ation delay to predict wake interactions between turbines. To deal
ith uncertainty in the power reference signal, we employ forecasts
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of the power reference, an objective function that maximizes the total
available power at each time step, and stochastic optimization using an
asymmetric objective function.

Prior work in wind farm control for frequency regulation has
focused on developing control-oriented wake models and actuation
schemes that use axial induction and wake steering. One approach
for wind farm power reference tracking is to dispatch each turbine
to produce power proportional to the turbine’s available power, as
shown in [2]. Ref. [3] also uses this approach in an MPC controller
that uses both axial induction and wake steering but does not account
for wake dynamics. Ref. [4] expands on [3] by introducing a stochastic
MPC controller that accounts for uncertain wind through scenario-
based optimization. Ref. [5] describes a distributed MPC approach
to follow a power reference through adjusting axial induction and
wake steering. The proportional allocation approach does not account
for turbine wakes and allocates turbine power suboptimally. Another
approach is to employ MPC with a wind farm wake model to issue
optimized commands. Ref. [6] develops a control-oriented wake model
for use in a model predictive controller that tracks better and requires
less derate than controllers without a wake model. Ref. [7] presents
a controller that dispatches turbines to track a reference while heuris-
tically minimizing the power deficits from wakes. These approaches
can allocate wind power while minimizing turbine wakes, but they
do not account for an unknown future power reference. Finally, [8]
employs an ARMA model to forecast a regulation signal as part of an
MPC reference tracking controller for distributed energy resources. We
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Fig. 1. Diagram of the wind farm considered in this paper.
follow a similar approach for our forecast. From this literature review,
we conclude that no work in wind farm frequency regulation explicitly
treats the future power reference as unknown.

The contributions of this paper are: (1) the development of deter-
ministic MPC controllers that leverage wake models and forecasts of
the power reference signal; (2) the development of a stochastic MPC
controller which uses an objective that asymmetrically penalizes under-
production of power in future timesteps; and (3) case studies on a wind
farm with significant waking and unknown future power reference.
The case studies compare the performance of the deterministic and
stochastic formulations; in particular, we analyze tracking performance
and how the controllers allocate turbine power production.

The remainder of this paper is organized as follows. Section 2
introduces and motivates the problem. Section 3 describes the wake
model used in our controller. Section 4 outlines our MPC power track-
ing framework. Section 5 contains results from case studies in which
we simulate our controller on both a derated and non-derated farm.
Section 6 gives our conclusion and remarks on future work.

2. Problem description

In this paper, we consider the problem of minimizing the error
between a wind farm’s total power generation and a power refer-
ence generated from a system operator’s frequency regulation signal
(e.g., PJM’s RegD signal). The farm we consider consists of a string
of 𝑁 identical turbines aligned with the wind direction, as shown in
Fig. 1;  = {1,… , 𝑁} is the set of turbine indices. We assume that
adjacent turbines are equally spaced by distance 𝑠𝑥. Let 𝑃dem(𝑘) be
he wind farm power output demanded by frequency regulation signal
(𝑘) ∈ [−1, 1] ∀𝑘, and let 𝑃gen(𝑘) be the total power generation of the
ind farm, all at timestep 𝑘. The wind farm calculates 𝑃dem(𝑘) as a shift
nd scaling of 𝑟(𝑘) using 𝑃dem(𝑘) = 𝑃MPP[1 −𝛥𝑃 +𝑀 ⋅ 𝑟(𝑘)], where 𝑃MPP
s the maximum power point of the farm (i.e., the maximum power
hat can be generated by the farm in steady-state), 𝛥𝑃 is the level of
arm derate, and𝑀 is the magnitude of the frequency regulation power.
hen, we aim to minimize

𝑇horz
∑

𝑘=1
(𝑃gen(𝑘) − 𝑃dem(𝑘))2 (1)

here  = {1, 2,… , 𝑇horz} is the time horizon. The problem is formu-
ated in discrete-time with sample time 𝛥𝑡 set to 2 s, consistent with the
imestep of PJM’s RegD signal.
It is difficult for a wind farm to track a power reference because: (1)

urbine wakes dynamically alter the available power; (2) the frequency
egulation signal (which captures both the frequency deviation from the
ominal frequency due to supply–demand mismatch and unscheduled
ieline flows between separately managed portions of the grid) is un-
nown for future timesteps, and; (3) the wind speed changes over time
nd is uncertain. In this paper, we design our controller to handle (1)
nd (2), but not (3). Although our work could conceivably be extended
o handle uncertainty in wind speed, we neglect (3) in order to focus on
2

managing the uncertainty in the frequency regulation signal. We also
assume that the wind speed does not affect the frequency regulation
signal, although in reality the frequency regulation signal may change
due to supply–demand mismatch resulting from wind forecast error.
Other works, e.g., [6], also assume constant freestream wind speed.

We next provide motivating examples that justify the need for
our approach. Then we analyze frequency regulation signals and their
forecastability.

2.1. Motivating examples

In this section, we present examples to show why we model the
wake and forecast the power reference signal. First, we consider a naive
power reference tracking controller that does not use a wake model or
forecast. It commands each turbine to capture the same proportion of
its available local wind power. We assume that the controller knows
the local wind speed and wind power at each turbine, and that the
controller minimizes the squared-error between power generation and
the reference power at the current timestep.

Fig. 2 shows results from running the naive controller on an hour-
long power reference. The top plot displays the power generated, power
reference, available power, and maximum power point (MPP) of the
wind farm, while the bottom plot displays the power coefficient of
each turbine. The available power is the maximum instantaneous power
that the farm can produce at a given time, while the MPP is the
maximum steady-state power. Note that the power reference never
surpasses the MPP. At the beginning of the simulation, the controller
increases the farm’s power output. The turbines experience lower local
wind speeds due to upstream wakes, causing the available power to
drop. In response, the controller maximizes the power generation, but
it generally cannot track the signal due to turbine wakes. The available
power oscillates due to wake coupling introduced by dips in the power
reference. The turbines can derate to meet the power need occasionally,
but the controller still fails to track due to its greedy behavior.

Fig. 3 shows the results from reference tracking leveraging a wake
model and with full knowledge of the reference signal over the entire
horizon. We select control commands that minimize the tracking error
over the constraints imposed by the wake model; the full details of this
approach are given in Section 4. The controller uses foreknowledge of
the power reference to preemptively ‘‘store’’ power by slightly derating
turbines, for example at 𝑡 = 1000 s. The controller is able to track the
power reference without error.

These examples underscore the importance of considering the ef-
fects of wakes and also managing power reference uncertainty. Our goal
is to design a controller that properly harnesses wake interactions to
achieve performance as close as possible to that in Fig. 3, but without
full knowledge of the reference signal. We do this by employing an MPC
approach that optimizes the turbine power outputs using a wake model

and forecasts of the power reference signal.
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Fig. 2. Reference tracking without a wake model or reference forecast.
Fig. 3. Reference tracking with a wake model and a perfect reference forecast.
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.2. Regulation signal analysis

Since in practice we do not know the future power reference signal,
e must create a forecast to use a predictive control approach. Here,
e highlight statistical features of the regulation signal 𝑟(𝑘) that enable

us to forecast. We use PJM Regulation Signal Data from PJM [9]. To
create the RegD signal, PJM high-pass filters the area control error
(ACE) which captures frequency deviations (resulting from supply–
demand mismatch), unscheduled tieline flows, and time error [10].
Essentially, frequency regulation corrects the mismatch between supply
and demand resulting from forecast error, which makes the frequency
regulation signal itself inherently difficult to forecast. However, we
observe that there is still some autocorrelation within the signal over
short timespans. Fig. 4 contains plots of the autocorrelation and partial
utocorrelation functions of the sample signal. The signal exhibits
ignificant correlation for lags up to about 200 s, after which the
orrelation goes approximately to 0. Additionally, the partial autocor-
elation of the signal cuts off at about 3 lags. This justifies the use of an
utoregressive (AR) model, i.e., an AR(3) model, to forecast the signal.

. Wake model

We next describe the wake model we use in our controller formula-
ion. The axial induction factors for each turbine serve as our control
nputs. The axial induction factor measures the velocity deficit induced
y the turbine in the wind. Although the axial induction is not directly
turbine control input, a turbine can be made to track a given axial
nduction through manipulation of its blade pitch and generator torque.
et 𝑎𝑖(𝑘) denote the axial induction factor for turbine 𝑖 at timestep 𝑘.
he corresponding power coefficient (by Betz theory [11]) is

2

3

𝑃 (𝑎𝑖(𝑘)) = 4𝑎𝑖(𝑘) ⋅ (1 − 𝑎𝑖(𝑘)) . (2)
he power coefficient is the proportion of power captured by the
urbine from the available energy within the wind. From Betz theory,
𝑖(𝑘) ∈ [0, 1∕3] and 𝐶𝑃 (𝑎𝑖(𝑘)) ∈ [0, 0.593]. The power captured by
turbine 𝑖 at timestep 𝑘 is

turb,𝑖(𝑘) = min
(

𝑃rated,
1
2

(

𝜋𝐷2

4

)

𝜌 𝐶𝑃 (𝑎𝑖(𝑘)) (𝑢𝑖(𝑘))3
)

, (3)

where 𝐷 is the turbine rotor diameter, 𝜌 is the air density, 𝑢𝑖(𝑘) is the
local wind speed for turbine 𝑖 at timestep 𝑘, and 𝑃rated is the maximum
(rated) power of each turbine.

We model the wind speed within the farm using a Park model with
wake propagation times [12,13]. The local wind speed at turbine 1
is the freestream velocity 𝑢1(𝑘) = 𝑈∞. In this paper, we assume 𝑈∞
is constant over time. The local wind speed at downstream turbines
(𝑖 = 2,… , 𝑁) is reduced by wake effects, i.e.,

𝑢𝑖(𝑘) = 𝑈∞
[

1 − 𝛿𝑉𝑖(𝑘)
]

, (4)

where 𝛿𝑉𝑖(𝑘) is the velocity deficit of turbine 𝑖 at timestep 𝑘. The deficit
is defined using a square-superposition of the past control actions of
upstream turbines [13]

𝛿𝑉𝑖(𝑘) = 2

√

√

√

√

√

𝑖−1
∑

𝑗=1
[𝑐𝑖,𝑗𝑎𝑗 (𝑘 − 𝑑𝑖,𝑗 )]2, (5)

where 𝑐𝑖,𝑗 is a constant describing the coupling between turbines 𝑖 and
𝑗, and 𝑑𝑖,𝑗 is the wake propagation delay time between turbines 𝑖 and

𝑗. The constant 𝑐𝑖,𝑗 is
(

𝐷
𝐷+2𝜅𝑒𝑠𝑖,𝑗

)2
, where 𝜅𝑒 is the wake expansion

constant and 𝑠𝑖,𝑗 is the turbine separation distance between turbines
𝑖 and 𝑗. The turbine spacing is a constant 𝑠𝑥 and hence 𝑠𝑖,𝑗 = |𝑗 − 𝑖|𝑠𝑥.

Moreover, the delay in units of sample times is 𝑑𝑖,𝑗 = |𝑗 − 𝑖|𝑑 where
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Fig. 4. Autocorrelation and partial autocorrelation of PJM’s RegD signal.
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𝑑 is the delay between adjacent turbines, i.e., ⌈ 𝑠𝑥
𝑈∞𝛥𝑡 ⌉. These equations

ive the physical connection between the actions (axial induction) of
n upstream turbine on the delayed downstream wind speed.

. Controller design

In this section, we describe our MPC approach. An MPC controller
mploys a predictive model of the plant over a horizon with an ob-
ective function corresponding to the goal of the control. At each
imestep, the controller solves an optimization problem with the plant
odel and the objective, then implements the control actions from the
urrent timestep only; this procedure is repeated at every timestep with
pdated state and forecast information. We use MPC because it allows
s to directly optimize control actions over a wake model.
Each MPC iteration optimizes over a 𝑇 -length horizon {𝑘0, 𝑘0 +

,… , 𝑘0 + 𝑇 − 1}, where 𝑘0 denotes the initial timestep of the hori-
on within . However, within each horizon, the MPC optimization
bjective is only run on the timesteps 𝑘0, 𝑘0+𝑑,… , 𝑘0+𝑁wakes𝑑, where
wakes is the number of wake propagations within the horizon. We can
iscard variables outside of these timesteps because we only implement
nly the control command at 𝑘0, and 𝑘0’s wake only affects timesteps
0 + 𝑑, 𝑘0 + 2𝑑, etc. Thus, we restrict each iteration to the timesteps
𝑘0 = {𝑘0,… , 𝑘0 +𝑁wakes𝑑}.
Different power system operators use different metrics to evaluate

he performance of resources providing frequency regulation. Here, we
imply quantify performance using (1), i.e., the squared error between
dem(𝑘) and 𝑃gen(𝑘). Since 𝑃dem(𝑘) is unknown for future timesteps, we
nstead construct alternative references 𝑃ref(𝑘) and 𝑃ref(𝑘). Determinis-
ic reference signal 𝑃ref(𝑘) equals 𝑃dem(𝑘) at the current timestep 𝑘 = 𝑘0,
ut is a forecast 𝑃forecast(𝑘) for 𝑘 > 𝑘0. Stochastic reference signal 𝑃ref(𝑘)
s defined at timesteps 𝑘 > 𝑘0 and treats future timesteps as random
ariables.
Vectors 𝐚 and 𝐱 contain the axial induction and state variables of

ach turbine at each timestep, respectively, i.e.,

=
[

𝑎(𝑘0)⊤ … 𝑎(𝑘0 +𝑁wakes𝑑)⊤
]

, (6)

=
[

𝛿𝑉(𝑘0)⊤ … 𝛿𝑉(𝑘0 +𝑁wakes𝑑)⊤
]

, (7)

here 𝑎(𝑘) and 𝛿𝑉(𝑘) contain the 𝑁 axial inductions and wake velocity
eficits at timestep 𝑘. The state variables give the wind velocity deficits
t each turbine. Finally, the vector 𝐫 consists of previous values of
dem(𝑘), i.e.,

=
[

𝑃dem(1) 𝑃dem(2) … 𝑃dem(𝑘0)
] ⊤. (8)

ur MPC controller uses 𝐫 to form power reference forecasts.
4

.1. Objective functions

We compare the performance of several different objective functions
n our MPC formulation. Although we are trying to minimize (1), we
se different objectives that accommodate uncertain power references.
he first objective function we use is the mean-squared error (MSE)

1(𝐚, 𝐱, 𝐫) =
1

|𝑘0 |

∑

𝑘∈𝑘0

(

𝑃ref(𝑘) − 𝑃gen(𝑘)
)2 . (9)

We can augment 𝐽1 with a second term, referred to as a ‘‘power
maximization’’ term, following the approach in [7]

𝐽2(𝐚, 𝐱, 𝐫) = −
∑

𝑘∈𝑘0

𝑁
∑

𝑖=1
(𝑢𝑖(𝑘))3. (10)

Since (𝑢𝑖(𝑘))3 is proportional to the available power, minimizing (10)
incentivizes forward turbines to lower their power production to min-
imize the wake effect on back turbines. This allows the farm to track
higher power reference commands at future timesteps.

Our third objective function is used in the stochastic MPC. First,
consider the following asymmetric MSE loss function

𝑓asym(𝑥1, 𝑥2) =

{

(𝑥1 − 𝑥2)2, for 𝑥1 > 𝑥2,
0, for 𝑥1 ≤ 𝑥2.

(11)

This loss function is positive only when 𝑥1 is greater than 𝑥2. We
employ this asymmetric loss function in our full objective function as
follows:

𝐽3(𝐚, 𝐱, 𝐫) = (𝑃dem(𝑘0) − 𝑃gen(𝑘0))2

+E
⎡

⎢

⎢

⎣

∑

𝑘∈𝑘0

𝑓asym(𝑃ref(𝑘), 𝑃gen(𝑘))
⎤

⎥

⎥

⎦

. (12)

This objective only imposes a penalty on underproducing, not overpro-
ducing, power during future timesteps. We use this asymmetric loss
function for two reasons. First, preparing to overproduce power in the
future is not problematic. If the farm prepares to overproduce but the
power is lower than forecasted, then the farm can derate to meet the
reference. If the farm does not prepare to overproduce, then the future
available power may be insufficient to track. Second, using a symmetric
MSE loss in stochastic MPC does not improve on deterministic MPC
with a point forecast. It is equivalent to minimize the expected MSE loss
with a random signal and the MSE loss using a point forecast. On the
other hand, the expected value of the asymmetric objective varies with
the uncertainty of the stochastic signal. When solving, we approximate
the objective function using an approach that considers a finite number
of scenarios for the reference signal

𝐽3(𝐚, 𝐱, 𝐫) = (𝑃ref(𝑘0) − 𝑃gen(𝑘0))2

+ 1
𝑁𝑠

𝑁𝑠
∑

⎡

⎢

⎢

∑

𝑓asym(𝑃scen,𝑠(𝑘), 𝑃gen(𝑘))
⎤

⎥

⎥

, (13)

𝑠=1

⎣

𝑘∈𝑘0 ⎦
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where 𝑁𝑠 is the number of scenarios and 𝑃scen,𝑠(𝑘) is a realization of
𝑃ref(𝑘), i.e., a scenario.

4.2. Deterministic MPC

The optimization problem run at each iteration is

min
𝐚

𝛾 𝐽1 (𝐚, 𝐱, 𝐫) + (1 − 𝛾) 𝐽2(𝐚, 𝐱) (14)

s.t. 0.05 ≤ 𝑎𝑖(𝑘) ≤ 1∕3, ∀𝑖 ∈  ⧵𝑁,∀𝑘 ∈ 𝑘0 (15)

𝑎𝑁 (𝑘) = 1∕3, ∀𝑘 ∈ 𝑘0 (16)

|𝑎𝑖(𝑘0) − 𝑎𝑖(𝑘0 − 1)| ≤ 𝛿𝑎 (17)

𝑃gen(𝑘) =
𝑁
∑

𝑖=1
𝑃turb,𝑖(𝑘), ∀𝑘 ∈ 𝑘0 (18)

(2) – (5), ∀𝑖 ∈  ,∀𝑘 ∈ 𝑘0 ,

where (14) minimizes the squared tracking error in 𝐽1 and maxi-
mizes the available power in 𝐽2; the weighting between these two
objectives is specified by 𝛾. Eq. (15) constrains 𝐚 and (16) constrains
the rearmost turbine to maximize its power production. The rearmost
turbine’s uncaptured wind power does not travel to another turbine and
cannot be recovered. So, the back turbine should maximize its power.
This restriction also reduces the number of decision variables in the
optimization problem, making it easier to solve. Eq. (17) constrains
the ramp rate of 𝐚 to be less than a constant 𝛿𝑎. Eq. (18) defines the
generated power at any timestep to be the sum of the power capture
of each turbine. Eqs. (2) – (5) encode the wake behavior and turbine
power capture characteristics.

As previously described, 𝑃ref(𝑘) contains a forecast of the signal for
timesteps 𝑘 ≥ 𝑘0. We employ four different forecasts throughout this pa-
per: (1) persistence forecast, (2) worst-case forecast, (3) autoregressive
forecast, and (4) perfect forecast. The persistence forecast 𝑃forecast(𝑘)
equals 𝑃dem(𝑘0), ∀𝑘 ∈ 𝑘0 . The worst-case forecast 𝑃forecast(𝑘) equals
𝑃high, ∀𝑘 ∈ 𝑘0 , where 𝑃high is 𝑃MPP[1−𝛥𝑃 +𝑀], i.e. the highest power
demand possible. The controller with worst-case forecast plans for high
future power demand because the controller can derate if the power is
less than forecasted. In the autoregressive forecast, 𝑃dem(𝑘) is forecasted
with an AR(3) model with parameters 𝜙𝑚, for 𝑚 = 1, 2, 3. To forecast
𝑘 = 𝑘0 + 1,

𝑃forecast(𝑘) =
3
∑

𝑚=1
𝜙𝑚𝑃dem(𝑘 − 𝑚). (19)

Successive timesteps are forecasted using 𝑃forecast(𝑘) instead of 𝑃dem(𝑘)
when 𝑃dem(𝑘) is unknown. Finally, the perfect forecast 𝑃forecast(𝑘) cor-
responds to 𝑃forecast(𝑘) = 𝑃dem(𝑘), ∀𝑘 ∈ 𝑘0 . The perfect forecast
is used as a benchmark for other forecasts. The second motivational
example in Section 2 was generated by solving a single iteration of the
deterministic MPC using a perfect forecast and an MPC horizon equal
to the problem time horizon 𝑇horz.

4.3. Stochastic MPC

The stochastic MPC uses the same constraints as the deterministic
MPC but uses the stochastic objective in (12). The optimization problem
run at each iteration is

min
𝐚

𝐽3(𝐚, 𝐱, 𝐫) (20)

s.t. (15) – (18),
(2) – (5), ∀𝑖 ∈  ,∀𝑘 ∈ 𝑘0 ,

where (20) is the approximate asymmetric loss function (13).
In the stochastic MPC, the power reference scenarios are drawn
5

from the AR(3) model used in the autoregressive forecast. To generate
Table 1
Simulation parameters.
Parameter Value

𝜌, Air density 1.223 kg/m3

𝐷, Rotor diameter 100 m
𝑈∞, Freestream wind velocity 8 m/s
𝑃rated, Rated power 3 MW
𝜅𝑒, Wake expansion coefficient 0.05
𝑠𝑥, Turbine spacing 700 m
𝑁𝑠, Number of stochastic scenarios 50 samples
𝛿𝑎, Ramp rate constraint 0.02

Table 2
RMSE and NRMSE from derated farm.
Objective Forecast RMSE NRMSE OPL

(kW) (%) (wakes)

MSE Persistence 8.31 0.234 1
Worst-case 8.52 0.240 1
Autoregressive 8.09 0.228 2
Perfect 6.40 0.180 6

MSE Persistence 8.42 0.237 1
+ Power max. Worst-case 8.65 0.244 1

Autoregressive 8.28 0.234 2
Perfect 5.31 0.150 2

Asymmetric Stochastic 7.52 0.212 2

Table 3
RMSE and NRMSE from non-derated farm.
Objective Forecast RMSE NRMSE OPL

(kW) (%) (wakes)

MSE Persistence 40.90 1.107 4
Worst-case 36.56 0.989 3
Autoregressive 44.09 1.193 6
Perfect 33.70 0.912 6

MSE Persistence 36.89 0.998 3
+ Power max. Worst-case 35.56 0.962 2

Autoregressive 35.04 0.948 6
Perfect 24.93 0.675 6

Asymmetric Stochastic 32.5 0.880 6

the scenarios, we simulate the model with white noise innovations
𝜖𝑘 ∼  (0, 𝜎2) such that

𝑃ref(𝑘) =
3
∑

𝑚=1
𝜙𝑚𝑃dem(𝑘 − 𝑚) + 𝜖𝑘, (21)

where 𝜎2, the white noise variance, is found by fitting data.

5. Results and discussion

We test the controller’s performance for a variety of prediction
horizon lengths, farm configurations, and reference signals. Our sim-
ulation parameters are listed in Table 1. We use half of the PJM power
reference data [9] to fit the autoregressive model and the other half
to run simulations. For a given controller configuration, we calculate
the controller’s root mean squared error (RMSE) and normalized root
mean squared error (NRMSE) by conducting 8 trials on different hour-
long reference signals. The same reference signals are used among
each controller configuration. The RMSE is defined as (∑𝑇horz

𝑘=1 (𝑃gen(𝑘) −

𝑃dem(𝑘))2∕𝑇horz)
1
2 and the NRMSE is defined as RMSE∕(𝑃MPP[1 − 𝛥𝑃 ]) ⋅

100%.
In each MPC iteration, we solve a nonlinear and nonconvex opti-

mization problem. We modeled the problem using Julia JuMP, then
solved it using IPOPT with the HSL MA97 linear solver [14–16]. The

solver is not guaranteed to converge to the global minimum.
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Fig. 5. Calculated axial induction for derated 4-turbine farm using different objective functions.
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Table 4
Forecast RMSE mean and standard deviation.
Forecast RMSE statistic Horizon length (timesteps)

46 91 136 181 226 271

Persistence Mean 0.32 0.48 0.56 0.61 0.64 0.68
STD 0.25 0.29 0.32 0.31 0.30 0.28

Worst-case Mean 1.08 1.09 1.13 1.15 1.16 1.15
STD 0.51 0.46 0.43 0.42 0.39 0.36

Autoregressive Mean 0.30 0.42 0.50 0.52 0.54 0.56
STD 0.19 0.20 0.17 0.18 0.16 0.14

5.1. Forecast error

We begin by quantifying the forecast accuracy to better compare the
different MPC options. We calculate the RMSE of each forecast on 50
regulation signal samples of varying lengths and compare the mean and
standard deviations of the RMSEs. The regulation signal is normalized
between −1 and +1 and is thus unitless. Table 4 contains our results,
hich show that the worst-case forecast has considerably more error
han the persistence or autoregressive forecasts. The autoregressive and
ersistence forecasts have similar mean RMSEs, but the autoregressive
orecast has less variance in the RMSE, especially as the horizon length
ncreases. Based on these results, we expect that controllers using the
utoregressive forecast will have the least tracking error, controllers
sing the worst-case forecast will have the most tracking error, and
ontrollers using the persistence forecast will have tracking error in
etween the errors of the other two forecasts.

.2. Control of a derated farm

We first present a set of trials on a 4-turbine farm with 𝛥𝑃 = 0.04
(4% derate) and 𝑀 = 0.08 (8% signal magnitude). Since the derate
is less than the signal magnitude, the controller must take advantage
of aerodynamic effects to track the reference signal well. Table 2
6

l

contains error results for all combinations of objective functions and
forecasts, as well as the optimal prediction length (OPL) for the given
objective function and forecast. Fig. 5 compares three controllers with
different objective functions run on the same reference: (1) MSE objec-
tive (9) with autoregressive forecast; (2) MSE + Power maximization
term (10) with autoregressive forecast; (3) asymmetric objective (12)
ith stochastic MPC. The prediction lengths for each controller are
et to their optimal values in Table 2. Fig. 5(a) displays the power
enerated, power reference, available power, and MPP for each of
hese controllers, while the bottom plot displays the axial induction
ommanded to each turbine for each controller. We do not display the
xial induction of the fourth turbine because it is constant and equal to
∕3 for all controllers.
The results in Table 2 show that the deterministic MPC with au-

oregressive forecast outperforms both the persistence and worst-case
orecasts. We note the tracking error decreases as the forecast mean
nd standard deviation (displayed in Table 4) decrease. In turn, the
tochastic MPC with asymmetric objective function outperforms the
utoregressive forecast, but performs worse than the perfect forecast.
able 2 also shows that including the power maximization term gener-
lly worsens the tracking performance when the farm is derated. When
he farm is derated, the controller naturally experiences higher wind
peeds due to decreased waking, so the power maximization term does
ot improve tracking.
The controllers in Fig. 5(a) cannot track the signal well in the first

0 min because there is not enough available power in the flow field.
he axial inductions in Fig. 5(b) show that the stochastic controller
arvests less power initially so that it can track better around minutes
and 8. Fig. 5(b) also shows that the power maximization controller
llocates more power to the front turbine and less to the back turbines,
hile the MSE and asymmetric controllers command similar axial
nductions to the front turbine. However, the asymmetric controller is

ess aggressive in the back turbines.
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Fig. 6. Calculated axial induction for non-derated 4-turbine farm using different objective functions.
5.3. Control of a non-derated farm

We now present trials where the farm is not derated and the
signal magnitude is 4%. Since the farm is not derated, the controller
must carefully account for wake coupling effects so that the farm can
overproduce power.

Table 3 contains error results across all combinations of forecasts
and controllers. All controllers perform worse on the non-derated farm
compared to the derated farm because the average power demanded is
higher in the non-derated case. When considering the controllers that
use the MSE objective, we see that the controller with the worst-case
forecast outperforms both the persistence and autoregressive forecast.
This is likely because the worst-case forecast incentivizes the controller
to reduce wake coupling effects, which allows it to surpass the MPP
more often. We note that, across all forecast methods, using the power
maximization term lowers tracking error compared to the MSE objec-
tive. This is likely because maintaining higher available power is more
difficult when the farm is not derated. Additionally, for the power
tracking objective, improving the forecast (as shown in Table 4) also re-
duces the tracking error. Finally, the stochastic controller outperforms
the persistence, worst-case, and autoregressive forecast, but does worse
than the perfect forecast with power maximization term.

Fig. 6 again compares the controllers used in Fig. 5. We change the
prediction lengths to match those in Table 3. When comparing Fig. 6(a)
to Fig. 5(a), we see that in both farms, controllers struggle to track
when the power reference exceeds 𝑃MPP. However, the non-derated
farm can overproduce power for less time compared to the derated
farm, leading to its worse tracking performance. Fig. 6(b) indicates
that on the non-derated farm, the stochastic and power maximization
controllers allocate more power to the front turbines, while the MSE
controller allocates power more evenly among the turbines. Since
the power maximization term reduces error for this signal, it makes
sense for the asymmetric controller to mimic the power maximization
controller.
7

Our results show that the stochastic controller performs better
than our other controllers on both the derated and non-derated farm
configurations. The stochastic MPC can explicitly account for the level
of uncertainty in the forecasts, whereas the deterministic MPC has only
a point forecast and thus cannot adjust its actions based on uncertainty.

5.4. Controller runtime

In this section, we present representative runtime results for the
controller. Fig. 7 contains a log–log plot of the runtime per iteration
of the deterministic and stochastic MPC controllers for a 4 and 10
turbine farm with varying prediction horizon length. These results show
that although the stochastic controller is slower than the deterministic
controller, the time per iteration for both is considerably less than the
sample time of 2 s. This holds even as the farm size increases to 10
turbines.

6. Conclusion and future work

We have developed an MPC framework to efficiently allocate tur-
bines for power reference tracking under power reference uncertainty.
First, we use forecasts to predict future periods of high power pro-
duction. Second, we employ alternative objective functions to find
solutions that both minimize the tracking error and maximize the
future power flexibility of the wind farm. These predictions allow the
controller to preemptively ‘‘store’’ more energy in the flow field to meet
higher demands in the future. Although the frequency regulation signal
is hard to forecast, we found that controllers using an AR model of the
power reference signal outperformed controllers using a persistence or
worst-case forecast.

Our future work will include improvements in model fidelity and
controller evaluation. Here, we only simulate the controller on farm
layouts where the turbines are aligned with the wind direction and the
wake effect is maximized. We need to extend and verify our work for
realistic farm layouts with partial waking. Additionally, in this work,
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Fig. 7. Log–log plot of runtime per iteration for 4 and 10 turbine farm.

our controller’s wake model is the same model used for simulation. To
better verify the efficacy of our controller, we need to test the controller
in more realistic simulations, e.g., SimWindFarm. We could also extend
our controller with more realism, such as using a Gaussian wake model,
modeling deep array effects, including turbine dynamics, and incorpo-
rating wind uncertainty. These are areas that would add more fidelity to
our controller models and simulations. We also wish to consider turbine
mechanical loading in our model. Mechanical loads contribute to farm
operations and maintenance costs, so including loading would provide
us with a better sense of the economic consequences of our control
strategy. Finally, we hope to provide theoretical grounding for using
the asymmetric objective function in the stochastic MPC.
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