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Abstract

To manage renewable generation and load consumption uncertainty, chance-con-
strained optimal power flow (OPF) formulations have been proposed. However,
conventional solution approaches often rely on accurate estimates of uncertainty
distributions, which are rarely available in reality. When the distributions are not
known but can be limited to a set of plausible candidates, termed an ambiguity set,
distributionally robust (DR) optimization can reduce out-of-sample violation of
chance constraints. Nevertheless, a DR model may yield conservative solutions if
the ambiguity set is too large. In view that most practical uncertainty distributions
for renewable generation are unimodal, in this paper, we integrate unimodality into
a moment-based ambiguity set to reduce the conservatism of a DR-OPF model.
We review exact reformulations, approximations, and an online algorithm for solv-
ing this model. We extend these results to derive a new, offline solution algorithm.
Specifically, this algorithm uses a parameter selection approach that searches for an
optimal approximation of the DR-OPF model before solving it. This significantly
improves the computational efficiency and solution quality. We evaluate the per-
formance of the offline algorithm against existing solution approaches for DR-OPF
using modified IEEE 118-bus and 300-bus systems with high penetrations of renew-
able generation. Results show that including unimodality reduces solution conserva-
tism and cost without degrading reliability significantly.
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1 Introduction

Previous research has developed models to ensure power system reliability under
uncertainties (such as renewable generation forecast error) by chance-constrained
optimal power flow (OPF), in which physical constraints are required to be satisfied
with high probability, e.g., (Zhang and Li 2011; Jabr 2013; Vrakopoulou et al. 2013;
Bienstock et al. 2014; Roald et al. 2013; Vrakopoulou et al. 2019; Li et al. 2019a).
Conventional solution approaches to solving chance-constrained OPF include sce-
nario approximation (Campi et al. 2009; Margellos et al. 2014), analytical refor-
mulations for specific distributions (e.g., Gaussian) (Bienstock et al. 2014; Roald
et al. 2013; Li et al. 2019a; Roald et al. 2015), and sample average approximation
(SAA) (Pagnoncelli et al. 2009; Ahmed and Shapiro 2008). Scenario approximation
approaches rely on a large number of scenarios and often provide overly conserva-
tive solutions. Analytical reformulations usually require less computational effort;
however, it is often difficult to accurately estimate the joint probability distribution
of the uncertain parameters and so solutions can be unreliable. SAA performs better
as the number of samples increases, but that also increases its computational burden
as more binary variables and constraints are needed when recasting the SAA formu-
lation as a mixed-integer program.

In contrast, distributionally robust (DR) optimization ensures that a chance con-
straint holds with regard to all probability distributions within an ambiguity set
(Ghaoui et al. 2003; Delage and Ye 2010; Stellato 2014; Jiang and Guan 2016). This
approach is closely related to both robust and stochastic optimization because (1) it
reduces to robust optimization if the ambiguity set is characterized by the support
information only (and, as a result, includes all distributions on the support) and (2)
it reduces to a (nominal) chance constraint if the ambiguity set includes only a sin-
gle distribution. By incorporating distributional information of the uncertainty (such
as moments) into the ambiguity set, DR optimization can achieve a better trade-
off between cost and reliability than existing approaches. The conservatism of the
DR approach is related to the ambiguity set: if it includes unrealistic distributions,
then the solution may be more costly than necessary. A recent thrust of research
in DR optimization is to incorporate structural information, e.g., unimodality, into
the ambiguity set so that some unrealistic distributions can be eliminated. However,
incorporating additional information often comes with additional computational
burden.

The objective of this work is to assess the value of using both moment and struc-
tural information, specifically, unimodality, in DR-OPF. We first review an existing
DR-OPF model using an ambiguity set based on moments and unimodality, as well
as its reformulation and approximations. Then, we analyze approaches to solve this
model, comparing an existing online algorithm to a new offline algorithm developed
here. The newly developed offline algorithm aims to reduce the computational time
while producing high-quality solutions (i.e., low optimality gap). Lastly, we inves-
tigate the trade-off between solution quality (i.e., cost and reliability) and compu-
tational burden with a variety of chance-constrained OPF models. We also demon-
strate the efficiency of the offline algorithm.
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Prior work on DR-OPF has derived tractable reformulations for moment ambigu-
ity sets (Lubin et al. 2016; Summers et al. 2015; Mieth and Dvorkin 2018; Zhang
et al. 2017; Xie and Ahmed 2018; Lu et al. 2019; Tong et al. 2018; Mieth and Dvor-
kin 2018), discrepancy ambiguity sets (Guo et al. 2018; Duan et al. 2018; Wang
et al. 2018; Huang et al. 2021; Guo et al. 2019, 2018; Arrigo et al. 2021, 2022;
Esteban-Pérez and Morales 2021; Jabr 2020; Ordoudis et al. 2021), and structural
information such as symmetry (Roald et al. 2015), unimodality (Roald et al. 2015;
Li et al. 2016, 2019b; Summers et al. 2015; Pourahmadi and Kazempour 2021),
and log-concavity (Li et al. 2018). Xie and Ahmed (2018) considered two-sided
chance constraints for generator capacities and transmission line limits and Huang
et al. 2021, Guo et al. 2019, 2018, 2018, Wang et al. 2018, Duan et al. 2018, Arrigo
et al. 2022 and Jabr 2020 constructed ambiguity sets based on discrepancy measures
between the real distribution and the empirical distribution. Further extensions have
included embedding dependencies among uncertainties (Arrigo et al. 2021), consid-
ering contextual information (Esteban-Pérez and Morales 2021), using joint chance
constraints (Ordoudis et al. 2021), and solving applications such as generation plan-
ning (Pourahmadi and Kazempour 2021). Here, we consider an ambiguity set that
incorporates the first two moments and a generalized a-unimodality (Dharmadhi-
kari and Joag-Dev 1988), which is usually satisfied by the uncertainties included in
OPF models, such as the wind power forecast error. Our prior work (Li et al. 2019b,
2016) developed exact reformulations, approximations, and an online solution algo-
rithm that we leverage here.

As new contribution, in addition to applying the existing online algorithm (Li
et al. 2019b) to solve DR-OPF, we derive a new, offline algorithm that uses an opti-
mal parameter selection (OPS) approach to help construct a high-quality sandwich
approximation of the DR chance constraints. This approach significantly improves
upon the approximations in Li et al. (2019b) and Li et al. (2016)). The main step of
this approach finds an optimal piece-wise linear (PWL) sandwich approximation of
a concave function. The approximation is independent of the values of the decision
variables and leads to a provably smallest approximation error. We analyze the con-
struction and theoretical properties of this OPS approach. Specifically, we give an
optimality condition and a construction algorithm. Then, we compare the online and
offline algorithms in case studies based on modified 118-bus and 300-bus systems
with high wind power penetration.

The remainder of the paper is organized as follows. In Sect. 2, we review fun-
damental concepts and generalize the DR formulations and theoretical results in
Li et al. (2019b) with unimodality information. In Sect. 3, we derive the DR-OPF
reformulation using the generalized DR results. In Sect. 4, we introduce the OPS
approach and give the online and offline DR-OPF solution algorithms. In Sect. 5, we
compare the performance of the offline algorithm to existing alternatives and discuss
the value of including unimodality information in DR-OPF. Section 6 concludes the

paper.
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2 Distributionally robust chance constraints

In this section, we review DR chance constraints and generalize the results from Li
et al. (2019b). We consider random inequalities in the form

a()'é < b(x), D

where x € R” represents decision variables and a(x) : R” - R/ and b(x) : R" - R
represent two affine functions of x. Uncertainty & € R! is defined on probability
space (R, B/, P ¢) with Borel 5-algebra B! and probability distribution P ¢ To ensure
(1) is satisfied with at least a probability threshold 1 — e, we define the chance con-
straint (Charnes et al. 1958; Miller and Wagner 1965)

P.(a()TE <bx) >1—¢, )

where 1 — € often takes a large value (e.g., 0.99).
In this paper, we consider two types of ambiguity sets. The first includes moment
information only

D, :={P e P : By lé = B 6671 =2}, 3)
and the second includes moment and unimodality information
U :={P,eP. nD; : M(©& =m}, )

where 73‘51 and P denote all probability distributions on R/ with and without the
requirement of a-unimodality, respectively; u and X denote the first and second
moments of &; and M(&) = m specifies that the true mode of & is m. The value of
a determines the shape of the unimodal distribution (Dharmadhikari and Joag-Dev
1988). When a = 1, all the marginal distributions are univariate unimodal (i.e., the
density function has a single peak called the mode and decaying tails). When a = [,
the density function of £ has a single peak at m and is non-increasing along any rays
emanating from m. As a — oo, the requirement of unimodality gradually relaxes
until it disappears. In reality, most uncertainties such as wind power forecast error
follow a “bell-shaped” unimodal distribution, which is empirically justified with his-
torical data in Li et al. (2018, 2019c¢).
The DR chance constraint with ambiguity set D; is

1 T —_—
P:relf: Pé(a(x) ¢ < b(x)) >1-¢ (5)
and admits the following reformulation.

Theorem 1 (Theorem 2.2 in (Wagner 2008)) The DR chance constraint (5) is equiv-
alent to
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\/( 1 ; € )a(X)T(Z — MMT)a('x) < b(x) _ a(x)TM, (6)

Li et al. (2019b) derived an exact reformulation for the DR chance constraint with
U.,ie.
5’ B

e ) 21 o

however, those results were derived assuming m = 0, i.e., the mode is at the origin.
Without loss of generality, we can rewrite (1) as a(x)T (¢ — m) < b(x) — a(x)"m with
& —m being our random vector, whose mode is at the origin, and generalize all of
the corresponding results in Li et al. (2019b) to allow any non-zero mode value m.

Theorem 2 (A generalization of Theorem 1 in (Li et al. 2019b)) The DR chance
constraint (7) is equivalent to

VR Al < 7 (b) — am)

(- mae. ves (=)

a
where A = <(%>(E_MMT)_ ,,Lz(ﬂ—m)(ﬂ _m)T>1/2

®)

Reformulation (8) consists of an infinite number of second-order conic (SOC)
constraints, parameterized by z. To this end, Li et al. (2019b) developed a sandwich
approximation of (8), which is asymptotic in the sense that it recovers (8) as more
choices of 7 are included. The sandwich approximation consists of a relaxed and a
conservative approximation, which provide a superset and a subset of the original
feasible region, respectively. In a minimization problem, solving the relaxed approx-
imation results in a lower bound on the true optimal cost. An upper bound can be
achieved by solving the conservative approximation. In this paper, to control the
tightness of the approximations, we use parameters {n; : k=1,...,K} in the fol-
lowing two propositions. The approximations converge to the exact reformulations
in Theorem 2 as the integer K increases. With the same K, different selections of 7,
in the approximations result in different levels of tightness and performance.

Proposition 3 (Relaxed Approximation, a Generalization of Proposition 4 in (Li
et al. 2019b)) For integer K > 1 and real numbers ty < n; <n, < «- < ng < o0, (7)
implies the SOC constraints

\ 122 Aa@l < (b) — a)Tm) o

€
- (“* 1 >(,u—m)Ta(x), Vk=1,....K.
a
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Proposition 4 (Conservative Approximation, a Generalization of Proposition 5
in (Li et al. 2019b)) For integer K > 2 and real numbers 1y =n; < -+ < ng = o0,
define a PWL function containing (K — 1) pieces:

) 1 an}:a—l
h(t) = k_IgnnK{ — [ T
=2,..., e(l—e—-n") 2
(10)

+1—e—<1+%>n;”]}.

Set q, = 1, and denote g, < -+ < qg_, as the (K — 2) break points of function h(r).
Then, (7) is implied by the SOC constraints

h(g)IAa@)|| < g, (b(x) — ax)"m)
_ (a +1

(1)

)(;4 —m)Ta). Vk=1,.. .K-1.

In this work, we consider a formulation that uses individual chance constraints,
as opposed to joint chance constraints, mainly to take advantage of the high com-
putational tractability granted by the exact reformulation and the sandwich approxi-
mation. Although the formulation does not provide probabilistic guarantees that all
constraints are satisfied jointly, we may still achieve high performance due to the
constraint correlations and the DR formulation (Li et al. 2019a, b). Furthermore,
joint chance constraint techniques (Margellos et al. 2014; Hou and Roald 2020)
might generate overly conservative solutions or require high sample complexity.
Even when probability guarantees on the joint constraint satisfaction are required,
we can apply individual chance constraints (e.g., using the Bonferroni approxima-
tion (Baker and Bernstein 2019; Xie et al. 2019)) to obtain a good and conservative
approximation.

3 Distributionally robust optimal power flow

We apply the models and reformulations of Sect. 2 to a chance-constrained OPF that
uses the DC power flow approximation (Vrakopoulou et al. 2013). We assume that
the system has Ny, wind power plants with forecast error w € RV (each element
is represented by W;), N generators with index set G, Ny buses, Ny, loads, and N,
transmission lines with index set £. The forecast errors are calculated as the differ-
ence between actual wind power realizations and their corresponding forecasts and
are compensated by reserves. Design variables include generation output P; € R%e,
up and down reserve capacities R"Gp € RNG,R‘é” € R, and a distribution vector
d; € RNe, which determines how much reserve each generator provides to balance
the total forecast error. Without loss of generality, we employ U, as the ambiguity
set. Then the DR-OPF formulation for a given confidence level € is
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min PJ[C|1P; + C, P + CR(RY + R

. _ Ty~
st inf, P <Ai(CW Cod 1T

+A(C P, — CyP, — CoPg) < P,,i> >1-¢ VieL,

inf P, <Ai(CW — Cdg1™)w

P.el;

+A(C, P, — CyP, — CoPg) > —P,J> >1-¢ VieL,

Ny
Rg = —dG< Zw,),

i=1

Py = Co(Pg + Rg) + Cy(P, + W) — C, Py,

Pirelgg [P’§< —dg "W < Pg; — PG’,-> >1-e Vieg,
. T~ .
P?elgg [F"5< —dg 1 w2P,, - PG’I-> >1—-e Vieg,

. T~ up .
Pingxg [P’_f< —dg, 1W< RG’i> >1—-¢ Vieg,

. Te dn .
Pirelgé [F°§< —dg,1'W > —RGJ.> >1—-¢ Vieg,
llxNGdG =1,

Ly, (CoPg + CyP), — CLP) =0,

Pg 20y 1, dg 2 Oy s

up dn
RG z ON(;XI’ RG Z ON(;XI’

(12a)

(12b)

(12¢)

(12d)

(12¢)

(12f)

(12g)

(12h)

(12i)

(125)

(12k)

(121)

where [C,] € R¥e*Na, C, € RYe, and Cy € RYe are cost parameters. Constraints
(12a) and (12b) bound the power flows by the line limits P, € R.. The power flow
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is calculated from the power injections P, € R in (12d) and the constant matrix
A € RNXNs which is calculated using the admittance matrix and network connec-
tions (Vrakopoulou et al. 2013). Constraint (12c) computes the real-time reserve
response R; that is bounded by the reserve capacities RY" € R"e and RY € R in
(12g) and (12h). In (12d), Pf € R is the wind power forecast, P, € R is the
load (which is assumed to be known though the formulation can be easily extended
to handle uncertain loads'), and C; € R¥»Vs, C;;, € RN*Mw, and C;, € R¥»» are
constant matrices that map generators, wind power plants, and loads to buses Con-
straints (12¢) and (12f) bound generator outputs within their limits [P, Pgl; (121),
(12j) enforce power balance with and without wind power forecast error; and (12k),
(121) ensure all decision variables are non-negative.

4 Solution algorithm

The quality of the sandwich approximation in Propositions 3 and 4 is a function of
the choice of parameters n,. To solve the DR-OPF model, Li et al. (2019b) propose
the following online algorithm that selects n, values on-the-fly and solves the cor-
responding sandwich approximation iteratively.

Algorithm 1 Ounline Algorithm [37]

Initialization: k =1, 79 = (1;)1/0‘, gap tolerance 7;

Iteration k:

Step 1: Solve the conservative approximation (11) using 7; forall j =0, ..., k—
1 and 7% = 0o and obtain optimal solution zi and objective f;

Step 2: Solve the relaxed approximation (9) using 7; for all j = 0,...,k—1
and obtain optimal solution xfe and objective f,i,

Step 3: IF (f} — f;lc)/f;lc <7, STOP and RETURN =z} as optimal solution;
ELSE GOTO Step 4;

Step 4 (Separation): Find worst case 7* that results in the largest violation
of (8) under z!

™ = argma ., { LT daal )l - 7 (o) - a<x2>Tm)} L (13)

Step 5: Set 7, =7 and k =k + 1, GOTO Step 1.

! To handle uncertain loads, we denote Pf and d as the load forecast and the uncertain load forecast
error, respectively. We substitute the vector of loads P; with P/ +d and the system uncertainty W with
W + d in formulation (12). Then, we can use the same reformulatlon method and solution algorithm as
described in Section 4 to solve this extended model.
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In each iteration k, Algorithm 1 chooses a value of n, that yields the largest viola-
tion of constraint (8) given the incumbent solution xf{ (see Step 4). This choice is
critical to improve the relaxed approximation. However, it provides no guarantee on
the quality of the conservative approximation, whose solution is what Algorithm 1
returns. Next, we propose a new, offline algorithm selects the n; values in a provably
optimal way and admits guarantees on the quality of both the relaxed and conserva-
tive approximations. It also reduces the computational effort in each iteration.

4.1 Optimal parameter selection (OPS)

The OPS approach seeks a concave and |S|-piece PWL function g(z), whose break
points are denoted by g, for s € S, that outer approximates the nonlinear function
v(7) on the interval [z, 00). Existing approaches to finding PWL approximations for
convex/concave functions when they are defined on a bounded domain include (Cox
1971; Imamoto and Tang 2008; Vandewalle 1975; Gavrilovi¢ 1975). We extend the
prior work to an unbounded domain by identifying optimality conditions for an opti-
mal g(z) and design an algorithm to construct such a g(z).

4.2 Optimality conditions

We denote the |S|-piece PWL function g(r) = max,gg,(7), where g(7) :=d,v +f,
represents a piece of g(r) for all s € S and d, represents the slope of g.(r) and is
non-increasing in s. If we let H, denote the part of domain g () = g(z), then the
error e™** of the PWL outer approximation g(z) for v(r) can be evaluated by the larg-
est discrepancy between these functions,

max . __ _

e .= Tea‘éﬁgé%{)i{dsf +f; V(T)}. (13)
Next, we identify conditions for g(z) to be an optimal PWL approximation of v(7),
i.e., one achieving the smallest e™* for fixed |S|. We omit the proof because it is a

straightforward extension of (Gavrilovi¢ 1975).

Theorem 5 (Optimality Conditions) For |S| > 1, an |S|-piece PWL function g(t) is
an optimal PWL outer approximation of v(t) if the following three conditions hold.

8s5(7) = %
2. g,(z)is tangent to V() for all s € S.
3. g(B)—v(B,)=g(B,)—v(B,), Vs,s, €S, where {B,, s € S} consists of all

break points of g(t) and t,,.
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where € is the violation probability in (2).

The intuition of the optimality condition is that, at optimality, all of the local
approximation errors, evaluated at the break points of the optimal g(zr), are all equal
(ie., E! = E, = E, = ¢! in Fig. 1). If the local approximation errors are not all
equal, we can always move the break points to reduce the largest error e™*. Defining

* 1= g(B,) — v(B,) for any s € S, we note that g(z) — e* is an inner approximation
of v(r) with a (maximum discrepancy) error e*.

4.3 Construction algorithm

We provide a constructive algorithm to search for an optimal g(z) that satisfies the
optimality conditions identified in Theorem 5. This algorithm is adapted from the
recursive descent algorithm in Imamoto and Tang (2008). We first define the follow-
ing notation.

A’ € R: the step size in iteration i;
o: the threshold for the termination criterion;
7 the maximum number of iterations;
g'(7): estimation of g(r) in iteration i ( g, i(r) represents the sth piece of g/(r));
B’ € R¥l: the break points of g/(t) in iteration i (B‘ represents the sth break point
and B = 7y);
T e R'Sl I the points at which g/(z) is tangent to v(z) in iteration i
e E' € R the distance between g(r) and v(r) at all B’ in iteration i.
° e’T =y —-¢e)/e— v(B| SI) represents the d1stance between the last constant

piece (i.e., §,5/(7)) and v(7) at B|S|

Last zero-slope piece

Bi Tl BQ T; B T

Fig. 1 Illustrative example of Algorithm 2 for |S| = 3, at iteration i. Function g,(z) (green solid lines) is
a PWL outer approximation of v(r) (blue curve) with tangent points T (yellow dots) and break points B
(blue dots). At convergence, E| = Ef = E} = ¢} (color figure online)
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Algorithm 2 Parameter searching algorithm

Initialization: i = 1, A’ = 1,6 = 0.01, T = 50, Blg, = 10, T} = o + “Zs=™)
fors=1,...,|S| - 1;
Iteration i:

Step 1: IF i < T, calculate B! for s = 2,...,|S| — 1 by solving ¢’ _,(B!) =
gt (BY), where gi(1) = v'(T}) (1 — T?) + v(T?); ELSE STOP and RETURN
no convergence under current initialization;

Step 2: Calculate E' and el.; IF ErSI/eT >1+6or EISI/eiT <1/(1+6), set

B‘l s| = 0.5(7 + B‘S‘), where 7 is the solution of 9\3\—1( 7) = /(1 —€)/e, and
GOTO Step 1; ELSE GOTO Step 3;

Step 3: IF max(E’) < (1 + §) min(E?), STOP and RETURN g'(7) as an
optimal solution; ELSE GOTO Step 4;

Step 4: IF i = 1, GOTO Step 5; ELSEIF max(E") > max(E"1), set i =i—1,
A= A?/2 and GOTO Step 5; ELSE GOTO Step 5;

Step 5: For s = 1,...,|S| — 1, calculate

% % i
A (Es-‘,-l E )
E? E:

7 +_sz‘ + Ti_bBi
s+1 7 1s s s

T =Ti 4

and set i =i+ 1 and GOTO Step 1.

The algorithm is described in Algorithm 2 and Fig. 1 displays an example for
|S| = 3. First, A, 8, Z, and B|15| are initialized (for different v(z), they may take other
reasonable values) and 7' is computed by evenly dividing [z, B|18|
Step 2 calculates E' and e/,

]into | S| segments.
In each iteration i, Step 1 calculates B using 7' and B!
and adjusts B!

S
s accordingly. Step 3 checks for converg,lelnce. Step 4 repeats the itera-
tion with a smaller step size if the previous step did not produce an improvement.
Step 5 adjusts 7% to further reduce the differences among E’ The optimal break
points B* obtained from Algorithm 2 can be used in Proposmon 4 to establish the
corresponding conservative approximation.

Remark: The optimal parameters obtained from Algorithm 2 are unique given a
choice of |S]. That is, they are independent of the decision variables but dependent
on parameters € and @. Hence, Algorithm 2 can be conducted offline to find an opti-
mal PWL approximation.

4.4 Performance
Figure 2 shows the convergence of Algorithm 2 under various values of |S|. We

observe that as | S| increases, the optimal approximation error ¢™** decreases and the
total number of iterations grows almost linearly.
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4.5 Algorithm

Since OPS can be conducted offline via Algorithm 2, we can compute the optimal
PWL approximations prior to solving the DR-OPF model (e.g., as a look-up table).
The offline algorithm is summarized in Algorithm 3, which takes the optimal PWL
approximations as input in each iteration.

Algorithm 3 Offline Algorithm

Initialization: k =1, 79 = (i)l/a, gap tolerance 7;

Iteration K:

Step 1 (Optimal Parameter Selection): find an optimal K-piece PWL
approximation g(7) using Algorithm 2 and set {g;}5_, as the optimal break
points;

Step 2: Solve the conservative approximation (11) using {gx}¥_, to obtain an
optimal solution 2% and an optimal value f;

Step 3: Solve the relaxed approximation (9) using {gx }%_, to obtain an optimal
solution a?lK and an optimal value fé(,

Step 4: IF (f¢ — fL)/fk < n, STOP and RETURN 2% as an optimal

solution; ELSE set K = K + 1 and GOTO Step 1.

5 Case studies

We test our approaches on the IEEE 118-bus and 300-bus systems, which are modi-
fied to include a large number of wind power plants with a total of 400 MW (~ 9.4%
of total load) and 2000 MW (~ 8.5% of total load) of forecasted wind power, respec-
tively. We use the network and cost parameters from Coffrin et al. (2016) and set
Cy = 10C,. We add wind power to all buses with generators and allocate the fore-
cast wind power to these buses in proportion to their generation limit.

We also test our approaches using two forecast error data sets with different char-
acteristics. We define the forecast error ratio as the ratio between the forecast error
and the corresponding forecast. Data Set 1 (DS1) was used in Vrakopoulou et al.
(2019). The data set is generated using the Markov—Chain Monte Carlo mechanism
(Papaefthymiou and Klockl 2008) on real wind power forecasts and realizations
from Germany. The wind power is well-forecasted with small forecast error ratios
(=30 to 60%). For each wind bus, we randomly select the forecast errors from the
same data pool without considering spatial correlation. Data Set 2 (DS2) is con-
structed from the RE-Europe data set (Jensen and Pinson 2017), which contains
hourly wind power forecasts and realizations based on the European energy system.
The data set includes strong spatiotemporal correlation. However, the data set also
contains poor forecasts with extreme forecast error ratios, up to 5300% (Li 2019).
Therefore, we scale down the forecast errors by 60% and then filter outliers with
forecast error ratios larger than 100%.
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2]
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Iteration step

Fig.2 Number of iterations and optimal approximation error as a function of |S| (top); Convergence of
the approximation error for different | S| (bottom)

We use 5000 randomly selected data points for the 118-bus system and 8000 for
the 300-bus system to construct D, and U,. More data is needed for the 300-bus sys-
tem since the uncertainty dimension is larger. In addition, we use histograms with
15 and 20 bins to justify our assumption of unimodality and determine the locations
of mode m for DS1 (see Fig. 3) and DS2 (see Fig. 4) by identifying the bin with the
most points (Li et al. 2019¢).

Further, to evaluate reliability, we randomly select 5000 and 8000 data points to
conduct out-of-sample tests for the 118-bus and 300-bus systems, respectively. We
define the reliability as the percentage of wind power forecast errors for which all
chance constraints are satisfied. We perform three parallel tests by randomly rese-
lecting the data used to construct the ambiguity sets.

We benchmark our approaches against two conventional approaches. Analytical
reformulation assuming multivariate Gaussian distributions (AR) is used in (Bien-
stock et al. 2014; Li et al. 2019a; Roald et al. 2013), which uses moments deter-
mined from the data. Then all chance constraints can be exactly reformulated as
SOC constraints. The scenario-based method (SC) developed in Margellos et al.
(2014) requires that the constraints affected by uncertainties are satisfied for any
realization within a probabilistically robust set constructed using a sufficient number
of randomly selected uncertainty realizations.

We solve all optimization problems using CVX with the Mosek solver (Grant and
Boyd 2014, 2008). We set ¢ = 5%, a = 1, and optimality gap # = 1%. The choice of
a is valid because, in general, wind power forecast error is marginally unimodal (Li
2019).

The results are organized as follows. In Sect. 5.1, we compare the performance of
DR approaches to the benchmark approaches in terms of cost, reliability, and overall
computational performance. We also show the advantage of including unimodality
information in the DR-OPF ambiguity set. In Sect. 5.2, we analyze the computa-
tional performance of the online Algorithm 1 to demonstrate the computational bur-
den for large systems. In Sect. 5.3, we compare the proposed offline Algorithm 3 to
the online Algorithm 1 to demonstrate the computational improvement.
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Fig. 3 Histograms of univariate and bivariate wind forecast errors of DS1 (15 bins)

5.1 Cost and reliability performance

We first compare the DR approaches to the benchmark approaches in terms of objec-
tive cost and reliability. The results are summarized in Table 1. (DR-M) is the DR
approach with ambiguity set D,, which does not include the unimodality assump-
tion. (DR-U) is the DR approach with ambiguity set U4, solved using the online
Algorithm 1. To facilitate comparisons, we define a percentage difference on cost
(C/Diff) and reliability (R/Diff) against the benchmarks, where AR generally pro-
duces low-cost solutions that are not sufficiently reliable and SC generally produces
high-cost solutions with higher reliability than necessary. Specifically, we calculate
the C/Diff of a DR approach as the difference in cost compared to that of the AR
approach divided by the difference in cost between the AR and SC approaches. The
R/Diff is defined similarly. Small C/Diffs are desirable, i.e., low costs approaching
that of the AR approach. Large R/Diffs are desirable, i.e., high reliability approach-
ing that of the SC approach. We define the improvement (Improv) of a DR approach
to be its R/Diff divided by its C/Diff. Large Improvs are desirable, indicating a better
trade-off between cost and reliability.

From Table 1, we observe that SC provides overly conservative results with the
highest costs and 100% reliability in all instances, because it provides a joint proba-
bilistic guarantee and uses a robust optimization method. In contrast, AR provides
the least conservative results with the lowest costs and the lowest reliability (below
95% in all instances), because it assumes a Gaussian distribution, which may not
hold in reality. Meanwhile, DR approaches provide intermediate costs and reliability,
with all reliability values lying above the target (95%). Of the two DR approaches,
DR-U provides higher costs and higher reliability than DR-M since DR-M does not
include the unimodality assumption. DR-U incorporates the unimodality informa-
tion and achieves a better cost performance, while maintaining satisfactory reliabil-
ity. If we compare the Diffs and Improvs of DR-U and DR-M, we see that DR-U pro-
vides a better trade-off between cost and reliability. Solutions using DS1 are more
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Fig. 4 Histograms of univariate and bivariate wind forecast errors of DS2 (20 bins)

stable with less variability across parallel tests than those using DS2. Additionally,
solutions using DS1 have higher Improvs than those using DS2.

5.2 Computational performance

As shown in Table 1, DR-U requires significantly more computational time than
the other approaches. This is because DR-U employs an iterative solution algo-
rithm, while the other approaches do not. For large system dimensions, the compu-
tational burden becomes severe pointing to the need for a computationally efficient
alternative.

Table 2 summarizes the percent of the total computational time to complete the
separation step of Algorithm 1 and the required number of iterations. DS2 (poorer
forecasts) requires a larger number of iterations than DS1, leading to overall com-
putational times that are longer for DS2 than DSI1, as seen in Table 1. The 118-bus
system requires a higher percentage of computational time to complete the sepa-
ration step than the 300-bus system. The total computation time of each iteration
slightly increases over the iterations, while the time needed for the separation step
is approximately constant.

Recall that in Algorithm 1, we output the solutions of the conservative approxi-
mation (i.e., x; from Step (1) at termination. However, solutions from the relaxed
approximation (i.e., xf( from Step (2) can also have low optimality gaps. Here, we
check if the intermediate solutions from relaxed approximation of Algorithm 1 are
good approximates of the optimal solution. Figure 5 shows the optimality gap and
reliability of all the intermediate solutions xf( for the 118-bus system using DS2.2 We
find that the intermediate solutions are not good approximates because even solu-
tions with small absolute optimality gaps (< 1%) can have low reliability (< 70%).
We also observe that higher objective cost does not always guarantee higher reliabil-
ity in out-of-sample tests.

2 Note that each intermediate solution comes from a relaxed approximation and so the objective cost is
lower than the true objective cost. Here we use a negative optimality gap to illustrate this relation.
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Table2 Algorithm 1, percent of time used for solving separation and number of iterations

118/DS1 118/DS2 300/DS1 300/DS2

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Percent 862 86.8 874 854 856 859 59.1 591 592 431 436 439
Iterations 5 5 5 26 32 36 6 7 7 14 23 33

5.3 Online vs offline algorithm

In this section, we compare the online Algorithm 1 to the offline Algorithm 3 using
OPS. For each network and data set we show the optimality gap, computational time
(scaled to the total time in Table 1), and the reliability of the solutions obtained in
each iteration. We focus on the first few iterations to highlight the progression of the
algorithms.

IEEE 118-bus network with DS1

Figure 6 compares the online and offline algorithms using the IEEE 118-bus net-
work and DS1. We find that the online algorithm fails to achieve a less than 1%
optimality gap within the first four iterations while the offline algorithm achieves
this goal by the second iteration and with much less computational time (6.02% of
the time needed by the the online algorithm). In terms of reliability, we see that the
offline algorithm’s solutions are less reliable than those of the online algorithm but
they still satisfy our requirement of 95%.

IEEE 300-bus network with DS1

Figure 7 compares the online and offline algorithms using the IEEE 300-bus net-
work and DS1. Here, we observe similar trends to those of the IEEE 118-bus net-
work. Specifically, the offline algorithm converges to below 1% optimality gap using
only 19.62% of the total computational time needed by the online algorithm. How-
ever, the offline algorithm takes a longer time to solve these early iterations than the
online algorithm.

IEEE 118-bus network with DS2

Figure 8 compares the online and offline algorithms using the IEEE 118-bus net-
work and DS2. Here, we observe an even larger relative advantage from the offline
algorithm. When the offline algorithm reaches less than 1% optimality gap, the
online algorithm has a 20% optimality gap. The offline algorithm converges to below
1% optimality gap with only 5.51% of the total computational time needed by the
online algorithm.

IEEE 300-bus network with DS2

@ Springer



Integrating unimodality into distributionally robust optimal... 611

Fig.5 Optimality gap and reli- 0 <
- . ; . >

ability of intermediate solutions £3 5l

from the relaxed approximation g =

of Algorithm 1. Black dashed | Z-10+

. L G}

line marks 1% optimality gap o 15 | | | | | | |

(color figure online) . 5 10 15 20 o5 30 35
X 100 w w ‘ ‘ Py o &
- \ " N
E‘ ;»o-oeeol Yoood bod
el 50 0eod ‘0000066 1
S eod
£ 0

5 10 15 20 25 30 35
Iteration

Figure 9 compares the online and offline algorithms using the IEEE 300-bus net-
work and DS2. Again, the online algorithm has a large relative advantage. When
the offline algorithm reaches less than 1% optimality gap, the online algorithm has
a11.39% optimality gap. Further, the offline algorithm converges to below 1% opti-
mality gap with only 21.7% of the total computational time needed by the online
algorithm. However, like with the IEEE 300-bus network and DS1, the offline algo-
rithm takes a longer time to solve these early iterations than the online algorithm.

Cross comparisons

In all cases, the offline algorithm takes much less computational time than the
online algorithm. The offline algorithm takes a similar amount of time as AR, SC,
and DR-M, while the online algorithm exhibits an approximately linear relationship
between computational time and iterations. All intermediate solutions of both algo-
rithms satisfy the 95% constraint satisfaction level. Note that this does not contradict
the conclusions from Fig. 5, in which solutions xi are generated from a collection of
relaxed approximations. Solutions xé are not guaranteed to be feasible in the origi-
nal DR-U. In contrast, the offline Algorithm 3 takes advantage of the conservative
approximation and outputs solutions x?, which guarantee feasibility in the original
DR-U, hence high reliability. For both the online and offline algorithms, solutions
become less conservative as iteration continues.

Figures 6 and 8 show that the intermediate solutions for DS2 generally have larger
optimality gaps than those for DS1. In Figs. 7 and 9, we observe that the offline
algorithm can take more computational time per iteration than the online algorithm
in the early iterations (see Fig. 7). In general, the offline algorithm is less computa-
tionally advantageous for the IEEE-300 bus system than the IEEE-118 bus system.

In summary, the offline algorithm with OPS produces good quality solutions of
DR-U with small optimality gaps and high reliability. In addition, it shows a much
better convergence rates than the online algorithm.
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Fig.6 Online vs Offline (118/DS1): optimality gap, computational time, and reliability of the solutions
from the early iterations. The red dashed line marks the 1% optimality gap (color figure online)
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6 Conclusions

In this paper, we analyzed the value of including unimodality information in DR-
OPF. Specifically, we first showed how to integrate unimodality into the formula-
tion and obtain an exact reformulation/sandwich approximation with SOC con-
straints. Second, we described an existing online approach and developed a new
offline approach to solve DR-OPF with unimodality. For the offline approach, we
use an OPS method to achieve a better sandwich approximation. Third, we demon-
strated the benefit of including unimodality information in DR-OPF by evaluating
our proposed approaches against the current state of the art. Through case studies
on modified IEEE 118-bus and 300-bus systems, we demonstrated that including
unimodality information within a DR-OPF problem with wind power uncertainty
leads to a better cost/reliability trade-off than benchmark approaches or a DR-OPF
that includes only moment information. However, the online solution approach suf-
fers from large computational burden. We showed that our offline solution approach
significantly reduces the computational time, providing fast convergence to low
optimality gaps while also satisfying desired reliability levels. We also showed how
the results vary across two forecast error data sets. We found that both the data set
and choice of test system have a significant impact on the value of including uni-
modality information in DR-OPF, indicating that, in practice, the value is highly
system-dependent. Moreover, the relative performance of the online versus offline
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Fig.9 Online vs Offline (300/DS2): optimality gap, computational time, and reliability of the solutions
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algorithms, in terms of optimality gap, computational time, and solution reliability,
is also system-dependent.
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