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Abstract
To manage renewable generation and load consumption uncertainty, chance-con-
strained optimal power flow (OPF) formulations have been proposed. However, 
conventional solution approaches often rely on accurate estimates of uncertainty 
distributions, which are rarely available in reality. When the distributions are not 
known but can be limited to a set of plausible candidates, termed an ambiguity set, 
distributionally robust (DR) optimization can reduce out-of-sample violation of 
chance constraints. Nevertheless, a DR model may yield conservative solutions if 
the ambiguity set is too large. In view that most practical uncertainty distributions 
for renewable generation are unimodal, in this paper, we integrate unimodality into 
a moment-based ambiguity set to reduce the conservatism of a DR-OPF model. 
We review exact reformulations, approximations, and an online algorithm for solv-
ing this model. We extend these results to derive a new, offline solution algorithm. 
Specifically, this algorithm uses a parameter selection approach that searches for an 
optimal approximation of the DR-OPF model before solving it. This significantly 
improves the computational efficiency and solution quality. We evaluate the per-
formance of the offline algorithm against existing solution approaches for DR-OPF 
using modified IEEE 118-bus and 300-bus systems with high penetrations of renew-
able generation. Results show that including unimodality reduces solution conserva-
tism and cost without degrading reliability significantly.
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1  Introduction

Previous research has developed models to ensure power system reliability under 
uncertainties (such as renewable generation forecast error) by chance-constrained 
optimal power flow (OPF), in which physical constraints are required to be satisfied 
with high probability, e.g., (Zhang and Li 2011; Jabr 2013; Vrakopoulou et al. 2013; 
Bienstock et al. 2014; Roald et al. 2013; Vrakopoulou et al. 2019; Li et al. 2019a). 
Conventional solution approaches to solving chance-constrained OPF include sce-
nario approximation (Campi et  al. 2009; Margellos et  al. 2014), analytical refor-
mulations for specific distributions (e.g., Gaussian) (Bienstock et  al. 2014; Roald 
et al. 2013; Li et al. 2019a; Roald et al. 2015), and sample average approximation 
(SAA) (Pagnoncelli et al. 2009; Ahmed and Shapiro 2008). Scenario approximation 
approaches rely on a large number of scenarios and often provide overly conserva-
tive solutions. Analytical reformulations usually require less computational effort; 
however, it is often difficult to accurately estimate the joint probability distribution 
of the uncertain parameters and so solutions can be unreliable. SAA performs better 
as the number of samples increases, but that also increases its computational burden 
as more binary variables and constraints are needed when recasting the SAA formu-
lation as a mixed-integer program.

In contrast, distributionally robust (DR) optimization ensures that a chance con-
straint holds with regard to all probability distributions within an ambiguity set 
(Ghaoui et al. 2003; Delage and Ye 2010; Stellato 2014; Jiang and Guan 2016). This 
approach is closely related to both robust and stochastic optimization because (1) it 
reduces to robust optimization if the ambiguity set is characterized by the support 
information only (and, as a result, includes all distributions on the support) and (2) 
it reduces to a (nominal) chance constraint if the ambiguity set includes only a sin-
gle distribution. By incorporating distributional information of the uncertainty (such 
as moments) into the ambiguity set, DR optimization can achieve a better trade-
off between cost and reliability than existing approaches. The conservatism of the 
DR approach is related to the ambiguity set: if it includes unrealistic distributions, 
then the solution may be more costly than necessary. A recent thrust of research 
in DR optimization is to incorporate structural information, e.g., unimodality, into 
the ambiguity set so that some unrealistic distributions can be eliminated. However, 
incorporating additional information often comes with additional computational 
burden.

The objective of this work is to assess the value of using both moment and struc-
tural information, specifically, unimodality, in DR-OPF. We first review an existing 
DR-OPF model using an ambiguity set based on moments and unimodality, as well 
as its reformulation and approximations. Then, we analyze approaches to solve this 
model, comparing an existing online algorithm to a new offline algorithm developed 
here. The newly developed offline algorithm aims to reduce the computational time 
while producing high-quality solutions (i.e., low optimality gap). Lastly, we inves-
tigate the trade-off between solution quality (i.e., cost and reliability) and compu-
tational burden with a variety of chance-constrained OPF models. We also demon-
strate the efficiency of the offline algorithm.
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Prior work on DR-OPF has derived tractable reformulations for moment ambigu-
ity sets (Lubin et al. 2016; Summers et al. 2015; Mieth and Dvorkin 2018; Zhang 
et al. 2017; Xie and Ahmed 2018; Lu et al. 2019; Tong et al. 2018; Mieth and Dvor-
kin 2018), discrepancy ambiguity sets (Guo et  al. 2018; Duan et  al. 2018; Wang 
et  al. 2018; Huang et  al. 2021; Guo et  al. 2019, 2018; Arrigo et  al. 2021, 2022; 
Esteban-Pérez and Morales 2021; Jabr 2020; Ordoudis et al. 2021), and structural 
information such as symmetry (Roald et al. 2015), unimodality (Roald et al. 2015; 
Li et  al. 2016, 2019b; Summers et  al. 2015; Pourahmadi and Kazempour 2021), 
and log-concavity (Li et  al. 2018). Xie and Ahmed (2018) considered two-sided 
chance constraints for generator capacities and transmission line limits and Huang 
et al. 2021, Guo et al. 2019, 2018, 2018, Wang et al. 2018, Duan et al. 2018, Arrigo 
et al. 2022 and Jabr 2020 constructed ambiguity sets based on discrepancy measures 
between the real distribution and the empirical distribution. Further extensions have 
included embedding dependencies among uncertainties (Arrigo et al. 2021), consid-
ering contextual information (Esteban-Pérez and Morales 2021), using joint chance 
constraints (Ordoudis et al. 2021), and solving applications such as generation plan-
ning (Pourahmadi and Kazempour 2021). Here, we consider an ambiguity set that 
incorporates the first two moments and a generalized �-unimodality (Dharmadhi-
kari and Joag-Dev 1988), which is usually satisfied by the uncertainties included in 
OPF models, such as the wind power forecast error. Our prior work (Li et al. 2019b, 
2016) developed exact reformulations, approximations, and an online solution algo-
rithm that we leverage here.

As new contribution, in addition to applying the existing online algorithm (Li 
et al. 2019b) to solve DR-OPF, we derive a new, offline algorithm that uses an opti-
mal parameter selection (OPS) approach to help construct a high-quality sandwich 
approximation of the DR chance constraints. This approach significantly improves 
upon the approximations in Li et al. (2019b) and Li et al. (2016)). The main step of 
this approach finds an optimal piece-wise linear (PWL) sandwich approximation of 
a concave function. The approximation is independent of the values of the decision 
variables and leads to a provably smallest approximation error. We analyze the con-
struction and theoretical properties of this OPS approach. Specifically, we give an 
optimality condition and a construction algorithm. Then, we compare the online and 
offline algorithms in case studies based on modified 118-bus and 300-bus systems 
with high wind power penetration.

The remainder of the paper is organized as follows. In Sect. 2, we review fun-
damental concepts and generalize the DR formulations and theoretical results in 
Li et al. (2019b) with unimodality information. In Sect. 3, we derive the DR-OPF 
reformulation using the generalized DR results. In Sect.  4, we introduce the OPS 
approach and give the online and offline DR-OPF solution algorithms. In Sect. 5, we 
compare the performance of the offline algorithm to existing alternatives and discuss 
the value of including unimodality information in DR-OPF. Section 6 concludes the 
paper.
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2 � Distributionally robust chance constraints

In this section, we review DR chance constraints and generalize the results from Li 
et al. (2019b). We consider random inequalities in the form

where x ∈ ℝ
n represents decision variables and a(x) ∶ ℝ

n
→ ℝ

l and b(x) ∶ ℝ
n
→ ℝ 

represent two affine functions of x. Uncertainty � ∈ ℝ
l is defined on probability 

space (ℝl,Bl,ℙ�) with Borel �-algebra Bl and probability distribution ℙ� . To ensure 
(1) is satisfied with at least a probability threshold 1 − � , we define the chance con-
straint (Charnes et al. 1958; Miller and Wagner 1965)

where 1 − � often takes a large value (e.g., 0.99).
In this paper, we consider two types of ambiguity sets. The first includes moment 

information only

and the second includes moment and unimodality information

where Pl
�
 and Pl denote all probability distributions on ℝl with and without the 

requirement of �-unimodality, respectively; � and Σ denote the first and second 
moments of � ; and M(�) = m specifies that the true mode of � is m. The value of 
� determines the shape of the unimodal distribution (Dharmadhikari and Joag-Dev 
1988). When � = 1 , all the marginal distributions are univariate unimodal (i.e., the 
density function has a single peak called the mode and decaying tails). When � = l , 
the density function of � has a single peak at m and is non-increasing along any rays 
emanating from m. As � → ∞ , the requirement of unimodality gradually relaxes 
until it disappears. In reality, most uncertainties such as wind power forecast error 
follow a “bell-shaped” unimodal distribution, which is empirically justified with his-
torical data in Li et al. (2018, 2019c).

The DR chance constraint with ambiguity set D� is

and admits the following reformulation.

Theorem 1  (Theorem 2.2 in (Wagner 2008)) The DR chance constraint (5) is equiv-
alent to

(1)a(x)⊤𝜉 ≤ b(x),

(2)ℙ𝜉

(
a(x)⊤𝜉 ≤ b(x)

)
≥ 1 − 𝜖,

(3)D𝜉 ∶=
{
ℙ𝜉 ∈ P

l ∶ 𝔼
ℙ𝜉
[𝜉] = 𝜇, 𝔼

ℙ𝜉
[𝜉𝜉⊤] = Σ

}
,

(4)U� ∶=
{
ℙ� ∈ P

l
�
∩D� ∶ M(�) = m

}
,

(5)inf
ℙ𝜉∈D𝜉

ℙ𝜉

(
a(x)⊤𝜉 ≤ b(x)

)
≥ 1 − 𝜖
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Li et al. (2019b) derived an exact reformulation for the DR chance constraint with 
U� , i.e.,

however, those results were derived assuming m = 0 , i.e., the mode is at the origin. 
Without loss of generality, we can rewrite (1) as a(x)⊤(𝜉 − m) ≤ b(x) − a(x)⊤m with 
� − m being our random vector, whose mode is at the origin, and generalize all of 
the corresponding results in Li et al. (2019b) to allow any non-zero mode value m.

Theorem  2  (A generalization of Theorem  1 in (Li et  al. 2019b)) The DR chance 
constraint (7) is equivalent to

where Λ ∶=
((

𝛼+2

𝛼

)
(Σ − 𝜇𝜇⊤) −

1

𝛼2
(𝜇 − m)(𝜇 − m)⊤

)1∕2

.

Reformulation  (8) consists of an infinite number of second-order conic (SOC) 
constraints, parameterized by � . To this end, Li et al. (2019b) developed a sandwich 
approximation of (8), which is asymptotic in the sense that it recovers (8) as more 
choices of � are included. The sandwich approximation consists of a relaxed and a 
conservative approximation, which provide a superset and a subset of the original 
feasible region, respectively. In a minimization problem, solving the relaxed approx-
imation results in a lower bound on the true optimal cost. An upper bound can be 
achieved by solving the conservative approximation. In this paper, to control the 
tightness of the approximations, we use parameters {nk ∶ k = 1,… ,K} in the fol-
lowing two propositions. The approximations converge to the exact reformulations 
in Theorem 2 as the integer K increases. With the same K, different selections of nk 
in the approximations result in different levels of tightness and performance.

Proposition 3  (Relaxed Approximation, a Generalization of Proposition 4 in (Li 
et al. 2019b)) For integer K ≥ 1 and real numbers 𝜏

0
≤ n

1
< n

2
< ⋯ < n

K
≤ ∞ , (7) 

implies the SOC constraints

(6)
√(

1 − 𝜖

𝜖

)
a(x)⊤(Σ − 𝜇𝜇⊤)a(x) ≤ b(x) − a(x)⊤𝜇.

(7)inf
ℙ𝜉∈U𝜉

ℙ𝜉

(
a(x)⊤𝜉 ≤ b(x)

)
≥ 1 − 𝜖;

(8)

�
1 − 𝜖 − 𝜏−𝛼

𝜖
‖Λa(x)‖ ≤ 𝜏

�
b(x) − a(x)⊤m

�

−
�
𝛼 + 1

𝛼

�
(𝜇 − m)⊤a(x), ∀𝜏 ≥

�
1

1 − 𝜖

�1∕𝛼

,

(9)

�
1 − 𝜖 − nk

−𝛼

𝜖
‖Λa(x)‖ ≤ nk

�
b(x) − a(x)⊤m

�

−
�
𝛼 + 1

𝛼

�
(𝜇 − m)⊤a(x), ∀k = 1,… ,K.
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Proposition 4  (Conservative Approximation, a Generalization of Proposition 5 
in (Li et al. 2019b)) For integer K ≥ 2 and real numbers 𝜏

0
= n

1
< ⋯ < n

K
= ∞ , 

define a PWL function containing (K − 1) pieces:

Set q1 = �0 and denote q2 < ⋯ < qK−1 as the (K − 2) break points of function h(�) . 
Then, (7) is implied by the SOC constraints

In this work, we consider a formulation that uses individual chance constraints, 
as opposed to joint chance constraints, mainly to take advantage of the high com-
putational tractability granted by the exact reformulation and the sandwich approxi-
mation. Although the formulation does not provide probabilistic guarantees that all 
constraints are satisfied jointly, we may still achieve high performance due to the 
constraint correlations and the DR formulation (Li et  al. 2019a, b). Furthermore, 
joint chance constraint techniques (Margellos et  al. 2014; Hou and Roald 2020) 
might generate overly conservative solutions or require high sample complexity. 
Even when probability guarantees on the joint constraint satisfaction are required, 
we can apply individual chance constraints (e.g., using the Bonferroni approxima-
tion (Baker and Bernstein 2019; Xie et al. 2019)) to obtain a good and conservative 
approximation.

3 � Distributionally robust optimal power flow

We apply the models and reformulations of Sect. 2 to a chance-constrained OPF that 
uses the DC power flow approximation (Vrakopoulou et al. 2013). We assume that 
the system has NW wind power plants with forecast error w̃ ∈ ℝ

NW (each element 
is represented by w̃i ), NG generators with index set G , NB buses, ND loads, and NL 
transmission lines with index set L . The forecast errors are calculated as the differ-
ence between actual wind power realizations and their corresponding forecasts and 
are compensated by reserves. Design variables include generation output PG ∈ ℝ

NG , 
up and down reserve capacities Rup

G
∈ ℝ

NG ,Rdn
G

∈ ℝ
NG , and a distribution vector 

dG ∈ ℝ
NG , which determines how much reserve each generator provides to balance 

the total forecast error. Without loss of generality, we employ U� as the ambiguity 
set. Then the DR-OPF formulation for a given confidence level � is 

(10)
h(�) = min

k=2,…,K

{√
1

�(1 − � − n−�
k
)

[(
�n−�−1

k

2

)
�

+ 1 − � −
(
1 +

�

2

)
n−�
k

]}
.

(11)
h(qk)‖Λa(x)‖ ≤ qk

�
b(x) − a(x)⊤m

�

−
�
𝛼 + 1

𝛼

�
(𝜇 − m)⊤a(x), ∀k = 1,… ,K − 1.
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 where [C1] ∈ ℝ
NG×NG , C2 ∈ ℝ

NG , and CR ∈ ℝ
NG are cost parameters. Constraints 

(12a) and (12b) bound the power flows by the line limits Pl ∈ ℝ
NL . The power flow 

(12a)

min P⊤

G
[C1]PG + C⊤

2
PG + C⊤

R
(R

up

G
+ Rdn

G
)

s.t. inf
ℙ𝜉∈U𝜉

ℙ𝜉

(
Ai(CW − CGdG�

⊤)w̃

+ Ai(CLPL − CWP
f

W
− CGPG) ≤ Pl,i

)
≥ 1 − 𝜖, ∀i ∈ L,

(12b)
inf

ℙ𝜉∈U𝜉

ℙ𝜉

(
Ai(CW − CGdG�

⊤)w̃

+ Ai(CLPL − CWP
f

W
− CGPG) ≥ −Pl,i

)
≥ 1 − 𝜖, ∀i ∈ L,

(12c)RG = −dG

( NW∑

i=1

w̃i

)
,

(12d)Pinj = CG(PG + RG) + CW (P
f

W
+ w̃) − CLPL,

(12e)inf
ℙ𝜉∈U𝜉

ℙ𝜉

(
− dG.i�

⊤w̃ ≤ PG,i − PG,i

)
≥ 1 − 𝜖, ∀i ∈ G,

(12f)inf
ℙ𝜉∈U𝜉

ℙ𝜉

(
− dG.i�

⊤w̃ ≥ P
G,i

− PG,i

)
≥ 1 − 𝜖, ∀i ∈ G,

(12g)inf
ℙ𝜉∈U𝜉

ℙ𝜉

(
− dG,i�

⊤w̃ ≤ R
up

G,i

)
≥ 1 − 𝜖, ∀i ∈ G,

(12h)inf
ℙ𝜉∈U𝜉

ℙ𝜉

(
− dG,i�

⊤w̃ ≥ −Rdn
G,i

)
≥ 1 − 𝜖, ∀i ∈ G,

(12i)�1×NG
dG = 1,

(12j)�1×NB
(CGPG + CWP

f

W
− CLPL) = 0,

(12k)PG ≥ �NG×1
, dG ≥ �NG×1

,

(12l)R
up

G
≥ �NG×1

, Rdn
G

≥ �NG×1
,
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is calculated from the power injections Pinj ∈ ℝ
NB in (12d) and the constant matrix 

A ∈ ℝ
NL×NB , which is calculated using the admittance matrix and network connec-

tions (Vrakopoulou et  al. 2013). Constraint (12c) computes the real-time reserve 
response RG that is bounded by the reserve capacities Rdn

G
∈ ℝ

NG and Rup

G
∈ ℝ

NG in 
(12g) and (12h). In (12d), Pf

W
∈ ℝ

NW is the wind power forecast, PL ∈ ℝ
ND is the 

load (which is assumed to be known, though the formulation can be easily extended 
to handle uncertain loads1), and CG ∈ ℝ

NB×NG , CW ∈ ℝ
NB×NW , and CL ∈ ℝ

NB×ND are 
constant matrices that map generators, wind power plants, and loads to buses. Con-
straints (12e) and (12f) bound generator outputs within their limits [P

G
,PG] ; (12i), 

(12j) enforce power balance with and without wind power forecast error; and (12k), 
(12l) ensure all decision variables are non-negative.

4 � Solution algorithm

The quality of the sandwich approximation in Propositions 3 and 4 is a function of 
the choice of parameters nk . To solve the DR-OPF model, Li et al. (2019b) propose 
the following online algorithm that selects nk values on-the-fly and solves the cor-
responding sandwich approximation iteratively.

Algorithm 1 Online Algorithm [37]

Initialization: k = 1, τ0 = 1
1−ε

)1/α, gap tolerance η;
Iteration k:
Step 1: Solve the conservative approximation (11) using τj for all j = 0, . . . , k−
1 and τk = ∞ and obtain optimal solution xu

k and objective fu
k ;

Step 2: Solve the relaxed approximation (9) using τj for all j = 0, . . . , k − 1
and obtain optimal solution xl

k and objective f l
k;

Step 3: IF (fu
k − f l

k)/f
l
k ≤ η, STOP and RETURN xu

k as optimal solution;
ELSE GOTO Step 4;
Step 4 (Separation): Find worst case τ∗ that results in the largest violation
of (8) under xl

k

τ∗ = argmaxτ≥τ0

{√
1− ε− τ−α

ε
‖Λa(xl

k)‖ − τ b(xl
k)− a(xl

k)
�m

)
}
; (13)

Step 5: Set τk = τ∗ and k = k + 1, GOTO Step 1.

1  To handle uncertain loads, we denote Pf

L
 and d̃ as the load forecast and the uncertain load forecast 

error, respectively. We substitute the vector of loads P
L
 with Pf

L
+ d̃ and the system uncertainty w̃ with 

w̃ + d̃ in formulation (12). Then, we can use the same reformulation method and solution algorithm as 
described in Section 4 to solve this extended model.
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In each iteration k, Algorithm 1 chooses a value of nk that yields the largest viola-
tion of constraint (8) given the incumbent solution xl

k
 (see Step 4). This choice is 

critical to improve the relaxed approximation. However, it provides no guarantee on 
the quality of the conservative approximation, whose solution is what Algorithm 1 
returns. Next, we propose a new, offline algorithm selects the nk values in a provably 
optimal way and admits guarantees on the quality of both the relaxed and conserva-
tive approximations. It also reduces the computational effort in each iteration.

4.1 � Optimal parameter selection (OPS)

The OPS approach seeks a concave and |S|-piece PWL function g(�) , whose break 
points are denoted by qs for s ∈ S , that outer approximates the nonlinear function 
v(�) on the interval [�0,∞) . Existing approaches to finding PWL approximations for 
convex/concave functions when they are defined on a bounded domain include (Cox 
1971; Imamoto and Tang 2008; Vandewalle 1975; Gavrilović 1975). We extend the 
prior work to an unbounded domain by identifying optimality conditions for an opti-
mal g(�) and design an algorithm to construct such a g(�).

4.2 � Optimality conditions

We denote the |S|-piece PWL function g(�) = maxs∈S gs(�) , where gs(�) ∶= ds� + fs 
represents a piece of g(�) for all s ∈ S and ds represents the slope of gs(�) and is 
non-increasing in s. If we let Hs denote the part of domain gs(�) = g(�) , then the 
error emax of the PWL outer approximation g(�) for v(�) can be evaluated by the larg-
est discrepancy between these functions,

Next, we identify conditions for g(�) to be an optimal PWL approximation of v(�) , 
i.e., one achieving the smallest emax for fixed |S| . We omit the proof because it is a 
straightforward extension of (Gavrilović 1975).

Theorem 5  (Optimality Conditions) For |S| ≥ 1 , an |S|-piece PWL function g(�) is 
an optimal PWL outer approximation of v(�) if the following three conditions hold. 

1.	 g|S|(�) =
√

1−�

�
.

2.	 gs(�) is tangent to v(�) for all s ∈ S.
3.	 g(Bs1

) − v(Bs1
) = g(Bs2

) − v(Bs2
), ∀s1, s2 ∈ S , where {Bs, s ∈ S} consists of all 

break points of g(�) and �0.

(13)emax ∶= max
s∈S

max
�∈Hs

{ds� + fs − v(�)}.
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where � is the violation probability in (2).
The intuition of the optimality condition is that, at optimality, all of the local 

approximation errors, evaluated at the break points of the optimal g(�) , are all equal 
(i.e., Ei

1
= Ei

2
= Ei

3
= ei

T
 in Fig.  1). If the local approximation errors are not all 

equal, we can always move the break points to reduce the largest error emax . Defining 
e∗ ∶= g(Bs) − v(Bs) for any s ∈ S , we note that g(�) − e∗ is an inner approximation 
of v(�) with a (maximum discrepancy) error e∗.

4.3 � Construction algorithm

We provide a constructive algorithm to search for an optimal g(�) that satisfies the 
optimality conditions identified in Theorem 5. This algorithm is adapted from the 
recursive descent algorithm in Imamoto and Tang (2008). We first define the follow-
ing notation.

•	 Δi ∈ ℝ
I : the step size in iteration i;

•	 � : the threshold for the termination criterion;
•	 I  : the maximum number of iterations;
•	 gi(�) : estimation of g(�) in iteration i ( gi

s
(�) represents the sth piece of gi(�));

•	 Bi ∈ ℝ
|S| : the break points of gi(�) in iteration i ( Bi

s
 represents the sth break point 

and Bi
1
= �0);

•	 Ti ∈ ℝ
|S|−1 : the points at which gi(�) is tangent to v(�) in iteration i;

•	 Ei ∈ ℝ
|S| : the distance between g(�) and v(�) at all Bi

s
 in iteration i.

•	 ei
T
∶=

√
(1 − �)∕� − v(Bi

�S�) represents the distance between the last constant 
piece (i.e., g|S|(�) ) and v(�) at Bi

|S|.

Fig. 1   Illustrative example of Algorithm 2 for |S| = 3 , at iteration i. Function g
i
(�) (green solid lines) is 

a PWL outer approximation of v(�) (blue curve) with tangent points Ti (yellow dots) and break points Bi 
(blue dots). At convergence, Ei

1
= E

i

2
= E

i

3
= e

i

T
 (color figure online)
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Algorithm 2 Parameter searching algorithm

Initialization: i = 1, ∆1 = 1, δ = 0.01, I = 50, B1
|S| = 10, T 1

s = τ0 +
s(B1

|S|−τ0)
|S|

for s = 1, . . . , |S| − 1;
Iteration i:
Step 1: IF i ≤ I, calculate Bi

s for s = 2, . . . , |S| − 1 by solving gis−1(B
i
s) =

gis(B
i
s), where gis(τ) = v′(T i

s)(τ − T i
s) + v(T i

s); ELSE STOP and RETURN
no convergence under current initialization;
Step 2: Calculate Ei and eiT ; IF Ei

|S|/e
i
T > 1 + δ or Ei

|S|/e
i
T < 1/(1 + δ), set

Bi
|S| = 0.5(τ̂ + Bi

|S|), where τ̂ is the solution of gi|S|−1(τ̂) =
√

(1− ε)/ε, and
GOTO Step 1; ELSE GOTO Step 3;
Step 3: IF max(Ei) ≤ (1 + δ)min(Ei), STOP and RETURN gi(τ) as an
optimal solution; ELSE GOTO Step 4;
Step 4: IF i = 1,GOTO Step 5; ELSEIFmax(Ei) > max(Ei−1), set i = i−1,
∆i = ∆i/2, and GOTO Step 5; ELSE GOTO Step 5;
Step 5: For s = 1, . . . , |S| − 1, calculate

T i+1
s = T i

s +
∆i(Ei

s+1 − Ei
s)

Ei
s+1

Bi
s+1−T i

s
+ Ei

s

T i
s−Bi

s

and set i = i+ 1 and GOTO Step 1.

The algorithm is described in Algorithm  2 and Fig.  1 displays an example for 
|S| = 3 . First, Δ1 , � , I  , and B1

|S| are initialized (for different v(�) , they may take other 
reasonable values) and T1 is computed by evenly dividing [�0,B1

|S|] into |S| segments. 
In each iteration i, Step 1 calculates Bi using Ti and Bi

|S| . Step 2 calculates Ei and ei
T
 

and adjusts Bi
|S| accordingly. Step 3 checks for convergence. Step 4 repeats the itera-

tion with a smaller step size if the previous step did not produce an improvement. 
Step 5 adjusts Ti to further reduce the differences among Ei

s
 . The optimal break 

points B∗ obtained from Algorithm 2 can be used in Proposition 4 to establish the 
corresponding conservative approximation.

Remark: The optimal parameters obtained from Algorithm 2 are unique given a 
choice of |S| . That is, they are independent of the decision variables but dependent 
on parameters � and � . Hence, Algorithm 2 can be conducted offline to find an opti-
mal PWL approximation.

4.4 � Performance

Figure  2 shows the convergence of Algorithm  2 under various values of |S| . We 
observe that as |S| increases, the optimal approximation error emax decreases and the 
total number of iterations grows almost linearly.
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4.5 � Algorithm

Since OPS can be conducted offline via Algorithm 2, we can compute the optimal 
PWL approximations prior to solving the DR-OPF model (e.g., as a look-up table). 
The offline algorithm is summarized in Algorithm 3, which takes the optimal PWL 
approximations as input in each iteration.

Algorithm 3 Offline Algorithm

Initialization: k = 1, τ0 = 1
1−ε

)1/α, gap tolerance η;
Iteration K:
Step 1 (Optimal Parameter Selection): find an optimal K-piece PWL
approximation g(τ) using Algorithm 2 and set {qk}Kk=1 as the optimal break
points;
Step 2: Solve the conservative approximation (11) using {qk}Kk=1 to obtain an
optimal solution xu

K and an optimal value fu
K ;

Step 3: Solve the relaxed approximation (9) using {qk}Kk=1 to obtain an optimal
solution xl

K and an optimal value f l
K ;

Step 4: IF (fu
K − f l

K)/f l
K ≤ η, STOP and RETURN xu

K as an optimal
solution; ELSE set K = K + 1 and GOTO Step 1.

5 � Case studies

We test our approaches on the IEEE 118-bus and 300-bus systems, which are modi-
fied to include a large number of wind power plants with a total of 400 MW ( ∼ 9.4% 
of total load) and 2000 MW ( ∼ 8.5% of total load) of forecasted wind power, respec-
tively. We use the network and cost parameters from Coffrin et al. (2016) and set 
CR = 10C2 . We add wind power to all buses with generators and allocate the fore-
cast wind power to these buses in proportion to their generation limit.

We also test our approaches using two forecast error data sets with different char-
acteristics. We define the forecast error ratio as the ratio between the forecast error 
and the corresponding forecast. Data Set 1 (DS1) was used in Vrakopoulou et  al. 
(2019). The data set is generated using the Markov–Chain Monte Carlo mechanism 
(Papaefthymiou and Klockl 2008) on real wind power forecasts and realizations 
from Germany. The wind power is well-forecasted with small forecast error ratios 
( −30 to 60% ). For each wind bus, we randomly select the forecast errors from the 
same data pool without considering spatial correlation. Data Set 2 (DS2) is con-
structed from the RE-Europe data set (Jensen and Pinson 2017), which contains 
hourly wind power forecasts and realizations based on the European energy system. 
The data set includes strong spatiotemporal correlation. However, the data set also 
contains poor forecasts with extreme forecast error ratios, up to 5300% (Li 2019). 
Therefore, we scale down the forecast errors by 60% and then filter outliers with 
forecast error ratios larger than 100%.
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We use 5000 randomly selected data points for the 118-bus system and 8000 for 
the 300-bus system to construct D� and U� . More data is needed for the 300-bus sys-
tem since the uncertainty dimension is larger. In addition, we use histograms with 
15 and 20 bins to justify our assumption of unimodality and determine the locations 
of mode m for DS1 (see Fig. 3) and DS2 (see Fig.  4) by identifying the bin with the 
most points (Li et al. 2019c).

Further, to evaluate reliability, we randomly select 5000 and 8000 data points to 
conduct out-of-sample tests for the 118-bus and 300-bus systems, respectively. We 
define the reliability as the percentage of wind power forecast errors for which all 
chance constraints are satisfied. We perform three parallel tests by randomly rese-
lecting the data used to construct the ambiguity sets.

We benchmark our approaches against two conventional approaches. Analytical 
reformulation assuming multivariate Gaussian distributions (AR) is used in (Bien-
stock et  al. 2014; Li et  al. 2019a; Roald et  al. 2013), which uses moments deter-
mined from the data. Then all chance constraints can be exactly reformulated as 
SOC constraints. The scenario-based method (SC) developed in Margellos et  al. 
(2014) requires that the constraints affected by uncertainties are satisfied for any 
realization within a probabilistically robust set constructed using a sufficient number 
of randomly selected uncertainty realizations.

We solve all optimization problems using CVX with the Mosek solver (Grant and 
Boyd 2014, 2008). We set � = 5% , � = 1 , and optimality gap � = 1% . The choice of 
� is valid because, in general, wind power forecast error is marginally unimodal (Li 
2019).

The results are organized as follows. In Sect. 5.1, we compare the performance of 
DR approaches to the benchmark approaches in terms of cost, reliability, and overall 
computational performance. We also show the advantage of including unimodality 
information in the DR-OPF ambiguity set. In Sect.  5.2, we analyze the computa-
tional performance of the online Algorithm 1 to demonstrate the computational bur-
den for large systems. In Sect. 5.3, we compare the proposed offline Algorithm 3 to 
the online Algorithm 1 to demonstrate the computational improvement.
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5.1 � Cost and reliability performance

We first compare the DR approaches to the benchmark approaches in terms of objec-
tive cost and reliability. The results are summarized in Table 1. (DR-M) is the DR 
approach with ambiguity set D� , which does not include the unimodality assump-
tion. (DR-U) is the DR approach with ambiguity set U� , solved using the online 
Algorithm 1. To facilitate comparisons, we define a percentage difference on cost 
(C/Diff) and reliability (R/Diff) against the benchmarks, where AR generally pro-
duces low-cost solutions that are not sufficiently reliable and SC generally produces 
high-cost solutions with higher reliability than necessary. Specifically, we calculate 
the C/Diff of a DR approach as the difference in cost compared to that of the AR 
approach divided by the difference in cost between the AR and SC approaches. The 
R/Diff is defined similarly. Small C/Diffs are desirable, i.e., low costs approaching 
that of the AR approach. Large R/Diffs are desirable, i.e., high reliability approach-
ing that of the SC approach. We define the improvement (Improv) of a DR approach 
to be its R/Diff divided by its C/Diff. Large Improvs are desirable, indicating a better 
trade-off between cost and reliability.

From Table 1, we observe that SC provides overly conservative results with the 
highest costs and 100% reliability in all instances, because it provides a joint proba-
bilistic guarantee and uses a robust optimization method. In contrast, AR provides 
the least conservative results with the lowest costs and the lowest reliability (below 
95% in all instances), because it assumes a Gaussian distribution, which may not 
hold in reality. Meanwhile, DR approaches provide intermediate costs and reliability, 
with all reliability values lying above the target ( 95% ). Of the two DR approaches, 
DR-U provides higher costs and higher reliability than DR-M since DR-M does not 
include the unimodality assumption. DR-U incorporates the unimodality informa-
tion and achieves a better cost performance, while maintaining satisfactory reliabil-
ity. If we compare the Diffs and Improvs of DR-U and DR-M, we see that DR-U pro-
vides a better trade-off between cost and reliability. Solutions using DS1 are more 

Fig. 3   Histograms of univariate and bivariate wind forecast errors of DS1 (15 bins)
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stable with less variability across parallel tests than those using DS2. Additionally, 
solutions using DS1 have higher Improvs than those using DS2.

5.2 � Computational performance

As shown in Table  1, DR-U requires significantly more computational time than 
the other approaches. This is because DR-U employs an iterative solution algo-
rithm, while the other approaches do not. For large system dimensions, the compu-
tational burden becomes severe pointing to the need for a computationally efficient 
alternative.

Table 2 summarizes the percent of the total computational time to complete the 
separation step of Algorithm 1 and the required number of iterations. DS2 (poorer 
forecasts) requires a larger number of iterations than DS1, leading to overall com-
putational times that are longer for DS2 than DS1, as seen in Table 1. The 118-bus 
system requires a higher percentage of computational time to complete the sepa-
ration step than the 300-bus system. The total computation time of each iteration 
slightly increases over the iterations, while the time needed for the separation step 
is approximately constant.

Recall that in Algorithm 1, we output the solutions of the conservative approxi-
mation (i.e., xu

k
 from Step (1) at termination. However, solutions from the relaxed 

approximation (i.e., xl
k
 from Step (2) can also have low optimality gaps. Here, we 

check if the intermediate solutions from relaxed approximation of Algorithm 1 are 
good approximates of the optimal solution. Figure 5 shows the optimality gap and 
reliability of all the intermediate solutions xl

k
 for the 118-bus system using DS2.2 We 

find that the intermediate solutions are not good approximates because even solu-
tions with small absolute optimality gaps ( < 1% ) can have low reliability ( < 70% ). 
We also observe that higher objective cost does not always guarantee higher reliabil-
ity in out-of-sample tests.

Fig. 4   Histograms of univariate and bivariate wind forecast errors of DS2 (20 bins)

2  Note that each intermediate solution comes from a relaxed approximation and so the objective cost is 
lower than the true objective cost. Here we use a negative optimality gap to illustrate this relation.
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5.3 � Online vs offline algorithm

In this section, we compare the online Algorithm 1 to the offline Algorithm 3 using 
OPS. For each network and data set we show the optimality gap, computational time 
(scaled to the total time in Table 1), and the reliability of the solutions obtained in 
each iteration. We focus on the first few iterations to highlight the progression of the 
algorithms.

IEEE 118-bus network with DS1

Figure 6 compares the online and offline algorithms using the IEEE 118-bus net-
work and DS1. We find that the online algorithm fails to achieve a less than 1% 
optimality gap within the first four iterations while the offline algorithm achieves 
this goal by the second iteration and with much less computational time ( 6.02% of 
the time needed by the the online algorithm). In terms of reliability, we see that the 
offline algorithm’s solutions are less reliable than those of the online algorithm but 
they still satisfy our requirement of 95%.

IEEE 300-bus network with DS1

Figure 7 compares the online and offline algorithms using the IEEE 300-bus net-
work and DS1. Here, we observe similar trends to those of the IEEE 118-bus net-
work. Specifically, the offline algorithm converges to below 1% optimality gap using 
only 19.62% of the total computational time needed by the online algorithm. How-
ever, the offline algorithm takes a longer time to solve these early iterations than the 
online algorithm.

IEEE 118-bus network with DS2

Figure 8 compares the online and offline algorithms using the IEEE 118-bus net-
work and DS2. Here, we observe an even larger relative advantage from the offline 
algorithm. When the offline algorithm reaches less than 1% optimality gap, the 
online algorithm has a 20% optimality gap. The offline algorithm converges to below 
1% optimality gap with only 5.51% of the total computational time needed by the 
online algorithm.

IEEE 300-bus network with DS2

Table 2   Algorithm 1, percent of time used for solving separation and number of iterations

118/DS1 118/DS2 300/DS1 300/DS2

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Percent 86.2 86.8 87.4 85.4 85.6 85.9 59.1 59.1 59.2 43.1 43.6 43.9
Iterations 5 5 5 26 32 36 6 7 7 14 23 33



611

1 3

Integrating unimodality into distributionally robust optimal…

Figure 9 compares the online and offline algorithms using the IEEE 300-bus net-
work and DS2. Again, the online algorithm has a large relative advantage. When 
the offline algorithm reaches less than 1% optimality gap, the online algorithm has 
a 11.39% optimality gap. Further, the offline algorithm converges to below 1% opti-
mality gap with only 21.7% of the total computational time needed by the online 
algorithm. However, like with the IEEE 300-bus network and DS1, the offline algo-
rithm takes a longer time to solve these early iterations than the online algorithm.

Cross comparisons

In all cases, the offline algorithm takes much less computational time than the 
online algorithm. The offline algorithm takes a similar amount of time as AR, SC, 
and DR-M, while the online algorithm exhibits an approximately linear relationship 
between computational time and iterations. All intermediate solutions of both algo-
rithms satisfy the 95% constraint satisfaction level. Note that this does not contradict 
the conclusions from Fig. 5, in which solutions xl

k
 are generated from a collection of 

relaxed approximations. Solutions xl
k
 are not guaranteed to be feasible in the origi-

nal DR-U. In contrast, the offline Algorithm 3 takes advantage of the conservative 
approximation and outputs solutions xu

k
 , which guarantee feasibility in the original 

DR-U, hence high reliability. For both the online and offline algorithms, solutions 
become less conservative as iteration continues.

Figures 6 and 8 show that the intermediate solutions for DS2 generally have larger 
optimality gaps than those for DS1. In Figs.  7 and 9, we observe that the offline 
algorithm can take more computational time per iteration than the online algorithm 
in the early iterations (see Fig. 7). In general, the offline algorithm is less computa-
tionally advantageous for the IEEE-300 bus system than the IEEE-118 bus system.

In summary, the offline algorithm with OPS produces good quality solutions of 
DR-U with small optimality gaps and high reliability. In addition, it shows a much 
better convergence rates than the online algorithm.

Fig. 5   Optimality gap and reli-
ability of intermediate solutions 
from the relaxed approximation 
of Algorithm 1. Black dashed 
line marks 1% optimality gap 
(color figure online) 5 10 15 20 25 30 35
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6 � Conclusions

In this paper, we analyzed the value of including unimodality information in DR-
OPF. Specifically, we first showed how to integrate unimodality into the formula-
tion and obtain an exact reformulation/sandwich approximation with SOC con-
straints. Second, we described an existing online approach and developed a new 
offline approach to solve DR-OPF with unimodality. For the offline approach, we 
use an OPS method to achieve a better sandwich approximation. Third, we demon-
strated the benefit of including unimodality information in DR-OPF by evaluating 
our proposed approaches against the current state of the art. Through case studies 
on modified IEEE 118-bus and 300-bus systems, we demonstrated that including 
unimodality information within a DR-OPF problem with wind power uncertainty 
leads to a better cost/reliability trade-off than benchmark approaches or a DR-OPF 
that includes only moment information. However, the online solution approach suf-
fers from large computational burden. We showed that our offline solution approach 
significantly reduces the computational time, providing fast convergence to low 
optimality gaps while also satisfying desired reliability levels. We also showed how 
the results vary across two forecast error data sets. We found that both the data set 
and choice of test system have a significant impact on the value of including uni-
modality information in DR-OPF, indicating that, in practice, the value is highly 
system-dependent. Moreover, the relative performance of the online versus offline 
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algorithms, in terms of optimality gap, computational time, and solution reliability, 
is also system-dependent.
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