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Abstract— Drinking water distribution networks can be
treated as flexible, controllable assets for power distribution
networks (e.g., to provide voltage support) by leveraging the
power consumption of water pumps and storage capabilities of
water tanks. We formulate an adjustable robust optimization
problem to determine the scheduled water distribution network
pumping and real-time pump adjustments that ensure that
the power and water distribution network constraints are
satisfied with respect to uncertain power demand. We extend
the monotonicity properties of dissipative flow networks to
water distribution networks which requires assumptions on
water tank operation. Then, to make the problem tractable, we
leverage these properties, along with constraint approximations
and an affine pump control policy, to reformulate the problem
as an affinely adjustable robust counterpart that solves for the
pumping schedule and the parameters of an affine control policy
that determines the real-time pump adjustments. Through a
case study, we demonstrate that the approach produces robust
solutions and is computationally tractable. We also evaluate
the impact of restricting water tank operation to enforce
monotonicity and find it leads to a significantly restricted
feasible region and more conservative solutions.

I. INTRODUCTION

The power distribution network (PDN) and the drinking
water distribution network (WDN) are coupled critical in-
frastructure systems. Water pumps in the WDN are loads in
the PDN and are capable of shifting their power consumption
in time by storing water in elevated water storage tanks. By
leveraging the inherent flexibility from the water tanks in the
WDN, the WDN can be used as a flexible, controllable asset
for the PDN. This work is situated within a growing research
area of the integrated optimization of coupled critical infras-
tructure systems. Potential benefits of integrated optimiza-
tion include being able to incorporate greater quantities of
renewable energy resources, reducing operational and capital
costs, and improving system resiliency [1]. However, the
problem complexity and dimension significantly increases
when incorporating uncertainty sources and nonconvex con-
straints from multiple networks. Consequently, there is a
trade-off in performance between computational tractability
and optimality (or feasibility) of the solution.

The goal of this work is to control the pump power
consumption in WDNs to manage bus voltages in PDNs with
net demand uncertainty (from imperfect forecasts of loads
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and intermittent distributed renewables) in a computationally
tractable way that can be scaled to large networks and
problems with long time horizons. To do so, we formulate
the integrated optimization problem as an adjustable robust
problem. We leverage monotonicity properties for dissipative
flow networks [2], affine control policies, and approximations
to reformulate the problem as a computationally tractable
affinely adjustable robust counterpart.

There is growing interest in optimization of integrated
power-water systems to help support the power network
operation. Irrigation systems were used to provide demand
response in [3] and the demand response capacity of WDNs
is optimized in [4]. Ref. [5] optimizes the electricity con-
sumption flexibility that a group of WDNs can provide
to the transmission network. In [6], the WDN consumes
surplus energy based on a signal from the PDN. To the
best of our knowledge, there are no papers that consider
the integrated optimization of PDNs and WDNs considering
demand uncertainty besides our previous work [7]. In [7], we
formulated a chance-constrained power-water optimization
problem considering water and power demand uncertainty
and solved it using the scenario approach [8]. One drawback
of the scenario approach is that it requires a large amount of
data and does not scale well to larger problems. In this paper,
we formulate the problem as an Adjustable Robust Optimiza-
tion (ARO) problem and develop a solution approach to make
the problem tractable, resulting in the Affinely Adjustable
Robust Counterpart (AARC) that is much more scalable than
our chance-constrained approach, but also more conservative.

Leveraging monotonicity properties is a key component
in making the robust power-water problem tractable. Mono-
tonicity properties allow us to replace the semi-infinite water
network constraints with two sets of deterministic network
constraints representing the extreme operating scenarios. By
doing so, we provide feasibility guarantees for the entire
range of operating scenarios between the two extreme cases.
To do this, we leverage the monotonicity properties of
dissipative flow networks developed in [2]. This work was
extended in [9] for transient gas network modelling and
applied in an uncertainty management framework for an
integrated gas-power problem in [10]. These papers fo-
cus on applying monotonicity properties to gas networks
specifically. In this paper, we show how the monotonicity
properties of dissipative flow networks apply to WDNs and
identify the water tank formulation assumptions required for
monotonicity and the impact these assumptions have on the
solution space.

The contributions of this work are 1) formulating an ARO
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problem to schedule and control water pumping subject to
PDN and WDN constraints and power demand uncertainty;
2) deriving water tank operation assumptions to ensure
monotonicity properties hold for the WDN; 3) tractably
reformulating the AARC using monotonicity properties,
convex approximations, and affine control policies; and 4)
evaluating the performance of the approach in a case study.

II. ADJUSTABLE ROBUST VOLTAGE SUPPORT PROBLEM

Our goal is to robustly optimize the water pump power
consumption subject to the PDN and WDN constraints and
power demand uncertainty. Specifically, we seek to determine
the scheduled pump power consumption and the parameters
of a control policy that determines the real-time pump power
consumption adjustments so that the PDN voltage limit
constraints are never violated over the scheduling horizon.
This formulation can also be interpreted as an optimal
power flow problem with water pumps acting as distributed
energy resources where the WDN constraints further limit
the feasible operation of the water pumps.

In this paper, we do not consider water demand uncer-
tainty. In [7], we simultaneously solved for two separate
control policies to adjust pumping as a function of both
water and power demand uncertainty. However, the tanks
are already designed to hedge against water demand un-
certainty [11] and we found that the range of tank flow
rate adjustments remains approximately constant over time.
Therefore, it is reasonable to assume that a portion of the
tank is reserved for responding to water demand uncertainty
without explicitly modelling it (similar to how portions of
tanks are reserved for emergency fire flow scenarios).

We first formulate the ARO problem as

min
x

F (x,y(ρ,x)) (ARO)

s.t. ∀ρ ∈ U , ∃y,

ν1(x,y(ρ,x),ρ) ≤ 0,

ν2(x,y(ρ,x),ρ) ≤ 0,

ν3(x,y(ρ,x),ρ) ≤ 0.

ARO is a multi-stage robust optimization problem containing
random variable ρ in the uncertainty set U , the operational
(‘here-and-now’) variable x which is feasible for all un-
certainty realizations within the uncertainty set U , and the
adjustable (‘wait-and-see’) variable y(ρ,x) which can be
decided given a specific uncertainty realization [12]. In our
problem, the uncertainty ρ is the power demand at every bus
and phase, the operational variable x includes the scheduled
pump power consumption, and the adjustable variable y(ρ)
includes the pump power consumption adjustment which is
a function of the power demand forecast error. The functions
ν1(·) and ν3(·) contain the quasi-steady state PDN and WDN
constraints (i.e., steady state operation for every time step
of duration ∆T within the scheduling horizon T ). Function
ν2(·) links the WDN and PDN; specifically, it contains the
real-time pump adjustments which impact both the power
flow and water flow. The cost function F (·) includes the
cost of the pump schedule and real-time adjustments.

ARO is less conservative than classic robust optimization
problems because decisions can be updated in real-time [12].
Unlike a chance-constrained optimization problem in which
the constraints must be satisfied at a specified probability,
ARO constraints must be satisfied for all uncertainty realiza-
tions within the uncertainty set.

We next model the PDN ν1(·) and the pump adjustments
ν2(·) which ensure that the minimum and maximum voltage
limits are satisfied. Then, we present the basic form of the
AARC. In the next section, we derive the WDN constraints
ν3(·) that limit the pump power consumption and present the
full AARC.

A. Power Distribution Network Modelling

We first define ν1(·). We consider an unbalanced, radial
PDN that includes a set of buses K and phases Φ to which the
uncontrollable net loads (i.e., actual load minus distributed
generation) and the controllable pumps are connected. To
facilitate the derivation of the robust counterpart, we use
a linearized power flow model, specifically, the 3-phase
unbalanced power flow model from [13] also referred to
as Lin3DistFlow. We note that other linearized unbalanced
power flow models, e.g., [14], could also be used. It is also
possible that more accurate nonlinear 3-phase unbalanced
power flow models could be used; however, this would com-
plicate our formulation and, since our focus is on the WDN,
we leave this to future work. The power flow equations are
[13]

P t
k = ρtk + pte +

∑
n∈Ik

P t
n ∀ k ∈ K, t ∈ T , (1)

Qt
k = ζtk + ηep

t
e +

∑
n∈Ik

Qt
n ∀ k ∈ K, t ∈ T , (2)

Y t
k = Y t

n −MknP
t
n −NknQ

t
n, ∀ k ∈ K, t ∈ T , (3)

where (1) and (2) represent the active and reactive power
balance at each node k and (3) represents the voltage drop
across the line. The parameter Y t

k is the 3-phase voltage
magnitude squared at bus k and time t, P t

k and Qt
k are the 3-

phase real and reactive power flows entering bus k,Mkn and
Nkn are the parameter matrices for line kn, ρtk and ζtk are
the 3-phase real and reactive uncontrollable power demand at
bus k,pte is the 3-phase power consumption of pump e (where
the pumps are modelled as balanced 3-phase constant power
loads with constant power factor), and Ik is the set of buses
directly downstream bus k. The pump power consumption
pte is zero if there are no pumps connected to bus k. The
parameter ηe is the real-to-reactive power consumption ratio
of pump e. We bound the voltages at all buses, phases, and
time periods by V and V , i.e.,

V 2 ≤ Y t
k ≤ V

2 ∀ k ∈ K, t ∈ T . (4)

B. Real-Time Pump Adjustments Responding to Uncertainty

We next define ν2(·). The source of uncertainty is the real-
time uncontrollable power demand vector ρt := ρ̄t + ∆ρt,
which is composed of the forecasted power demand ρ̄t (a
known parameter) and the uncertain but bounded forecast
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error ∆ρt := [∆ρtk,φ]k∈K,φ∈Φ. We assume that water supply
pumps in the WDN are adjusted according to a decision
rule that is a function of ∆ρt. Specifically, we define
an affine pump power control policy and solve for the
policy parameters as ‘here and now’ decisions. Using an
affine policy allows us to represent the response of the
system without needing to resolve the problem for each
uncertainty realization. This makes it easier for water utilities
to implement the control policy in real-time. However, the
use of an affine policy also restricts the feasible space,
meaning that our solutions may be conservative. The control
policy allows us to write the adjustable power variables
(e.g., voltage magnitude squared) as affine functions of the
random variables. The real-time single-phase pump power
consumption is

pte = ptnom,e +Ct
e∆ρ

t ∀ e ∈ P , t ∈ T , (5)

where ptnom,e is the scheduled single-phase power consump-
tion of pump e at time t, Ct

e is a control policy parameter
row vector that determines the single-phase adjustment of
pump e at time t as a function of ∆ρt, and P is the set of
pumps. To implement this, the water system operator needs
real-time data on the power demand forecast error at each
bus and phase. While this may be unrealistic at the present
time, this formulation and results point to the value of real-
time pump adjustments; future work will explore whether
this value outweighs the costs of the infrastructure needed
to support it.

We additionally assume that the cost of the real-time pump
adjustments is a function of the adjustment range and define
Rup and Rdn as the largest increase and decrease in pump
power, i.e.,

-Rtdn,e ≤ 3Ct
e∆ρ

t ≤ Rtup,e ∀ e ∈ P, t ∈ T , (6a)

Rtup,e, R
t
dn,e ≥ 0 ∀ e ∈ P, t ∈ T , (6b)

where we multiply the single-phase pump power adjustment
by 3 to get the total 3-phase power demand.

C. Basic Form of the AARC

The cost function, which is now only a function of the
operational variables, is

F (x) =
∑

e∈P,t∈T
3πtep

t
nom,e + πtvs,e(R

t
up,e +Rtdn,e), (7)

where πte is the cost of electricity for the pump e at
time t and πtvs,e is the cost associated with the real-time
adjustment range. The operational decision variables in the
PDN constraints include pnom, C, Rdn, and Rup. The ad-
justable decision variables in the PDN constraints include
the voltage magnitude squared Y and are linear in the
random variables ∆ρ and so we can tractably reformulate
ν1(·), i.e., the power flow equations and constraints (1)-
(4), and ν2(·), i.e., the affine control policy and associated
constraints (5)-(6b), given the uncertainty set U . We use
explicit maximization [15] to derive the robust counterpart
of ν1(·) and ν2(·). Assuming we can also obtain the robust

counterpart of the WDN constraints ν3(·), we can write the
basic form of the AARC as

min
x

(7) (AARC)

s.t. ω1(x) ≤ 0,

ω2(x) ≤ 0,

ω3(x) ≤ 0,

where ω1(x) ≤ 0, ω2(x) ≤ 0 represent the robust reformula-
tion of (1)-(6b) and ω3(x) ≤ 0 is the robust reformulation of
the WDN constraints, which we derive in the next section.

III. INCORPORATING WDN CONSTRAINTS

We need to ensure that the WDN constraints are satisfied
for any real-time pump power consumption determined by
the affine control policy (5). As a result, the flow rates,
hydraulic heads, and tank levels are adjustable variables.
In this section, we present the WDN constraints that are
included in the ARO, show how the monotonicity properties
in [2] apply to the WDN which allows us to tractably
reformulate the WDN constraints, and describe the tank
formulation assumptions required to ensure monotonicity.

A. Water Distribution Network Modelling

The WDN can be represented as a directed graph G =
(N , E), where N is the set of nodes and E is the set of edges.
The incidence matrix A describes connections between the
nodes and edges where all edges are assigned an arbitrary
direction. Set N is composed of disjoint subsets of junctions
J , reservoirs R, and elevated storage tanks S , i.e., N =
J ∪ R ∪ S . The edges are bi-directional pipes that connect
nodes. A pipe may contain at most one pump, i.e., P ⊆ E .
The WDN at time t can be characterized by the hydraulic
heads Ht := [Ht

j ]∀j∈N at all nodes and the volumetric flow
rates xt := [xtij ]∀(i,j)∈E through all pipes going from node i
to node j.

WDNs are dissipative flow networks [2] and are governed
by the following equations∑

i:(i,j)∈E

xtij + dtj = 0 ∀ j ∈ N , t ∈ T , (8)

xtij = −xtji ∀ (i, j) ∈ E , t ∈ T , (9)

Ht
i −Ht

j = fij(x
t
ij) ∀ (i, j) ∈ E , t ∈ T , (10)

where dtj is the injection of water at node j and time t,
where positive values indicate an injection into the network
and negative values indicate a withdrawal from the network.
Customer water demands at junctions are assumed to be
known and non-positive. In (8), the conservation of water
at each node is enforced. Since the flow along pipes can be
bi-directional, (9) enforces skew symmetry along pipe ij at
time t. The head loss equation (10) describes the relationship
between hydraulic head at nodes and flow rate over a pipe
or pump connecting them. The head loss function fij(·) is
continuous and increasing with respect to flow rate xtij . The
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Fig. 1. Water storage tank diagram.

pipe head loss function is commonly modelled using the
Darcy-Weisbach formulation [16]

fij(x
t
ij) = kij |xtij |xtij ∀ (i, j) ∈ E \ P , t ∈ T ,

where parameter kij is the resistance coefficient of pipe ij.
The pump head is typically modelled as a quadratic function

fij(x
t
ij) = -(m0

ij −m1
ij(x

t
ij)

2) ∀ (i, j) ∈ P , t ∈ T ,

where m0
ij and m1

ij are parameters. Additional constraints
needed to model the WDN are given next by component
type.

1) Junctions: The hydraulic head, which is composed of
the elevation head and the pressure head, is bounded at all
nodes

H ≤Ht ≤H ∀ t ∈ T , (11)

where H and H are the minimum and maximum heads.
2) Tanks: Tanks are connected to a single node in the

WDN, where we separately model the tank’s inflow and
outflow from the node (see Fig. 1). The tank inlet is typically
located at the top of the tank. The tank constraints are

`
t=|T |
j ≥ `t=0

j ∀ j ∈ S, (12a)

`tj = `t−1
j +

∆T

γj
Ajx

t ∀ j ∈ S, t ∈ T , (12b)

`j ≤ `tj ≤ `j ∀ j ∈ S, t ∈ T , (12c)

gj(x
t, `tj) ≤ 0 ∀ j ∈ S, t ∈ T , (12d)

where `tj is the water level (including elevation) at tank j
and time t, γj is the cross-sectional area of the tank, and Aj
is row j in the incidence matrix A. In (12a), we ensure that
the tanks are not depleted over the scheduling horizon by
setting the final tank level to be greater than or equal to the
initial tank level. The water level `tj is defined in (12b) and
bounded in (12c) to reflect the physical volume of the tank.
Function gj(·) in (12d) contains tank head constraints that
depend upon our tank formulation which we will describe
in more detail in Section III-B.1. The tank head determines
whether the tank is storing or supplying water to the network.
When the tank in Fig. 1 has no valves or pumps, it stores
water if the tank head is greater than the head associated with
the maximum tank level and supplies water if the tank head
is equal to the head associated with the tank level. In order
for WDN monotonicity to hold, we need to make certain
assumptions about tank equipment and operation, which will
be discussed in Section III-B.1.

3) Reservoirs: Reservoirs are modelled as infinite sources
and the head is fixed

Ht
j = hj ∀ j ∈ R, t ∈ T . (13)

4) Pipes and Pumps: Pipes without pumps can have pos-
itive or negative flows. Pumps have bounded unidirectional
flows, i.e.,

0 ≤ xij ≤ xtij ≤ xij ∀ (i, j) ∈ P , t ∈ T . (14)

We consider fixed speed supply pumps whose on/off status
is unchanged throughout the scheduling horizon. The single-
phase pump power consumption is

pte = b(xtij) ∀ e = (i, j) ∈ P , t ∈ T , (15)

where function b(·) calculates the power consumed by the
pump and assigns a third of the total pump power consump-
tion to each phase. For fixed speed pumps, this function is
traditionally modelled as a cubic [5], [6], quadratic [3], or
linear function [4], [17], [18] of flow rate or head gain. Here,
we assume a linear function of flow rate

pte = h0
ij + h1

ijx
t
ij ∀ e = (i, j) ∈ P , t ∈ T ,

where h0
ij and h1

ij are parameters.
Including these WDN constraints within the problem re-

sults in a semi-infinite program since (8)-(15) represent in-
finitely many constraints and adjustable variables xtij , `

t
j , and

Ht
j associated with every possible realization of the power

demand forecast error in the uncertainty set. However, we can
leverage monotonicity properties to tractably reformulate the
WDN constraints.

B. Monotonicity of WDNs

Next, we establish that the hydraulic heads Ht and tank
levels `t are monotonic functions of the reservoir water
injection and controllable pump power consumption. This
allows us to replace the semi-infinite water flow equations
with two sets of deterministic constraints that consider only
the minimum and maximum water injections.

In order to formulate the equivalent deterministic water
constraints, we must first prove the uniqueness of the water
flow solution given the water injections. If there exists a
unique solution, we can write the adjustable variables as
functions of the injections and evaluate the relationship be-
tween the water injections and the adjustable variables. Next,
we need to prove that the adjustable variables are monotonic
functions of the water injections (which vary based on the
uncertain power demand in the PDN). We build our analysis
on the monotonicity proofs for dissipative flow networks
in [2], [9]; however, there are several key differences. The
WDN requires additional formulation assumptions to ensure
monotonicity because of the additional adjustable variables
in the WDN (i.e., the tank levels) and the external constraints
on tank head. For example, we must ensure that the tank level
is a monotonic function of the reservoir water injections since
the tank level is a bounded adjustable variable.

1) Network Assumptions: We need to make the following
three assumptions for the monotonicity properties to apply
to the WDN. Note that the superscript t is dropped in this
subsection for brevity.

Assumption 1: The head loss function fij(xij) ∀ (i, j) ∈ E
and pump power consumption are increasing in flow rate.
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This assumption is in [2]. In the WDN, this assumption holds
for head loss in pipes and pumps whose on/off status is fixed
before the scheduling horizon. The pipe head loss function is
commonly modelled using the experimental Hazen-Williams
equation or theoretical Darcy-Weisbach equation, and in both
equations, the head loss is increasing with flow rate. We
assume the pump power consumption is increasing in flow
rate, which follows general power characteristic curves [19].

Assumption 2: If dj(1) ≤ dj(2) ∀ j ∈ R and dj(1) = dj
(2)

∀ j ∈ J , then dj
(1) ≥ dj

(2) ∀ j ∈ S . Given an increase
in reservoir water injections, we need to assume all tank
injections decrease. This assumption is always true for a
single tank network since water injections must sum to zero.
However, for this to be true in a multiple tank case, we need
an additional constraint that limits tank injection adjustments
to all be in the same direction. This limits the possible
feasible WDN solutions.

Assumption 3: The tank head is not strictly dependent
on the tank level. If the tank head is strictly dependent
on the tank level, an increase in reservoir water injection
would cause an increase in tank level and, consequently, tank
head. As a result, the junction heads surrounding the tank
may not be monotonically decreasing. We next consider two
tank formulations that satisfy this assumption and derive the
associated head constraints (12d). In both formulations, the
tank water injections become decision variables.

Tank Formulation 1. We assume that a valve is connected
to the tank’s outlet pipe so that we can control the outlet flow
rate/head, similar to [11], [17]. In this setup, the tank heads
must satisfy additional inequality constraints if the tank is
storing or supplying water. The constraints included in (12d)
in this formulation are

-Mαj ≤ dj ≤Mαj ∀ j ∈ S, (16a)
-Mβj ≤ dj ≤M(1− βj) ∀ j ∈ S, (16b)

-M(1− αj) ≤ H̃j −Hj ≤M(1− αj) ∀ j ∈ S, (16c)

`j −M(1− βj) ≤ H̃j ≤ `j +Mβj ∀ j ∈ S, (16d)
αj , βj ∈ {0, 1}, (16e)

where M > 0 is a large number, αj is a binary variable that
determines whether tank j is connected, and βj is a binary
variable that determines whether tank j is filling. Constraint
(16a) sets the tank water injection to zero if the tank is not
connected. In (16b), the tank is filling or emptying given
a positive or negative tank injection. In (16c), H̃j is an
auxiliary head variable. If the tank is connected, then the
head at the tank node is equal to H̃j ; otherwise the constraint
holds trivially. In (16d), if tank j is emptying, then Hj ≤ `j .
If tank j is filling, then Hj ≥ `j .

Tank Formulation 2. The tank level has no impact on the
tank head, similar to [3], [20]. For this assumption to be
feasible, the tank’s inlet and outlet pipes need a booster
pump and a valve, respectively. This formulation provides
the most flexibility in the water flow solution. No additional
head constraints are needed in (12d). A drawback to this
formulation is that the tank is no longer passive and the
booster pump consumes energy.

Fig. 2. The feasible water flow solutions for tank formulation 1 (Left) and
tank formulation 2 (Right) are shown in blue with an overlaid orange area
indicating the feasible water flow solutions when enforcing monotonicity.

In Fig. 2, we demonstrate the feasible water flow solutions
for tank formulations 1 and 2 using the coupled PDN-WDN
presented in Section V. For combinations of pump and tank
injections, we check if there exists a water flow solution
given the mixed-integer nonconvex water flow constraints.
Tank formulation 1 is less flexible than tank formulation 2
because the head and water level of the tanks limit when
the tank can store or supply water. Additionally, Fig. 2 also
shows the feasible solutions that satisfy monotonicity (i.e.,
the addition of Assumption 2 since Assumptions 1 and 3 are
already met). For this case study, we found that the feasible
range of pump flow rates is the same regardless of the
monotonicity constraint; however, the feasible combinations
of tank injections are significantly limited. However, tank in-
jection combinations that are not feasible under monotonicity
are cases in which the tanks are counteracting each other,
and so may correspond to more expensive (i.e., suboptimal)
operating points. In our case study, we use tank formulation
2 since the WDN has more flexibility and can provide more
voltage support. Our current formulation does not consider
the power consumption of the tank’s booster pump which we
plan to model in future work.

2) Existence and Uniqueness: Existence and uniqueness
of WDNs has been proven many times in the literature.
Given the water injections at all nodes, if the water flow
equations (8)-(10) are feasible and the head loss equation is
monotonically increasing in flow, then there exists a unique
solution to the water flow equations [21], [22].

3) Monotonicity of Head with Water Injections: We use
the Aquarius Theorem from [2] to show monotonicity of the
junction heads given reservoir water injections. The Aquarius
Theorem is summarized for comprehensiveness:
Aquarius Theorem [2]: Consider two sets of flow rates x(1)

and x(2) that satisfy (8) for injection vectors d(1) and d(2).
Let B ⊂ N . If d(1)

i ≥ d
(2)
i ∀ i ∈ B, then for every i ∈ B, there

exists a nonintersecting path i1, ..., iK , where i1 ∈ N \B and
iK = i such that x(1)

ikik+1
≤ x(2)

ikik+1
∀ k = 1, ...,K − 1.

The Aquarius Theorem states that given an ordered water
injection, there is a path of ordered water flows. Therefore,
we can make the following statement:

Proposition 1: Consider the solutions (x(1),H(1)) and
(x(2),H(2)) satisfying the conservation of water equation (8)
and the head loss equation (10) for water injection vectors
d(1) and d(2). If di(1) ≤ di

(2) for all i ∈ R, then H
(1)
j ≥

H
(2)
j for every node j ∈ N \ R.

Proof: We define sets B = {S ∪ J } and N \ B = R.
Given Assumption 2, we know that dj(1) ≥ dj

(2) ∀ j ∈ S
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since di(1) ≤ di
(2) ∀ i ∈ R. Using the Aquarius Theorem,

we know there is a nonintersecting path between every node
in B to a node in R that has an ordered flow rate since
di

(1) ≥ di
(2) for all i ∈ B (i.e., di(1) ≥ di

(2) for all i ∈ S
and di(1) = di

(2) for all i ∈ J ). We calculate the cumulative
head loss along the nonintersecting path i1, ...iK−1 defined
in the Aquarius Theorem from j ∈ R to i ∈ B, i.e.,

Hj −Hi =
K−1∑
k=1

fikik+1
(xikik+1

) ∀ i ∈ B, ∃ j ∈ R.

We know that H(1)
j = H

(2)
j for all j ∈ R since reservoirs are

treated as infinite sources with fixed pressure heads. Since
di

(1) ≥ di(2), through the Aquarius Theorem, we know that
x

(1)
ikik+1

≤ x(2)
ikik+1

∀ k = 1, ..,K − 1 along the path and

H
(1)
i = H

(1)
j −

K−1∑
k=1

fikik+1
(x

(1)
ikik+1

) ≥

H
(2)
j −

K−1∑
k=1

fikik+1
(x

(2)
ikik+1

) = H
(2)
i .

Therefore, if di(1) ≤ di
(2) for all i ∈ R then H

(1)
j ≥ H

(2)
j

for every node j ∈ N \ R. Conversely, if di(1) ≥ di
(2) for

all i ∈ R then H(1)
j ≤ H(2)

j for every node j ∈ N \ R.
This implies that the maximum head occurs at the min-

imum reservoir water injection. Conversely, the minimum
head occurs at the maximum reservoir water injection.

4) Monotonicity of Tank Level with Water Injections:
Proposition 2: Consider the solutions (x(1),H(1)) and

(x(2),H(2)) satisfying the conservation of water equation
(8) and the head loss equation (10) for water injection vectors
d(1) and d(2). If di(1) ≥ di(2) for all i ∈ R, then `(1)

j ≥ `
(2)
j

for every tank j ∈ S .
Proof: An increase in reservoir injection causes a

decrease in tank injection (Assumption 2). Since the tank
level increases given a decreasing tank injection (12b), we
know that the tank level increases with increasing reservoir
injection.

We are able to extend the monotonicity properties in
Propositions 1 and 2 to the pump power consumption since
we are considering supply pumps that are directly down-
stream of reservoirs. For these pumps, an increase in the
reservoir water injection is directly related to an increase in
water flow through the pump. Since the power consumption
increases with flow (Assumption 1), we know that the power
consumption increases with increasing reservoir injection.

Therefore ν3(·) in the ARO can be replaced with the two
extreme sets of pump power consumption and the scheduled
pump power consumption

Γscheduled(pnom) ≤ 0, (17a)
Γextreme(p) ≤ 0, (17b)
Γextreme(p) ≤ 0, (17c)

where Γscheduled(·) is the set of WDN equations (8)-(15) for
the scheduled operation and Γextreme(·) is the set of WDN

equations (8)-(11), (12b)-(15) for the extreme cases. We use
an overbar and underbar to denote the sets of WDN variables
for the maximum and minimum extreme cases, e.g., H and
H . The maximum and minimum pump power consumptions
are defined by the scheduled pump power consumption, Rup,
and Rdn,

pte = ptnom,e + (1/3)Rtup,e ∀ e ∈ P , t ∈ T , (18a)

pte = ptnom,e − (1/3)Rtdn,e ∀ e ∈ P , t ∈ T , . (18b)

Since the pumps are balanced 3-phase loads, we divide the
magnitude of the largest pump power adjustments by 3 to get
the single-phase pump power consumption. Additionally, we
enforce Assumption 2 in the extreme cases by including

d
t

j ≤ dtnom,j ∀ j ∈ S, t ∈ T , (19a)

dtj ≥ dtnom,j ∀ j ∈ S, t ∈ T , (19b)

in (17b) and (17c), respectively, where dtnom,j is the scheduled
reservoir water injection and d

t

j , d
t
j corresponds to the water

injections in the extreme scenarios.

C. Full AARC
Finally, we replace the general expression of the robust

reformulation of the WDN constraints ω3(x) with three sets
of deterministic constraints to obtain the full AARC

min
x

(7) (AARC)

s.t. ω1(x) ≤ 0,

ω2(x) ≤ 0,

(17), (18),

where x = {pnom,p,p,Rup,Rdn,C,H, `,x,H, `,x,H,
`,x}.

IV. WDN APPROXIMATIONS

Additionally, we approximate several of the deterministic
WDN constraints in the AARC to convexify the problem and
reduce computation time. Importantly, these approximations
are not necessary to guarantee robustness; the monotonicity
properties used in Section III guarantee robustness for the
nonconvex WDN constraints.

The head loss equations for pipes and pumps (10) are non-
convex. We replace the head loss function fij(xtij) for pipes
with a quasi-convex hull of the Darcy-Weisbach formulation
so we can model pipes with bi-directional flow [3]

Ht
i −Ht

j ≤ (2
√

2− 2)kijxijx
t
ij + (3− 2

√
2)kijx

2
ij ,

Ht
i −Ht

j ≥ (2
√

2− 2)kij |xij |xtij − (3− 2
√

2)kijx
2
ij ,

Ht
i −Ht

j ≥ 2kijxijx
t
ij − kijx2

ij ,

Ht
i −Ht

j ≤ 2kij |xij |xtij + kijx
2
ij ,

(20)
∀ (i, j) ∈ E \P , t ∈ T . Parameters xij and xij are lower and
upper bounds on pipe ij’s flow rate. We under-approximate
the pump head gain as a linear function

Ht
i −Ht

j = m3
ijx

t
ij +m2

ij ∀ (i, j) ∈ P , t ∈ T , (21)

where m3
ij and m2

ij are parameters. Therefore, the convexi-
fied (AARC) replaces (10) in (17) with (20)-(21).
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Fig. 3. Coupled PDN (left) and WDN (right). The blue dashed line indicates
where the water supply pump is connected to the PDN.

V. CASE STUDY

In our case study, we use a coupled PDN and WDN shown
in Fig. 3. We first describe the case study set up and then
present our case study results.

A. Set Up

The WDN is a test network (NET1) included with
EPANET, a free WDN modelling and simulation software
program developed by the U.S. Environmental Protection
Agency [23]. We pull the network data from the EPANET
input file and make the following modifications. We added an
additional tank (tank 2) in order to evaluate a case study that
requires the tank injection monotonicity constraints (19). We
reduced the volume of the first tank so that the total water
storage capacity remains the same. The updated tank data is
γj = 94.53 m2, `0j = 327.06 m, `j = 319.56 m, and `j =
334.56 m for tank 1 and γj = 94.54 m2, `0j = 339.02 m,
`j = 331.52 m, and `j = 346.52 m for tank 2. The minimum
head limit at each junction is equal to the elevation plus a
minimum pressure head of 20 m. The pump performance
coefficients are h1

ij = 1.09 kW/CMH, h0
ij = -22.88 kW,

m1
ij = -9.08 × 10-2 m/CMH, and m0

ij = 103.73 m with a
minimum and maximum flow rate of xij = 25 CMH and
xij = 390 CMH, respectively.

For the three-phase unbalanced PDN, we use the IEEE
13-bus feeder topology [24] with the same modifications
and assumptions as [7]. The pump is connected to bus 10.
We set ηe to 3. The minimum and maximum voltage limits
are 0.95 pu and 1.05 pu, respectively. The nominal power
demands at each bus and phase are multiplied by 1.5 so
that the PDN is heavily loaded and the voltages are close
to their minimum voltage limit. The power demand forecast
error is uncertain but bounded between [-σρ̄tk,φ, σρ̄

t
k,φ] at

each bus and phase with a load present, where σ indicates a
percentage of the forecasted load. We set πte = $100/MWh
and πtvs,e = $10/MWh. We solve the problem with the JuMP
package in Julia using the SCIP [25] and Gurobi [26] solvers.

B. Results

We first evaluate the robust solutions for a single time
period while varying the size of the uncertainty set (i.e.,
by varying σ). In Table I, we present the objective cost,
the scheduled pump power consumption, and the full range
of real-time pump power adjustments Rt = Rtup + Rtdn
for the robust voltage support problem with convex WDN

TABLE I
SINGLE-PERIOD RESULTS

σ (%) Objective Cost ($) Sched. Pump Power (kW) Rt (kW)
2 67.16 671.61 0
3 68.79 671.61 162.90
4 71.87 671.61 470.58
5 74.94 671.61 778.20

constraints. For all cases in Table I, the scheduled pump
power consumption is constant because the tank injections
must be non-positive (12a) and the scheduled pump power
consumption is minimized (i.e., the scheduled tank injection
is zero). When σ = 2%, the PDN does not experience
voltage limit violations for any realization of uncertain power
demand. Therefore, the control policy is zero and the water
pumps do not adjust their operation in real-time. As the
power demand uncertainty increases, a non-zero control pol-
icy is needed to handle some of the uncertainty realizations.
Consequently, the objective cost and Rt increase.

We check the robustness of the solutions in Table I with
the original, nonconvex WDN constraints and the linearized
PDN constraints. We randomly generated 1,000 uniformly
distributed power demand forecast error scenarios within the
uncertainty set. Given the scheduled pump power consump-
tion and the parameters of the pump power control policy, we
calculated the real-time pump power adjustments and verified
that the power flow equations and the nonconvex water
flow equations are satisfied. We found that the solutions are
feasible in the robust nonconvex problem for all uncertainty
scenarios tested.

Next, we solve the robust voltage support problem for a
24-hour period. In Fig. 4, we compare the solution of the
robust problem to that of a deterministic problem that uses
only the forecasted demands. We observe that the robust
schedule (17a) varies less than the deterministic schedule.
This is because the robust solution needs to be feasible
for the entire range of pump power adjustments around the
schedule, i.e., -Rtdn,e and +Rtup,e. The range of pump power
adjustments results in robust bounds around the WDN’s
adjustable variables (e.g., the pump flow rates and the tank
levels). We illustrate the range of bounds for the extreme
cases (17b)-(17c) in Fig. 4 with a blue shaded area.

The robust bounds of the tanks in Fig. 4 demonstrate the
propagation of uncertainty over multiple time periods. In our
formulation, the tank level (12b) is a function of the tank
level in the previous time period. As a result, the tank’s robust
bounds are dependent on the uncertainty from previous
time periods. As expected, the tank bounds increase over
time due to propagation of uncertainty across time periods.
We were unable to robustly solve the 24-hour problem for
larger uncertainty levels (e.g. σ = 5%), indicating that the
solution becomes increasingly conservative as the uncertainty
accumulates over the scheduling horizon until the robust
problem becomes infeasible. There are methods to deal with
uncertainty propagation, such as compensating for recently
observed forecast error [27], but we leave this to future work.

Next, we verify the computational tractability of the robust
voltage support problem by comparing the solver time of the
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Fig. 4. Pump flow rates and tank levels in the multi-period convex robust
problem (σ = 4%) for the robust schedule (solid blue lines) and the
deterministic schedule based on forecasted demands (red dotted lines). The
bounds on the robust pump flow rate and tank levels are shown with blue
shading around the schedule. The black dashed lines are the minimum and
maximum pump flow rates and tank levels.

robust problem with that of the chance-constrained voltage
support formulation solved via the scenario approach in [28].
The results in [28] are generated using a comparably sized
WDN. When solving the voltage support problem for 3 time
periods, the robust problem’s solver time was less than a sec-
ond whereas the chance-constrained problem’s solver time
was 10-50 minutes. For a scheduling horizon of 24 hours,
we were unable to solve the chance-constrained problem
due to memory issues whereas solving the robust problem
takes less than 2 seconds. This comparison demonstrates the
computational tractability of our proposed formulation.

VI. CONCLUSION

In this paper, we formulated an ARO problem that controls
water pumping in the WDN to provide voltage support to the
PDN given power demand uncertainty. We apply the mono-
tonicity properties from [2] to the WDN and identify the
tank operation assumptions needed to ensure monotonicity.
Using these properties, along with affine control policies and
constraint approximations, we reformulated the problem as
a tractable AARC. In our case study, we demonstrated the
robustness and computational tractability of our approach.
However, we found that the assumptions needed to enforce
monotonicity significantly restrict the feasible water flow
solutions. In the future, we will explore methods to reduce
the propagation of uncertainty and incorporate booster pumps
into the formulation.
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