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Abstract
Isotopic fractionation has been linked to the lattice vibrations of materials through their phonon 

spectra. The Lamb-Mössbauer factor (fLM) has the potential to provide information about the lattice 
vibrations in materials. We constrain the temperature evolution of the fLM of γ- and ε-Fe at in situ high-
P-T conditions between 1650 K and the melting point. We find that the vibrations of γ- and ε-Fe can be 
described using a quasiharmonic model with a pressure- and temperature-dependent Debye temperature 
computed from the measured fLM. From the Debye temperature, we derive the equilibrium isotopic 
fractionation β-factor of iron. Our results show that the quasiharmonic behavior of metallic iron would 
lower the value of lnβFe

57/54 by 0.1‰ at 1600–2800 K and 50 GPa when compared to the extrapolation 
of room temperature nuclear resonant inelastic X‑ray scattering data. Our study suggests that anhar-
monicity may be more prevalent in Fe metal than in lower mantle minerals at 2800 K and 50 GPa, a 
relevant condition for the core formation, and the silicate mantle may be isotopically heavy in iron.

Keywords: Iron isotope fractionation, high pressure-temperature, Mossbauer spectroscopy, 
anharmonicity

Introduction
Studies of the collective atomic oscillations in crystalline 

materials, or quantized lattice vibrations (phonons), are important 
for understanding and predicting the behavior of earth materials 
(e.g., Reynard et al. 2015). For example, acoustic phonons at the 
long-wavelength limit are intricately related to the elastic proper-
ties of minerals and affect seismic wave propagation within the 
Earth (Lin et al. 2005; Sturhahn and Jackson 2007; Zhang et al. 
2013; Murphy et al. 2013; Chen et al. 2014; Wicks et al. 2017). 
Measurements of the phonon density of states as a function 
of pressure provide constraints on important thermodynamic 
parameters, including the vibrational free energy, entropy, and 
kinetic energy (e.g., Murphy et al. 2013; Morrison et al. 2019). 
Understanding phonon behavior in minerals provides estimates 
on the thermal budget of the Earth, as heat is mainly stored and 
transported via vibrational excitations (Chai et al. 1996; Jeanloz 
and Morris 1986; Jeanloz and Richter 1979; Kieffer 1979a, 
1979b, 1979c, 1980, 1982). Studies of lattice vibrations have 
led to a better understanding of phase transitions (e.g., Wen-
tzcovitch et al. 2010; Yu et al. 2008, 2010), including melting 
(Shen and Heinz 1998; Alfè et al. 1999, 2002, 2004; Vočadlo 
and Alfe 2002). Geochemical studies have demonstrated that 
mantle derived rocks are ~0.1‰ heavier in δ57Fe than chondrite 
(Poitrasson et al. 2004; Sossi et al. 2016), and measurements of 
lattice vibrational properties of minerals and glasses are used to 
constrain whether the core formation would leave such isotopic 
signature to mantle rocks (Polyakov 2009; Shahar et al. 2016; 
Liu et al. 2017).

Lattice vibrations are determined by the interatomic potential 
(e.g., Reynard et al. 2015; Fultz 2010). In the harmonic approxi-
mation, the interatomic potential is quadratic in the vicinity of the 
atomic equilibrium positions (e.g., Dunitz et al. 1988; Trueblood 
et al. 1996; Sturhahn and Jackson 2007; Reynard et al. 2015). 
The harmonic approximation assumes that phonon spectra do not 
change with temperature. Although the harmonic approximation 
is used to explain selected physical properties of some solids 
under particular conditions (mostly at low temperatures), this 
model often fails to explain or predict material behavior under a 
wide range of conditions (Polyakov 1998; Fultz 2010; Wu 2010; 
Mauger et al. 2014). Several components contribute to the devia-
tion from harmonicity in solids and are described by different 
physical models. Often-used models to describe nonharmonic 
lattice vibrations are quasiharmonic approximations, which 
allow temperature- and/or pressure-induced volume changes 
while assuming harmonic, non-interacting phonons (Polyakov 
1998; Fultz 2010; Wu 2010; Mauger et al. 2014; Allen 2020).

Under some conditions, particularly at high temperatures, 
higher-order terms of the interatomic potential are required to 
describe the atomic displacements, and the anharmonicity is 
dominated by phonon-phonon interactions. These effects are 
sometimes named “intrinsic anharmonicity” (Polyakov 1998; 
Sturhahn and Jackson 2007; Fultz 2010; Reynard et al. 2015; 
Bansal et al. 2016; Allen 2020). In addition to phonon-phonon 
interactions, electron-phonon and magnon-phonon interactions 
might be included in the description of “intrinsic anharmonicity” 
(Fultz 2010; Mauger et al. 2014; Bansal et al. 2016). Anharmonic-
ity is the origin of several important physical properties in solids, 
such as thermal expansion and lattice thermal conductivity (e.g., 
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Reynard et al. 2015) and various other experimentally observable 
effects (Tse et al. 2005; Brown 1969; Chumakov et al. 1996; 
Mauger et al. 2014; Kim et al. 2018).

Here we assume weak anharmonicity, which permits us to use 
a quasiharmonic model for the lattice vibrations. A description of 
the lattice vibrations via the phonon density of states (DOS) can 
be determined experimentally, e.g., by inelastic X‑ray/neutron 
scattering or nuclear resonant inelastic X‑ray scattering. How-
ever, in many cases, a contraction of the DOS, such as specific 
heat or mean-square atomic displacement, is experimentally 
accessible. Our data provide us with the Lamb-Mössbauer fac-
tor of hot compressed iron, which for our quasiharmonic model 
is related to the mean-square displacement of the iron atoms:

  u
k

fLM
2

0
2
1 ln 	 (1)

where k0 = 7.306 Å−1 is the wavenumber of the 14.4125 keV 
X‑rays that corresponds to the nuclear resonant energy level of 
iron (Sturhahn 2004). The atomic mean square displacement 
〈u2〉 is the quantum-mechanical time-average of the square of 
atomic displacement with respect to its equilibrium position 
(Singwi and Sjölander 1960; Sturhahn and Chumakov 1999), 
and the close relationship between the atomic mean square dis-
placement 〈u2〉 and the DOS has been described earlier (Singwi 
and Sjölander 1960; Dunitz et al. 1988; Trueblood et al. 1996; 
Sturhahn and Chumakov 1999). A harmonic model gives a 
linear temperature behavior for sufficiently high temperatures 
limT→∞〈u2〉 ∝ T. Deviations from this asymptotic linearity are 
interpreted as resulting from anharmonicity.

Using Mössbauer spectroscopy data, the equilibrium 
isotopic fractionation β-factor was first estimated from the 
second-order Doppler shift (Polyakov 1997; Polyakov and 
Mineev 2000). More recently, using nuclear resonant inelastic 
X‑ray scattering (NRIXS), the general moments (GM) method 
has been developed to estimate the iron isotopic fractionation 
between minerals from their lattice vibrational properties 
(Polyakov et al. 2007; Polyakov 2009; Dauphas et al. 2012, 
2018). In the GM method, the equilibrium isotopic fraction-
ation β-factor of each mineral is calculated either from the 
moments of the iron nuclear resonant inelastic X‑ray scattering 
spectrum (Polyakov et al. 2007; Polyakov 2009), or from the 
mean force constants (stiffness) derived from the iron partial 
phonon DOS (Dauphas et al. 2012; Shahar et al. 2016; Liu et 
al. 2017), or both (Murphy et al. 2013; Dauphas et al. 2018). A 
few recent studies have used this GM approach to estimate the 
iron isotopic fingerprints on the bulk silicate earth during the 
core-formation process (Shahar et al. 2016; Liu et al. 2017). 
Most of the studies using the GM approach extrapolate room 
temperature NRIXS results to high temperatures without con-
sidering deviations from harmonicity. Studies have suggested 
that the deviation from harmonicity of lattice vibrations lowers 
the β-factor and that the quasiharmonic correction has a more 
pronounced effect than the intrinsic anharmonic component 
(Polyakov 1998, 2009).

Mössbauer spectroscopy is a suitable method to measure 
the Lamb-Mössbauer factor, which is the probability of re-
coilless scattering of nuclear resonant X‑rays, under various 
experimental conditions (Sturhahn 2004; Sturhahn and Jackson 

2007). One can calculate the temperature dependence of 〈u2〉 
from the temperature dependence of fLM using Equation 1. 
fLM varies with material composition, lattice or local atomic 
structure, and experimental conditions, such as temperature 
or pressure (Bergmann et al. 1994; Chumakov et al. 1996; 
Shen et al. 2004; Lin et al. 2005; Jackson et al. 2013; Zhang 
et al. 2016; Morrison et al. 2019). However, the relationship 
between Lamb-Mössbauer factor and isotopic fractionation 
has not been established and is presented here as an important 
innovation for the study of isotopic fractionation in solids at 
high temperatures.

The physical and chemical properties of iron at elevated 
pressure-temperature conditions are important to understand 
the internal structure and evolution of the Earth. In addition to 
the liquid state, iron is known to have three major allotropes 
at elevated pressure-temperature conditions: the body-centered 
cubic (α) phase, the face-centered cubic (γ) phase, and the 
hexagonal close-packing (ε) phase. The fLM of α-Fe has been 
measured at various temperatures from 4 to ~1300 K using 
conventional Mössbauer spectroscopy (Kolk et al. 1986; Kovats 
and Walker 1969), NRIXS (Chumakov and Sturhahn 1999; 
Mauger et al. 2014), and synchrotron Mössbauer spectroscopy 
(SMS) [Bergmann et al. (1994), room pressure only]. The fLM 
of ε-Fe has been studied with NRIXS up to 171 GPa at 300 K 
(Murphy et al. 2013; Morrison et al. 2019) and up to 73 GPa at 
temperatures below 1700 K (Shen et al. 2004; Lin et al. 2005). 
Limited measurements on the fLM of γ-Fe have been carried 
out at room pressure (Kovats and Walker 1969; Mauger et al. 
2014). The fLM of γ-Fe has never been systematically studied 
at high pressures. Measuring the fLM of iron at temperatures 
above 1700 K is challenging using conventional Mössbauer 
spectroscopy and NRIXS, because the recoil-free fraction 
decreases with temperature, and it is very difficult to maintain 
a stable uniform sample temperature over the long data collec-
tion times required to obtain a statistically meaningful result 
(several hours to days).

We have measured the Lamb-Mössbauer factor of iron 
at elevated pressures and temperatures using synchrotron 
Mössbauer spectroscopy. Our method combines the laser-
heated diamond-anvil cell (DAC), the recently developed fast 
temperature readout spectrometer (FasTeR) for accurate and 
precise temperature determinations, and the SMS technique to 
monitor the atomic dynamics of the iron nuclei (Singwi and 
Sjölander 1960; Boyle et al. 1961; Jackson et al. 2013; Zhang 
et al. 2015, 2016), while constraining the evolution of the ef-
fective thickness of the sample. This approach is capable of 
determining the fLM, and thus iron’s atomic mean square dis-
placement, up to its melting point at elevated pressures. From 
the fLM data, we present a quasiharmonic correction to iron’s 
isotope fractionation β-factor at elevated pressure-temperature 
conditions, and discuss its potential geochemical implications 
to Earth’s core formation process.

Experiments to determine the Lamb-Mössbauer 
factor at high-P-T conditions

In our experiment, a symmetric DAC is used to provide the high-pressure 
environment. Two Type-I diamonds with 300 µm culet are mounted and aligned 
to form the anvils. A Re gasket is pre-indented to ~45 µm thick, and a 115 µm 
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diameter hole is drilled in the center of the pre-indention using a laser drilling 
system. A 95% isotopically enriched 57Fe foil with 3 µm thickness is cut into a 
70 × 70 µm2 square section and cleaned. Note the 57Fe samples used here are from 
the same larger foil used in previous studies (Jackson et al. 2013; Murphy et al. 
2013; Zhang et al. 2016). Dehydrated KCl is pressed into transparent flakes and 
loaded together with the foils in a sandwich configuration into the Re gasket. The 
KCl serves as both a pressure-transmitting medium and thermal insulator. The DAC 
is heated in a vacuum furnace overnight before closing to remove the moisture.

The experiments are carried out at beamline 3-ID-B at the Advanced Photon 
Source, and the experimental setup is illustrated in Zhang et al. (2015). The 
storage ring is operated in low-emittance top-up mode with 24 bunches that are 
separated by 153 ns. The energy (14.4125 keV) and resolution (1 meV) of the 
X‑rays are determined by a silicon high-resolution monochromator (Toellner 
2000) and a focus area of ~10 × 14 µm (full-width at half maximum) is achieved 
by a Kirkpatrick-Baez mirror system. In situ angular-dispersive X‑ray diffraction 
(XRD) patterns are collected at beamline 3-ID-B using 14.4125 keV X‑ray to 
constrain the crystal symmetry and unit-cell parameters, which are used to com-
pute the pressure using the equation of state of iron (see below). A high-resolution 
MAR image plate, located ~0.3 m downstream from the DAC, is used to collect 
the XRD patterns. Each XRD pattern is collected for ~30 min. A CeO2 standard 
sample is used to calibrate the sample to image plate distance and correct the tilt 
of the image plate. The diffraction images are integrated into angular resolved 
intensity files using the DIOPTAS software (Prescher and Prakapenka 2015). 
In our experiments, ε-Fe is observed in both runs at ambient temperature. The 
300 K equations of state of ε-Fe from Fei et al. (2016) are used to calculate the 
pressure at room temperature. All the samples are laser-annealed at 1500 K for 
~30 min before XRD measurements are collected so as to release the residual 
deviatoric stress and reduce the pressure gradient on the sample. After the heating 
run, we collect another XRD pattern at 300 K to constrain any pressure drift. We 
report the pressure computed using the XRD measurements at the sample location 
where the heating experiment is applied. We estimate the thermal contribution 
to the pressure using the empirical equation from our previous study utilizing 
a similar sample configuration: ΔP = a(T –300K) + c(T 2 – 90 000K2), where 
a = 4.6 × 10−3 GPa/K, c = 2 × 10−6 GPa2/K2, and an additional 2 GPa is added 
to the pressure uncertainty in Table 1 due to the scatter in the thermal pressure 
contribution (Zhang et al. 2016).

The experimental setup of the SMS measurement is similar to that of the 
XRD, and an avalanche photodiode is placed ~0.5 m downstream from the sample 
(Zhang et al. 2015). As stated above, the samples in each DAC are laser-annealed 
prior to the following experimental procedure. An SMS spectrum is first collected 
at room temperature (300  K) as a reference on the sample position where the 
high-temperature measurement will be carried out. The room-temperature SMS 
spectrum provides two pieces of information: the time interval used to collect the 
time-resolved SMS signal (also known as the timing window of the experiment, 
see Sturhahn 2001) and the effective thickness of the sample before the series of 
high-temperature measurements. The profile of the time-resolved delayed counts, S, 

is a function depending on the level splitting of the resonant nuclei and the effective 
thickness of the sample, η. The effective thickness is a dimension-less number given 
as the product of the numerical density of the 57Fe nuclei, ρ, the physical thickness 
of the sample, d, the nuclear resonant cross section, σ = 2.56 × 10–22m2, and the fLM:

η = ρdσfLM.	 (2)

For γ- and ε-Fe, it is known that the nuclear levels of 57Fe are unsplit (Macedo 
and Keune 1988). Therefore, S reduces to:

S t e J t
t

t( , ) ( / )
/

/ 
 

 
 2 1

2

	 (3)

where t is the time delay from the exciting X‑ray bunch, J1 is the first-order Bessel 
function of the first kind, and τ is the life time of the excited nuclear state (141 ns 
for 57Fe) (Sturhahn 2000; Jackson et al. 2013). By fitting the room-temperature SMS 
spectrum with Equation 3, the effective thickness distribution at 300 K is obtained 
(Fig. 1). Since the fLM of ε-Fe has been measured as a function of pressure (Murphy 
et al. 2013), one can calculate the physical thickness distribution from the effective 
thickness distribution.

The next step is to determine the effective thickness as a function of temperature 
by monitoring the temperature evolution of the integrated SMS signal (delayed 
counts). We proceed to heat both sides of the sample to 1650 K and balance the 
temperatures read from a charge-coupled device (CCD) detector so that the sample 
is heated uniformly (Jackson et al. 2013; Zhang et al. 2015, 2016). The temperature 
difference of the upstream and downstream sides of the sample is found to be smaller 
than 10 K. We collect a high-temperature SMS spectrum and determine the effective 
thickness under these conditions (Fig. 1). After the high-temperature SMS measure-
ment, we proceed with a computer-acquisition program to ramp up the laser power 
until the sample melts while simultaneously monitoring the delayed counts, the 
temperature of the sample, and the readings of ion chambers (Jackson et al. 2013; 
Zhang et al. 2016). Each temperature is held for 3 s, which is enough for the sample 
to reach thermal relaxation and equilibration (Anzellini et al. 2013). The temperature 
of the sample is monitored by the FasTeR spectrometer and CCD detector (Zhang et 
al. 2015), and the reported temperature error incorporates the fluctuation of the ~300 
FasTeR readings within the 3 s data collection time, and the estimated 10 K tempera-
ture difference between the upstream and downstream sides of the sample (Zhang et 
al. 2016). The melting point is determined from fits to the data set of normalized SMS 
delayed counts as a function of temperature using the MINUTI software package 
(Sturhahn 2020; Zhang et al. 2015). Due to the finite timing window, the delayed 
counts are not directly proportional to the effective thickness. The delayed counts 
are first normalized with the readings from ion chambers, which is proportional to 
the incident X‑ray photon flux. Then, the normalized delayed counts are converted 
to effective thickness using the following equation (Fig. 2):

I Ae S t dtd

t nt

t nt

n
B

B( ) ( , )   










1

2

0 	 (4)

where t1 and t2 are the beginning and end of the time window accessible from the 
SMS spectrum, tB is the time interval between X‑ray pulses given by the synchro-
tron operation mode (in our case tB = 153 ns), A is a scaling factor that depends on 
experimental conditions such as spectral X‑ray flux incident on the sample, d is the 
physical thickness of the sample, µ is the electronic absorption coefficient of the 
sample material, S is the profile of time-resolved delayed counts described in Equa-
tion 3, and η is the effective thickness of the sample (Jackson et al. 2013). In the data 
fitting, the starting effective thickness is constrained from the 1650 K SMS spectrum, 
and the effective thickness at the melting point is fixed as 0 (Zhang et al. 2016).

After determining the effective thickness of the sample at different temperatures, 
the fLM is then calculated from Equation 2. To calculate fLM, one needs to estimate 
the variation of the numerical density of resonant nuclei over the experimental time 
scale. We estimate the upper limit of the variation in the numerical density of resonant 
nuclei using the data collected at the lowest and highest temperatures. At 1656 K and 
54 GPa (ε-Fe), the calculated numerical density of resonant nuclei is 0.1779 mol/
cm3 (Fei et al. 2016). At 2842 K and 57 GPa (γ-Fe), the calculated numerical density 
of resonant nuclei is 0.1785 mol/cm3 (Komabayashi and Fei 2010). The estimated 
upper limit of the variations in numerical density during the experiment is 0.35%, 
much smaller than the experimental error. To simplify the calculation, we assume 
that the numerical density of resonant nuclei does not change during the experiment. 
By assuming that the sample chamber’s thickness does not change during the experi-
ment, as verified by X‑ray absorption scans across the chamber before and after each 
heating cycle, the change of the physical thickness (Δd) is monitored using the ion 
chambers upstream and downstream from the sample:

Table 1.	 Lamb-Mössbauer factor and β-factor of iron at various tem-
peratures and pressures determined in this study

	 Run 1	 Run 2
T (K)	 P (GPa)	 fLM	 lnβ57/54 (‰)	 T (K)	 P (GPa)	 fLM	 lnβ57/54 (‰)
1656(61)	 54(3)	 0.41(9)	 0.38(8)	 1675(53)	 51(4)	 0.41(6)	 0.37(6)
1957(78)	 55(3)	 0.38(8)	 0.29(6)	 1740(60)	 51(4)	 0.43(7)	 0.38(7)
2107(42)	 56(3)	 0.30(8)	 0.22(5)	 1988(88)	 53(4)	 0.28(3)	 0.22(2)
2330(51)	 57(3)	 0.24(3)	 0.17(1)	 2173(35)	 54(4)	 0.183(7)	 0.151(3)
2459(43)	 58(3)	 0.24(5)	 0.16(2)	 2266(64)	 54(4)	 0.180(6)	 0.143(3)
2552(44)	 59(3)	 0.11(1)	 0.101(4)	 2431(34)	 55(4)	 0.20(2)	 0.14(1)
2574(55)	 59(3)	 0.092(8)	 0.091(3)	 2377(32)	 55(4)	 0.16(2)	 0.129(7)
2655(80)	 59(3)	 0.11(1)	 0.094(4)	 2438(41)	 55(4)	 0.14(1)	 0.117(5)
2695(54)	 59(3)	 0.082(7)	 0.083(3)	 2425(22)	 55(4)	 0.108(9)	 0.103(4)
2640(93)	 59(3)	 0.079(7)	 0.083(3)	 2474(43)	 55(4)	 0.16(1)	 0.123(6)
2642(89)	 59(3)	 0.14(1)	 0.108(6)	 2540(45)	 56(4)	 0.17(2)	 0.122(6)
2813(53)	 60(3)	 0.0(0)	 NA	 2635(48)	 56(4)	 0.12(1)	 0.102(4)
				    2578(52)	 56(4)	 0.065(6)	 0.079(3)
				    2586(33)	 56(4)	 0.13(1)	 0.105(4)
				    2677(36)	 56(4)	 0.061(6)	 0.074(2)
				    2717(20)	 57(4)	 0.068(6)	 0.076(3)
				    2764(31)	 57(4)	 0.019(4)	 0.051(2)
				    2842(19)	 57(4)	 0.0(0)	 NA
Notes: Numbers in parentheses indicate the error bar rounded to the last signifi-
cant digit. At the melting point the β-factor is not available due to the divergence 
when calculating 〈u2〉 using Equation 1.
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d A A





0

1 1/ / KCl Fe

	 (5)

where µKCI and µFe are the attenuation lengths of KCl and Fe at 14.4125 keV (Henke 
et al. 1993), A is the normalized X‑ray absorption constrained from the ion chambers 
before and after the sample at each temperature, and A0 is the normalized X‑ray 
absorption before heating. The fLM at pressures ranging from around 50 to 60 GPa 
and a range of temperatures up to melting are listed in Table 1. We compare our 
results with previous NRIXS measurements on Fe (Shen et al. 2004; Lin et al. 2005; 
Mauger et al. 2014) at high pressures and temperatures (Fig. 3). We notice that the 
fLM of γ- and ε-Fe have the following features: within the experimental error, the 
temperature dependence of the fLM of γ-Fe and ε-Fe show a continuous linear trend 
up to melting, and the effect of temperature on the fLM is more significant than the 
effect of pressure. Using these features, we build the following model (hereinafter 
referred to as the Lamb-Mössbauer factor with temperature or FLMT model) to 
calculate the fLM of γ- and ε-Fe at elevated P-T conditions. We assume that the fLM 
of iron is a linear function of temperature between 300 K and the melting point at 
the stability fields of γ- and ε-Fe. At the melting point, the fLM of iron is fixed at 
zero (Jackson et al. 2013). So, we have:

f T T T
T

fLM LM K( ) ,



melt

melt 300 300 	 (6)

In Equation 6, Tmelt is the melting temperature of iron at the experimental 
pressure (Zhang et al. 2016). The fLM of ε-Fe at 300 K is fitted as a function of 
pressure using an empirical equation (Murphy et al. 2013): fLM,300 K (P) = C − Ae−BP, 

where A = 0.115(3), B = 0.012(1) GPa−1, and C = 0.936(4). As is shown in Equa-
tion 6, the FLMT model is not a linear fit to the fLM data determined at different 
experimental temperatures.

From quasiharmonic Debye model to the 
equilibrium isotopic fractionation factor

Under the harmonic approximation, a solid with N atoms 
has 3N-6 independent phonons. The equations for the lattice 
vibrations can be solved exactly, and the fLM can be calculated 
for the thermalized ensemble (Sturhahn and Jackson 2007; 
Murphy et al. 2013):

f E
E

E
T

g E dELM
Rexp

kB

coth ( )
2

	 (7)

where ER is the recoil energy for the resonant nuclei (1.956 meV 
for 57Fe, Sturhahn and Jackson 2007), E is the phonon energy, 
and g(E) is the partial (or projected) phonon DOS. The quantity 
g(E) is usually determined experimentally from an NRIXS 
spectrum (Sturhahn 2004). However, with only the fLM available, 
it is not possible to determine the exact formulation of g(E). 
When the exact formulation of g(E) is not known, one needs 
to prescribe a model for g(E). We assume weak anharmonicity, 
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c) d)
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Figure 1. SMS spectra and fitted effective thickness distributions of iron at 300 and 1650 K at elevated pressures. Top panels: Synchrotron 
Mössbauer delayed counts (S) as a function of time (Eq. 3), from which the effective thickness (η) is fitted. Bottom panels: Best-fit probability 
density of effective thicknesses (η) at different temperatures. The area integration under each curve is 1. The η at higher temperature is expected 
to be smaller than η at lower temperatures, because fLM decreases with temperature. The physical thickness of the sample changed <6% during the 
experiment, and the change in η was dominated by the decrease of fLM with temperature. (Color online.)
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which permits us to use a quasiharmonic model to describe 
the phonon behavior of iron. In the Debye model, g(E) has 
the following form (Debye 1913; Singwi and Sjölander 1960; 
Leu and Sage 2016):

g E
E E

E
D

D

D

( ) ( )
( )

( )














3

0

2

3k
k

k
B

B

B






	 (8)

The parameter θD is the material-specific Debye temperature 
(Singwi and Sjölander 1960; Shen et al. 2004; Leu and Sage 
2016). θD varies with unit-cell volume and is implicitly influenced 
by temperature through thermal expansion in the quasiharmonic 
Debye model (Baroni et al. 2010; Blanco et al. 2004). By combin-
ing Equations 1, 7, and 8, one can determine θD from 〈u2〉 with 
the following relationship based on the Debye model (Singwi 
and Sjölander 1960; Shen et al. 2004):

     






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


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k
T x

e
dxLM

R

D D
x

T
D

ln
kB 




	 (9)

As discussed in the introduction, the harmonic approxi-
mation does not have a volumetric dependence of the lattice 
vibrational frequencies and thus has shortcomings such as zero 
thermal expansion, zero Grüneisen parameter, and infinite lat-
tice thermal conductivity (Erba 2014; Blanco et al. 2004; Baroni 
et al. 2010). To overcome the drawbacks of the harmonic ap-
proximation, the quasiharmonic approximation is often used to 
describe the behavior of real solids (Sturhahn and Jackson 2007; 
Blanco et al. 2004; Mauger et al. 2014). The quasiharmonic 
approximation assumes the existence of phonons (hence the 
use of Eq. 7 is justified) but does not consider phonon-phonon 
interactions and introduces an explicit dependence of vibration 
phonon frequencies on volume (Erba 2014; Blanco et al. 2004; 
Mauger et al. 2014; Baroni et al. 2010; Wu 2010; Sturhahn and 
Jackson 2007). The quasiharmonic approximation holds for 
many solids, while it fails for liquids or fast atomic diffusion 
where the collective atomic motions are different from phonons 
(Sturhahn and Jackson 2007). In the scope of this paper, the 
quasiharmonic Debye model is used.

The equilibrium isotopic fractionation β-factor is defined 
as the equilibrium isotopic fractionation factor between a 
mineral phase that contains the element of interest (X) and the 
monatomic ideal gaseous phase of element X (Richet et al. 
1977; Schauble 2011; Huang et al. 2013; Eldridge et al. 2016). 
β-factor can be expanded as a function of the even powers of 
the inverse temperature (1/T), and the coefficients of each term 

a) b)

c) d)

Run1

Run2

Run1

Run2

Figure 2. Determination of the effective thicknesses at different 
temperatures using SMS delayed counts. The evolution of pressure 
with temperature is noted in Table 1. The pressures at 300 K are 47 ± 
3 GPa for Run 1 and 44 ± 4 GPa for Run 2. The theoretical curves (right 
panels) are calculated using the effective thickness determined by the 
1650 K SMS spectrum (Fig. 1) and Equation 4, and then scaled with the 
maximum value of the measured SMS delayed counts (left panels). The 
effective thickness for each temperature is determined by projecting the 
measured SMS delayed counts to the corresponding theoretical curves. 
The maximum value of the measured normalized delayed counts are 
different between runs, because of the temporal drift in incident resonant 
X‑ray flux and the variations in sample thickness. Dashed curves in b 
and d = error range of the theoretical curve calculated from Equation 4. 
(Color online.)

6.0

2929

29

20

6.0

ε-γ boundary at 50 GPa,
Komabayashi et al., 2009

36.0-71.0

72.8
73.3

57.5
39.0

47.2
46.5 57.9

54.6

54.1

58.1

�-Fe, 
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This study, Run1
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Lin et al., 2005
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Figure 3. fLM of iron at different pressures and temperatures. Magenta 
diamonds, crosses and stars = fLM of α-Fe measured at room pressure 
by Mauger et al. (2014), Bergmann et al. (1994), and Chumakov et al. 
(1996), respectively. Magenta solid curve = fLM calculated from harmonic 
model at 0 GPa. Red up triangles and green down triangles = fLM of γ- 
and ε-Fe measured at high pressures by Shen et al. (2004) and Lin et al. 
(2005), respectively. Number next to each triangle indicates its pressure 
at 300 K. Blue circles and cyan squares = fLM determined by this study. 
Blue solid curve = fLM calculated from the harmonic model at 50 GPa. 
Blue dotted line = fLM calculated from the FLMT model. Black dashed 
line shows the γ-ε phase boundary of Fe at 50 GPa (Komabayashi et al. 
2009). (Color online.)
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are determined by the Debye temperature θD (Polyakov and 
Mineev 2000; Polyakov et al. 2005). If one expands lnβ to 1/
T6, the equation is (Polyakov and Mineev 2000; Polyakov et 
al. 2005; Dauphas et al. 2018):

ln   
I I

D D D
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where I and I* are two isotopes of masses M and M*, and θD is the 
Debye temperature calculated from Equation 9. Using Equations 9 
and 10, we calculate the equilibrium fractionation factor between 
57Fe and 54Fe at different pressures and temperatures (Fig. 4). The 
β-factor between 57Fe and 54Fe of pure iron at room pressure is 
calculated using the fLM data of α-iron up to the α−γ transition 
temperature from Mauger et al. (2014) (Fig. 4a). The β-factor of 
iron at ~50 GPa is calculated from our measured fLM data of γ- 
and ε-Fe, and the fLM is calculated from the 50 GPa FLMT model 
(Fig. 4b). At the melting point, fLM is zero, and the value of 〈u2〉 in 
Equation 9 diverges in the FLMT model.

Using a quasiharmonic Debye model, our data clearly shows 
that at high temperatures, the equilibrium isotopic fractionation 
lnβFe

57/54 is systematically lower than the results extrapolated from 
room-temperature NRIXS data using the GM approach (Fig. 4), 
which is supported by published data (see “Support of the qua-
siharmonic correction from published data” section below). In 
several recent studies that utilized the GM approach, the lnβFe

57/54 
was calculated from force constants that were derived from room 
temperature NRIXS spectra, and these force constants were as-
sumed to be invariant with temperature (e.g., Dauphas et al. 2012; 

Shahar et al. 2016; Liu et al. 2017). Our calculation suggests that 
the quasiharmonic correction would systematically lower the 
lnβFe

57/54 between 1600 and 2800 K at 50 GPa by ~0.1‰ when 
compared to the lnβFe

57/54 calculated at high temperature using a 
room temperature force constant, thus indicating the force constant 
varies with temperature.

Support of the quasiharmonic correction from 
published data

Quasiharmonic correction of mantle and core materials 
constrained from macroscopic thermodynamic quantities

Polyakov (1998, 2009) consider various temperature effects to 
the calculations of the isotope fractionation β-factor and suggest 
that intrinsic anharmonicity has a minor effect on the β-factor 
(Polyakov 1998). Therefore, Polyakov (2009) evaluates the 
effects of temperature using the approach of Gillet et al. (1996), 
but neglects the intrinsically anharmonic term (Polyakov 1998), 
and provides an estimate to the quasiharmonic correction to the 
β-factor using the following equation:

 ln
ln





 

6 th

T

RT
VK

	 (11)

where γ is the normalized modal Grüneisen parameter, γth is the 
thermal Grüneisen parameter, which is equal to γ for single-
element substances (e.g., Fe), R is the gas constant, V is the molar 
volume, and KT is the isothermal bulk modulus. Equation 11 uses 
thermodynamic parameters that cover the whole phonon spectrum 
and is not limited by the Debye model where a cut-off phonon 
energy exists (Polyakov 1998). Using updated thermodynamic 

A)     1 bar

Polyakov, 2009
Liu et al., 2017

Mauger et al., 2014, �-Fe, fLM

Harmonic approximation

Mauger et al., 2014, �-Fe, DOS

B)     High pressure

Polyakov, 2009
Liu et al., 2017
Harmonic approximation
FLMT model

This study, Run 1 & 2, fLM
Lin et al., 2005, DOS

50 GPa calculations

Figure 4. Equilibrium fractionation factor between 57Fe and 54Fe at different pressures and temperatures. (a) Data at 1 bar. Cyan squares: 
Mauger et al. (2014), calculated from the fLM data using Equations 1 and 2. The fLM in Mauger et al. (2014) is calculated using the PHOENIX 
software package. Magenta crosses = Mauger et al. (2014), calculated from the phonon DOS and the GM approach (Polyakov 2009; Dauphas et al. 
2018). Black solid line = Polyakov (2009). Black dashed line = Liu et al. (2017), recalculated using equation 103lnβ57/54 = 1.47 × 103lnβ56/54 (Young 
et al. 2002). Red solid line = β-factor calculated from harmonic approximation using Equations 1 and 2. Red dotted line = β-factor calculated 
from harmonic approximation shifted down by 0.1‰ as a visual reference. (b) Data at 51–60 GPa. Blue circles and cyan squares = iron β-factors 
determined by this study (Table 1). Magenta square = Lin et al. (2005), calculated from the phonon DOS and the general moments approach. Black 
solid line = 50 GPa data from Polyakov (2009). Black dashed line = 50 GPa data, recalculated from Liu et al. (2017). Red solid line = β-factor 
calculated from the harmonic approximation at 50 GPa. Red dotted line = β-factor calculated from harmonic approximation shifted down by 0.1‰ 
as a visual reference. Cyan line = β-factor calculated from the 50 GPa FLMT model. Shaded region = possible range for lnβ of Fe at temperatures 
above the melting point. (Color online.)
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parameters, we recalculate the quasiharmonic corrections to the 
β-factor of iron at high temperatures using Equation 11. For 
α-Fe at 1000 K and 1 bar, we use γ = 1.81 (Mauger et al. 2014), 
V = 7.32 cm3/mol (Liu et al. 2004), and  KT = 139.1 GPa (Dever 
1972). The estimated quasiharmonic correction of α-Fe at 1000 K 
is –0.12‰. For comparison, Polyakov (2009) estimated the upper 
bound of the quasiharmonic correction to lnβFe

57/54 as ~ –0.03‰ at 
1000 K (1 bar) by assuming VFe = 6.89 cm3/mol and a Grüneisen 
parameter γ = 1.

For ε-Fe at 50 GPa and 3000 K, we use γ = 1.65 (Murphy et al. 
2011), V = 5.56 cm3/mol (Murphy et al. 2011), and KT = 240 GPa 
(Fei et al. 2016). The estimated quasiharmonic correction of ε-Fe 
at 50 GPa and 3000 K is –0.05‰. The Grüneisen parameters 
used in the recalculation are extrapolated from room-temperature 
NRIXS results and could introduce an estimated uncertainty of 
up to 15% [estimated from the variation in Grüneisen parameters 
of ε-Fe (Merkel et al. 2000; Lübbers et al. 2000; Giefers et al. 
2002; Murphy et al. 2011)], which leads to a propagated uncer-
tainty of 0.02‰ to lnβFe

57/54 in the quasiharmonic correction. The 
quasiharmonic corrections to lnβFe

57/54 of α- and ε-Fe using Equa-
tion 11 are compatible with our estimations shown in Figure 4 
(–0.10 ± 0.02‰), and the quasiharmonic corrections constrained 
by both methods have consistent and appropriate direction. One 
advantage of our approach is that the experiment is carried out in 
situ at high-P-T conditions.

Published data revisited: Does the general moment’s 
method capture the quasiharmonic correction?

The GM model can be derived either using the Bigeleisen-
Mayer-Urey equation or using an alternative approach from the 
kinetic energy (Bigeleisen and Mayer 1947; Urey 1947; Polyakov 
1998, 2009; Dauphas et al. 2012). The Bigeleisen-Mayer-Urey 
equation is compatible with both harmonic and quasiharmonic 
Debye models (Polyakov 1998) and is approximated by the GM 
model using the phonon DOS when expanded in Taylor series 
(Kowalski and Jahn 2011). In order for the GM model to be 
valid to approximate the Bigeleisen-Mayer-Urey equation, it is 
required that the phonon angular frequencies ω (cm−1) < 8.73 T (K) 
(Kowalski and Jahn 2011)1. The vibrational angular frequency of 
iron in minerals is usually less than 1000 cm−1 (Dauphas et al. 
2012), so the GM model can be used to calculate the β-factor at 
temperatures above 115 K. Therefore, it is possible to validate 
the β-factor calculated from fLM with the GM model using phonon 
DOS measurements at high temperatures.

We examined published DOS data that were collected at both 
room pressure and high pressures from other research groups 
(Mauger et al. 2014; Lin et al. 2005). In the validation with the 
room-pressure data, we used the fLM and the phonon DOS that 
come from the same NRIXS data set to calculate the β-factor 
(Mauger et al. 2014). We calculated the β-factor from the fLM 
using Equations 9 and 10, and we calculated the β-factor from 
the high-temperature phonon DOS using the equations from 
the GM approach given in Polyakov (2009) and Dauphas et 
al. (2018). Figure 5 demonstrates that the β-factors calculated 
from the same high-temperature NRIXS data set using different 
approaches are consistent with each other. Figure 4a shows that 
the lnβ calculated from both the fLM (cyan squares, Fig. 4a) and 
the phonon DOS (magenta crosses, Fig. 4a) are lower than the 

Figure 6. Equilibrium isotope fractionation β-factor between 57Fe 
and 54Fe in ε-Fe at simultaneous high-P-T conditions calculated using 
GM method (Dauphas et al. 2012). Red solid line = lnβFe

57/54 calculated 
from GM model using force constant determined at 54.6 GPa and 300 K 
(325.6 N/m) (Dauphas et al. 2012). Red dotted line = lnβFe

57/54 calculated 
from GM model shifted down by 0.1‰ for the purpose of demonstration, 
truncated at 1700 K since experimental data above 1700 K is unavailable. 
Blue squares = lnβFe

57/54 calculated from GM model using force constants 
measured at simultaneous high-P-T conditions from Lin et al. (2005). 
Coefficient B2 from the Table 1 in Dauphas et al. (2012) is used in the 
calculation, and the blue number next to each data point indicates the 
pressure of each measurement. The lnβ calculated from the GM model 
using simultaneous high-P-T force constant is systematically lower than 
the lnβ extrapolated from the GM model using room temperature force 
constant by at least 0.1‰. (Color online.)
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Figure 5. Equilibrium isotope fractionation β-factor between 57Fe 
and 54Fe at ambient pressure, determined from fLM (horizontal axis, this 
study) and the phonon DOS (vertical axis). Both the fLM and the phonon 
DOS are from Mauger et al. (2014). Black dashed line: Y = X identity 
line. (Color online.)
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extrapolation of GM model using the phonon DOS collected at 
ambient temperature by about 0.1‰. Taken together, the results 
shown in Figures 4 and 5 suggest that the β-factor computed from 
NRIXS spectra collected at high temperatures and/or phonon 
DOS collected at high temperatures leads to a more consistent 
result than the β-factor extrapolated to high temperatures using 
the force constant derived from room-temperature data.

While most published high-temperature β-factors calculated 
from the GM model were extrapolated from room temperature 
phonon DOS and/or force constants, Lin et al. (2005) measured 
the phonon DOS of ε-Fe at simultaneous high-P-T conditions 
and reported the associated force constants, which are used 
to compare with the β-factors of ε-Fe determined by our ap-
proach. Figure 6 demonstrates the lnβ of ε-Fe calculated from 
the GM method using force constants collected at simultaneous 
high-P-T conditions (Lin et al. 2005) are at least 0.1‰ lower 
than the extrapolation of the GM model using a force constant 
collected at room temperature (54.6 GPa, 325.6 N/m, Dauphas 
et al. 2012), consistent with the quasiharmonic correction that 
we have observed with our approach. Our conclusion is that the 
GM method would capture the quasiharmonic corrections to the 
β-factor when the phonon DOS or force constants collected at 
high temperatures are used.

Discussion on the effect of phase transitions 
and pressure uncertainty

Phase transitions 
In this section, we discuss reasons why the (lnβ, 106/T 2) trend 

does not necessarily have to intercept the 106/T 2 axis at (0, 0). 
The point (0, 0) in the (lnβ, 106/T 2) space does not hold physi-
cal significance. The material presented in this study (solid Fe), 
and similar to all materials, is characterized by phase transitions 
with increasing temperature and an intercept of (0, 0) from the 
extrapolation of the (lnβ, 106/T 2) plot of the solid phase would 
neglect such phase transitions. Our results show that for the solid 
Fe phases, the (lnβ, 106/T 2) trend does not intercept the (0, 0) 
point. Rather, the intercept of (lnβ, 106/T 2) trend on the 106/T 2 
axis corresponds to a temperature higher than the melting point 
(see below), i.e., the solid phase never reaches it. For T→∞, a 
liquid will turn into either a gas (below the critical pressure) or a 
supercritical state (above the critical pressure). The temperature 
dependence of lnβ in the high-temperature phases (liquid, gas, 
or supercritical) is generally unknown, except for a classical 
monatomic ideal gas (see below).

As Polyakov (1997) and Dauphas et al. (2018) have pointed 
out, lnβ is related to the average atomic kinetic energy (KE) based 
on the following equation:

ln *

m
m

KE
TkB

3
2

	 (12)

where Δm is the mass difference between two isotopes, m* is the 
atomic mass of the element, and kB is the Boltzmann constant. In 
order for lnβ = 0, one only needs KE = 3/2 kBT, which coincides 
with the average atomic kinetic energy of the classical mona-
tomic ideal gas (Landau and Lifshitz 1980). Therefore, the lnβ 
of a classical monatomic ideal gas is 0, which is the reason why 
the β-factor is defined as the isotope fractionation factor between 

the material of interest and a classical monatomic ideal gas refer-
ence (e.g., Richet et al. 1977; Schauble 2011; Huang et al. 2013; 
Eldridge et al. 2016).

Here we discuss two scenarios:
(1) 1 bar. Fe has a sharp liquid-gas phase boundary and a well-

defined gaseous phase at ambient pressure (boiling point 3273 K; 
Zhang et al. 2011). Evaporation experiments have demonstrated 
that Fe vapor behaves as a classical monatomic gas (Safarian and 
Engh 2013). Based on the discussion above, we predict that lnβ 
of Fe would be equal to 0 at temperatures above its 1 bar boiling 
point. To validate our prediction, we extrapolate (lnβ, 106/T 2) of 
the data calculated from the fLM and DOS data from Mauger et al. 
(2014) to high temperatures using a linear model, and the linear 
extrapolations intercept the 106/T 2 axis at temperatures of 3292 
K (fLM) and 4492 K (DOS) (please refer to the Online Materials2). 
Both temperatures are above the 1 bar boiling point of Fe but 
below infinity.

(2) 50 GPa. The critical pressure of Fe is estimated at ~1 GPa 
(Ray et al. 2006), so Fe is unlikely to transition into a well-defined 
gaseous phase at 50 GPa. Instead Fe will likely go into the super-
critical phase at high enough temperatures (Landau and Lifshitz 
1980). The linear extrapolation of (lnβ, 106/T 2) derived from the 
fLM from our study intercepts the 106/T 2 axis at a temperature of 
3469 K. To our knowledge, no study has constrained the supercriti-
cal transition temperature for Fe at 50 GPa, so it is challenging 
to benchmark this value. We expect that the harmonic model 
provides the highest possible bound for lnβ above the melting 
point of Fe, and the actual lnβ value is expected to be lower than 
the harmonic model (because the quasiharmonic correction would 
lower the lnβ, Fig. 4b).

Pressure uncertainty
Murphy et al. (2013) determined the force constant of ε-Fe 

at ambient temperature and high pressures from the integrated 
phonon DOS. The pressure derivative of the force constant for 
ε-Fe is 2.124 N/(m·GPa), and the projected force constants at 50 
and 55 GPa are 293 and 304 N/m, respectively. If we neglect the 
quasiharmonic correction and focus only on the intrinsic pressure 
effect, at 3000 K and 50 GPa, lnβ = 0.139‰; and at 3000 K and 
55 GPa, lnβ = 0.144‰, resulting in a Δlnβ of 0.005‰. We carried 
out similar calculations with the force constant data from Shahar 
et al. (2016) reported at 17 and 40 GPa, which are derived from 
the moments of the refined NRIXS spectra. The pressure deriva-
tive of the force constant for ε-Fe from Shahar et al. (2016) is 
2.786 N/(m·GPa), resulting in a Δlnβ of 0.007‰ between 50 and 
55 GPa at 3000 K. The Δlnβ that is intrinsically because of the 
pressure effect [0.005‰ based on Murphy et al. (2013) or 0.007‰ 
based on Shahar et al. (2016)] is more than one order of magnitude 
smaller than the estimated quasiharmonic correction (0.1‰). The 
effect of the pressure uncertainty on the lnβ is, therefore, minor 
compared to the quasiharmonic correction at temperatures relevant 
to the core-formation scenario, and the pressure uncertainty would 
not yield an intercept at (0, 0) for the (lnβ, 106/T 2) trend.

Implications
Our result demonstrates that the lattice vibrations of iron at 

high-P-T conditions deviates from harmonicity. One implication 
of our finding is to incorporate these results into studies involv-
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ing iron isotope fractionation, such as the core formation process. 
Geochemical studies have demonstrated that mantle-derived rocks 
are ~0.1‰ heavier in δ57Fe than rocks from Mars and Vesta, which 
are believed to have chondritic δ57Fe value (Poitrasson et al. 2004; 
Sossi et al. 2016). Based on NRIXS measurements and a proposed 
quasiharmonic correction, Polyakov (2009) suggests that the core-
mantle differentiation would leave an imprint on the iron isotope 
composition of the mantle rocks. However, based on the harmonic 
extrapolation from recent high pressure, room-temperature NRIXS 
measurements where a quasiharmonic correction is neglected, the 
isotope fractionation between metallic iron and silicates at core 
formation conditions (~40–60 GPa, ~3000 K) is expected to be 
smaller than 0.1‰.

Yang et al. (2019) determine the force constant of Fe in bridg-
manite with a composition of Mg0.92Fe0.09Si0.99O3 as 322.7 ± 28.0 
N/m at 50 GPa and 300 K, and the same group determine the 
force constant of Fe in ferropericlase with a composition of 
Mg0.75Fe0.25O as 333.1 ± 17.6 N/m at 54 GPa and 300 K. If one 
neglects the quasiharmonic correction and calculates the high-
temperature lnβFe

57/54 from room temperature force constants, the 
lnβFe

57/54 is 0.153 ± 0.013‰ for bridgmanite and 0.158 ± 0.008‰ 
for ferropericlase at 3000 K. The force constant of Fe in ε-Fe var-
ies between different studies. If one takes an average of the force 
constants measured between 50 and 55 GPa from Lin et al. (2005) 
and Murphy et al. (2013), the averaged force constant in ε-Fe is 
309 ± 11 N/m at 53 GPa and 300 K, which corresponds to a lnβFe

57/54 
of 0.147 ± 0.005‰ at 3000 K without a quasiharmonic correction. 
If the quasiharmonic correction is neglected, the difference in 
lnβFe

57/54 between Fe and mantle materials at ~50 GPa and 3000 K 
is in the order of 0.01‰. Using phonon DOS calculated from 
density functional theory, Shahar et al. (2016) calculate the iron 
isotopic fractionation between bridgmanite and iron (Δ57FeBrg–Fe = 
δ57FeBrg – δ57FeFe = lnβFe

57/54Fe – lnβFe
57/54Fe) at 60 GPa and ~3500 K as 

0.02–0.04‰. Using basaltic glass as a proxy for mantle melts, Liu 
et al. (2017) calculate Δ56Femantle-Fe at 40–60 GPa and 3000–4000 K 
as 0–0.02‰, which is equivalent to a Δ57Femantle-Fe of 0–0.03‰ if 
one recalculates the δ57 Fe using the same force constant as δ56Fe. 
Both studies conclude that the core formation process is unlikely 
to leave an iron isotopic fingerprint on mantle rocks. However, if 
quasiharmonic correction is considered, there may be an observ-
able effect, as discussed below.

We now consider rough estimates of the quasiharmonic cor-
rection to the β-factor of lower mantle minerals using Equation 
11. Wolf et al. (2015) measured the thermal equation of state of 
iron-bearing bridgmanite and thus provide constraints on all the 
parameters in Equation 11; in this case, one needs to assume that 
the normalized modal Grüneisen parameter γ of iron in bridgmanite 
is the same as its thermal Grüneisen parameter, which is yet to be 
tested. At 50 GPa and 3000 K, the thermal Grüneisen parameter γth 
for iron-bearing bridgmanite is 1.3, the isothermal bulk modulus is 
370.6 GPa, and molar volume is 24.6 cm3/mol (Wolf et al. 2015). 
Using Equation 11, the estimated quasiharmonic correction to 
lnβFe

57/54 in bridgmanite is –0.006‰. If we now use this estimated 
quasiharmonic correction to β-factors in bridgmanite and the qua-
siharmonic correction in metallic iron determined from this study 
(–0.1‰), the core formation process, modeled as Δ57FeBrg-Fe, would 
leave an isotopic fingerprint of 0.09–0.13‰. This Δ57FeBrg-Fe value 
is close to the δ57 Fe compared between mantle-derived rocks and 

chondrites (~0.1‰) (Poitrasson et al. 2004; Wang et al. 2012; Sossi 
et al. 2016). For ferropericlase, the other major Fe-bearing major 
phase in the lower mantle, the reported thermoelastic parameters 
at 50 GPa and 3000 K are: V = 10.4 cm3/mol (Mao et al. 2011), KT 
= 292.0 GPa (Mao et al. 2011), and γ = 1.3 (Fischer et al. 2011). 
Based on Equation 11, the estimated quasiharmonic correction to 
lnβFe

57/54 in ferropericlase is –0.013‰, which is also significantly 
smaller than that for the metallic Fe phase (–0.1‰) and will not 
change the conclusion that 57Fe preferentially partitions into these 
lower-mantle phases when considering quasiharmonic behavior.

The exact fraction of the equilibrium δ57Fe that would be 
transferred to the mantle depends on the mass ratio of iron between 
the metallic phase and the mantle phases in the core-formation 
process. If we assume that 90% of the iron is in the core, based 
on the lever rule [δ57Femantle = (δ57FeEarth – δ57Fecore f Fe

core)/(1 – f Fe
core); 

δ57Femantle – δ57Fecore = 0.1‰] the calculated δ57Femantle is 0.09‰. 
This δ57Femantle value is close to the δ57 Fe compared between 
mantle-derived rocks and chondrites (~0.1‰) (Poitrasson et al. 
2004; Wang et al. 2012; Sossi et al. 2016). Our conclusion is that 
one cannot rule out the possibility that the process of core forma-
tion would leave the mantle enriched with heavier iron isotopes 
compared to chondrites (Poitrasson et al. 2004; Weyer et al. 2005; 
Schoenberg and von Blanckenburg 2006).

Concluding remarks 
We constrain the mean-square displacement of the iron atoms 

by measuring the fLM of γ- and ε-Fe at pressures around 50 GPa and 
temperatures above 1650 K using synchrotron Mössbauer spec-
troscopy. This approach avoids the difficulty in maintaining stable 
and uniform high sample temperatures for hours, a requirement in 
conventional Mössbauer and NRIXS measurements. Extrapolation 
of our results to 300–1700 K, where previous measurements have 
been conducted, shows good agreement, suggesting that the fLM 
captures the behavior of the phonons in iron metal reasonably well.

We find that the fLM is more sensitive to temperature than to 
pressure, and the temperature dependence for γ- and ε-Fe varies 
continuously up to melting within the experimental uncertainties. 
At the pressures investigated here (around 50 GPa), the fLM of iron 
has a linear temperature dependence.

We establish the relationship between fLM, the lattice vibrations 
of iron, and iron isotope fractionation. We assume weak anhar-
monicity, which permits us to use a quasiharmonic Debye model 
for the lattice vibrations. We calculate the Debye temperatures of 
the γ- and ε-Fe at elevated pressure-temperature conditions from 
this model. From the calculated Debye temperatures, the equilib-
rium isotopic fractionation β-factors of iron at high pressures and 
high temperatures are computed. Our result is consistent with the 
β-factors determined by previous NRIXS studies at relatively low 
temperature (T < 600 K). However, for the high-temperature data 
(T > 600 K), we find that the quasiharmonic correction is signifi-
cant enough to have an observable isotopic effect. Calculations 
based on our experimental data (around 50 GPa, 1600–2800 K) 
demonstrate that the quasiharmonic correction would lower lnβFe

57/54 
by 0.1‰ compared to the extrapolation of room temperature 
NRIXS results. The offset of 0.1‰ in lnβFe

57/54 is enough to account 
for the observed δ57 Fe in mantle rocks compared to chondrites. 
Therefore, it is plausible that core formation processes left an 
observable iron isotopic signature in mantle rocks. Our experi-
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mental results on hot compressed iron highlight the importance 
of considering nonharmonic effects to the evaluation of isotopic 
fractionation β-factors in minerals at deep Earth conditions.
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Endnote:
1Kowalski and Jahn (2011) confused angular frequency ω with frequency ν, and 
thus incorrectly assigned the condition as ω (cm–1) < 1.39T (K), which should be 
ν (cm–1) < 1.39T (K), or ω (cm–1) < 8.73T (K).
2Deposit item AM-22-37884, Online Materials. Deposit items are free to all 
readers and found on the MSA website, via the specific issue’s Table of Con-
tents (go to http://www.minsocam.org/MSA/AmMin/TOC/2022/Mar2022_data/
Mar2022_data.html). 
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